diff options
Diffstat (limited to 'src/share/algebra/browse.daase')
-rw-r--r-- | src/share/algebra/browse.daase | 650 |
1 files changed, 325 insertions, 325 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index 661fe5d0..2eff267f 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,5 +1,5 @@ -(2293931 . 3486841615) +(2294147 . 3486848000) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL @@ -56,7 +56,7 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -1963) +(-32 R -2119) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL ((|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) @@ -88,11 +88,11 @@ NIL ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -1963 UP UPUP -3125) +(-40 -2119 UP UPUP -2094) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) ((-4457 |has| (-419 |#2|) (-374)) (-4462 |has| (-419 |#2|) (-374)) (-4456 |has| (-419 |#2|) (-374)) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| (-419 |#2|) (QUOTE (-146))) (|HasCategory| (-419 |#2|) (QUOTE (-148))) (|HasCategory| (-419 |#2|) (QUOTE (-360))) (-2759 (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-379))) (-2759 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-2759 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-2759 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-360))))) (-2759 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -651) (QUOTE (-576)))) (-2759 (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) -(-41 R -1963) +((|HasCategory| (-419 |#2|) (QUOTE (-146))) (|HasCategory| (-419 |#2|) (QUOTE (-148))) (|HasCategory| (-419 |#2|) (QUOTE (-360))) (-3795 (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-379))) (-3795 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-3795 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-3795 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-360))))) (-3795 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -651) (QUOTE (-576)))) (-3795 (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) +(-41 R -2119) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -442) (|devaluate| |#1|))))) @@ -111,7 +111,7 @@ NIL (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) ((-4464 . T) (-4465 . T)) -((-2759 (-12 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4439) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4439) (|devaluate| |#2|))))))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-861))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4439) (|devaluate| |#2|))))))) +((-3795 (-12 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2240) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2905) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2240) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2905) (|devaluate| |#2|))))))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-861))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2240) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2905) (|devaluate| |#2|))))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -1963) +(-54 |Base| R -2119) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -167,64 +167,64 @@ NIL (-59 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) ((-4465 . T) (-4464 . T)) -((-2759 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-3795 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) ((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-61 -2628) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-61 -4149) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-62 -2628) +(-62 -4149) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-63 -2628) +(-63 -4149) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -2628) +(-64 -4149) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-65 -2628) +(-65 -4149) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -2628) +(-66 -4149) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-67 -2628) +(-67 -4149) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -2628) +(-68 -4149) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-69 -2628) +(-69 -4149) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-70 -2628) +(-70 -4149) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-71 -2628) +(-71 -4149) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-72 -2628) +(-72 -4149) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-73 -2628) +(-73 -4149) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-74 -2628) +(-74 -4149) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL @@ -236,55 +236,55 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-77 -2628) +(-77 -4149) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-78 -2628) +(-78 -4149) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-79 -2628) +(-79 -4149) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -2628) +(-80 -4149) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -2628) +(-81 -4149) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}"))) NIL NIL -(-82 -2628) +(-82 -4149) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -2628) +(-83 -4149) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -2628) +(-84 -4149) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -2628) +(-85 -4149) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -2628) +(-86 -4149) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -2628) +(-87 -4149) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-88 -2628) +(-88 -4149) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-89 -2628) +(-89 -4149) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -295,7 +295,7 @@ NIL (-91 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) ((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-92 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -343,7 +343,7 @@ NIL (-103 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) ((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-104 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL @@ -363,7 +363,7 @@ NIL (-108) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) ((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| (-576) (QUOTE (-928))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1043))) (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861))) (-2759 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861)))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1173))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (|HasCategory| (-576) (QUOTE (-146))))) +((|HasCategory| (-576) (QUOTE (-928))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1043))) (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861))) (-3795 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861)))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1173))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (|HasCategory| (-576) (QUOTE (-146))))) (-109) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL @@ -392,7 +392,7 @@ NIL ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}."))) NIL NIL -(-116 -1963 UP) +(-116 -2119 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL @@ -403,7 +403,7 @@ NIL (-118 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) ((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| (-117 |#1|) (QUOTE (-928))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-117 |#1|) (QUOTE (-1043))) (|HasCategory| (-117 |#1|) (QUOTE (-832))) (|HasCategory| (-117 |#1|) (QUOTE (-861))) (-2759 (|HasCategory| (-117 |#1|) (QUOTE (-832))) (|HasCategory| (-117 |#1|) (QUOTE (-861)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (QUOTE (-1173))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (QUOTE (-237))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-117 |#1|) (QUOTE (-238))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -319) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -296) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-317))) (|HasCategory| (-117 |#1|) (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-928)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))))) +((|HasCategory| (-117 |#1|) (QUOTE (-928))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-117 |#1|) (QUOTE (-1043))) (|HasCategory| (-117 |#1|) (QUOTE (-832))) (|HasCategory| (-117 |#1|) (QUOTE (-861))) (-3795 (|HasCategory| (-117 |#1|) (QUOTE (-832))) (|HasCategory| (-117 |#1|) (QUOTE (-861)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (QUOTE (-1173))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (QUOTE (-237))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-117 |#1|) (QUOTE (-238))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -319) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -296) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-317))) (|HasCategory| (-117 |#1|) (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-928)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))))) (-119 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL @@ -419,7 +419,7 @@ NIL (-122 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) ((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-123 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) NIL @@ -439,15 +439,15 @@ NIL (-127 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) ((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-128 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) ((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-129) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) ((-4465 . T) (-4464 . T)) -((-2759 (-12 (|HasCategory| (-130) (QUOTE (-861))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1121))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130)))))) (-2759 (-12 (|HasCategory| (-130) (QUOTE (-1121))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-130) (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| (-130) (QUOTE (-861))) (|HasCategory| (-130) (QUOTE (-1121)))) (|HasCategory| (-130) (QUOTE (-861))) (-2759 (|HasCategory| (-130) (QUOTE (-102))) (|HasCategory| (-130) (QUOTE (-861))) (|HasCategory| (-130) (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-130) (QUOTE (-1121))) (|HasCategory| (-130) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-130) (QUOTE (-102))) (-12 (|HasCategory| (-130) (QUOTE (-1121))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130)))))) +((-3795 (-12 (|HasCategory| (-130) (QUOTE (-861))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1121))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130)))))) (-3795 (-12 (|HasCategory| (-130) (QUOTE (-1121))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-130) (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| (-130) (QUOTE (-861))) (|HasCategory| (-130) (QUOTE (-1121)))) (|HasCategory| (-130) (QUOTE (-861))) (-3795 (|HasCategory| (-130) (QUOTE (-102))) (|HasCategory| (-130) (QUOTE (-861))) (|HasCategory| (-130) (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-130) (QUOTE (-1121))) (|HasCategory| (-130) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-130) (QUOTE (-102))) (-12 (|HasCategory| (-130) (QUOTE (-1121))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130)))))) (-130) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL @@ -472,11 +472,11 @@ NIL ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) (((-4466 "*") . T)) NIL -(-136 |minix| -2705 S T$) +(-136 |minix| -1914 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-137 |minix| -2705 R) +(-137 |minix| -1914 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL @@ -499,7 +499,7 @@ NIL (-142) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) ((-4464 . T) (-4454 . T) (-4465 . T)) -((-2759 (-12 (|HasCategory| (-145) (QUOTE (-379))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-145) (QUOTE (-379))) (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) +((-3795 (-12 (|HasCategory| (-145) (QUOTE (-379))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-145) (QUOTE (-379))) (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-143 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL @@ -524,7 +524,7 @@ NIL ((|constructor| (NIL "Rings of Characteristic Zero."))) ((-4461 . T)) NIL -(-149 -1963 UP UPUP) +(-149 -2119 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}."))) NIL NIL @@ -564,7 +564,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-159 R -1963) +(-159 R -2119) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -598,7 +598,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-1223))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (QUOTE (-1043))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4460)) (|HasAttribute| |#2| (QUOTE -4463)) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-568)))) (-167 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4457 -2759 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4460 |has| |#1| (-6 -4460)) (-4463 |has| |#1| (-6 -4463)) (-4177 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4457 -3795 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4460 |has| |#1| (-6 -4460)) (-4463 |has| |#1| (-6 -4463)) (-2649 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-168 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) @@ -614,8 +614,8 @@ NIL NIL (-171 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4457 -2759 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4460 |has| |#1| (-6 -4460)) (-4463 |has| |#1| (-6 -4463)) (-4177 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-360))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-2759 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-360)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-928))))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-928))))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-1223)))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (QUOTE (-1043))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-568)))) (-2759 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-1081))) (-12 (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (QUOTE (-1223)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-374)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-237)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-238))) (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasAttribute| |#1| (QUOTE -4460)) (|HasAttribute| |#1| (QUOTE -4463)) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197))))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-360))))) +((-4457 -3795 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-928)))) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4460 |has| |#1| (-6 -4460)) (-4463 |has| |#1| (-6 -4463)) (-2649 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-360))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-3795 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-360)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-928))))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-928))))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-1223)))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (QUOTE (-1043))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-568)))) (-3795 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-1081))) (-12 (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (QUOTE (-1223)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-374)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-237)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-238))) (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasAttribute| |#1| (QUOTE -4460)) (|HasAttribute| |#1| (QUOTE -4463)) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197))))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-360))))) (-172 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL @@ -688,7 +688,7 @@ NIL ((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-190 R -1963) +(-190 R -2119) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -796,23 +796,23 @@ NIL ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,start,end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-217 -1963 UP UPUP R) +(-217 -2119 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-218 -1963 FP) +(-218 -2119 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL (-219) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) ((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| (-576) (QUOTE (-928))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1043))) (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861))) (-2759 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861)))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1173))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (|HasCategory| (-576) (QUOTE (-146))))) +((|HasCategory| (-576) (QUOTE (-928))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1043))) (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861))) (-3795 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861)))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1173))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (|HasCategory| (-576) (QUOTE (-146))))) (-220) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-221 R -1963) +(-221 R -2119) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL @@ -827,18 +827,18 @@ NIL (-224 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) ((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-225 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) ((-4461 . T)) NIL -(-226 R -1963) +(-226 R -2119) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL (-227) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4165 . T) (-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-2642 . T) (-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-228) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}"))) @@ -847,7 +847,7 @@ NIL (-229 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) ((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4466 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4466 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-230 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL @@ -896,22 +896,22 @@ NIL ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-242 S -2705 R) +(-242 S -1914 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL ((|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-861))) (|HasAttribute| |#3| (QUOTE -4461)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (QUOTE (-1121)))) -(-243 -2705 R) +(-243 -1914 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) ((-4458 |has| |#2| (-1070)) (-4459 |has| |#2| (-1070)) (-4461 |has| |#2| (-6 -4461)) (-4464 . T)) NIL -(-244 -2705 A B) +(-244 -1914 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-245 -2705 R) +(-245 -1914 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) ((-4458 |has| |#2| (-1070)) (-4459 |has| |#2| (-1070)) (-4461 |has| |#2| (-6 -4461)) (-4464 . T)) -((-2759 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-2759 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-374))) (-2759 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2759 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-2759 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-379))) (-2759 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-238))) (-2759 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070))))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#2| (QUOTE (-1121))) (-2759 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121))))) (-2759 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-2759 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197))))) (-2759 (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (|HasAttribute| |#2| (QUOTE -4461)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) +((-3795 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-3795 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-374))) (-3795 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3795 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-3795 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-379))) (-3795 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-238))) (-3795 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070))))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#2| (QUOTE (-1121))) (-3795 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121))))) (-3795 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-3795 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197))))) (-3795 (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (|HasAttribute| |#2| (QUOTE -4461)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) (-246) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL @@ -931,7 +931,7 @@ NIL (-250 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) ((-4465 . T) (-4464 . T)) -((-2759 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-3795 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-251 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL @@ -943,7 +943,7 @@ NIL (-253 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) (((-4466 "*") |has| |#2| (-174)) (-4457 |has| |#2| (-568)) (-4462 |has| |#2| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#2| (QUOTE (-928))) (-2759 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2759 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) +((|HasCategory| |#2| (QUOTE (-928))) (-3795 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-3795 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) (-254) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}."))) NIL @@ -958,12 +958,12 @@ NIL NIL (-257 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4461 -2759 (-2674 (|has| |#4| (-1070)) (|has| |#4| (-238))) (|has| |#4| (-6 -4461)) (-2674 (|has| |#4| (-1070)) (|has| |#4| (-917 (-1197))))) (-4458 |has| |#4| (-1070)) (-4459 |has| |#4| (-1070)) (-4464 . T)) -((-2759 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-861))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))))) (|HasCategory| |#4| (QUOTE (-374))) (-2759 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (QUOTE (-1070)))) (-2759 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-374)))) (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (QUOTE (-805))) (-2759 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (QUOTE (-861)))) (|HasCategory| |#4| (QUOTE (-861))) (|HasCategory| |#4| (QUOTE (-379))) (-2759 (-12 (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))) (-2759 (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1070)))) (|HasCategory| |#4| (QUOTE (-238))) (-2759 (|HasCategory| |#4| (QUOTE (-238))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1070))))) (-2759 (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#4| (QUOTE (-1121))) (-2759 (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-21)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-238)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-374)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-379)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-738)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-805)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-861)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1070)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1121))))) (-2759 (-12 (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-861))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1070))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-2759 (-12 (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-861))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-2759 (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -919) (QUOTE (-1197)))))) (-2759 (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1070)))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1070))))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-2759 (|HasCategory| |#4| (QUOTE (-1070))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1121)))) (-2759 (|HasAttribute| |#4| (QUOTE -4461)) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1070)))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1070)))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -919) (QUOTE (-1197))))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#4| (QUOTE (-102))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|))))) +((-4461 -3795 (-2311 (|has| |#4| (-1070)) (|has| |#4| (-238))) (|has| |#4| (-6 -4461)) (-2311 (|has| |#4| (-1070)) (|has| |#4| (-917 (-1197))))) (-4458 |has| |#4| (-1070)) (-4459 |has| |#4| (-1070)) (-4464 . T)) +((-3795 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-861))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))))) (|HasCategory| |#4| (QUOTE (-374))) (-3795 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (QUOTE (-1070)))) (-3795 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-374)))) (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (QUOTE (-805))) (-3795 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (QUOTE (-861)))) (|HasCategory| |#4| (QUOTE (-861))) (|HasCategory| |#4| (QUOTE (-379))) (-3795 (-12 (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))) (-3795 (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1070)))) (|HasCategory| |#4| (QUOTE (-238))) (-3795 (|HasCategory| |#4| (QUOTE (-238))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1070))))) (-3795 (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#4| (QUOTE (-1121))) (-3795 (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-21)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-238)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-374)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-379)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-738)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-805)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-861)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1070)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1121))))) (-3795 (-12 (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-861))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1070))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-3795 (-12 (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-861))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-3795 (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -919) (QUOTE (-1197)))))) (-3795 (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1070)))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1070))))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576))))) (-3795 (|HasCategory| |#4| (QUOTE (-1070))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1121)))) (-3795 (|HasAttribute| |#4| (QUOTE -4461)) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1070)))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1070)))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (LIST (QUOTE -919) (QUOTE (-1197))))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#4| (QUOTE (-102))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|))))) (-258 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4461 -2759 (-2674 (|has| |#3| (-1070)) (|has| |#3| (-238))) (|has| |#3| (-6 -4461)) (-2674 (|has| |#3| (-1070)) (|has| |#3| (-917 (-1197))))) (-4458 |has| |#3| (-1070)) (-4459 |has| |#3| (-1070)) (-4464 . T)) -((-2759 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))))) (|HasCategory| |#3| (QUOTE (-374))) (-2759 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-2759 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (-2759 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-861)))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-379))) (-2759 (-12 (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (-2759 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1070)))) (|HasCategory| |#3| (QUOTE (-238))) (-2759 (|HasCategory| |#3| (QUOTE (-238))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1070))))) (-2759 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#3| (QUOTE (-1121))) (-2759 (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-238)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-374)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-379)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-738)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-805)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-861)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1121))))) (-2759 (-12 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1070))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-2759 (-12 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-2759 (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -919) (QUOTE (-1197)))))) (-2759 (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1070))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-2759 (|HasCategory| |#3| (QUOTE (-1070))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1121)))) (-2759 (|HasAttribute| |#3| (QUOTE -4461)) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -919) (QUOTE (-1197))))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) +((-4461 -3795 (-2311 (|has| |#3| (-1070)) (|has| |#3| (-238))) (|has| |#3| (-6 -4461)) (-2311 (|has| |#3| (-1070)) (|has| |#3| (-917 (-1197))))) (-4458 |has| |#3| (-1070)) (-4459 |has| |#3| (-1070)) (-4464 . T)) +((-3795 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))))) (|HasCategory| |#3| (QUOTE (-374))) (-3795 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-3795 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (-3795 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-861)))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-379))) (-3795 (-12 (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (-3795 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1070)))) (|HasCategory| |#3| (QUOTE (-238))) (-3795 (|HasCategory| |#3| (QUOTE (-238))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1070))))) (-3795 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#3| (QUOTE (-1121))) (-3795 (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-238)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-374)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-379)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-738)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-805)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-861)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1121))))) (-3795 (-12 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1070))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-3795 (-12 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-3795 (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -919) (QUOTE (-1197)))))) (-3795 (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1070))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-3795 (|HasCategory| |#3| (QUOTE (-1070))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1121)))) (-3795 (|HasAttribute| |#3| (QUOTE -4461)) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -919) (QUOTE (-1197))))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) (-259 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL @@ -1023,7 +1023,7 @@ NIL (-273 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) (((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-928))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#3| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) +((|HasCategory| |#1| (QUOTE (-928))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#3| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) (-274 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL @@ -1068,11 +1068,11 @@ NIL ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-285 R -1963) +(-285 R -2119) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-286 R -1963) +(-286 R -2119) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL @@ -1124,7 +1124,7 @@ NIL ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-299 S R |Mod| -1892 -2185 |exactQuo|) +(-299 S R |Mod| -3381 -3046 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) ((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL @@ -1146,21 +1146,21 @@ NIL NIL (-304 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4461 -2759 (|has| |#1| (-1070)) (|has| |#1| (-485))) (-4458 |has| |#1| (-1070)) (-4459 |has| |#1| (-1070))) -((|HasCategory| |#1| (QUOTE (-374))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1070)))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-1070)))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1070)))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1070)))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1070)))) (-2759 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-738)))) (|HasCategory| |#1| (QUOTE (-485))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-312))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-485)))) (-2759 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738)))) (-2759 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-738)))) +((-4461 -3795 (|has| |#1| (-1070)) (|has| |#1| (-485))) (-4458 |has| |#1| (-1070)) (-4459 |has| |#1| (-1070))) +((|HasCategory| |#1| (QUOTE (-374))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1070)))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-1070)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1070)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1070)))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1070)))) (-3795 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-738)))) (|HasCategory| |#1| (QUOTE (-485))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-312))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-485)))) (-3795 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738)))) (-3795 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-738)))) (-305 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) ((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4439) (|devaluate| |#2|)))))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2240) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2905) (|devaluate| |#2|)))))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102)))) (-306) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-307 -1963 S) +(-307 -2119 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-308 E -1963) +(-308 E -2119) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}."))) NIL NIL @@ -1208,7 +1208,7 @@ NIL ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-320 -1963) +(-320 -2119) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL @@ -1223,7 +1223,7 @@ NIL (-323 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}."))) ((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-928))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-1043))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-832))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-861))) (-2759 (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-832))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-861)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-1173))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-237))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-238))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -1274) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -319) (LIST (QUOTE -1274) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -296) (LIST (QUOTE -1274) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1274) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-317))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-557))) (-12 (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-928))) (|HasCategory| $ (QUOTE (-146)))) (-2759 (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-928))) (|HasCategory| $ (QUOTE (-146)))))) +((|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-928))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-1043))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-832))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-861))) (-3795 (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-832))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-861)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-1173))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-237))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-238))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -1274) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -319) (LIST (QUOTE -1274) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (LIST (QUOTE -296) (LIST (QUOTE -1274) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1274) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-317))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-557))) (-12 (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-928))) (|HasCategory| $ (QUOTE (-146)))) (-3795 (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-928))) (|HasCategory| $ (QUOTE (-146)))))) (-324 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL @@ -1234,9 +1234,9 @@ NIL NIL (-326 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4461 -2759 (-12 (|has| |#1| (-568)) (-2759 (|has| |#1| (-1070)) (|has| |#1| (-485)))) (|has| |#1| (-1070)) (|has| |#1| (-485))) (-4459 |has| |#1| (-174)) (-4458 |has| |#1| (-174)) ((-4466 "*") |has| |#1| (-568)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-568)) (-4456 |has| |#1| (-568))) -((-2759 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (-2759 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-21))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-1070))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-2759 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (-2759 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1070)))) (-2759 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1070)))) (-2759 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1070)))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568)))) (-2759 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-2759 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-2759 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1133)))) (-2759 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-2759 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1070)))) (-2759 (-12 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| $ (QUOTE (-1070))) (|HasCategory| $ (LIST (QUOTE -1059) (QUOTE (-576))))) -(-327 R -1963) +((-4461 -3795 (-12 (|has| |#1| (-568)) (-3795 (|has| |#1| (-1070)) (|has| |#1| (-485)))) (|has| |#1| (-1070)) (|has| |#1| (-485))) (-4459 |has| |#1| (-174)) (-4458 |has| |#1| (-174)) ((-4466 "*") |has| |#1| (-568)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-568)) (-4456 |has| |#1| (-568))) +((-3795 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (-3795 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-21))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-1070))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-3795 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (-3795 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1070)))) (-3795 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1070)))) (-3795 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1070)))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568)))) (-3795 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-3795 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-3795 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1133)))) (-3795 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-3795 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1070)))) (-3795 (-12 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| $ (QUOTE (-1070))) (|HasCategory| $ (LIST (QUOTE -1059) (QUOTE (-576))))) +(-327 R -2119) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}."))) NIL NIL @@ -1247,7 +1247,7 @@ NIL (-329 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) (((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3569) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2759 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4160) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1969) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -4113) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3795 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1759) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1584) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) (-330 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL @@ -1279,12 +1279,12 @@ NIL (-337 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) ((-4465 . T) (-4464 . T)) -((-2759 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-338 S -1963) +((-3795 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +(-338 S -2119) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL ((|HasCategory| |#2| (QUOTE (-379)))) -(-339 -1963) +(-339 -2119) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) ((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL @@ -1308,15 +1308,15 @@ NIL ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}"))) NIL NIL -(-345 S -1963 UP UPUP R) +(-345 S -2119 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-346 -1963 UP UPUP R) +(-346 -2119 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-347 -1963 UP UPUP R) +(-347 -2119 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL @@ -1336,26 +1336,26 @@ NIL ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-352 S -1963 UP UPUP) +(-352 S -2119 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL ((|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-374)))) -(-353 -1963 UP UPUP) +(-353 -2119 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) ((-4457 |has| (-419 |#2|) (-374)) (-4462 |has| (-419 |#2|) (-374)) (-4456 |has| (-419 |#2|) (-374)) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-354 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) ((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((-2759 (|HasCategory| (-929 |#1|) (QUOTE (-146))) (|HasCategory| (-929 |#1|) (QUOTE (-379)))) (|HasCategory| (-929 |#1|) (QUOTE (-148))) (|HasCategory| (-929 |#1|) (QUOTE (-379))) (|HasCategory| (-929 |#1|) (QUOTE (-146)))) +((-3795 (|HasCategory| (-929 |#1|) (QUOTE (-146))) (|HasCategory| (-929 |#1|) (QUOTE (-379)))) (|HasCategory| (-929 |#1|) (QUOTE (-148))) (|HasCategory| (-929 |#1|) (QUOTE (-379))) (|HasCategory| (-929 |#1|) (QUOTE (-146)))) (-355 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) ((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((-2759 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) +((-3795 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) (-356 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) ((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((-2759 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) +((-3795 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) (-357 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL @@ -1372,31 +1372,31 @@ NIL ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) ((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-361 R UP -1963) +(-361 R UP -2119) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-362 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) ((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((-2759 (|HasCategory| (-929 |#1|) (QUOTE (-146))) (|HasCategory| (-929 |#1|) (QUOTE (-379)))) (|HasCategory| (-929 |#1|) (QUOTE (-148))) (|HasCategory| (-929 |#1|) (QUOTE (-379))) (|HasCategory| (-929 |#1|) (QUOTE (-146)))) +((-3795 (|HasCategory| (-929 |#1|) (QUOTE (-146))) (|HasCategory| (-929 |#1|) (QUOTE (-379)))) (|HasCategory| (-929 |#1|) (QUOTE (-148))) (|HasCategory| (-929 |#1|) (QUOTE (-379))) (|HasCategory| (-929 |#1|) (QUOTE (-146)))) (-363 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) ((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((-2759 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) +((-3795 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) (-364 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) ((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((-2759 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) +((-3795 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) (-365 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) ((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((-2759 (|HasCategory| (-929 |#1|) (QUOTE (-146))) (|HasCategory| (-929 |#1|) (QUOTE (-379)))) (|HasCategory| (-929 |#1|) (QUOTE (-148))) (|HasCategory| (-929 |#1|) (QUOTE (-379))) (|HasCategory| (-929 |#1|) (QUOTE (-146)))) +((-3795 (|HasCategory| (-929 |#1|) (QUOTE (-146))) (|HasCategory| (-929 |#1|) (QUOTE (-379)))) (|HasCategory| (-929 |#1|) (QUOTE (-148))) (|HasCategory| (-929 |#1|) (QUOTE (-379))) (|HasCategory| (-929 |#1|) (QUOTE (-146)))) (-366 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) ((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((-2759 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) -(-367 -1963 GF) +((-3795 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) +(-367 -2119 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL @@ -1404,14 +1404,14 @@ NIL ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-369 -1963 FP FPP) +(-369 -2119 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL (-370 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) ((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((-2759 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) +((-3795 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) (-371 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL @@ -1490,7 +1490,7 @@ NIL NIL (-390) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4447 . T) (-4455 . T) (-4165 . T) (-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-4447 . T) (-4455 . T) (-2642 . T) (-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-391 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) @@ -1544,7 +1544,7 @@ NIL ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-404 -1963 UP UPUP R) +(-404 -2119 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL @@ -1568,11 +1568,11 @@ NIL ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}"))) NIL NIL -(-410 -2628 |returnType| -1930 |symbols|) +(-410 -4149 |returnType| -4285 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-411 -1963 UP) +(-411 -2119 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: June 18,{} 2010 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL @@ -1594,7 +1594,7 @@ NIL ((|HasAttribute| |#1| (QUOTE -4447)) (|HasAttribute| |#1| (QUOTE -4455))) (-416) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-4165 . T) (-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-2642 . T) (-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-417 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) @@ -1607,7 +1607,7 @@ NIL (-419 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) ((-4451 -12 (|has| |#1| (-6 -4462)) (|has| |#1| (-464)) (|has| |#1| (-6 -4451))) (-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-861))) (-2759 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-861)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1173))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840))))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840))))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-557))) (-12 (|HasAttribute| |#1| (QUOTE -4462)) (|HasAttribute| |#1| (QUOTE -4451)) (|HasCategory| |#1| (QUOTE (-464)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) +((|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-861))) (-3795 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-861)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1173))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840))))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840))))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-557))) (-12 (|HasAttribute| |#1| (QUOTE -4462)) (|HasAttribute| |#1| (QUOTE -4451)) (|HasCategory| |#1| (QUOTE (-464)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) (-420 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL @@ -1628,11 +1628,11 @@ NIL ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}"))) NIL NIL -(-425 R -1963 UP A) +(-425 R -2119 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}."))) ((-4461 . T)) NIL -(-426 R -1963 UP A |ibasis|) +(-426 R -2119 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}."))) NIL ((|HasCategory| |#4| (LIST (QUOTE -1059) (|devaluate| |#2|)))) @@ -1651,7 +1651,7 @@ NIL (-430 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) ((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -319) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -296) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-1242))) (-2759 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-1242)))) (|HasCategory| |#1| (QUOTE (-1043))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-464)))) +((|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -319) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -296) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-1242))) (-3795 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-1242)))) (|HasCategory| |#1| (QUOTE (-1043))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-464)))) (-431 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}."))) NIL @@ -1680,7 +1680,7 @@ NIL ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) ((-4464 . T) (-4454 . T) (-4465 . T)) NIL -(-438 R -1963) +(-438 R -2119) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL @@ -1688,7 +1688,7 @@ NIL ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) ((-4451 -12 (|has| |#1| (-6 -4451)) (|has| |#2| (-6 -4451))) (-4458 . T) (-4459 . T) (-4461 . T)) ((-12 (|HasAttribute| |#1| (QUOTE -4451)) (|HasAttribute| |#2| (QUOTE -4451)))) -(-440 R -1963) +(-440 R -2119) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL @@ -1698,17 +1698,17 @@ NIL ((|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-442 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4461 -2759 (|has| |#1| (-1070)) (|has| |#1| (-485))) (-4459 |has| |#1| (-174)) (-4458 |has| |#1| (-174)) ((-4466 "*") |has| |#1| (-568)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-568)) (-4456 |has| |#1| (-568))) +((-4461 -3795 (|has| |#1| (-1070)) (|has| |#1| (-485))) (-4459 |has| |#1| (-174)) (-4458 |has| |#1| (-174)) ((-4466 "*") |has| |#1| (-568)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-568)) (-4456 |has| |#1| (-568))) NIL -(-443 R -1963) +(-443 R -2119) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-444 R -1963) +(-444 R -2119) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-445 R -1963) +(-445 R -2119) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL @@ -1716,7 +1716,7 @@ NIL ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-447 R -1963 UP) +(-447 R -2119 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL ((|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-48))))) @@ -1748,7 +1748,7 @@ NIL ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-455 R UP -1963) +(-455 R UP -2119) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL @@ -1795,7 +1795,7 @@ NIL (-466 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) (((-4466 "*") |has| |#2| (-174)) (-4457 |has| |#2| (-568)) (-4462 |has| |#2| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#2| (QUOTE (-928))) (-2759 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2759 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) +((|HasCategory| |#2| (QUOTE (-928))) (-3795 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-3795 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) (-467 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL @@ -1860,7 +1860,7 @@ NIL ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-483 |lv| -1963 R) +(-483 |lv| -2119 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL @@ -1875,11 +1875,11 @@ NIL (-486 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) (((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3569) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2759 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4160) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1969) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -4113) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3795 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1759) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1584) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) (-487 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) ((-4465 . T)) -((-12 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4439) (|devaluate| |#2|)))))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-861))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121)))) +((-12 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2240) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2905) (|devaluate| |#2|)))))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-861))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121)))) (-488 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) ((-4465 . T) (-4464 . T)) @@ -1895,7 +1895,7 @@ NIL (-491 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) ((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4439) (|devaluate| |#2|)))))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2240) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2905) (|devaluate| |#2|)))))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102)))) (-492) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL @@ -1903,11 +1903,11 @@ NIL (-493 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) (((-4466 "*") |has| |#2| (-174)) (-4457 |has| |#2| (-568)) (-4462 |has| |#2| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#2| (QUOTE (-928))) (-2759 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2759 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-494 -2705 S) +((|HasCategory| |#2| (QUOTE (-928))) (-3795 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-3795 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-494 -1914 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) ((-4458 |has| |#2| (-1070)) (-4459 |has| |#2| (-1070)) (-4461 |has| |#2| (-6 -4461)) (-4464 . T)) -((-2759 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-2759 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-374))) (-2759 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2759 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-2759 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-379))) (-2759 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-238))) (-2759 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070))))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#2| (QUOTE (-1121))) (-2759 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121))))) (-2759 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-2759 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197))))) (-2759 (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (|HasAttribute| |#2| (QUOTE -4461)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) +((-3795 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-3795 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-374))) (-3795 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3795 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-3795 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-379))) (-3795 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-238))) (-3795 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070))))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#2| (QUOTE (-1121))) (-3795 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121))))) (-3795 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-3795 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197))))) (-3795 (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (|HasAttribute| |#2| (QUOTE -4461)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) (-495) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) NIL @@ -1915,8 +1915,8 @@ NIL (-496 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) ((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-497 -1963 UP UPUP R) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-497 -2119 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL @@ -1927,7 +1927,7 @@ NIL (-499) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) ((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| (-576) (QUOTE (-928))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1043))) (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861))) (-2759 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861)))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1173))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (|HasCategory| (-576) (QUOTE (-146))))) +((|HasCategory| (-576) (QUOTE (-928))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1043))) (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861))) (-3795 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861)))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1173))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (|HasCategory| (-576) (QUOTE (-146))))) (-500 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL @@ -1952,7 +1952,7 @@ NIL ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-506 -1963 UP |AlExt| |AlPol|) +(-506 -2119 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL @@ -1963,16 +1963,16 @@ NIL (-508 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) ((-4465 . T) (-4464 . T)) -((-2759 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-3795 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-509 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) ((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-510 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) NIL NIL -(-511 R UP -1963) +(-511 R UP -2119) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL @@ -1992,7 +1992,7 @@ NIL ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-516 -1963 |Expon| |VarSet| |DPoly|) +(-516 -2119 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-1197))))) @@ -2005,13 +2005,13 @@ NIL NIL NIL (-519 A S) -((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")) (|construct| (($ (|List| (|Pair| |#1| |#2|))) "\\spad{construct l} returns an object that is a linear combination with support in \\spad{A} and coefficients in \\spad{A}."))) -NIL +((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121))))) (-520 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL -NIL +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121))))) (-521 A S) ((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|terms| (((|List| (|Pair| |#2| |#1|)) $) "\\spad{terms x} returns the list of terms in \\spad{x}. Each term is a pair of a support (the first component) and the corresponding value (the second component).")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL @@ -2019,15 +2019,15 @@ NIL (-522 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL -NIL +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121))))) (-523 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL -NIL +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121))))) (-524 A S) ((|constructor| (NIL "Indexed direct products of objects over a set \\spad{A} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) NIL -NIL +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121))))) (-525 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL @@ -2043,7 +2043,7 @@ NIL (-528 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) ((-4465 . T) (-4464 . T)) -((-2759 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-3795 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-529) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL @@ -2051,15 +2051,15 @@ NIL (-530 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) ((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((-2759 (|HasCategory| (-593 |#1|) (QUOTE (-146))) (|HasCategory| (-593 |#1|) (QUOTE (-379)))) (|HasCategory| (-593 |#1|) (QUOTE (-148))) (|HasCategory| (-593 |#1|) (QUOTE (-379))) (|HasCategory| (-593 |#1|) (QUOTE (-146)))) +((-3795 (|HasCategory| (-593 |#1|) (QUOTE (-146))) (|HasCategory| (-593 |#1|) (QUOTE (-379)))) (|HasCategory| (-593 |#1|) (QUOTE (-148))) (|HasCategory| (-593 |#1|) (QUOTE (-379))) (|HasCategory| (-593 |#1|) (QUOTE (-146)))) (-531 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) ((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-532 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) ((-4465 . T) (-4464 . T)) -((-2759 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-3795 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-533 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL @@ -2071,7 +2071,7 @@ NIL (-535 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) ((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4466 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4466 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-536) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL @@ -2104,7 +2104,7 @@ NIL ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL NIL -(-544 K -1963 |Par|) +(-544 K -2119 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL @@ -2128,7 +2128,7 @@ NIL ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-550 K -1963 |Par|) +(-550 K -2119 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL @@ -2179,12 +2179,12 @@ NIL (-562 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) ((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4439) (|devaluate| |#2|)))))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102)))) -(-563 R -1963) +((-12 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2240) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2905) (|devaluate| |#2|)))))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102)))) +(-563 R -2119) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-564 R0 -1963 UP UPUP R) +(-564 R0 -2119 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL @@ -2194,7 +2194,7 @@ NIL NIL (-566 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-4165 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-2642 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-567 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) @@ -2204,7 +2204,7 @@ NIL ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) ((-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-569 R -1963) +(-569 R -2119) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL @@ -2216,7 +2216,7 @@ NIL ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-572 R -1963 L) +(-572 R -2119 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -668) (|devaluate| |#2|)))) @@ -2224,11 +2224,11 @@ NIL ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-574 -1963 UP UPUP R) +(-574 -2119 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-575 -1963 UP) +(-575 -2119 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL @@ -2240,15 +2240,15 @@ NIL ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-578 R -1963 L) +(-578 R -2119 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -668) (|devaluate| |#2|)))) -(-579 R -1963) +(-579 R -2119) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL ((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1160)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-641))))) -(-580 -1963 UP) +(-580 -2119 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL @@ -2256,27 +2256,27 @@ NIL ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-582 -1963) +(-582 -2119) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL (-583 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-4165 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-2642 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-584) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-585 R -1963) +(-585 R -2119) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL ((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-294))) (|HasCategory| |#2| (QUOTE (-641))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-294)))) (|HasCategory| |#1| (QUOTE (-568)))) -(-586 -1963 UP) +(-586 -2119 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-587 R -1963) +(-587 R -2119) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL @@ -2308,11 +2308,11 @@ NIL ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-595 R -1963) +(-595 R -2119) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-596 E -1963) +(-596 E -2119) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) NIL NIL @@ -2320,7 +2320,7 @@ NIL ((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}"))) NIL NIL -(-598 -1963) +(-598 -2119) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) ((-4459 . T) (-4458 . T)) ((|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-1197))))) @@ -2351,7 +2351,7 @@ NIL (-605 |mn|) ((|constructor| (NIL "This domain implements low-level strings"))) ((-4465 . T) (-4464 . T)) -((-2759 (-12 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-2759 (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-876)))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121)))) (|HasCategory| (-145) (QUOTE (-861))) (-2759 (|HasCategory| (-145) (QUOTE (-102))) (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) +((-3795 (-12 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-3795 (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-876)))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121)))) (|HasCategory| (-145) (QUOTE (-861))) (-3795 (|HasCategory| (-145) (QUOTE (-102))) (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-606 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL @@ -2359,7 +2359,7 @@ NIL (-607 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) (((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))) (|HasCategory| (-576) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3569) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576)))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))) (|HasCategory| (-576) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4113) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576)))))) (-608 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) (((-4466 "*") |has| |#1| (-568)) (-4457 |has| |#1| (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) @@ -2376,7 +2376,7 @@ NIL ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented"))) NIL NIL -(-612 R -1963 FG) +(-612 R -2119 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL @@ -2387,7 +2387,7 @@ NIL (-614 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) ((-4465 . T) (-4464 . T)) -((-2759 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1070))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-3795 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1070))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-615 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL @@ -2406,12 +2406,12 @@ NIL NIL (-619 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4461 -2759 (-2674 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))) (-4459 . T) (-4458 . T)) -((-2759 (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) +((-4461 -3795 (-2311 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))) (-4459 . T) (-4458 . T)) +((-3795 (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-620 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) ((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (QUOTE (-1179))) (LIST (QUOTE |:|) (QUOTE -4439) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| (-1179) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2240) (QUOTE (-1179))) (LIST (QUOTE |:|) (QUOTE -2905) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| (-1179) (QUOTE (-861))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (QUOTE (-102)))) (-621 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL @@ -2436,7 +2436,7 @@ NIL ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-627 -1963 UP) +(-627 -2119 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL @@ -2464,7 +2464,7 @@ NIL ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) ((-4458 . T) (-4459 . T) (-4461 . T)) ((|HasCategory| |#1| (QUOTE (-860)))) -(-634 R -1963) +(-634 R -2119) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform."))) NIL NIL @@ -2496,18 +2496,18 @@ NIL ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-642 R -1963) +(-642 R -2119) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-643 |lv| -1963) +(-643 |lv| -2119) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL (-644) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) ((-4465 . T)) -((-12 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (QUOTE (-1179))) (LIST (QUOTE |:|) (QUOTE -4439) (QUOTE (-52))))))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-1179) (QUOTE (-861))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 (-52))) (QUOTE (-1121)))) +((-12 (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2240) (QUOTE (-1179))) (LIST (QUOTE |:|) (QUOTE -2905) (QUOTE (-52))))))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-1179) (QUOTE (-861))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 (-52))) (QUOTE (-1121)))) (-645 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL @@ -2518,8 +2518,8 @@ NIL NIL (-647 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4461 -2759 (-2674 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))) (-4459 . T) (-4458 . T)) -((-2759 (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) +((-4461 -3795 (-2311 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))) (-4459 . T) (-4458 . T)) +((-3795 (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-648 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}."))) NIL @@ -2531,7 +2531,7 @@ NIL (-650 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-2663 (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-374)))) +((-2299 (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-374)))) (-651 R) ((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")) (|leftReducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Vector| $) $) "\\spad{reducedSystem([v1,...,vn],u)} returns a matrix \\spad{M} with coefficients in \\spad{R} and a vector \\spad{w} such that the system of equations \\spad{c1*v1 + ... + cn*vn = u} has the same solution as \\spad{c * M = w} where \\spad{c} is the row vector \\spad{[c1,...cn]}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftReducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}."))) NIL @@ -2555,7 +2555,7 @@ NIL (-656 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) ((-4465 . T) (-4464 . T)) -((-2759 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-3795 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-657 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL @@ -2567,7 +2567,7 @@ NIL (-659 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) ((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-660 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline"))) NIL @@ -2584,7 +2584,7 @@ NIL ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-664 R -1963 L) +(-664 R -2119 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL @@ -2604,11 +2604,11 @@ NIL ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) ((-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-669 -1963 UP) +(-669 -2119 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-670 A -4337) +(-670 A -2973) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) ((-4458 . T) (-4459 . T) (-4461 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) @@ -2644,11 +2644,11 @@ NIL ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) ((-4465 . T) (-4464 . T)) NIL -(-679 -1963) +(-679 -2119) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-680 -1963 |Row| |Col| M) +(-680 -2119 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL @@ -2659,7 +2659,7 @@ NIL (-682 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) ((-4461 . T) (-4464 . T) (-4458 . T) (-4459 . T)) -((|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4466 "*"))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-568))) (-2759 (|HasAttribute| |#2| (QUOTE (-4466 "*"))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) +((|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4466 "*"))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-568))) (-3795 (|HasAttribute| |#2| (QUOTE (-4466 "*"))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) (-683) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL @@ -2679,7 +2679,7 @@ NIL (-687 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms"))) NIL -((-2759 (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-3795 (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-688) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL @@ -2735,7 +2735,7 @@ NIL (-701 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) ((-4464 . T) (-4465 . T)) -((-2759 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4466 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-3795 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4466 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-702 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL @@ -2744,7 +2744,7 @@ NIL ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%."))) NIL NIL -(-704 S -1963 FLAF FLAS) +(-704 S -2119 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL @@ -2754,8 +2754,8 @@ NIL NIL (-706) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4457 . T) (-4462 |has| (-711) (-374)) (-4456 |has| (-711) (-374)) (-4177 . T) (-4463 |has| (-711) (-6 -4463)) (-4460 |has| (-711) (-6 -4460)) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| (-711) (QUOTE (-148))) (|HasCategory| (-711) (QUOTE (-146))) (|HasCategory| (-711) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-711) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-711) (QUOTE (-379))) (|HasCategory| (-711) (QUOTE (-374))) (-2759 (|HasCategory| (-711) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-711) (QUOTE (-238))) (|HasCategory| (-711) (QUOTE (-237))) (-2759 (-12 (|HasCategory| (-711) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -919) (QUOTE (-1197))))) (-2759 (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-360)))) (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (LIST (QUOTE -296) (QUOTE (-711)) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -319) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-711) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-711) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-711) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (-2759 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-360)))) (|HasCategory| (-711) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-711) (QUOTE (-1043))) (|HasCategory| (-711) (QUOTE (-1223))) (-12 (|HasCategory| (-711) (QUOTE (-1023))) (|HasCategory| (-711) (QUOTE (-1223)))) (-2759 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (QUOTE (-374))) (-12 (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (QUOTE (-928))))) (-2759 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (-12 (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-928)))) (-12 (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (QUOTE (-928))))) (|HasCategory| (-711) (QUOTE (-557))) (-12 (|HasCategory| (-711) (QUOTE (-1081))) (|HasCategory| (-711) (QUOTE (-1223)))) (|HasCategory| (-711) (QUOTE (-1081))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928))) (-2759 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (QUOTE (-374)))) (-2759 (-12 (|HasCategory| (-711) (QUOTE (-238))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (QUOTE (-237)))) (-2759 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (QUOTE (-568)))) (-12 (|HasCategory| (-711) (QUOTE (-237))) (|HasCategory| (-711) (QUOTE (-374)))) (-12 (|HasCategory| (-711) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-711) (QUOTE (-374)))) (-12 (|HasCategory| (-711) (QUOTE (-238))) (|HasCategory| (-711) (QUOTE (-374)))) (-12 (|HasCategory| (-711) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-711) (QUOTE (-568))) (|HasAttribute| (-711) (QUOTE -4463)) (|HasAttribute| (-711) (QUOTE -4460)) (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (LIST (QUOTE -919) (QUOTE (-1197)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (QUOTE (-146)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (QUOTE (-360))))) +((-4457 . T) (-4462 |has| (-711) (-374)) (-4456 |has| (-711) (-374)) (-2649 . T) (-4463 |has| (-711) (-6 -4463)) (-4460 |has| (-711) (-6 -4460)) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((|HasCategory| (-711) (QUOTE (-148))) (|HasCategory| (-711) (QUOTE (-146))) (|HasCategory| (-711) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-711) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-711) (QUOTE (-379))) (|HasCategory| (-711) (QUOTE (-374))) (-3795 (|HasCategory| (-711) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-711) (QUOTE (-238))) (|HasCategory| (-711) (QUOTE (-237))) (-3795 (-12 (|HasCategory| (-711) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -919) (QUOTE (-1197))))) (-3795 (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-360)))) (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (LIST (QUOTE -296) (QUOTE (-711)) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -319) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-711) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-711) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-711) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (-3795 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-360)))) (|HasCategory| (-711) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-711) (QUOTE (-1043))) (|HasCategory| (-711) (QUOTE (-1223))) (-12 (|HasCategory| (-711) (QUOTE (-1023))) (|HasCategory| (-711) (QUOTE (-1223)))) (-3795 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (QUOTE (-374))) (-12 (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (QUOTE (-928))))) (-3795 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (-12 (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-928)))) (-12 (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (QUOTE (-928))))) (|HasCategory| (-711) (QUOTE (-557))) (-12 (|HasCategory| (-711) (QUOTE (-1081))) (|HasCategory| (-711) (QUOTE (-1223)))) (|HasCategory| (-711) (QUOTE (-1081))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928))) (-3795 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (QUOTE (-374)))) (-3795 (-12 (|HasCategory| (-711) (QUOTE (-238))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (QUOTE (-237)))) (-3795 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (QUOTE (-568)))) (-12 (|HasCategory| (-711) (QUOTE (-237))) (|HasCategory| (-711) (QUOTE (-374)))) (-12 (|HasCategory| (-711) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-711) (QUOTE (-374)))) (-12 (|HasCategory| (-711) (QUOTE (-238))) (|HasCategory| (-711) (QUOTE (-374)))) (-12 (|HasCategory| (-711) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-711) (QUOTE (-568))) (|HasAttribute| (-711) (QUOTE -4463)) (|HasAttribute| (-711) (QUOTE -4460)) (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (LIST (QUOTE -919) (QUOTE (-1197)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (QUOTE (-146)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-928)))) (|HasCategory| (-711) (QUOTE (-360))))) (-707 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) ((-4465 . T)) @@ -2768,13 +2768,13 @@ NIL ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented"))) NIL NIL -(-710 OV E -1963 PG) +(-710 OV E -2119 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL (-711) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-4165 . T) (-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) +((-2642 . T) (-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-712 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) @@ -2800,7 +2800,7 @@ NIL ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-718 S -2020 I) +(-718 S -3157 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL @@ -2820,14 +2820,14 @@ NIL ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-723 R |Mod| -1892 -2185 |exactQuo|) +(-723 R |Mod| -3381 -3046 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) ((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-724 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) (((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1173))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) +((|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1173))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) (-725 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL @@ -2836,7 +2836,7 @@ NIL ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) ((-4459 |has| |#1| (-174)) (-4458 |has| |#1| (-174)) (-4461 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148)))) -(-727 R |Mod| -1892 -2185 |exactQuo|) +(-727 R |Mod| -3381 -3046 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) ((-4461 . T)) NIL @@ -2848,7 +2848,7 @@ NIL ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) ((-4459 . T) (-4458 . T)) NIL -(-730 -1963) +(-730 -2119) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}."))) ((-4461 . T)) NIL @@ -2884,7 +2884,7 @@ NIL ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-739 -1963 UP) +(-739 -2119 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL @@ -2903,7 +2903,7 @@ NIL (-743 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) (((-4466 "*") |has| |#2| (-174)) (-4457 |has| |#2| (-568)) (-4462 |has| |#2| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#2| (QUOTE (-928))) (-2759 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2759 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) +((|HasCategory| |#2| (QUOTE (-928))) (-3795 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-3795 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-878 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) (-744 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL @@ -3036,11 +3036,11 @@ NIL ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-777 -1963) +(-777 -2119) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-778 P -1963) +(-778 P -2119) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL @@ -3048,7 +3048,7 @@ NIL NIL NIL NIL -(-780 UP -1963) +(-780 UP -2119) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL @@ -3064,7 +3064,7 @@ NIL ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) (((-4466 "*") . T)) NIL -(-784 R -1963) +(-784 R -2119) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL @@ -3084,7 +3084,7 @@ NIL ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-789 -1963 |ExtF| |SUEx| |ExtP| |n|) +(-789 -2119 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL @@ -3099,7 +3099,7 @@ NIL (-792 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) (((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-928))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197))))) (-2759 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))) (-2663 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))))) (-2759 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))) (-2663 (|HasCategory| |#1| (QUOTE (-557)))) (-2663 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))) (-2663 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576))))) (-2663 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))) (-2663 (|HasCategory| |#1| (LIST (QUOTE -1013) (QUOTE (-576))))))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) +((|HasCategory| |#1| (QUOTE (-928))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197))))) (-3795 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))) (-2299 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))))) (-3795 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))) (-2299 (|HasCategory| |#1| (QUOTE (-557)))) (-2299 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))) (-2299 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576))))) (-2299 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1197)))) (-2299 (|HasCategory| |#1| (LIST (QUOTE -1013) (QUOTE (-576))))))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) (-793 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL @@ -3107,7 +3107,7 @@ NIL (-794 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) (((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1173))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) +((|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1173))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) (-795 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented"))) NIL @@ -3168,23 +3168,23 @@ NIL ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) ((-4458 . T) (-4459 . T) (-4461 . T)) NIL -(-810 -2759 R OS S) +(-810 -3795 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL (-811 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) ((-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (-2759 (|HasCategory| (-1020 |#1|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2759 (|HasCategory| (-1020 |#1|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| (-1020 |#1|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1020 |#1|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (-3795 (|HasCategory| (-1020 |#1|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3795 (|HasCategory| (-1020 |#1|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| (-1020 |#1|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1020 |#1|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (-812) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-813 R -1963 L) +(-813 R -2119 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-814 R -1963) +(-814 R -2119) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL @@ -3192,7 +3192,7 @@ NIL ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-816 R -1963) +(-816 R -2119) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL @@ -3200,11 +3200,11 @@ NIL ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-818 -1963 UP UPUP R) +(-818 -2119 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-819 -1963 UP L LQ) +(-819 -2119 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL @@ -3212,38 +3212,38 @@ NIL ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-821 -1963 UP L LQ) +(-821 -2119 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-822 -1963 UP) +(-822 -2119 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-823 -1963 L UP A LO) +(-823 -2119 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-824 -1963 UP) +(-824 -2119 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-825 -1963 LO) +(-825 -2119 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-826 -1963 LODO) +(-826 -2119 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-827 -2705 S |f|) +(-827 -1914 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) ((-4458 |has| |#2| (-1070)) (-4459 |has| |#2| (-1070)) (-4461 |has| |#2| (-6 -4461)) (-4464 . T)) -((-2759 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-2759 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-374))) (-2759 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2759 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-2759 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-379))) (-2759 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-238))) (-2759 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070))))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#2| (QUOTE (-1121))) (-2759 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121))))) (-2759 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-2759 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197))))) (-2759 (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (|HasAttribute| |#2| (QUOTE -4461)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) +((-3795 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-3795 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-374))) (-3795 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3795 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-3795 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-379))) (-3795 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-238))) (-3795 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070))))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#2| (QUOTE (-1121))) (-3795 (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121))))) (-3795 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-3795 (-12 (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197))))) (-3795 (|HasCategory| |#2| (QUOTE (-1070))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1121)))) (|HasAttribute| |#2| (QUOTE -4461)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) (-828 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) (((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-928))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-830 (-1197)) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-830 (-1197)) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-830 (-1197)) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-830 (-1197)) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-830 (-1197)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) +((|HasCategory| |#1| (QUOTE (-928))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-830 (-1197)) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-830 (-1197)) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-830 (-1197)) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-830 (-1197)) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-830 (-1197)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) (-829 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) (((-4466 "*") |has| |#2| (-374)) (-4457 |has| |#2| (-374)) (-4462 |has| |#2| (-374)) (-4456 |has| |#2| (-374)) (-4461 . T) (-4459 . T) (-4458 . T)) @@ -3311,7 +3311,7 @@ NIL (-845 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) ((-4461 |has| |#1| (-860))) -((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-21))) (-2759 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-2759 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-557)))) +((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-21))) (-3795 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-3795 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-557)))) (-846 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL @@ -3351,12 +3351,12 @@ NIL (-855 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) ((-4461 |has| |#1| (-860))) -((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-21))) (-2759 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-2759 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-557)))) +((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-21))) (-3795 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-3795 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-557)))) (-856) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-857 -2705 S) +(-857 -1914 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL @@ -3400,11 +3400,11 @@ NIL ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL ((|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) -(-868 R |sigma| -3642) +(-868 R |sigma| -1993) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) ((-4458 . T) (-4459 . T) (-4461 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) -(-869 |x| R |sigma| -3642) +(-869 |x| R |sigma| -1993) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) ((-4458 . T) (-4459 . T) (-4461 . T)) ((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-374)))) @@ -3471,15 +3471,15 @@ NIL (-885 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) ((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| (-884 |#1|) (QUOTE (-928))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-884 |#1|) (QUOTE (-146))) (|HasCategory| (-884 |#1|) (QUOTE (-148))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-884 |#1|) (QUOTE (-1043))) (|HasCategory| (-884 |#1|) (QUOTE (-832))) (|HasCategory| (-884 |#1|) (QUOTE (-861))) (-2759 (|HasCategory| (-884 |#1|) (QUOTE (-832))) (|HasCategory| (-884 |#1|) (QUOTE (-861)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-884 |#1|) (QUOTE (-1173))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-884 |#1|) (QUOTE (-237))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-884 |#1|) (QUOTE (-238))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -884) (|devaluate| |#1|)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -319) (LIST (QUOTE -884) (|devaluate| |#1|)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -296) (LIST (QUOTE -884) (|devaluate| |#1|)) (LIST (QUOTE -884) (|devaluate| |#1|)))) (|HasCategory| (-884 |#1|) (QUOTE (-317))) (|HasCategory| (-884 |#1|) (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-884 |#1|) (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-884 |#1|) (QUOTE (-928)))) (|HasCategory| (-884 |#1|) (QUOTE (-146))))) +((|HasCategory| (-884 |#1|) (QUOTE (-928))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-884 |#1|) (QUOTE (-146))) (|HasCategory| (-884 |#1|) (QUOTE (-148))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-884 |#1|) (QUOTE (-1043))) (|HasCategory| (-884 |#1|) (QUOTE (-832))) (|HasCategory| (-884 |#1|) (QUOTE (-861))) (-3795 (|HasCategory| (-884 |#1|) (QUOTE (-832))) (|HasCategory| (-884 |#1|) (QUOTE (-861)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-884 |#1|) (QUOTE (-1173))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-884 |#1|) (QUOTE (-237))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-884 |#1|) (QUOTE (-238))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -884) (|devaluate| |#1|)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -319) (LIST (QUOTE -884) (|devaluate| |#1|)))) (|HasCategory| (-884 |#1|) (LIST (QUOTE -296) (LIST (QUOTE -884) (|devaluate| |#1|)) (LIST (QUOTE -884) (|devaluate| |#1|)))) (|HasCategory| (-884 |#1|) (QUOTE (-317))) (|HasCategory| (-884 |#1|) (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-884 |#1|) (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-884 |#1|) (QUOTE (-928)))) (|HasCategory| (-884 |#1|) (QUOTE (-146))))) (-886 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) ((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1043))) (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-861))) (-2759 (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1173))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) +((|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1043))) (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-861))) (-3795 (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1173))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) (-887 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))))) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))))) (-888) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL @@ -3539,7 +3539,7 @@ NIL (-902 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-2663 (|HasCategory| |#2| (QUOTE (-1070)))) (-2663 (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197)))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (-2663 (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197)))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197))))) +((-12 (-2299 (|HasCategory| |#2| (QUOTE (-1070)))) (-2299 (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197)))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (-2299 (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197)))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197))))) (-903 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL @@ -3548,7 +3548,7 @@ NIL ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-905 R -2020) +(-905 R -3157) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL @@ -3580,7 +3580,7 @@ NIL ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-913 UP -1963) +(-913 UP -2119) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL @@ -3611,7 +3611,7 @@ NIL (-920 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-921 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL @@ -3627,7 +3627,7 @@ NIL (-924 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) ((-4461 . T)) -((-2759 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-861)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-861)))) +((-3795 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-861)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-861)))) (-925 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL @@ -3648,7 +3648,7 @@ NIL ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) ((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) ((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-379)))) -(-930 R0 -1963 UP UPUP R) +(-930 R0 -2119 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL @@ -3676,7 +3676,7 @@ NIL ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}."))) NIL NIL -(-937 -1963) +(-937 -2119) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL @@ -3692,11 +3692,11 @@ NIL ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) (((-4466 "*") . T)) NIL -(-941 -1963 P) +(-941 -2119 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented"))) NIL NIL -(-942 |xx| -1963) +(-942 |xx| -2119) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented"))) NIL NIL @@ -3720,7 +3720,7 @@ NIL ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-948 R -1963) +(-948 R -2119) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL @@ -3732,7 +3732,7 @@ NIL ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-951 S R -1963) +(-951 S R -2119) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL @@ -3752,11 +3752,11 @@ NIL ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -901) (|devaluate| |#1|)))) -(-956 R -1963 -2020) +(-956 R -2119 -3157) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-957 -2020) +(-957 -3157) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL @@ -3779,7 +3779,7 @@ NIL (-962 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) ((-4465 . T) (-4464 . T)) -((-2759 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1070))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-3795 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1070))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-963 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL @@ -3804,7 +3804,7 @@ NIL ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) (((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) NIL -(-969 E V R P -1963) +(-969 E V R P -2119) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL @@ -3815,8 +3815,8 @@ NIL (-971 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) (((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-928))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1197) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1197) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1197) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1197) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1197) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-972 E V R P -1963) +((|HasCategory| |#1| (QUOTE (-928))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1197) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1197) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1197) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1197) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1197) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-972 E V R P -2119) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL ((|HasCategory| |#3| (QUOTE (-464)))) @@ -3839,12 +3839,12 @@ NIL (-977 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) ((-4465 . T) (-4464 . T)) -((-2759 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-3795 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-978) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-979 -1963) +(-979 -2119) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL @@ -3859,11 +3859,11 @@ NIL (-982 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) (((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4462))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4462))) (-983 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented"))) ((-4461 -12 (|has| |#2| (-485)) (|has| |#1| (-485)))) -((-2759 (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-861))))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738))))) (-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-379)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-861))))) +((-3795 (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-861))))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738))))) (-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-379)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-861))))) (-984) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL @@ -3952,7 +3952,7 @@ NIL ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-1006 K R UP -1963) +(-1006 K R UP -2119) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL @@ -4011,11 +4011,11 @@ NIL (-1020 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) ((-4457 |has| |#1| (-300)) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374))) (-2759 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (QUOTE (-557)))) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374))) (-3795 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (QUOTE (-557)))) (-1021 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) ((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-1022 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL @@ -4024,14 +4024,14 @@ NIL ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1024 -1963 UP UPUP |radicnd| |n|) +(-1024 -2119 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) ((-4457 |has| (-419 |#2|) (-374)) (-4462 |has| (-419 |#2|) (-374)) (-4456 |has| (-419 |#2|) (-374)) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| (-419 |#2|) (QUOTE (-146))) (|HasCategory| (-419 |#2|) (QUOTE (-148))) (|HasCategory| (-419 |#2|) (QUOTE (-360))) (-2759 (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-379))) (-2759 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-2759 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-2759 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-360))))) (-2759 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -651) (QUOTE (-576)))) (-2759 (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) +((|HasCategory| (-419 |#2|) (QUOTE (-146))) (|HasCategory| (-419 |#2|) (QUOTE (-148))) (|HasCategory| (-419 |#2|) (QUOTE (-360))) (-3795 (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-379))) (-3795 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-3795 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-3795 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-360))))) (-3795 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -651) (QUOTE (-576)))) (-3795 (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) (-1025 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) ((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| (-576) (QUOTE (-928))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1043))) (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861))) (-2759 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861)))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1173))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (|HasCategory| (-576) (QUOTE (-146))))) +((|HasCategory| (-576) (QUOTE (-928))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1043))) (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861))) (-3795 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-861)))) (|HasCategory| (-576) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1173))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1197)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-928)))) (|HasCategory| (-576) (QUOTE (-146))))) (-1026) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL @@ -4064,19 +4064,19 @@ NIL ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) ((-4457 . T) (-4462 . T) (-4456 . T) (-4459 . T) (-4458 . T) ((-4466 "*") . T) (-4461 . T)) NIL -(-1034 R -1963) +(-1034 R -2119) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-1035 R -1963) +(-1035 R -2119) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-1036 -1963 UP) +(-1036 -2119 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-1037 -1963 UP) +(-1037 -2119 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use."))) NIL NIL @@ -4111,8 +4111,8 @@ NIL (-1045 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) ((-4457 . T) (-4462 . T) (-4456 . T) (-4459 . T) (-4458 . T) ((-4466 "*") . T) (-4461 . T)) -((-2759 (|HasCategory| (-419 (-576)) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-419 (-576)) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 (-576)) (LIST (QUOTE -1059) (QUOTE (-576))))) -(-1046 -1963 L) +((-3795 (|HasCategory| (-419 (-576)) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-419 (-576)) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 (-576)) (LIST (QUOTE -1059) (QUOTE (-576))))) +(-1046 -2119 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL @@ -4148,14 +4148,14 @@ NIL ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1055 -1963 |Expon| |VarSet| |FPol| |LFPol|) +(-1055 -2119 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) (((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL (-1056) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) ((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (QUOTE (-1197))) (LIST (QUOTE |:|) (QUOTE -4439) (QUOTE (-52))))))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (QUOTE (-1121))) (|HasCategory| (-1197) (QUOTE (-861))) (|HasCategory| (-52) (QUOTE (-1121))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2240) (QUOTE (-1197))) (LIST (QUOTE |:|) (QUOTE -2905) (QUOTE (-52))))))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (QUOTE (-1121))) (|HasCategory| (-1197) (QUOTE (-861))) (|HasCategory| (-52) (QUOTE (-1121))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (QUOTE (-102)))) (-1057) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL @@ -4212,7 +4212,7 @@ NIL ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) ((-4461 . T)) NIL -(-1071 |xx| -1963) +(-1071 |xx| -2119) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL @@ -4231,7 +4231,7 @@ NIL (-1075 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) ((-4464 . T) (-4459 . T) (-4458 . T)) -((|HasCategory| |#3| (QUOTE (-174))) (-2759 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-568))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-876))))) +((|HasCategory| |#3| (QUOTE (-174))) (-3795 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-568))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-876))))) (-1076 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL @@ -4267,7 +4267,7 @@ NIL (-1084) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}"))) ((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (QUOTE (-1197))) (LIST (QUOTE |:|) (QUOTE -4439) (QUOTE (-52))))))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (QUOTE (-1121))) (|HasCategory| (-1197) (QUOTE (-861))) (|HasCategory| (-52) (QUOTE (-1121))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 (-1197)) (|:| -4439 (-52))) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2240) (QUOTE (-1197))) (LIST (QUOTE |:|) (QUOTE -2905) (QUOTE (-52))))))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (QUOTE (-1121))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1121))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (QUOTE (-1121))) (|HasCategory| (-1197) (QUOTE (-861))) (|HasCategory| (-52) (QUOTE (-1121))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876))))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 (-1197)) (|:| -2905 (-52))) (QUOTE (-102)))) (-1085 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL @@ -4316,11 +4316,11 @@ NIL ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1097 |Base| R -1963) +(-1097 |Base| R -2119) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1098 |Base| R -1963) +(-1098 |Base| R -2119) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}."))) NIL NIL @@ -4335,7 +4335,7 @@ NIL (-1101 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) ((-4457 |has| |#1| (-374)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-360))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))))) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-360))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-1102 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL @@ -4363,7 +4363,7 @@ NIL (-1108 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) (((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-928))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1109 (-1197)) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1109 (-1197)) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1109 (-1197)) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1109 (-1197)) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1109 (-1197)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) +((|HasCategory| |#1| (QUOTE (-928))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1109 (-1197)) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1109 (-1197)) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1109 (-1197)) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1109 (-1197)) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1109 (-1197)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) (-1109 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL @@ -4423,7 +4423,7 @@ NIL (-1123 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) ((-4464 . T) (-4454 . T) (-4465 . T)) -((-2759 (-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-3795 (-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-1124 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if \\%peq(\\spad{s},{}\\spad{t}) is \\spad{true} for pointers."))) NIL @@ -4467,7 +4467,7 @@ NIL (-1134 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) ((-4458 |has| |#3| (-1070)) (-4459 |has| |#3| (-1070)) (-4461 |has| |#3| (-6 -4461)) (-4464 . T)) -((-2759 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-2759 (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1121)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#3| (QUOTE (-374))) (-2759 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-2759 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (-2759 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-861)))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-379))) (-2759 (-12 (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (-2759 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (QUOTE (-1121)))) (-2759 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (QUOTE (-1121)))) (-2759 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-2759 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-2759 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-2759 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-2759 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1070)))) (|HasCategory| |#3| (QUOTE (-238))) (-2759 (|HasCategory| |#3| (QUOTE (-238))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1070))))) (-2759 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#3| (QUOTE (-1121))) (-2759 (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-238)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-374)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-379)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-738)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-805)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-861)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1121))))) (-2759 (-12 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1070))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-2759 (-12 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -919) (QUOTE (-1197))))) (-2759 (|HasCategory| |#3| (QUOTE (-1070))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1121)))) (|HasAttribute| |#3| (QUOTE -4461)) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) +((-3795 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-3795 (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1121)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#3| (QUOTE (-374))) (-3795 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-3795 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (-3795 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-861)))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-379))) (-3795 (-12 (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (-3795 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (QUOTE (-1121)))) (-3795 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (QUOTE (-1121)))) (-3795 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-3795 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-3795 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-3795 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1070)))) (-3795 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1070)))) (|HasCategory| |#3| (QUOTE (-238))) (-3795 (|HasCategory| |#3| (QUOTE (-238))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1070))))) (-3795 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -919) (QUOTE (-1197)))))) (|HasCategory| |#3| (QUOTE (-1121))) (-3795 (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-238)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-374)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-379)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-738)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-805)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-861)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1121))))) (-3795 (-12 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1070))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-3795 (-12 (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-861))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -919) (QUOTE (-1197))))) (-3795 (|HasCategory| |#3| (QUOTE (-1070))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576)))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1121)))) (|HasAttribute| |#3| (QUOTE -4461)) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1197))))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) (-1135 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL @@ -4476,7 +4476,7 @@ NIL ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) NIL NIL -(-1137 R -1963) +(-1137 R -2119) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL @@ -4515,16 +4515,16 @@ NIL (-1146 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) (((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-928))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) +((|HasCategory| |#1| (QUOTE (-928))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) (-1147 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) (((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374)))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374)))) (-1148 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) ((-4465 . T) (-4464 . T)) NIL -(-1149 UP -1963) +(-1149 UP -2119) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL @@ -4579,11 +4579,11 @@ NIL (-1162 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) ((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| (-1161 |#1| |#2|) (LIST (QUOTE -319) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-1121)))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-1121))) (-2759 (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-102))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-1121)))) (-2759 (|HasCategory| (-1161 |#1| |#2|) (LIST (QUOTE -625) (QUOTE (-876)))) (-12 (|HasCategory| (-1161 |#1| |#2|) (LIST (QUOTE -319) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-1121))))) (|HasCategory| (-1161 |#1| |#2|) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-102)))) +((-12 (|HasCategory| (-1161 |#1| |#2|) (LIST (QUOTE -319) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-1121)))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-1121))) (-3795 (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-102))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-1121)))) (-3795 (|HasCategory| (-1161 |#1| |#2|) (LIST (QUOTE -625) (QUOTE (-876)))) (-12 (|HasCategory| (-1161 |#1| |#2|) (LIST (QUOTE -319) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-1121))))) (|HasCategory| (-1161 |#1| |#2|) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-102)))) (-1163 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) ((-4461 . T) (-4453 |has| |#2| (-6 (-4466 "*"))) (-4464 . T) (-4458 . T) (-4459 . T)) -((|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4466 "*"))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-374))) (-2759 (|HasAttribute| |#2| (QUOTE (-4466 "*"))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) +((|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4466 "*"))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-374))) (-3795 (|HasAttribute| |#2| (QUOTE (-4466 "*"))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) (-1164 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL @@ -4603,7 +4603,7 @@ NIL (-1168 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) ((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-1169 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL @@ -4615,7 +4615,7 @@ NIL (-1171 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) ((-4465 . T)) -((-12 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4439) (|devaluate| |#2|)))))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-861))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121)))) +((-12 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2240) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2905) (|devaluate| |#2|)))))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-861))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121)))) (-1172) ((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}."))) NIL @@ -4643,15 +4643,15 @@ NIL (-1178 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) ((-4465 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-1179) ((|string| (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string i} returns the decimal representation of \\spad{i} in a string"))) ((-4465 . T) (-4464 . T)) -((-2759 (-12 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-2759 (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-876)))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121)))) (|HasCategory| (-145) (QUOTE (-861))) (-2759 (|HasCategory| (-145) (QUOTE (-102))) (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) +((-3795 (-12 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-3795 (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-876)))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121)))) (|HasCategory| (-145) (QUOTE (-861))) (-3795 (|HasCategory| (-145) (QUOTE (-102))) (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1121))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-1180 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) ((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (QUOTE (-1179))) (LIST (QUOTE |:|) (QUOTE -4439) (|devaluate| |#1|)))))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (QUOTE (-1121))) (|HasCategory| (-1179) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (-2759 (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 (-1179)) (|:| -4439 |#1|)) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2240) (QUOTE (-1179))) (LIST (QUOTE |:|) (QUOTE -2905) (|devaluate| |#1|)))))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (QUOTE (-1121))) (|HasCategory| (-1179) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (-3795 (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 (-1179)) (|:| -2905 |#1|)) (QUOTE (-102)))) (-1181 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) NIL @@ -4682,9 +4682,9 @@ NIL NIL (-1188 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4466 "*") -2759 (-2674 (|has| |#1| (-374)) (|has| (-1195 |#1| |#2| |#3|) (-832))) (|has| |#1| (-174)) (-2674 (|has| |#1| (-374)) (|has| (-1195 |#1| |#2| |#3|) (-928)))) (-4457 -2759 (-2674 (|has| |#1| (-374)) (|has| (-1195 |#1| |#2| |#3|) (-832))) (|has| |#1| (-568)) (-2674 (|has| |#1| (-374)) (|has| (-1195 |#1| |#2| |#3|) (-928)))) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) -((-2759 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-1173))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-2759 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2759 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2759 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2759 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2759 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2759 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1133))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-374)))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-2759 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374))))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-1173))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3569) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-2759 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4160) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1969) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2759 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-568)))) (-2759 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2759 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1189 R -1963) +(((-4466 "*") -3795 (-2311 (|has| |#1| (-374)) (|has| (-1195 |#1| |#2| |#3|) (-832))) (|has| |#1| (-174)) (-2311 (|has| |#1| (-374)) (|has| (-1195 |#1| |#2| |#3|) (-928)))) (-4457 -3795 (-2311 (|has| |#1| (-374)) (|has| (-1195 |#1| |#2| |#3|) (-832))) (|has| |#1| (-568)) (-2311 (|has| |#1| (-374)) (|has| (-1195 |#1| |#2| |#3|) (-928)))) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) +((-3795 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-1173))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-3795 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3795 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-148)))) (-3795 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-3795 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-3795 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-3795 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1133))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-374)))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-3795 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374))))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-1173))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4113) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-3795 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1759) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1584) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-3795 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-568)))) (-3795 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3795 (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1189 R -2119) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL @@ -4703,15 +4703,15 @@ NIL (-1193 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) (((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4462 |has| |#1| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1173))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) +((|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1173))) (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))))) (-1194 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) (((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3569) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2759 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4160) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1969) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -4113) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3795 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1759) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1584) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) (-1195 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) (((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|)))) (|HasCategory| (-783) (QUOTE (-1133))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasSignature| |#1| (LIST (QUOTE -3569) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasCategory| |#1| (QUOTE (-374))) (-2759 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4160) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1969) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|)))) (|HasCategory| (-783) (QUOTE (-1133))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasSignature| |#1| (LIST (QUOTE -4113) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasCategory| |#1| (QUOTE (-374))) (-3795 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1759) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1584) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) (-1196) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL @@ -4727,7 +4727,7 @@ NIL (-1199 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) (((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-6 -4462)) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| (-992) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasAttribute| |#1| (QUOTE -4462))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| (-992) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasAttribute| |#1| (QUOTE -4462))) (-1200) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL @@ -4771,7 +4771,7 @@ NIL (-1210 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) ((-4464 . T) (-4465 . T)) -((-12 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4300) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4439) (|devaluate| |#2|)))))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (-2759 (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4300 |#1|) (|:| -4439 |#2|)) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2240) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2905) (|devaluate| |#2|)))))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1121))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876))))) (-3795 (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -2240 |#1|) (|:| -2905 |#2|)) (QUOTE (-102)))) (-1211 S) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}."))) NIL @@ -4827,7 +4827,7 @@ NIL (-1224 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) ((-4465 . T) (-4464 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-1225 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL @@ -4836,7 +4836,7 @@ NIL ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1227 R -1963) +(-1227 R -2119) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -4844,7 +4844,7 @@ NIL ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1229 R -1963) +(-1229 R -2119) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL ((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -907) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -901) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -901) (|devaluate| |#1|))))) @@ -4859,7 +4859,7 @@ NIL (-1232 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) (((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374)))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374)))) (-1233 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL @@ -4872,7 +4872,7 @@ NIL ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL ((|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) -(-1236 -1963) +(-1236 -2119) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL @@ -4935,11 +4935,11 @@ NIL (-1251 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) (((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) -((-2759 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1043)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1173)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-2759 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-146))))) (-2759 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-148))))) (-2759 (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-2759 (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1133))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1043)))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-861))))) (-2759 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1043)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1173)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1173)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3569) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-2759 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4160) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1969) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-928))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-557)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2759 (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-146)))))) +((-3795 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1043)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1173)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-3795 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-146))))) (-3795 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-148))))) (-3795 (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))))) (-3795 (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1133))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1043)))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-861))))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1043)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1173)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-1197)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1173)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4113) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-3795 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1759) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1584) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-928))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-557)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-3795 (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-146)))))) (-1252 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4466 "*") -2759 (-2674 (|has| |#1| (-374)) (|has| (-1280 |#1| |#2| |#3|) (-832))) (|has| |#1| (-174)) (-2674 (|has| |#1| (-374)) (|has| (-1280 |#1| |#2| |#3|) (-928)))) (-4457 -2759 (-2674 (|has| |#1| (-374)) (|has| (-1280 |#1| |#2| |#3|) (-832))) (|has| |#1| (-568)) (-2674 (|has| |#1| (-374)) (|has| (-1280 |#1| |#2| |#3|) (-928)))) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) -((-2759 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-1173))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-2759 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2759 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2759 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2759 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2759 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2759 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1133))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-374)))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-2759 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374))))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-1173))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3569) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-2759 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4160) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1969) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2759 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-568)))) (-2759 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2759 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146))))) +(((-4466 "*") -3795 (-2311 (|has| |#1| (-374)) (|has| (-1280 |#1| |#2| |#3|) (-832))) (|has| |#1| (-174)) (-2311 (|has| |#1| (-374)) (|has| (-1280 |#1| |#2| |#3|) (-928)))) (-4457 -3795 (-2311 (|has| |#1| (-374)) (|has| (-1280 |#1| |#2| |#3|) (-832))) (|has| |#1| (-568)) (-2311 (|has| |#1| (-374)) (|has| (-1280 |#1| |#2| |#3|) (-928)))) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) +((-3795 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-1173))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-3795 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3795 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-148)))) (-3795 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-3795 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-3795 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-3795 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1133))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-374)))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-3795 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374))))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-1173))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1197)) (LIST (QUOTE -1280) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4113) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-3795 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1759) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1584) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-3795 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-568)))) (-3795 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3795 (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1280 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146))))) (-1253 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL @@ -4975,7 +4975,7 @@ NIL (-1261 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) (((-4466 "*") |has| |#2| (-174)) (-4457 |has| |#2| (-568)) (-4460 |has| |#2| (-374)) (-4462 |has| |#2| (-6 -4462)) (-4459 . T) (-4458 . T) (-4461 . T)) -((|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2759 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-2759 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-2759 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1173))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-238))) (|HasAttribute| |#2| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-2759 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) +((|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-3795 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-390))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -901) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-576))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-390)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -907) (QUOTE (-576)))))) (-12 (|HasCategory| (-1103) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (QUOTE (-576)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (-3795 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1173))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-1197)))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-238))) (|HasAttribute| |#2| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (-3795 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-146))))) (-1262 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL @@ -4991,7 +4991,7 @@ NIL (-1265 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1133))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3569) (LIST (|devaluate| |#2|) (QUOTE (-1197)))))) +((|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1133))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4113) (LIST (|devaluate| |#2|) (QUOTE (-1197)))))) (-1266 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) (((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) @@ -5019,15 +5019,15 @@ NIL (-1272 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) (((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3569) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2759 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4160) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1969) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) +((|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -4113) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3795 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1759) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1584) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-1273 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) (((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4456 |has| |#1| (-374)) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2759 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3569) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2759 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4160) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1969) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-374))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-3795 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -4113) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3795 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1759) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1584) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) (-1274 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) (((-4466 "*") |has| (-1273 |#2| |#3| |#4|) (-174)) (-4457 |has| (-1273 |#2| |#3| |#4|) (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| (-1273 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-174))) (-2759 (|HasCategory| (-1273 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1273 |#2| |#3| |#4|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| (-1273 |#2| |#3| |#4|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1273 |#2| |#3| |#4|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-374))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-464))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-568)))) +((|HasCategory| (-1273 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-174))) (-3795 (|HasCategory| (-1273 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1273 |#2| |#3| |#4|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| (-1273 |#2| |#3| |#4|) (LIST (QUOTE -1059) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1273 |#2| |#3| |#4|) (LIST (QUOTE -1059) (QUOTE (-576)))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-374))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-464))) (|HasCategory| (-1273 |#2| |#3| |#4|) (QUOTE (-568)))) (-1275 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL @@ -5043,7 +5043,7 @@ NIL (-1278 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-978))) (|HasCategory| |#2| (QUOTE (-1223))) (|HasSignature| |#2| (LIST (QUOTE -1969) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4160) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1197))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-978))) (|HasCategory| |#2| (QUOTE (-1223))) (|HasSignature| |#2| (LIST (QUOTE -1584) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1759) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1197))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-1279 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) (((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) @@ -5051,12 +5051,12 @@ NIL (-1280 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) (((-4466 "*") |has| |#1| (-174)) (-4457 |has| |#1| (-568)) (-4458 . T) (-4459 . T) (-4461 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2759 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|)))) (|HasCategory| (-783) (QUOTE (-1133))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasSignature| |#1| (LIST (QUOTE -3569) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasCategory| |#1| (QUOTE (-374))) (-2759 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4160) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1969) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-3795 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1197)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|)))) (|HasCategory| (-783) (QUOTE (-1133))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasSignature| |#1| (LIST (QUOTE -4113) (LIST (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasCategory| |#1| (QUOTE (-374))) (-3795 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1759) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (LIST (QUOTE -1584) (LIST (LIST (QUOTE -656) (QUOTE (-1197))) (|devaluate| |#1|))))))) (-1281 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1282 -1963 UP L UTS) +(-1282 -2119 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL ((|HasCategory| |#1| (QUOTE (-568)))) @@ -5083,7 +5083,7 @@ NIL (-1288 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) ((-4465 . T) (-4464 . T)) -((-2759 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2759 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2759 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-2759 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1070))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-3795 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3795 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3795 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-861))) (-3795 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-576) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1070))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-1289) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL @@ -5116,7 +5116,7 @@ NIL ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1297 K R UP -1963) +(-1297 K R UP -2119) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL @@ -5152,11 +5152,11 @@ NIL ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) ((-4457 |has| |#2| (-6 -4457)) (-4459 . T) (-4458 . T) (-4461 . T)) NIL -(-1306 S -1963) +(-1306 S -2119) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL ((|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148)))) -(-1307 -1963) +(-1307 -2119) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) ((-4456 . T) (-4462 . T) (-4457 . T) ((-4466 "*") . T) (-4458 . T) (-4459 . T) (-4461 . T)) NIL @@ -5216,4 +5216,4 @@ NIL NIL NIL NIL -((-3 NIL 2293911 2293916 2293921 2293926) (-2 NIL 2293891 2293896 2293901 2293906) (-1 NIL 2293871 2293876 2293881 2293886) (0 NIL 2293851 2293856 2293861 2293866) (-1317 "ZMOD.spad" 2293660 2293673 2293789 2293846) (-1316 "ZLINDEP.spad" 2292726 2292737 2293650 2293655) (-1315 "ZDSOLVE.spad" 2282671 2282693 2292716 2292721) (-1314 "YSTREAM.spad" 2282166 2282177 2282661 2282666) (-1313 "YDIAGRAM.spad" 2281800 2281809 2282156 2282161) (-1312 "XRPOLY.spad" 2281020 2281040 2281656 2281725) (-1311 "XPR.spad" 2278815 2278828 2280738 2280837) (-1310 "XPOLY.spad" 2278370 2278381 2278671 2278740) (-1309 "XPOLYC.spad" 2277689 2277705 2278296 2278365) (-1308 "XPBWPOLY.spad" 2276126 2276146 2277469 2277538) (-1307 "XF.spad" 2274589 2274604 2276028 2276121) (-1306 "XF.spad" 2273032 2273049 2274473 2274478) (-1305 "XFALG.spad" 2270080 2270096 2272958 2273027) (-1304 "XEXPPKG.spad" 2269331 2269357 2270070 2270075) (-1303 "XDPOLY.spad" 2268945 2268961 2269187 2269256) (-1302 "XALG.spad" 2268605 2268616 2268901 2268940) (-1301 "WUTSET.spad" 2264408 2264425 2268215 2268242) (-1300 "WP.spad" 2263607 2263651 2264266 2264333) (-1299 "WHILEAST.spad" 2263405 2263414 2263597 2263602) (-1298 "WHEREAST.spad" 2263076 2263085 2263395 2263400) (-1297 "WFFINTBS.spad" 2260739 2260761 2263066 2263071) (-1296 "WEIER.spad" 2258961 2258972 2260729 2260734) (-1295 "VSPACE.spad" 2258634 2258645 2258929 2258956) (-1294 "VSPACE.spad" 2258327 2258340 2258624 2258629) (-1293 "VOID.spad" 2258004 2258013 2258317 2258322) (-1292 "VIEW.spad" 2255684 2255693 2257994 2257999) (-1291 "VIEWDEF.spad" 2250885 2250894 2255674 2255679) (-1290 "VIEW3D.spad" 2234846 2234855 2250875 2250880) (-1289 "VIEW2D.spad" 2222737 2222746 2234836 2234841) (-1288 "VECTOR.spad" 2221258 2221269 2221509 2221536) (-1287 "VECTOR2.spad" 2219897 2219910 2221248 2221253) (-1286 "VECTCAT.spad" 2217801 2217812 2219865 2219892) (-1285 "VECTCAT.spad" 2215512 2215525 2217578 2217583) (-1284 "VARIABLE.spad" 2215292 2215307 2215502 2215507) (-1283 "UTYPE.spad" 2214936 2214945 2215282 2215287) (-1282 "UTSODETL.spad" 2214231 2214255 2214892 2214897) (-1281 "UTSODE.spad" 2212447 2212467 2214221 2214226) (-1280 "UTS.spad" 2207394 2207422 2210914 2211011) (-1279 "UTSCAT.spad" 2204873 2204889 2207292 2207389) (-1278 "UTSCAT.spad" 2201996 2202014 2204417 2204422) (-1277 "UTS2.spad" 2201591 2201626 2201986 2201991) (-1276 "URAGG.spad" 2196264 2196275 2201581 2201586) (-1275 "URAGG.spad" 2190901 2190914 2196220 2196225) (-1274 "UPXSSING.spad" 2188546 2188572 2189982 2190115) (-1273 "UPXS.spad" 2185842 2185870 2186678 2186827) (-1272 "UPXSCONS.spad" 2183601 2183621 2183974 2184123) (-1271 "UPXSCCA.spad" 2182172 2182192 2183447 2183596) (-1270 "UPXSCCA.spad" 2180885 2180907 2182162 2182167) (-1269 "UPXSCAT.spad" 2179474 2179490 2180731 2180880) (-1268 "UPXS2.spad" 2179017 2179070 2179464 2179469) (-1267 "UPSQFREE.spad" 2177431 2177445 2179007 2179012) (-1266 "UPSCAT.spad" 2175218 2175242 2177329 2177426) (-1265 "UPSCAT.spad" 2172711 2172737 2174824 2174829) (-1264 "UPOLYC.spad" 2167751 2167762 2172553 2172706) (-1263 "UPOLYC.spad" 2162683 2162696 2167487 2167492) (-1262 "UPOLYC2.spad" 2162154 2162173 2162673 2162678) (-1261 "UP.spad" 2159260 2159275 2159647 2159800) (-1260 "UPMP.spad" 2158160 2158173 2159250 2159255) (-1259 "UPDIVP.spad" 2157725 2157739 2158150 2158155) (-1258 "UPDECOMP.spad" 2155970 2155984 2157715 2157720) (-1257 "UPCDEN.spad" 2155179 2155195 2155960 2155965) (-1256 "UP2.spad" 2154543 2154564 2155169 2155174) (-1255 "UNISEG.spad" 2153896 2153907 2154462 2154467) (-1254 "UNISEG2.spad" 2153393 2153406 2153852 2153857) (-1253 "UNIFACT.spad" 2152496 2152508 2153383 2153388) (-1252 "ULS.spad" 2142280 2142308 2143225 2143654) (-1251 "ULSCONS.spad" 2133414 2133434 2133784 2133933) (-1250 "ULSCCAT.spad" 2131151 2131171 2133260 2133409) (-1249 "ULSCCAT.spad" 2128996 2129018 2131107 2131112) (-1248 "ULSCAT.spad" 2127228 2127244 2128842 2128991) (-1247 "ULS2.spad" 2126742 2126795 2127218 2127223) (-1246 "UINT8.spad" 2126619 2126628 2126732 2126737) (-1245 "UINT64.spad" 2126495 2126504 2126609 2126614) (-1244 "UINT32.spad" 2126371 2126380 2126485 2126490) (-1243 "UINT16.spad" 2126247 2126256 2126361 2126366) (-1242 "UFD.spad" 2125312 2125321 2126173 2126242) (-1241 "UFD.spad" 2124439 2124450 2125302 2125307) (-1240 "UDVO.spad" 2123320 2123329 2124429 2124434) (-1239 "UDPO.spad" 2120813 2120824 2123276 2123281) (-1238 "TYPE.spad" 2120745 2120754 2120803 2120808) (-1237 "TYPEAST.spad" 2120664 2120673 2120735 2120740) (-1236 "TWOFACT.spad" 2119316 2119331 2120654 2120659) (-1235 "TUPLE.spad" 2118802 2118813 2119215 2119220) (-1234 "TUBETOOL.spad" 2115669 2115678 2118792 2118797) (-1233 "TUBE.spad" 2114316 2114333 2115659 2115664) (-1232 "TS.spad" 2112915 2112931 2113881 2113978) (-1231 "TSETCAT.spad" 2100042 2100059 2112883 2112910) (-1230 "TSETCAT.spad" 2087155 2087174 2099998 2100003) (-1229 "TRMANIP.spad" 2081521 2081538 2086861 2086866) (-1228 "TRIMAT.spad" 2080484 2080509 2081511 2081516) (-1227 "TRIGMNIP.spad" 2079011 2079028 2080474 2080479) (-1226 "TRIGCAT.spad" 2078523 2078532 2079001 2079006) (-1225 "TRIGCAT.spad" 2078033 2078044 2078513 2078518) (-1224 "TREE.spad" 2076491 2076502 2077523 2077550) (-1223 "TRANFUN.spad" 2076330 2076339 2076481 2076486) (-1222 "TRANFUN.spad" 2076167 2076178 2076320 2076325) (-1221 "TOPSP.spad" 2075841 2075850 2076157 2076162) (-1220 "TOOLSIGN.spad" 2075504 2075515 2075831 2075836) (-1219 "TEXTFILE.spad" 2074065 2074074 2075494 2075499) (-1218 "TEX.spad" 2071211 2071220 2074055 2074060) (-1217 "TEX1.spad" 2070767 2070778 2071201 2071206) (-1216 "TEMUTL.spad" 2070322 2070331 2070757 2070762) (-1215 "TBCMPPK.spad" 2068415 2068438 2070312 2070317) (-1214 "TBAGG.spad" 2067465 2067488 2068395 2068410) (-1213 "TBAGG.spad" 2066523 2066548 2067455 2067460) (-1212 "TANEXP.spad" 2065931 2065942 2066513 2066518) (-1211 "TALGOP.spad" 2065655 2065666 2065921 2065926) (-1210 "TABLE.spad" 2063624 2063647 2063894 2063921) (-1209 "TABLEAU.spad" 2063105 2063116 2063614 2063619) (-1208 "TABLBUMP.spad" 2059908 2059919 2063095 2063100) (-1207 "SYSTEM.spad" 2059136 2059145 2059898 2059903) (-1206 "SYSSOLP.spad" 2056619 2056630 2059126 2059131) (-1205 "SYSPTR.spad" 2056518 2056527 2056609 2056614) (-1204 "SYSNNI.spad" 2055700 2055711 2056508 2056513) (-1203 "SYSINT.spad" 2055104 2055115 2055690 2055695) (-1202 "SYNTAX.spad" 2051310 2051319 2055094 2055099) (-1201 "SYMTAB.spad" 2049378 2049387 2051300 2051305) (-1200 "SYMS.spad" 2045401 2045410 2049368 2049373) (-1199 "SYMPOLY.spad" 2044408 2044419 2044490 2044617) (-1198 "SYMFUNC.spad" 2043909 2043920 2044398 2044403) (-1197 "SYMBOL.spad" 2041412 2041421 2043899 2043904) (-1196 "SWITCH.spad" 2038183 2038192 2041402 2041407) (-1195 "SUTS.spad" 2035231 2035259 2036650 2036747) (-1194 "SUPXS.spad" 2032514 2032542 2033363 2033512) (-1193 "SUP.spad" 2029234 2029245 2030007 2030160) (-1192 "SUPFRACF.spad" 2028339 2028357 2029224 2029229) (-1191 "SUP2.spad" 2027731 2027744 2028329 2028334) (-1190 "SUMRF.spad" 2026705 2026716 2027721 2027726) (-1189 "SUMFS.spad" 2026342 2026359 2026695 2026700) (-1188 "SULS.spad" 2016113 2016141 2017071 2017500) (-1187 "SUCHTAST.spad" 2015882 2015891 2016103 2016108) (-1186 "SUCH.spad" 2015564 2015579 2015872 2015877) (-1185 "SUBSPACE.spad" 2007679 2007694 2015554 2015559) (-1184 "SUBRESP.spad" 2006849 2006863 2007635 2007640) (-1183 "STTF.spad" 2002948 2002964 2006839 2006844) (-1182 "STTFNC.spad" 1999416 1999432 2002938 2002943) (-1181 "STTAYLOR.spad" 1992051 1992062 1999297 1999302) (-1180 "STRTBL.spad" 1990102 1990119 1990251 1990278) (-1179 "STRING.spad" 1988889 1988898 1989110 1989137) (-1178 "STREAM.spad" 1985690 1985701 1988297 1988312) (-1177 "STREAM3.spad" 1985263 1985278 1985680 1985685) (-1176 "STREAM2.spad" 1984391 1984404 1985253 1985258) (-1175 "STREAM1.spad" 1984097 1984108 1984381 1984386) (-1174 "STINPROD.spad" 1983033 1983049 1984087 1984092) (-1173 "STEP.spad" 1982234 1982243 1983023 1983028) (-1172 "STEPAST.spad" 1981468 1981477 1982224 1982229) (-1171 "STBL.spad" 1979552 1979580 1979719 1979734) (-1170 "STAGG.spad" 1978627 1978638 1979542 1979547) (-1169 "STAGG.spad" 1977700 1977713 1978617 1978622) (-1168 "STACK.spad" 1976940 1976951 1977190 1977217) (-1167 "SREGSET.spad" 1974608 1974625 1976550 1976577) (-1166 "SRDCMPK.spad" 1973169 1973189 1974598 1974603) (-1165 "SRAGG.spad" 1968312 1968321 1973137 1973164) (-1164 "SRAGG.spad" 1963475 1963486 1968302 1968307) (-1163 "SQMATRIX.spad" 1961018 1961036 1961934 1962021) (-1162 "SPLTREE.spad" 1955414 1955427 1960298 1960325) (-1161 "SPLNODE.spad" 1952002 1952015 1955404 1955409) (-1160 "SPFCAT.spad" 1950811 1950820 1951992 1951997) (-1159 "SPECOUT.spad" 1949363 1949372 1950801 1950806) (-1158 "SPADXPT.spad" 1940958 1940967 1949353 1949358) (-1157 "spad-parser.spad" 1940423 1940432 1940948 1940953) (-1156 "SPADAST.spad" 1940124 1940133 1940413 1940418) (-1155 "SPACEC.spad" 1924323 1924334 1940114 1940119) (-1154 "SPACE3.spad" 1924099 1924110 1924313 1924318) (-1153 "SORTPAK.spad" 1923648 1923661 1924055 1924060) (-1152 "SOLVETRA.spad" 1921411 1921422 1923638 1923643) (-1151 "SOLVESER.spad" 1919939 1919950 1921401 1921406) (-1150 "SOLVERAD.spad" 1915965 1915976 1919929 1919934) (-1149 "SOLVEFOR.spad" 1914427 1914445 1915955 1915960) (-1148 "SNTSCAT.spad" 1914027 1914044 1914395 1914422) (-1147 "SMTS.spad" 1912299 1912325 1913592 1913689) (-1146 "SMP.spad" 1909774 1909794 1910164 1910291) (-1145 "SMITH.spad" 1908619 1908644 1909764 1909769) (-1144 "SMATCAT.spad" 1906729 1906759 1908563 1908614) (-1143 "SMATCAT.spad" 1904771 1904803 1906607 1906612) (-1142 "SKAGG.spad" 1903734 1903745 1904739 1904766) (-1141 "SINT.spad" 1902674 1902683 1903600 1903729) (-1140 "SIMPAN.spad" 1902402 1902411 1902664 1902669) (-1139 "SIG.spad" 1901732 1901741 1902392 1902397) (-1138 "SIGNRF.spad" 1900850 1900861 1901722 1901727) (-1137 "SIGNEF.spad" 1900129 1900146 1900840 1900845) (-1136 "SIGAST.spad" 1899514 1899523 1900119 1900124) (-1135 "SHP.spad" 1897442 1897457 1899470 1899475) (-1134 "SHDP.spad" 1885120 1885147 1885629 1885728) (-1133 "SGROUP.spad" 1884728 1884737 1885110 1885115) (-1132 "SGROUP.spad" 1884334 1884345 1884718 1884723) (-1131 "SGCF.spad" 1877473 1877482 1884324 1884329) (-1130 "SFRTCAT.spad" 1876403 1876420 1877441 1877468) (-1129 "SFRGCD.spad" 1875466 1875486 1876393 1876398) (-1128 "SFQCMPK.spad" 1870103 1870123 1875456 1875461) (-1127 "SFORT.spad" 1869542 1869556 1870093 1870098) (-1126 "SEXOF.spad" 1869385 1869425 1869532 1869537) (-1125 "SEX.spad" 1869277 1869286 1869375 1869380) (-1124 "SEXCAT.spad" 1867049 1867089 1869267 1869272) (-1123 "SET.spad" 1865337 1865348 1866434 1866473) (-1122 "SETMN.spad" 1863787 1863804 1865327 1865332) (-1121 "SETCAT.spad" 1863272 1863281 1863777 1863782) (-1120 "SETCAT.spad" 1862755 1862766 1863262 1863267) (-1119 "SETAGG.spad" 1859304 1859315 1862735 1862750) (-1118 "SETAGG.spad" 1855861 1855874 1859294 1859299) (-1117 "SEQAST.spad" 1855564 1855573 1855851 1855856) (-1116 "SEGXCAT.spad" 1854720 1854733 1855554 1855559) (-1115 "SEG.spad" 1854533 1854544 1854639 1854644) (-1114 "SEGCAT.spad" 1853458 1853469 1854523 1854528) (-1113 "SEGBIND.spad" 1853216 1853227 1853405 1853410) (-1112 "SEGBIND2.spad" 1852914 1852927 1853206 1853211) (-1111 "SEGAST.spad" 1852628 1852637 1852904 1852909) (-1110 "SEG2.spad" 1852063 1852076 1852584 1852589) (-1109 "SDVAR.spad" 1851339 1851350 1852053 1852058) (-1108 "SDPOL.spad" 1848672 1848683 1848963 1849090) (-1107 "SCPKG.spad" 1846761 1846772 1848662 1848667) (-1106 "SCOPE.spad" 1845914 1845923 1846751 1846756) (-1105 "SCACHE.spad" 1844610 1844621 1845904 1845909) (-1104 "SASTCAT.spad" 1844519 1844528 1844600 1844605) (-1103 "SAOS.spad" 1844391 1844400 1844509 1844514) (-1102 "SAERFFC.spad" 1844104 1844124 1844381 1844386) (-1101 "SAE.spad" 1841574 1841590 1842185 1842320) (-1100 "SAEFACT.spad" 1841275 1841295 1841564 1841569) (-1099 "RURPK.spad" 1838934 1838950 1841265 1841270) (-1098 "RULESET.spad" 1838387 1838411 1838924 1838929) (-1097 "RULE.spad" 1836627 1836651 1838377 1838382) (-1096 "RULECOLD.spad" 1836479 1836492 1836617 1836622) (-1095 "RTVALUE.spad" 1836214 1836223 1836469 1836474) (-1094 "RSTRCAST.spad" 1835931 1835940 1836204 1836209) (-1093 "RSETGCD.spad" 1832309 1832329 1835921 1835926) (-1092 "RSETCAT.spad" 1822245 1822262 1832277 1832304) (-1091 "RSETCAT.spad" 1812201 1812220 1822235 1822240) (-1090 "RSDCMPK.spad" 1810653 1810673 1812191 1812196) (-1089 "RRCC.spad" 1809037 1809067 1810643 1810648) (-1088 "RRCC.spad" 1807419 1807451 1809027 1809032) (-1087 "RPTAST.spad" 1807121 1807130 1807409 1807414) (-1086 "RPOLCAT.spad" 1786481 1786496 1806989 1807116) (-1085 "RPOLCAT.spad" 1765554 1765571 1786064 1786069) (-1084 "ROUTINE.spad" 1760975 1760984 1763739 1763766) (-1083 "ROMAN.spad" 1760303 1760312 1760841 1760970) (-1082 "ROIRC.spad" 1759383 1759415 1760293 1760298) (-1081 "RNS.spad" 1758286 1758295 1759285 1759378) (-1080 "RNS.spad" 1757275 1757286 1758276 1758281) (-1079 "RNG.spad" 1757010 1757019 1757265 1757270) (-1078 "RNGBIND.spad" 1756170 1756184 1756965 1756970) (-1077 "RMODULE.spad" 1755935 1755946 1756160 1756165) (-1076 "RMCAT2.spad" 1755355 1755412 1755925 1755930) (-1075 "RMATRIX.spad" 1754143 1754162 1754486 1754525) (-1074 "RMATCAT.spad" 1749722 1749753 1754099 1754138) (-1073 "RMATCAT.spad" 1745191 1745224 1749570 1749575) (-1072 "RLINSET.spad" 1744895 1744906 1745181 1745186) (-1071 "RINTERP.spad" 1744783 1744803 1744885 1744890) (-1070 "RING.spad" 1744253 1744262 1744763 1744778) (-1069 "RING.spad" 1743731 1743742 1744243 1744248) (-1068 "RIDIST.spad" 1743123 1743132 1743721 1743726) (-1067 "RGCHAIN.spad" 1741651 1741667 1742553 1742580) (-1066 "RGBCSPC.spad" 1741432 1741444 1741641 1741646) (-1065 "RGBCMDL.spad" 1740962 1740974 1741422 1741427) (-1064 "RF.spad" 1738604 1738615 1740952 1740957) (-1063 "RFFACTOR.spad" 1738066 1738077 1738594 1738599) (-1062 "RFFACT.spad" 1737801 1737813 1738056 1738061) (-1061 "RFDIST.spad" 1736797 1736806 1737791 1737796) (-1060 "RETSOL.spad" 1736216 1736229 1736787 1736792) (-1059 "RETRACT.spad" 1735644 1735655 1736206 1736211) (-1058 "RETRACT.spad" 1735070 1735083 1735634 1735639) (-1057 "RETAST.spad" 1734882 1734891 1735060 1735065) (-1056 "RESULT.spad" 1732480 1732489 1733067 1733094) (-1055 "RESRING.spad" 1731827 1731874 1732418 1732475) (-1054 "RESLATC.spad" 1731151 1731162 1731817 1731822) (-1053 "REPSQ.spad" 1730882 1730893 1731141 1731146) (-1052 "REP.spad" 1728436 1728445 1730872 1730877) (-1051 "REPDB.spad" 1728143 1728154 1728426 1728431) (-1050 "REP2.spad" 1717801 1717812 1727985 1727990) (-1049 "REP1.spad" 1711997 1712008 1717751 1717756) (-1048 "REGSET.spad" 1709758 1709775 1711607 1711634) (-1047 "REF.spad" 1709093 1709104 1709713 1709718) (-1046 "REDORDER.spad" 1708299 1708316 1709083 1709088) (-1045 "RECLOS.spad" 1707082 1707102 1707786 1707879) (-1044 "REALSOLV.spad" 1706222 1706231 1707072 1707077) (-1043 "REAL.spad" 1706094 1706103 1706212 1706217) (-1042 "REAL0Q.spad" 1703392 1703407 1706084 1706089) (-1041 "REAL0.spad" 1700236 1700251 1703382 1703387) (-1040 "RDUCEAST.spad" 1699957 1699966 1700226 1700231) (-1039 "RDIV.spad" 1699612 1699637 1699947 1699952) (-1038 "RDIST.spad" 1699179 1699190 1699602 1699607) (-1037 "RDETRS.spad" 1698043 1698061 1699169 1699174) (-1036 "RDETR.spad" 1696182 1696200 1698033 1698038) (-1035 "RDEEFS.spad" 1695281 1695298 1696172 1696177) (-1034 "RDEEF.spad" 1694291 1694308 1695271 1695276) (-1033 "RCFIELD.spad" 1691477 1691486 1694193 1694286) (-1032 "RCFIELD.spad" 1688749 1688760 1691467 1691472) (-1031 "RCAGG.spad" 1686677 1686688 1688739 1688744) (-1030 "RCAGG.spad" 1684532 1684545 1686596 1686601) (-1029 "RATRET.spad" 1683892 1683903 1684522 1684527) (-1028 "RATFACT.spad" 1683584 1683596 1683882 1683887) (-1027 "RANDSRC.spad" 1682903 1682912 1683574 1683579) (-1026 "RADUTIL.spad" 1682659 1682668 1682893 1682898) (-1025 "RADIX.spad" 1679483 1679497 1681029 1681122) (-1024 "RADFF.spad" 1677222 1677259 1677341 1677497) (-1023 "RADCAT.spad" 1676817 1676826 1677212 1677217) (-1022 "RADCAT.spad" 1676410 1676421 1676807 1676812) (-1021 "QUEUE.spad" 1675641 1675652 1675900 1675927) (-1020 "QUAT.spad" 1674129 1674140 1674472 1674537) (-1019 "QUATCT2.spad" 1673749 1673768 1674119 1674124) (-1018 "QUATCAT.spad" 1671919 1671930 1673679 1673744) (-1017 "QUATCAT.spad" 1669840 1669853 1671602 1671607) (-1016 "QUAGG.spad" 1668667 1668678 1669808 1669835) (-1015 "QQUTAST.spad" 1668435 1668444 1668657 1668662) (-1014 "QFORM.spad" 1668053 1668068 1668425 1668430) (-1013 "QFCAT.spad" 1666755 1666766 1667955 1668048) (-1012 "QFCAT.spad" 1665048 1665061 1666250 1666255) (-1011 "QFCAT2.spad" 1664740 1664757 1665038 1665043) (-1010 "QEQUAT.spad" 1664298 1664307 1664730 1664735) (-1009 "QCMPACK.spad" 1659044 1659064 1664288 1664293) (-1008 "QALGSET.spad" 1655122 1655155 1658958 1658963) (-1007 "QALGSET2.spad" 1653117 1653136 1655112 1655117) (-1006 "PWFFINTB.spad" 1650532 1650554 1653107 1653112) (-1005 "PUSHVAR.spad" 1649870 1649890 1650522 1650527) (-1004 "PTRANFN.spad" 1645997 1646008 1649860 1649865) (-1003 "PTPACK.spad" 1643084 1643095 1645987 1645992) (-1002 "PTFUNC2.spad" 1642906 1642921 1643074 1643079) (-1001 "PTCAT.spad" 1642160 1642171 1642874 1642901) (-1000 "PSQFR.spad" 1641466 1641491 1642150 1642155) (-999 "PSEUDLIN.spad" 1640352 1640362 1641456 1641461) (-998 "PSETPK.spad" 1625785 1625801 1640230 1640235) (-997 "PSETCAT.spad" 1619705 1619728 1625765 1625780) (-996 "PSETCAT.spad" 1613599 1613624 1619661 1619666) (-995 "PSCURVE.spad" 1612582 1612590 1613589 1613594) (-994 "PSCAT.spad" 1611365 1611394 1612480 1612577) (-993 "PSCAT.spad" 1610238 1610269 1611355 1611360) (-992 "PRTITION.spad" 1608936 1608944 1610228 1610233) (-991 "PRTDAST.spad" 1608655 1608663 1608926 1608931) (-990 "PRS.spad" 1598217 1598234 1608611 1608616) (-989 "PRQAGG.spad" 1597652 1597662 1598185 1598212) (-988 "PROPLOG.spad" 1597224 1597232 1597642 1597647) (-987 "PROPFUN2.spad" 1596847 1596860 1597214 1597219) (-986 "PROPFUN1.spad" 1596245 1596256 1596837 1596842) (-985 "PROPFRML.spad" 1594813 1594824 1596235 1596240) (-984 "PROPERTY.spad" 1594301 1594309 1594803 1594808) (-983 "PRODUCT.spad" 1591983 1591995 1592267 1592322) (-982 "PR.spad" 1590375 1590387 1591074 1591201) (-981 "PRINT.spad" 1590127 1590135 1590365 1590370) (-980 "PRIMES.spad" 1588380 1588390 1590117 1590122) (-979 "PRIMELT.spad" 1586461 1586475 1588370 1588375) (-978 "PRIMCAT.spad" 1586088 1586096 1586451 1586456) (-977 "PRIMARR.spad" 1584940 1584950 1585118 1585145) (-976 "PRIMARR2.spad" 1583707 1583719 1584930 1584935) (-975 "PREASSOC.spad" 1583089 1583101 1583697 1583702) (-974 "PPCURVE.spad" 1582226 1582234 1583079 1583084) (-973 "PORTNUM.spad" 1582001 1582009 1582216 1582221) (-972 "POLYROOT.spad" 1580850 1580872 1581957 1581962) (-971 "POLY.spad" 1578185 1578195 1578700 1578827) (-970 "POLYLIFT.spad" 1577450 1577473 1578175 1578180) (-969 "POLYCATQ.spad" 1575568 1575590 1577440 1577445) (-968 "POLYCAT.spad" 1569038 1569059 1575436 1575563) (-967 "POLYCAT.spad" 1561846 1561869 1568246 1568251) (-966 "POLY2UP.spad" 1561298 1561312 1561836 1561841) (-965 "POLY2.spad" 1560895 1560907 1561288 1561293) (-964 "POLUTIL.spad" 1559836 1559865 1560851 1560856) (-963 "POLTOPOL.spad" 1558584 1558599 1559826 1559831) (-962 "POINT.spad" 1557269 1557279 1557356 1557383) (-961 "PNTHEORY.spad" 1553971 1553979 1557259 1557264) (-960 "PMTOOLS.spad" 1552746 1552760 1553961 1553966) (-959 "PMSYM.spad" 1552295 1552305 1552736 1552741) (-958 "PMQFCAT.spad" 1551886 1551900 1552285 1552290) (-957 "PMPRED.spad" 1551365 1551379 1551876 1551881) (-956 "PMPREDFS.spad" 1550819 1550841 1551355 1551360) (-955 "PMPLCAT.spad" 1549899 1549917 1550751 1550756) (-954 "PMLSAGG.spad" 1549484 1549498 1549889 1549894) (-953 "PMKERNEL.spad" 1549063 1549075 1549474 1549479) (-952 "PMINS.spad" 1548643 1548653 1549053 1549058) (-951 "PMFS.spad" 1548220 1548238 1548633 1548638) (-950 "PMDOWN.spad" 1547510 1547524 1548210 1548215) (-949 "PMASS.spad" 1546520 1546528 1547500 1547505) (-948 "PMASSFS.spad" 1545487 1545503 1546510 1546515) (-947 "PLOTTOOL.spad" 1545267 1545275 1545477 1545482) (-946 "PLOT.spad" 1540190 1540198 1545257 1545262) (-945 "PLOT3D.spad" 1536654 1536662 1540180 1540185) (-944 "PLOT1.spad" 1535811 1535821 1536644 1536649) (-943 "PLEQN.spad" 1523101 1523128 1535801 1535806) (-942 "PINTERP.spad" 1522723 1522742 1523091 1523096) (-941 "PINTERPA.spad" 1522507 1522523 1522713 1522718) (-940 "PI.spad" 1522116 1522124 1522481 1522502) (-939 "PID.spad" 1521086 1521094 1522042 1522111) (-938 "PICOERCE.spad" 1520743 1520753 1521076 1521081) (-937 "PGROEB.spad" 1519344 1519358 1520733 1520738) (-936 "PGE.spad" 1510961 1510969 1519334 1519339) (-935 "PGCD.spad" 1509851 1509868 1510951 1510956) (-934 "PFRPAC.spad" 1509000 1509010 1509841 1509846) (-933 "PFR.spad" 1505663 1505673 1508902 1508995) (-932 "PFOTOOLS.spad" 1504921 1504937 1505653 1505658) (-931 "PFOQ.spad" 1504291 1504309 1504911 1504916) (-930 "PFO.spad" 1503710 1503737 1504281 1504286) (-929 "PF.spad" 1503284 1503296 1503515 1503608) (-928 "PFECAT.spad" 1500966 1500974 1503210 1503279) (-927 "PFECAT.spad" 1498676 1498686 1500922 1500927) (-926 "PFBRU.spad" 1496564 1496576 1498666 1498671) (-925 "PFBR.spad" 1494124 1494147 1496554 1496559) (-924 "PERM.spad" 1489931 1489941 1493954 1493969) (-923 "PERMGRP.spad" 1484701 1484711 1489921 1489926) (-922 "PERMCAT.spad" 1483362 1483372 1484681 1484696) (-921 "PERMAN.spad" 1481894 1481908 1483352 1483357) (-920 "PENDTREE.spad" 1481118 1481128 1481406 1481411) (-919 "PDSPC.spad" 1479931 1479941 1481108 1481113) (-918 "PDSPC.spad" 1478742 1478754 1479921 1479926) (-917 "PDRING.spad" 1478584 1478594 1478722 1478737) (-916 "PDMOD.spad" 1478400 1478412 1478552 1478579) (-915 "PDEPROB.spad" 1477415 1477423 1478390 1478395) (-914 "PDEPACK.spad" 1471455 1471463 1477405 1477410) (-913 "PDECOMP.spad" 1470925 1470942 1471445 1471450) (-912 "PDECAT.spad" 1469281 1469289 1470915 1470920) (-911 "PDDOM.spad" 1468719 1468732 1469271 1469276) (-910 "PDDOM.spad" 1468155 1468170 1468709 1468714) (-909 "PCOMP.spad" 1468008 1468021 1468145 1468150) (-908 "PBWLB.spad" 1466596 1466613 1467998 1468003) (-907 "PATTERN.spad" 1461135 1461145 1466586 1466591) (-906 "PATTERN2.spad" 1460873 1460885 1461125 1461130) (-905 "PATTERN1.spad" 1459209 1459225 1460863 1460868) (-904 "PATRES.spad" 1456784 1456796 1459199 1459204) (-903 "PATRES2.spad" 1456456 1456470 1456774 1456779) (-902 "PATMATCH.spad" 1454653 1454684 1456164 1456169) (-901 "PATMAB.spad" 1454082 1454092 1454643 1454648) (-900 "PATLRES.spad" 1453168 1453182 1454072 1454077) (-899 "PATAB.spad" 1452932 1452942 1453158 1453163) (-898 "PARTPERM.spad" 1450940 1450948 1452922 1452927) (-897 "PARSURF.spad" 1450374 1450402 1450930 1450935) (-896 "PARSU2.spad" 1450171 1450187 1450364 1450369) (-895 "script-parser.spad" 1449691 1449699 1450161 1450166) (-894 "PARSCURV.spad" 1449125 1449153 1449681 1449686) (-893 "PARSC2.spad" 1448916 1448932 1449115 1449120) (-892 "PARPCURV.spad" 1448378 1448406 1448906 1448911) (-891 "PARPC2.spad" 1448169 1448185 1448368 1448373) (-890 "PARAMAST.spad" 1447297 1447305 1448159 1448164) (-889 "PAN2EXPR.spad" 1446709 1446717 1447287 1447292) (-888 "PALETTE.spad" 1445679 1445687 1446699 1446704) (-887 "PAIR.spad" 1444666 1444679 1445267 1445272) (-886 "PADICRC.spad" 1441907 1441925 1443078 1443171) (-885 "PADICRAT.spad" 1439815 1439827 1440036 1440129) (-884 "PADIC.spad" 1439510 1439522 1439741 1439810) (-883 "PADICCT.spad" 1438059 1438071 1439436 1439505) (-882 "PADEPAC.spad" 1436748 1436767 1438049 1438054) (-881 "PADE.spad" 1435500 1435516 1436738 1436743) (-880 "OWP.spad" 1434740 1434770 1435358 1435425) (-879 "OVERSET.spad" 1434313 1434321 1434730 1434735) (-878 "OVAR.spad" 1434094 1434117 1434303 1434308) (-877 "OUT.spad" 1433180 1433188 1434084 1434089) (-876 "OUTFORM.spad" 1422572 1422580 1433170 1433175) (-875 "OUTBFILE.spad" 1421990 1421998 1422562 1422567) (-874 "OUTBCON.spad" 1420996 1421004 1421980 1421985) (-873 "OUTBCON.spad" 1420000 1420010 1420986 1420991) (-872 "OSI.spad" 1419475 1419483 1419990 1419995) (-871 "OSGROUP.spad" 1419393 1419401 1419465 1419470) (-870 "ORTHPOL.spad" 1417878 1417888 1419310 1419315) (-869 "OREUP.spad" 1417331 1417359 1417558 1417597) (-868 "ORESUP.spad" 1416632 1416656 1417011 1417050) (-867 "OREPCTO.spad" 1414489 1414501 1416552 1416557) (-866 "OREPCAT.spad" 1408636 1408646 1414445 1414484) (-865 "OREPCAT.spad" 1402673 1402685 1408484 1408489) (-864 "ORDTYPE.spad" 1401910 1401918 1402663 1402668) (-863 "ORDTYPE.spad" 1401145 1401155 1401900 1401905) (-862 "ORDSTRCT.spad" 1400972 1400987 1401135 1401140) (-861 "ORDSET.spad" 1400672 1400680 1400962 1400967) (-860 "ORDRING.spad" 1400062 1400070 1400652 1400667) (-859 "ORDRING.spad" 1399460 1399470 1400052 1400057) (-858 "ORDMON.spad" 1399315 1399323 1399450 1399455) (-857 "ORDFUNS.spad" 1398447 1398463 1399305 1399310) (-856 "ORDFIN.spad" 1398267 1398275 1398437 1398442) (-855 "ORDCOMP.spad" 1396732 1396742 1397814 1397843) (-854 "ORDCOMP2.spad" 1396025 1396037 1396722 1396727) (-853 "OPTPROB.spad" 1394663 1394671 1396015 1396020) (-852 "OPTPACK.spad" 1387072 1387080 1394653 1394658) (-851 "OPTCAT.spad" 1384751 1384759 1387062 1387067) (-850 "OPSIG.spad" 1384405 1384413 1384741 1384746) (-849 "OPQUERY.spad" 1383954 1383962 1384395 1384400) (-848 "OP.spad" 1383696 1383706 1383776 1383843) (-847 "OPERCAT.spad" 1383162 1383172 1383686 1383691) (-846 "OPERCAT.spad" 1382626 1382638 1383152 1383157) (-845 "ONECOMP.spad" 1381371 1381381 1382173 1382202) (-844 "ONECOMP2.spad" 1380795 1380807 1381361 1381366) (-843 "OMSERVER.spad" 1379801 1379809 1380785 1380790) (-842 "OMSAGG.spad" 1379589 1379599 1379757 1379796) (-841 "OMPKG.spad" 1378205 1378213 1379579 1379584) (-840 "OM.spad" 1377178 1377186 1378195 1378200) (-839 "OMLO.spad" 1376603 1376615 1377064 1377103) (-838 "OMEXPR.spad" 1376437 1376447 1376593 1376598) (-837 "OMERR.spad" 1375982 1375990 1376427 1376432) (-836 "OMERRK.spad" 1375016 1375024 1375972 1375977) (-835 "OMENC.spad" 1374360 1374368 1375006 1375011) (-834 "OMDEV.spad" 1368669 1368677 1374350 1374355) (-833 "OMCONN.spad" 1368078 1368086 1368659 1368664) (-832 "OINTDOM.spad" 1367841 1367849 1368004 1368073) (-831 "OFMONOID.spad" 1365964 1365974 1367797 1367802) (-830 "ODVAR.spad" 1365225 1365235 1365954 1365959) (-829 "ODR.spad" 1364869 1364895 1365037 1365186) (-828 "ODPOL.spad" 1362158 1362168 1362498 1362625) (-827 "ODP.spad" 1349972 1349992 1350345 1350444) (-826 "ODETOOLS.spad" 1348621 1348640 1349962 1349967) (-825 "ODESYS.spad" 1346315 1346332 1348611 1348616) (-824 "ODERTRIC.spad" 1342324 1342341 1346272 1346277) (-823 "ODERED.spad" 1341723 1341747 1342314 1342319) (-822 "ODERAT.spad" 1339338 1339355 1341713 1341718) (-821 "ODEPRRIC.spad" 1336375 1336397 1339328 1339333) (-820 "ODEPROB.spad" 1335632 1335640 1336365 1336370) (-819 "ODEPRIM.spad" 1332966 1332988 1335622 1335627) (-818 "ODEPAL.spad" 1332352 1332376 1332956 1332961) (-817 "ODEPACK.spad" 1319018 1319026 1332342 1332347) (-816 "ODEINT.spad" 1318453 1318469 1319008 1319013) (-815 "ODEIFTBL.spad" 1315848 1315856 1318443 1318448) (-814 "ODEEF.spad" 1311339 1311355 1315838 1315843) (-813 "ODECONST.spad" 1310876 1310894 1311329 1311334) (-812 "ODECAT.spad" 1309474 1309482 1310866 1310871) (-811 "OCT.spad" 1307610 1307620 1308324 1308363) (-810 "OCTCT2.spad" 1307256 1307277 1307600 1307605) (-809 "OC.spad" 1305052 1305062 1307212 1307251) (-808 "OC.spad" 1302573 1302585 1304735 1304740) (-807 "OCAMON.spad" 1302421 1302429 1302563 1302568) (-806 "OASGP.spad" 1302236 1302244 1302411 1302416) (-805 "OAMONS.spad" 1301758 1301766 1302226 1302231) (-804 "OAMON.spad" 1301619 1301627 1301748 1301753) (-803 "OAGROUP.spad" 1301481 1301489 1301609 1301614) (-802 "NUMTUBE.spad" 1301072 1301088 1301471 1301476) (-801 "NUMQUAD.spad" 1289048 1289056 1301062 1301067) (-800 "NUMODE.spad" 1280402 1280410 1289038 1289043) (-799 "NUMINT.spad" 1277968 1277976 1280392 1280397) (-798 "NUMFMT.spad" 1276808 1276816 1277958 1277963) (-797 "NUMERIC.spad" 1268922 1268932 1276613 1276618) (-796 "NTSCAT.spad" 1267430 1267446 1268890 1268917) (-795 "NTPOLFN.spad" 1266981 1266991 1267347 1267352) (-794 "NSUP.spad" 1259934 1259944 1264474 1264627) (-793 "NSUP2.spad" 1259326 1259338 1259924 1259929) (-792 "NSMP.spad" 1255556 1255575 1255864 1255991) (-791 "NREP.spad" 1253934 1253948 1255546 1255551) (-790 "NPCOEF.spad" 1253180 1253200 1253924 1253929) (-789 "NORMRETR.spad" 1252778 1252817 1253170 1253175) (-788 "NORMPK.spad" 1250680 1250699 1252768 1252773) (-787 "NORMMA.spad" 1250368 1250394 1250670 1250675) (-786 "NONE.spad" 1250109 1250117 1250358 1250363) (-785 "NONE1.spad" 1249785 1249795 1250099 1250104) (-784 "NODE1.spad" 1249272 1249288 1249775 1249780) (-783 "NNI.spad" 1248167 1248175 1249246 1249267) (-782 "NLINSOL.spad" 1246793 1246803 1248157 1248162) (-781 "NIPROB.spad" 1245334 1245342 1246783 1246788) (-780 "NFINTBAS.spad" 1242894 1242911 1245324 1245329) (-779 "NETCLT.spad" 1242868 1242879 1242884 1242889) (-778 "NCODIV.spad" 1241084 1241100 1242858 1242863) (-777 "NCNTFRAC.spad" 1240726 1240740 1241074 1241079) (-776 "NCEP.spad" 1238892 1238906 1240716 1240721) (-775 "NASRING.spad" 1238488 1238496 1238882 1238887) (-774 "NASRING.spad" 1238082 1238092 1238478 1238483) (-773 "NARNG.spad" 1237434 1237442 1238072 1238077) (-772 "NARNG.spad" 1236784 1236794 1237424 1237429) (-771 "NAGSP.spad" 1235861 1235869 1236774 1236779) (-770 "NAGS.spad" 1225522 1225530 1235851 1235856) (-769 "NAGF07.spad" 1223953 1223961 1225512 1225517) (-768 "NAGF04.spad" 1218355 1218363 1223943 1223948) (-767 "NAGF02.spad" 1212424 1212432 1218345 1218350) (-766 "NAGF01.spad" 1208185 1208193 1212414 1212419) (-765 "NAGE04.spad" 1201885 1201893 1208175 1208180) (-764 "NAGE02.spad" 1192545 1192553 1201875 1201880) (-763 "NAGE01.spad" 1188547 1188555 1192535 1192540) (-762 "NAGD03.spad" 1186551 1186559 1188537 1188542) (-761 "NAGD02.spad" 1179298 1179306 1186541 1186546) (-760 "NAGD01.spad" 1173591 1173599 1179288 1179293) (-759 "NAGC06.spad" 1169466 1169474 1173581 1173586) (-758 "NAGC05.spad" 1167967 1167975 1169456 1169461) (-757 "NAGC02.spad" 1167234 1167242 1167957 1167962) (-756 "NAALG.spad" 1166775 1166785 1167202 1167229) (-755 "NAALG.spad" 1166336 1166348 1166765 1166770) (-754 "MULTSQFR.spad" 1163294 1163311 1166326 1166331) (-753 "MULTFACT.spad" 1162677 1162694 1163284 1163289) (-752 "MTSCAT.spad" 1160771 1160792 1162575 1162672) (-751 "MTHING.spad" 1160430 1160440 1160761 1160766) (-750 "MSYSCMD.spad" 1159864 1159872 1160420 1160425) (-749 "MSET.spad" 1157786 1157796 1159534 1159573) (-748 "MSETAGG.spad" 1157631 1157641 1157754 1157781) (-747 "MRING.spad" 1154608 1154620 1157339 1157406) (-746 "MRF2.spad" 1154178 1154192 1154598 1154603) (-745 "MRATFAC.spad" 1153724 1153741 1154168 1154173) (-744 "MPRFF.spad" 1151764 1151783 1153714 1153719) (-743 "MPOLY.spad" 1149235 1149250 1149594 1149721) (-742 "MPCPF.spad" 1148499 1148518 1149225 1149230) (-741 "MPC3.spad" 1148316 1148356 1148489 1148494) (-740 "MPC2.spad" 1147962 1147995 1148306 1148311) (-739 "MONOTOOL.spad" 1146313 1146330 1147952 1147957) (-738 "MONOID.spad" 1145632 1145640 1146303 1146308) (-737 "MONOID.spad" 1144949 1144959 1145622 1145627) (-736 "MONOGEN.spad" 1143697 1143710 1144809 1144944) (-735 "MONOGEN.spad" 1142467 1142482 1143581 1143586) (-734 "MONADWU.spad" 1140497 1140505 1142457 1142462) (-733 "MONADWU.spad" 1138525 1138535 1140487 1140492) (-732 "MONAD.spad" 1137685 1137693 1138515 1138520) (-731 "MONAD.spad" 1136843 1136853 1137675 1137680) (-730 "MOEBIUS.spad" 1135579 1135593 1136823 1136838) (-729 "MODULE.spad" 1135449 1135459 1135547 1135574) (-728 "MODULE.spad" 1135339 1135351 1135439 1135444) (-727 "MODRING.spad" 1134674 1134713 1135319 1135334) (-726 "MODOP.spad" 1133339 1133351 1134496 1134563) (-725 "MODMONOM.spad" 1133070 1133088 1133329 1133334) (-724 "MODMON.spad" 1129772 1129788 1130491 1130644) (-723 "MODFIELD.spad" 1129134 1129173 1129674 1129767) (-722 "MMLFORM.spad" 1127994 1128002 1129124 1129129) (-721 "MMAP.spad" 1127736 1127770 1127984 1127989) (-720 "MLO.spad" 1126195 1126205 1127692 1127731) (-719 "MLIFT.spad" 1124807 1124824 1126185 1126190) (-718 "MKUCFUNC.spad" 1124342 1124360 1124797 1124802) (-717 "MKRECORD.spad" 1123946 1123959 1124332 1124337) (-716 "MKFUNC.spad" 1123353 1123363 1123936 1123941) (-715 "MKFLCFN.spad" 1122321 1122331 1123343 1123348) (-714 "MKBCFUNC.spad" 1121816 1121834 1122311 1122316) (-713 "MINT.spad" 1121255 1121263 1121718 1121811) (-712 "MHROWRED.spad" 1119766 1119776 1121245 1121250) (-711 "MFLOAT.spad" 1118286 1118294 1119656 1119761) (-710 "MFINFACT.spad" 1117686 1117708 1118276 1118281) (-709 "MESH.spad" 1115468 1115476 1117676 1117681) (-708 "MDDFACT.spad" 1113679 1113689 1115458 1115463) (-707 "MDAGG.spad" 1112970 1112980 1113659 1113674) (-706 "MCMPLX.spad" 1108401 1108409 1109015 1109216) (-705 "MCDEN.spad" 1107611 1107623 1108391 1108396) (-704 "MCALCFN.spad" 1104733 1104759 1107601 1107606) (-703 "MAYBE.spad" 1104017 1104028 1104723 1104728) (-702 "MATSTOR.spad" 1101325 1101335 1104007 1104012) (-701 "MATRIX.spad" 1099912 1099922 1100396 1100423) (-700 "MATLIN.spad" 1097256 1097280 1099796 1099801) (-699 "MATCAT.spad" 1088778 1088800 1097224 1097251) (-698 "MATCAT.spad" 1080172 1080196 1088620 1088625) (-697 "MATCAT2.spad" 1079454 1079502 1080162 1080167) (-696 "MAPPKG3.spad" 1078369 1078383 1079444 1079449) (-695 "MAPPKG2.spad" 1077707 1077719 1078359 1078364) (-694 "MAPPKG1.spad" 1076535 1076545 1077697 1077702) (-693 "MAPPAST.spad" 1075850 1075858 1076525 1076530) (-692 "MAPHACK3.spad" 1075662 1075676 1075840 1075845) (-691 "MAPHACK2.spad" 1075431 1075443 1075652 1075657) (-690 "MAPHACK1.spad" 1075075 1075085 1075421 1075426) (-689 "MAGMA.spad" 1072865 1072882 1075065 1075070) (-688 "MACROAST.spad" 1072444 1072452 1072855 1072860) (-687 "M3D.spad" 1070047 1070057 1071705 1071710) (-686 "LZSTAGG.spad" 1067285 1067295 1070037 1070042) (-685 "LZSTAGG.spad" 1064521 1064533 1067275 1067280) (-684 "LWORD.spad" 1061226 1061243 1064511 1064516) (-683 "LSTAST.spad" 1061010 1061018 1061216 1061221) (-682 "LSQM.spad" 1059167 1059181 1059561 1059612) (-681 "LSPP.spad" 1058702 1058719 1059157 1059162) (-680 "LSMP.spad" 1057552 1057580 1058692 1058697) (-679 "LSMP1.spad" 1055370 1055384 1057542 1057547) (-678 "LSAGG.spad" 1055039 1055049 1055338 1055365) (-677 "LSAGG.spad" 1054728 1054740 1055029 1055034) (-676 "LPOLY.spad" 1053682 1053701 1054584 1054653) (-675 "LPEFRAC.spad" 1052953 1052963 1053672 1053677) (-674 "LO.spad" 1052354 1052368 1052887 1052914) (-673 "LOGIC.spad" 1051956 1051964 1052344 1052349) (-672 "LOGIC.spad" 1051556 1051566 1051946 1051951) (-671 "LODOOPS.spad" 1050486 1050498 1051546 1051551) (-670 "LODO.spad" 1049870 1049886 1050166 1050205) (-669 "LODOF.spad" 1048916 1048933 1049827 1049832) (-668 "LODOCAT.spad" 1047582 1047592 1048872 1048911) (-667 "LODOCAT.spad" 1046246 1046258 1047538 1047543) (-666 "LODO2.spad" 1045519 1045531 1045926 1045965) (-665 "LODO1.spad" 1044919 1044929 1045199 1045238) (-664 "LODEEF.spad" 1043721 1043739 1044909 1044914) (-663 "LNAGG.spad" 1039868 1039878 1043711 1043716) (-662 "LNAGG.spad" 1035979 1035991 1039824 1039829) (-661 "LMOPS.spad" 1032747 1032764 1035969 1035974) (-660 "LMODULE.spad" 1032515 1032525 1032737 1032742) (-659 "LMDICT.spad" 1031685 1031695 1031949 1031976) (-658 "LLINSET.spad" 1031392 1031402 1031675 1031680) (-657 "LITERAL.spad" 1031298 1031309 1031382 1031387) (-656 "LIST.spad" 1028880 1028890 1030292 1030319) (-655 "LIST3.spad" 1028191 1028205 1028870 1028875) (-654 "LIST2.spad" 1026893 1026905 1028181 1028186) (-653 "LIST2MAP.spad" 1023796 1023808 1026883 1026888) (-652 "LINSET.spad" 1023575 1023585 1023786 1023791) (-651 "LINEXP.spad" 1022318 1022328 1023565 1023570) (-650 "LINDEP.spad" 1021127 1021139 1022230 1022235) (-649 "LIMITRF.spad" 1019055 1019065 1021117 1021122) (-648 "LIMITPS.spad" 1017958 1017971 1019045 1019050) (-647 "LIE.spad" 1015974 1015986 1017248 1017393) (-646 "LIECAT.spad" 1015450 1015460 1015900 1015969) (-645 "LIECAT.spad" 1014954 1014966 1015406 1015411) (-644 "LIB.spad" 1012705 1012713 1013151 1013166) (-643 "LGROBP.spad" 1010058 1010077 1012695 1012700) (-642 "LF.spad" 1009013 1009029 1010048 1010053) (-641 "LFCAT.spad" 1008072 1008080 1009003 1009008) (-640 "LEXTRIPK.spad" 1003575 1003590 1008062 1008067) (-639 "LEXP.spad" 1001578 1001605 1003555 1003570) (-638 "LETAST.spad" 1001277 1001285 1001568 1001573) (-637 "LEADCDET.spad" 999675 999692 1001267 1001272) (-636 "LAZM3PK.spad" 998379 998401 999665 999670) (-635 "LAUPOL.spad" 996979 996992 997879 997948) (-634 "LAPLACE.spad" 996562 996578 996969 996974) (-633 "LA.spad" 996002 996016 996484 996523) (-632 "LALG.spad" 995778 995788 995982 995997) (-631 "LALG.spad" 995562 995574 995768 995773) (-630 "KVTFROM.spad" 995297 995307 995552 995557) (-629 "KTVLOGIC.spad" 994809 994817 995287 995292) (-628 "KRCFROM.spad" 994547 994557 994799 994804) (-627 "KOVACIC.spad" 993270 993287 994537 994542) (-626 "KONVERT.spad" 992992 993002 993260 993265) (-625 "KOERCE.spad" 992729 992739 992982 992987) (-624 "KERNEL.spad" 991384 991394 992513 992518) (-623 "KERNEL2.spad" 991087 991099 991374 991379) (-622 "KDAGG.spad" 990196 990218 991067 991082) (-621 "KDAGG.spad" 989313 989337 990186 990191) (-620 "KAFILE.spad" 988167 988183 988402 988429) (-619 "JORDAN.spad" 985996 986008 987457 987602) (-618 "JOINAST.spad" 985690 985698 985986 985991) (-617 "JAVACODE.spad" 985556 985564 985680 985685) (-616 "IXAGG.spad" 983689 983713 985546 985551) (-615 "IXAGG.spad" 981677 981703 983536 983541) (-614 "IVECTOR.spad" 980294 980309 980449 980476) (-613 "ITUPLE.spad" 979455 979465 980284 980289) (-612 "ITRIGMNP.spad" 978294 978313 979445 979450) (-611 "ITFUN3.spad" 977800 977814 978284 978289) (-610 "ITFUN2.spad" 977544 977556 977790 977795) (-609 "ITFORM.spad" 976899 976907 977534 977539) (-608 "ITAYLOR.spad" 974893 974908 976763 976860) (-607 "ISUPS.spad" 967330 967345 973867 973964) (-606 "ISUMP.spad" 966831 966847 967320 967325) (-605 "ISTRING.spad" 965758 965771 965839 965866) (-604 "ISAST.spad" 965477 965485 965748 965753) (-603 "IRURPK.spad" 964194 964213 965467 965472) (-602 "IRSN.spad" 962166 962174 964184 964189) (-601 "IRRF2F.spad" 960651 960661 962122 962127) (-600 "IRREDFFX.spad" 960252 960263 960641 960646) (-599 "IROOT.spad" 958591 958601 960242 960247) (-598 "IR.spad" 956392 956406 958446 958473) (-597 "IRFORM.spad" 955716 955724 956382 956387) (-596 "IR2.spad" 954744 954760 955706 955711) (-595 "IR2F.spad" 953950 953966 954734 954739) (-594 "IPRNTPK.spad" 953710 953718 953940 953945) (-593 "IPF.spad" 953275 953287 953515 953608) (-592 "IPADIC.spad" 953036 953062 953201 953270) (-591 "IP4ADDR.spad" 952593 952601 953026 953031) (-590 "IOMODE.spad" 952115 952123 952583 952588) (-589 "IOBFILE.spad" 951476 951484 952105 952110) (-588 "IOBCON.spad" 951341 951349 951466 951471) (-587 "INVLAPLA.spad" 950990 951006 951331 951336) (-586 "INTTR.spad" 944372 944389 950980 950985) (-585 "INTTOOLS.spad" 942127 942143 943946 943951) (-584 "INTSLPE.spad" 941447 941455 942117 942122) (-583 "INTRVL.spad" 941013 941023 941361 941442) (-582 "INTRF.spad" 939437 939451 941003 941008) (-581 "INTRET.spad" 938869 938879 939427 939432) (-580 "INTRAT.spad" 937596 937613 938859 938864) (-579 "INTPM.spad" 935981 935997 937239 937244) (-578 "INTPAF.spad" 933845 933863 935913 935918) (-577 "INTPACK.spad" 924219 924227 933835 933840) (-576 "INT.spad" 923667 923675 924073 924214) (-575 "INTHERTR.spad" 922941 922958 923657 923662) (-574 "INTHERAL.spad" 922611 922635 922931 922936) (-573 "INTHEORY.spad" 919050 919058 922601 922606) (-572 "INTG0.spad" 912783 912801 918982 918987) (-571 "INTFTBL.spad" 906812 906820 912773 912778) (-570 "INTFACT.spad" 905871 905881 906802 906807) (-569 "INTEF.spad" 904256 904272 905861 905866) (-568 "INTDOM.spad" 902879 902887 904182 904251) (-567 "INTDOM.spad" 901564 901574 902869 902874) (-566 "INTCAT.spad" 899823 899833 901478 901559) (-565 "INTBIT.spad" 899330 899338 899813 899818) (-564 "INTALG.spad" 898518 898545 899320 899325) (-563 "INTAF.spad" 898018 898034 898508 898513) (-562 "INTABL.spad" 896094 896125 896257 896284) (-561 "INT8.spad" 895974 895982 896084 896089) (-560 "INT64.spad" 895853 895861 895964 895969) (-559 "INT32.spad" 895732 895740 895843 895848) (-558 "INT16.spad" 895611 895619 895722 895727) (-557 "INS.spad" 893114 893122 895513 895606) (-556 "INS.spad" 890703 890713 893104 893109) (-555 "INPSIGN.spad" 890151 890164 890693 890698) (-554 "INPRODPF.spad" 889247 889266 890141 890146) (-553 "INPRODFF.spad" 888335 888359 889237 889242) (-552 "INNMFACT.spad" 887310 887327 888325 888330) (-551 "INMODGCD.spad" 886798 886828 887300 887305) (-550 "INFSP.spad" 885095 885117 886788 886793) (-549 "INFPROD0.spad" 884175 884194 885085 885090) (-548 "INFORM.spad" 881374 881382 884165 884170) (-547 "INFORM1.spad" 880999 881009 881364 881369) (-546 "INFINITY.spad" 880551 880559 880989 880994) (-545 "INETCLTS.spad" 880528 880536 880541 880546) (-544 "INEP.spad" 879066 879088 880518 880523) (-543 "INDE.spad" 878795 878812 879056 879061) (-542 "INCRMAPS.spad" 878216 878226 878785 878790) (-541 "INBFILE.spad" 877288 877296 878206 878211) (-540 "INBFF.spad" 873082 873093 877278 877283) (-539 "INBCON.spad" 871372 871380 873072 873077) (-538 "INBCON.spad" 869660 869670 871362 871367) (-537 "INAST.spad" 869321 869329 869650 869655) (-536 "IMPTAST.spad" 869029 869037 869311 869316) (-535 "IMATRIX.spad" 867857 867883 868369 868396) (-534 "IMATQF.spad" 866951 866995 867813 867818) (-533 "IMATLIN.spad" 865556 865580 866907 866912) (-532 "ILIST.spad" 864061 864076 864586 864613) (-531 "IIARRAY2.spad" 863332 863370 863551 863578) (-530 "IFF.spad" 862742 862758 863013 863106) (-529 "IFAST.spad" 862356 862364 862732 862737) (-528 "IFARRAY.spad" 859696 859711 861386 861413) (-527 "IFAMON.spad" 859558 859575 859652 859657) (-526 "IEVALAB.spad" 858963 858975 859548 859553) (-525 "IEVALAB.spad" 858366 858380 858953 858958) (-524 "IDPO.spad" 858179 858191 858356 858361) (-523 "IDPOAMS.spad" 857935 857947 858169 858174) (-522 "IDPOAM.spad" 857655 857667 857925 857930) (-521 "IDPC.spad" 856384 856396 857645 857650) (-520 "IDPAM.spad" 856129 856141 856374 856379) (-519 "IDPAG.spad" 855702 855714 856119 856124) (-518 "IDENT.spad" 855352 855360 855692 855697) (-517 "IDECOMP.spad" 852591 852609 855342 855347) (-516 "IDEAL.spad" 847540 847579 852526 852531) (-515 "ICDEN.spad" 846729 846745 847530 847535) (-514 "ICARD.spad" 845920 845928 846719 846724) (-513 "IBPTOOLS.spad" 844527 844544 845910 845915) (-512 "IBITS.spad" 843692 843705 844125 844152) (-511 "IBATOOL.spad" 840669 840688 843682 843687) (-510 "IBACHIN.spad" 839176 839191 840659 840664) (-509 "IARRAY2.spad" 838047 838073 838666 838693) (-508 "IARRAY1.spad" 836939 836954 837077 837104) (-507 "IAN.spad" 835162 835170 836755 836848) (-506 "IALGFACT.spad" 834765 834798 835152 835157) (-505 "HYPCAT.spad" 834189 834197 834755 834760) (-504 "HYPCAT.spad" 833611 833621 834179 834184) (-503 "HOSTNAME.spad" 833419 833427 833601 833606) (-502 "HOMOTOP.spad" 833162 833172 833409 833414) (-501 "HOAGG.spad" 830444 830454 833152 833157) (-500 "HOAGG.spad" 827465 827477 830175 830180) (-499 "HEXADEC.spad" 825470 825478 825835 825928) (-498 "HEUGCD.spad" 824505 824516 825460 825465) (-497 "HELLFDIV.spad" 824095 824119 824495 824500) (-496 "HEAP.spad" 823370 823380 823585 823612) (-495 "HEADAST.spad" 822903 822911 823360 823365) (-494 "HDP.spad" 810713 810729 811090 811189) (-493 "HDMP.spad" 807927 807942 808543 808670) (-492 "HB.spad" 806178 806186 807917 807922) (-491 "HASHTBL.spad" 804206 804237 804417 804444) (-490 "HASAST.spad" 803922 803930 804196 804201) (-489 "HACKPI.spad" 803413 803421 803824 803917) (-488 "GTSET.spad" 802316 802332 803023 803050) (-487 "GSTBL.spad" 800393 800428 800567 800582) (-486 "GSERIES.spad" 797706 797733 798525 798674) (-485 "GROUP.spad" 796979 796987 797686 797701) (-484 "GROUP.spad" 796260 796270 796969 796974) (-483 "GROEBSOL.spad" 794754 794775 796250 796255) (-482 "GRMOD.spad" 793325 793337 794744 794749) (-481 "GRMOD.spad" 791894 791908 793315 793320) (-480 "GRIMAGE.spad" 784783 784791 791884 791889) (-479 "GRDEF.spad" 783162 783170 784773 784778) (-478 "GRAY.spad" 781625 781633 783152 783157) (-477 "GRALG.spad" 780702 780714 781615 781620) (-476 "GRALG.spad" 779777 779791 780692 780697) (-475 "GPOLSET.spad" 779195 779218 779423 779450) (-474 "GOSPER.spad" 778464 778482 779185 779190) (-473 "GMODPOL.spad" 777612 777639 778432 778459) (-472 "GHENSEL.spad" 776695 776709 777602 777607) (-471 "GENUPS.spad" 772988 773001 776685 776690) (-470 "GENUFACT.spad" 772565 772575 772978 772983) (-469 "GENPGCD.spad" 772151 772168 772555 772560) (-468 "GENMFACT.spad" 771603 771622 772141 772146) (-467 "GENEEZ.spad" 769554 769567 771593 771598) (-466 "GDMP.spad" 766610 766627 767384 767511) (-465 "GCNAALG.spad" 760533 760560 766404 766471) (-464 "GCDDOM.spad" 759709 759717 760459 760528) (-463 "GCDDOM.spad" 758947 758957 759699 759704) (-462 "GB.spad" 756473 756511 758903 758908) (-461 "GBINTERN.spad" 752493 752531 756463 756468) (-460 "GBF.spad" 748260 748298 752483 752488) (-459 "GBEUCLID.spad" 746142 746180 748250 748255) (-458 "GAUSSFAC.spad" 745455 745463 746132 746137) (-457 "GALUTIL.spad" 743781 743791 745411 745416) (-456 "GALPOLYU.spad" 742235 742248 743771 743776) (-455 "GALFACTU.spad" 740408 740427 742225 742230) (-454 "GALFACT.spad" 730597 730608 740398 740403) (-453 "FVFUN.spad" 727620 727628 730587 730592) (-452 "FVC.spad" 726672 726680 727610 727615) (-451 "FUNDESC.spad" 726350 726358 726662 726667) (-450 "FUNCTION.spad" 726199 726211 726340 726345) (-449 "FT.spad" 724496 724504 726189 726194) (-448 "FTEM.spad" 723661 723669 724486 724491) (-447 "FSUPFACT.spad" 722561 722580 723597 723602) (-446 "FST.spad" 720647 720655 722551 722556) (-445 "FSRED.spad" 720127 720143 720637 720642) (-444 "FSPRMELT.spad" 719009 719025 720084 720089) (-443 "FSPECF.spad" 717100 717116 718999 719004) (-442 "FS.spad" 711368 711378 716875 717095) (-441 "FS.spad" 705414 705426 710923 710928) (-440 "FSINT.spad" 705074 705090 705404 705409) (-439 "FSERIES.spad" 704265 704277 704894 704993) (-438 "FSCINT.spad" 703582 703598 704255 704260) (-437 "FSAGG.spad" 702699 702709 703538 703577) (-436 "FSAGG.spad" 701778 701790 702619 702624) (-435 "FSAGG2.spad" 700521 700537 701768 701773) (-434 "FS2UPS.spad" 695012 695046 700511 700516) (-433 "FS2.spad" 694659 694675 695002 695007) (-432 "FS2EXPXP.spad" 693784 693807 694649 694654) (-431 "FRUTIL.spad" 692738 692748 693774 693779) (-430 "FR.spad" 686361 686371 691669 691738) (-429 "FRNAALG.spad" 681630 681640 686303 686356) (-428 "FRNAALG.spad" 676911 676923 681586 681591) (-427 "FRNAAF2.spad" 676367 676385 676901 676906) (-426 "FRMOD.spad" 675777 675807 676298 676303) (-425 "FRIDEAL.spad" 675002 675023 675757 675772) (-424 "FRIDEAL2.spad" 674606 674638 674992 674997) (-423 "FRETRCT.spad" 674117 674127 674596 674601) (-422 "FRETRCT.spad" 673494 673506 673975 673980) (-421 "FRAMALG.spad" 671842 671855 673450 673489) (-420 "FRAMALG.spad" 670222 670237 671832 671837) (-419 "FRAC.spad" 667228 667238 667631 667804) (-418 "FRAC2.spad" 666833 666845 667218 667223) (-417 "FR2.spad" 666169 666181 666823 666828) (-416 "FPS.spad" 662984 662992 666059 666164) (-415 "FPS.spad" 659827 659837 662904 662909) (-414 "FPC.spad" 658873 658881 659729 659822) (-413 "FPC.spad" 658005 658015 658863 658868) (-412 "FPATMAB.spad" 657767 657777 657995 658000) (-411 "FPARFRAC.spad" 656617 656634 657757 657762) (-410 "FORTRAN.spad" 655123 655166 656607 656612) (-409 "FORT.spad" 654072 654080 655113 655118) (-408 "FORTFN.spad" 651242 651250 654062 654067) (-407 "FORTCAT.spad" 650926 650934 651232 651237) (-406 "FORMULA.spad" 648400 648408 650916 650921) (-405 "FORMULA1.spad" 647879 647889 648390 648395) (-404 "FORDER.spad" 647570 647594 647869 647874) (-403 "FOP.spad" 646771 646779 647560 647565) (-402 "FNLA.spad" 646195 646217 646739 646766) (-401 "FNCAT.spad" 644790 644798 646185 646190) (-400 "FNAME.spad" 644682 644690 644780 644785) (-399 "FMTC.spad" 644480 644488 644608 644677) (-398 "FMONOID.spad" 644145 644155 644436 644441) (-397 "FMONCAT.spad" 641298 641308 644135 644140) (-396 "FM.spad" 640993 641005 641232 641259) (-395 "FMFUN.spad" 638023 638031 640983 640988) (-394 "FMC.spad" 637075 637083 638013 638018) (-393 "FMCAT.spad" 634743 634761 637043 637070) (-392 "FM1.spad" 634100 634112 634677 634704) (-391 "FLOATRP.spad" 631835 631849 634090 634095) (-390 "FLOAT.spad" 625149 625157 631701 631830) (-389 "FLOATCP.spad" 622580 622594 625139 625144) (-388 "FLINEXP.spad" 622302 622312 622570 622575) (-387 "FLINEXP.spad" 621968 621980 622238 622243) (-386 "FLASORT.spad" 621294 621306 621958 621963) (-385 "FLALG.spad" 618940 618959 621220 621289) (-384 "FLAGG.spad" 615982 615992 618920 618935) (-383 "FLAGG.spad" 612925 612937 615865 615870) (-382 "FLAGG2.spad" 611650 611666 612915 612920) (-381 "FINRALG.spad" 609711 609724 611606 611645) (-380 "FINRALG.spad" 607698 607713 609595 609600) (-379 "FINITE.spad" 606850 606858 607688 607693) (-378 "FINAALG.spad" 595971 595981 606792 606845) (-377 "FINAALG.spad" 585104 585116 595927 595932) (-376 "FILE.spad" 584687 584697 585094 585099) (-375 "FILECAT.spad" 583213 583230 584677 584682) (-374 "FIELD.spad" 582619 582627 583115 583208) (-373 "FIELD.spad" 582111 582121 582609 582614) (-372 "FGROUP.spad" 580758 580768 582091 582106) (-371 "FGLMICPK.spad" 579545 579560 580748 580753) (-370 "FFX.spad" 578920 578935 579261 579354) (-369 "FFSLPE.spad" 578423 578444 578910 578915) (-368 "FFPOLY.spad" 569685 569696 578413 578418) (-367 "FFPOLY2.spad" 568745 568762 569675 569680) (-366 "FFP.spad" 568142 568162 568461 568554) (-365 "FF.spad" 567590 567606 567823 567916) (-364 "FFNBX.spad" 566102 566122 567306 567399) (-363 "FFNBP.spad" 564615 564632 565818 565911) (-362 "FFNB.spad" 563080 563101 564296 564389) (-361 "FFINTBAS.spad" 560594 560613 563070 563075) (-360 "FFIELDC.spad" 558171 558179 560496 560589) (-359 "FFIELDC.spad" 555834 555844 558161 558166) (-358 "FFHOM.spad" 554582 554599 555824 555829) (-357 "FFF.spad" 552017 552028 554572 554577) (-356 "FFCGX.spad" 550864 550884 551733 551826) (-355 "FFCGP.spad" 549753 549773 550580 550673) (-354 "FFCG.spad" 548545 548566 549434 549527) (-353 "FFCAT.spad" 541718 541740 548384 548540) (-352 "FFCAT.spad" 534970 534994 541638 541643) (-351 "FFCAT2.spad" 534717 534757 534960 534965) (-350 "FEXPR.spad" 526434 526480 534473 534512) (-349 "FEVALAB.spad" 526142 526152 526424 526429) (-348 "FEVALAB.spad" 525635 525647 525919 525924) (-347 "FDIV.spad" 525077 525101 525625 525630) (-346 "FDIVCAT.spad" 523141 523165 525067 525072) (-345 "FDIVCAT.spad" 521203 521229 523131 523136) (-344 "FDIV2.spad" 520859 520899 521193 521198) (-343 "FCTRDATA.spad" 519867 519875 520849 520854) (-342 "FCPAK1.spad" 518434 518442 519857 519862) (-341 "FCOMP.spad" 517813 517823 518424 518429) (-340 "FC.spad" 507820 507828 517803 517808) (-339 "FAXF.spad" 500791 500805 507722 507815) (-338 "FAXF.spad" 493814 493830 500747 500752) (-337 "FARRAY.spad" 491811 491821 492844 492871) (-336 "FAMR.spad" 489947 489959 491709 491806) (-335 "FAMR.spad" 488067 488081 489831 489836) (-334 "FAMONOID.spad" 487735 487745 488021 488026) (-333 "FAMONC.spad" 486031 486043 487725 487730) (-332 "FAGROUP.spad" 485655 485665 485927 485954) (-331 "FACUTIL.spad" 483859 483876 485645 485650) (-330 "FACTFUNC.spad" 483053 483063 483849 483854) (-329 "EXPUPXS.spad" 479886 479909 481185 481334) (-328 "EXPRTUBE.spad" 477174 477182 479876 479881) (-327 "EXPRODE.spad" 474334 474350 477164 477169) (-326 "EXPR.spad" 469509 469519 470223 470518) (-325 "EXPR2UPS.spad" 465631 465644 469499 469504) (-324 "EXPR2.spad" 465336 465348 465621 465626) (-323 "EXPEXPAN.spad" 462137 462162 462769 462862) (-322 "EXIT.spad" 461808 461816 462127 462132) (-321 "EXITAST.spad" 461544 461552 461798 461803) (-320 "EVALCYC.spad" 461004 461018 461534 461539) (-319 "EVALAB.spad" 460576 460586 460994 460999) (-318 "EVALAB.spad" 460146 460158 460566 460571) (-317 "EUCDOM.spad" 457720 457728 460072 460141) (-316 "EUCDOM.spad" 455356 455366 457710 457715) (-315 "ESTOOLS.spad" 447202 447210 455346 455351) (-314 "ESTOOLS2.spad" 446805 446819 447192 447197) (-313 "ESTOOLS1.spad" 446490 446501 446795 446800) (-312 "ES.spad" 439305 439313 446480 446485) (-311 "ES.spad" 432026 432036 439203 439208) (-310 "ESCONT.spad" 428819 428827 432016 432021) (-309 "ESCONT1.spad" 428568 428580 428809 428814) (-308 "ES2.spad" 428073 428089 428558 428563) (-307 "ES1.spad" 427643 427659 428063 428068) (-306 "ERROR.spad" 424970 424978 427633 427638) (-305 "EQTBL.spad" 423000 423022 423209 423236) (-304 "EQ.spad" 417805 417815 420592 420704) (-303 "EQ2.spad" 417523 417535 417795 417800) (-302 "EP.spad" 413849 413859 417513 417518) (-301 "ENV.spad" 412527 412535 413839 413844) (-300 "ENTIRER.spad" 412195 412203 412471 412522) (-299 "EMR.spad" 411483 411524 412121 412190) (-298 "ELTAGG.spad" 409737 409756 411473 411478) (-297 "ELTAGG.spad" 407955 407976 409693 409698) (-296 "ELTAB.spad" 407430 407443 407945 407950) (-295 "ELFUTS.spad" 406817 406836 407420 407425) (-294 "ELEMFUN.spad" 406506 406514 406807 406812) (-293 "ELEMFUN.spad" 406193 406203 406496 406501) (-292 "ELAGG.spad" 404164 404174 406173 406188) (-291 "ELAGG.spad" 402072 402084 404083 404088) (-290 "ELABOR.spad" 401418 401426 402062 402067) (-289 "ELABEXPR.spad" 400350 400358 401408 401413) (-288 "EFUPXS.spad" 397126 397156 400306 400311) (-287 "EFULS.spad" 393962 393985 397082 397087) (-286 "EFSTRUC.spad" 391977 391993 393952 393957) (-285 "EF.spad" 386753 386769 391967 391972) (-284 "EAB.spad" 385029 385037 386743 386748) (-283 "E04UCFA.spad" 384565 384573 385019 385024) (-282 "E04NAFA.spad" 384142 384150 384555 384560) (-281 "E04MBFA.spad" 383722 383730 384132 384137) (-280 "E04JAFA.spad" 383258 383266 383712 383717) (-279 "E04GCFA.spad" 382794 382802 383248 383253) (-278 "E04FDFA.spad" 382330 382338 382784 382789) (-277 "E04DGFA.spad" 381866 381874 382320 382325) (-276 "E04AGNT.spad" 377716 377724 381856 381861) (-275 "DVARCAT.spad" 374606 374616 377706 377711) (-274 "DVARCAT.spad" 371494 371506 374596 374601) (-273 "DSMP.spad" 368868 368882 369173 369300) (-272 "DSEXT.spad" 368170 368180 368858 368863) (-271 "DSEXT.spad" 367379 367391 368069 368074) (-270 "DROPT.spad" 361338 361346 367369 367374) (-269 "DROPT1.spad" 361003 361013 361328 361333) (-268 "DROPT0.spad" 355860 355868 360993 360998) (-267 "DRAWPT.spad" 354033 354041 355850 355855) (-266 "DRAW.spad" 346909 346922 354023 354028) (-265 "DRAWHACK.spad" 346217 346227 346899 346904) (-264 "DRAWCX.spad" 343687 343695 346207 346212) (-263 "DRAWCURV.spad" 343234 343249 343677 343682) (-262 "DRAWCFUN.spad" 332766 332774 343224 343229) (-261 "DQAGG.spad" 330944 330954 332734 332761) (-260 "DPOLCAT.spad" 326293 326309 330812 330939) (-259 "DPOLCAT.spad" 321728 321746 326249 326254) (-258 "DPMO.spad" 313488 313504 313626 313839) (-257 "DPMM.spad" 305261 305279 305386 305599) (-256 "DOMTMPLT.spad" 305032 305040 305251 305256) (-255 "DOMCTOR.spad" 304787 304795 305022 305027) (-254 "DOMAIN.spad" 303874 303882 304777 304782) (-253 "DMP.spad" 301134 301149 301704 301831) (-252 "DMEXT.spad" 301001 301011 301102 301129) (-251 "DLP.spad" 300353 300363 300991 300996) (-250 "DLIST.spad" 298779 298789 299383 299410) (-249 "DLAGG.spad" 297196 297206 298769 298774) (-248 "DIVRING.spad" 296738 296746 297140 297191) (-247 "DIVRING.spad" 296324 296334 296728 296733) (-246 "DISPLAY.spad" 294514 294522 296314 296319) (-245 "DIRPROD.spad" 282061 282077 282701 282800) (-244 "DIRPROD2.spad" 280879 280897 282051 282056) (-243 "DIRPCAT.spad" 280072 280088 280775 280874) (-242 "DIRPCAT.spad" 278892 278910 279597 279602) (-241 "DIOSP.spad" 277717 277725 278882 278887) (-240 "DIOPS.spad" 276713 276723 277697 277712) (-239 "DIOPS.spad" 275683 275695 276669 276674) (-238 "DIFRING.spad" 275521 275529 275663 275678) (-237 "DIFFSPC.spad" 275100 275108 275511 275516) (-236 "DIFFSPC.spad" 274677 274687 275090 275095) (-235 "DIFFMOD.spad" 274166 274176 274645 274672) (-234 "DIFFDOM.spad" 273331 273342 274156 274161) (-233 "DIFFDOM.spad" 272494 272507 273321 273326) (-232 "DIFEXT.spad" 272313 272323 272474 272489) (-231 "DIAGG.spad" 271943 271953 272293 272308) (-230 "DIAGG.spad" 271581 271593 271933 271938) (-229 "DHMATRIX.spad" 269776 269786 270921 270948) (-228 "DFSFUN.spad" 263416 263424 269766 269771) (-227 "DFLOAT.spad" 260147 260155 263306 263411) (-226 "DFINTTLS.spad" 258378 258394 260137 260142) (-225 "DERHAM.spad" 256292 256324 258358 258373) (-224 "DEQUEUE.spad" 255499 255509 255782 255809) (-223 "DEGRED.spad" 255116 255130 255489 255494) (-222 "DEFINTRF.spad" 252653 252663 255106 255111) (-221 "DEFINTEF.spad" 251163 251179 252643 252648) (-220 "DEFAST.spad" 250531 250539 251153 251158) (-219 "DECIMAL.spad" 248540 248548 248901 248994) (-218 "DDFACT.spad" 246353 246370 248530 248535) (-217 "DBLRESP.spad" 245953 245977 246343 246348) (-216 "DBASE.spad" 244617 244627 245943 245948) (-215 "DATAARY.spad" 244079 244092 244607 244612) (-214 "D03FAFA.spad" 243907 243915 244069 244074) (-213 "D03EEFA.spad" 243727 243735 243897 243902) (-212 "D03AGNT.spad" 242813 242821 243717 243722) (-211 "D02EJFA.spad" 242275 242283 242803 242808) (-210 "D02CJFA.spad" 241753 241761 242265 242270) (-209 "D02BHFA.spad" 241243 241251 241743 241748) (-208 "D02BBFA.spad" 240733 240741 241233 241238) (-207 "D02AGNT.spad" 235547 235555 240723 240728) (-206 "D01WGTS.spad" 233866 233874 235537 235542) (-205 "D01TRNS.spad" 233843 233851 233856 233861) (-204 "D01GBFA.spad" 233365 233373 233833 233838) (-203 "D01FCFA.spad" 232887 232895 233355 233360) (-202 "D01ASFA.spad" 232355 232363 232877 232882) (-201 "D01AQFA.spad" 231801 231809 232345 232350) (-200 "D01APFA.spad" 231225 231233 231791 231796) (-199 "D01ANFA.spad" 230719 230727 231215 231220) (-198 "D01AMFA.spad" 230229 230237 230709 230714) (-197 "D01ALFA.spad" 229769 229777 230219 230224) (-196 "D01AKFA.spad" 229295 229303 229759 229764) (-195 "D01AJFA.spad" 228818 228826 229285 229290) (-194 "D01AGNT.spad" 224885 224893 228808 228813) (-193 "CYCLOTOM.spad" 224391 224399 224875 224880) (-192 "CYCLES.spad" 221183 221191 224381 224386) (-191 "CVMP.spad" 220600 220610 221173 221178) (-190 "CTRIGMNP.spad" 219100 219116 220590 220595) (-189 "CTOR.spad" 218791 218799 219090 219095) (-188 "CTORKIND.spad" 218394 218402 218781 218786) (-187 "CTORCAT.spad" 217643 217651 218384 218389) (-186 "CTORCAT.spad" 216890 216900 217633 217638) (-185 "CTORCALL.spad" 216479 216489 216880 216885) (-184 "CSTTOOLS.spad" 215724 215737 216469 216474) (-183 "CRFP.spad" 209448 209461 215714 215719) (-182 "CRCEAST.spad" 209168 209176 209438 209443) (-181 "CRAPACK.spad" 208219 208229 209158 209163) (-180 "CPMATCH.spad" 207723 207738 208144 208149) (-179 "CPIMA.spad" 207428 207447 207713 207718) (-178 "COORDSYS.spad" 202437 202447 207418 207423) (-177 "CONTOUR.spad" 201848 201856 202427 202432) (-176 "CONTFRAC.spad" 197598 197608 201750 201843) (-175 "CONDUIT.spad" 197356 197364 197588 197593) (-174 "COMRING.spad" 197030 197038 197294 197351) (-173 "COMPPROP.spad" 196548 196556 197020 197025) (-172 "COMPLPAT.spad" 196315 196330 196538 196543) (-171 "COMPLEX.spad" 191692 191702 191936 192197) (-170 "COMPLEX2.spad" 191407 191419 191682 191687) (-169 "COMPILER.spad" 190956 190964 191397 191402) (-168 "COMPFACT.spad" 190558 190572 190946 190951) (-167 "COMPCAT.spad" 188630 188640 190292 190553) (-166 "COMPCAT.spad" 186430 186442 188094 188099) (-165 "COMMUPC.spad" 186178 186196 186420 186425) (-164 "COMMONOP.spad" 185711 185719 186168 186173) (-163 "COMM.spad" 185522 185530 185701 185706) (-162 "COMMAAST.spad" 185285 185293 185512 185517) (-161 "COMBOPC.spad" 184200 184208 185275 185280) (-160 "COMBINAT.spad" 182967 182977 184190 184195) (-159 "COMBF.spad" 180349 180365 182957 182962) (-158 "COLOR.spad" 179186 179194 180339 180344) (-157 "COLONAST.spad" 178852 178860 179176 179181) (-156 "CMPLXRT.spad" 178563 178580 178842 178847) (-155 "CLLCTAST.spad" 178225 178233 178553 178558) (-154 "CLIP.spad" 174333 174341 178215 178220) (-153 "CLIF.spad" 172988 173004 174289 174328) (-152 "CLAGG.spad" 169493 169503 172978 172983) (-151 "CLAGG.spad" 165869 165881 169356 169361) (-150 "CINTSLPE.spad" 165200 165213 165859 165864) (-149 "CHVAR.spad" 163338 163360 165190 165195) (-148 "CHARZ.spad" 163253 163261 163318 163333) (-147 "CHARPOL.spad" 162763 162773 163243 163248) (-146 "CHARNZ.spad" 162516 162524 162743 162758) (-145 "CHAR.spad" 160390 160398 162506 162511) (-144 "CFCAT.spad" 159718 159726 160380 160385) (-143 "CDEN.spad" 158914 158928 159708 159713) (-142 "CCLASS.spad" 157025 157033 158287 158326) (-141 "CATEGORY.spad" 156067 156075 157015 157020) (-140 "CATCTOR.spad" 155958 155966 156057 156062) (-139 "CATAST.spad" 155576 155584 155948 155953) (-138 "CASEAST.spad" 155290 155298 155566 155571) (-137 "CARTEN.spad" 150657 150681 155280 155285) (-136 "CARTEN2.spad" 150047 150074 150647 150652) (-135 "CARD.spad" 147342 147350 150021 150042) (-134 "CAPSLAST.spad" 147116 147124 147332 147337) (-133 "CACHSET.spad" 146740 146748 147106 147111) (-132 "CABMON.spad" 146295 146303 146730 146735) (-131 "BYTEORD.spad" 145970 145978 146285 146290) (-130 "BYTE.spad" 145397 145405 145960 145965) (-129 "BYTEBUF.spad" 143095 143103 144405 144432) (-128 "BTREE.spad" 142051 142061 142585 142612) (-127 "BTOURN.spad" 140939 140949 141541 141568) (-126 "BTCAT.spad" 140331 140341 140907 140934) (-125 "BTCAT.spad" 139743 139755 140321 140326) (-124 "BTAGG.spad" 139209 139217 139711 139738) (-123 "BTAGG.spad" 138695 138705 139199 139204) (-122 "BSTREE.spad" 137319 137329 138185 138212) (-121 "BRILL.spad" 135516 135527 137309 137314) (-120 "BRAGG.spad" 134456 134466 135506 135511) (-119 "BRAGG.spad" 133360 133372 134412 134417) (-118 "BPADICRT.spad" 131234 131246 131489 131582) (-117 "BPADIC.spad" 130898 130910 131160 131229) (-116 "BOUNDZRO.spad" 130554 130571 130888 130893) (-115 "BOP.spad" 125736 125744 130544 130549) (-114 "BOP1.spad" 123202 123212 125726 125731) (-113 "BOOLE.spad" 122852 122860 123192 123197) (-112 "BOOLEAN.spad" 122290 122298 122842 122847) (-111 "BMODULE.spad" 122002 122014 122258 122285) (-110 "BITS.spad" 121385 121393 121600 121627) (-109 "BINDING.spad" 120798 120806 121375 121380) (-108 "BINARY.spad" 118812 118820 119168 119261) (-107 "BGAGG.spad" 118017 118027 118792 118807) (-106 "BGAGG.spad" 117230 117242 118007 118012) (-105 "BFUNCT.spad" 116794 116802 117210 117225) (-104 "BEZOUT.spad" 115934 115961 116744 116749) (-103 "BBTREE.spad" 112662 112672 115424 115451) (-102 "BASTYPE.spad" 112158 112166 112652 112657) (-101 "BASTYPE.spad" 111652 111662 112148 112153) (-100 "BALFACT.spad" 111111 111124 111642 111647) (-99 "AUTOMOR.spad" 110562 110571 111091 111106) (-98 "ATTREG.spad" 107285 107292 110314 110557) (-97 "ATTRBUT.spad" 103308 103315 107265 107280) (-96 "ATTRAST.spad" 103025 103032 103298 103303) (-95 "ATRIG.spad" 102495 102502 103015 103020) (-94 "ATRIG.spad" 101963 101972 102485 102490) (-93 "ASTCAT.spad" 101867 101874 101953 101958) (-92 "ASTCAT.spad" 101769 101778 101857 101862) (-91 "ASTACK.spad" 100991 101000 101259 101286) (-90 "ASSOCEQ.spad" 99817 99828 100947 100952) (-89 "ASP9.spad" 98898 98911 99807 99812) (-88 "ASP8.spad" 97941 97954 98888 98893) (-87 "ASP80.spad" 97263 97276 97931 97936) (-86 "ASP7.spad" 96423 96436 97253 97258) (-85 "ASP78.spad" 95874 95887 96413 96418) (-84 "ASP77.spad" 95243 95256 95864 95869) (-83 "ASP74.spad" 94335 94348 95233 95238) (-82 "ASP73.spad" 93606 93619 94325 94330) (-81 "ASP6.spad" 92473 92486 93596 93601) (-80 "ASP55.spad" 90982 90995 92463 92468) (-79 "ASP50.spad" 88799 88812 90972 90977) (-78 "ASP4.spad" 88094 88107 88789 88794) (-77 "ASP49.spad" 87093 87106 88084 88089) (-76 "ASP42.spad" 85500 85539 87083 87088) (-75 "ASP41.spad" 84079 84118 85490 85495) (-74 "ASP35.spad" 83067 83080 84069 84074) (-73 "ASP34.spad" 82368 82381 83057 83062) (-72 "ASP33.spad" 81928 81941 82358 82363) (-71 "ASP31.spad" 81068 81081 81918 81923) (-70 "ASP30.spad" 79960 79973 81058 81063) (-69 "ASP29.spad" 79426 79439 79950 79955) (-68 "ASP28.spad" 70699 70712 79416 79421) (-67 "ASP27.spad" 69596 69609 70689 70694) (-66 "ASP24.spad" 68683 68696 69586 69591) (-65 "ASP20.spad" 68147 68160 68673 68678) (-64 "ASP1.spad" 67528 67541 68137 68142) (-63 "ASP19.spad" 62214 62227 67518 67523) (-62 "ASP12.spad" 61628 61641 62204 62209) (-61 "ASP10.spad" 60899 60912 61618 61623) (-60 "ARRAY2.spad" 60142 60151 60389 60416) (-59 "ARRAY1.spad" 58826 58835 59172 59199) (-58 "ARRAY12.spad" 57539 57550 58816 58821) (-57 "ARR2CAT.spad" 53313 53334 57507 57534) (-56 "ARR2CAT.spad" 49107 49130 53303 53308) (-55 "ARITY.spad" 48479 48486 49097 49102) (-54 "APPRULE.spad" 47739 47761 48469 48474) (-53 "APPLYORE.spad" 47358 47371 47729 47734) (-52 "ANY.spad" 46217 46224 47348 47353) (-51 "ANY1.spad" 45288 45297 46207 46212) (-50 "ANTISYM.spad" 43733 43749 45268 45283) (-49 "ANON.spad" 43426 43433 43723 43728) (-48 "AN.spad" 41735 41742 43242 43335) (-47 "AMR.spad" 39920 39931 41633 41730) (-46 "AMR.spad" 37942 37955 39657 39662) (-45 "ALIST.spad" 34842 34863 35192 35219) (-44 "ALGSC.spad" 33977 34003 34714 34767) (-43 "ALGPKG.spad" 29760 29771 33933 33938) (-42 "ALGMFACT.spad" 28953 28967 29750 29755) (-41 "ALGMANIP.spad" 26427 26442 28786 28791) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2294127 2294132 2294137 2294142) (-2 NIL 2294107 2294112 2294117 2294122) (-1 NIL 2294087 2294092 2294097 2294102) (0 NIL 2294067 2294072 2294077 2294082) (-1317 "ZMOD.spad" 2293876 2293889 2294005 2294062) (-1316 "ZLINDEP.spad" 2292942 2292953 2293866 2293871) (-1315 "ZDSOLVE.spad" 2282887 2282909 2292932 2292937) (-1314 "YSTREAM.spad" 2282382 2282393 2282877 2282882) (-1313 "YDIAGRAM.spad" 2282016 2282025 2282372 2282377) (-1312 "XRPOLY.spad" 2281236 2281256 2281872 2281941) (-1311 "XPR.spad" 2279031 2279044 2280954 2281053) (-1310 "XPOLY.spad" 2278586 2278597 2278887 2278956) (-1309 "XPOLYC.spad" 2277905 2277921 2278512 2278581) (-1308 "XPBWPOLY.spad" 2276342 2276362 2277685 2277754) (-1307 "XF.spad" 2274805 2274820 2276244 2276337) (-1306 "XF.spad" 2273248 2273265 2274689 2274694) (-1305 "XFALG.spad" 2270296 2270312 2273174 2273243) (-1304 "XEXPPKG.spad" 2269547 2269573 2270286 2270291) (-1303 "XDPOLY.spad" 2269161 2269177 2269403 2269472) (-1302 "XALG.spad" 2268821 2268832 2269117 2269156) (-1301 "WUTSET.spad" 2264624 2264641 2268431 2268458) (-1300 "WP.spad" 2263823 2263867 2264482 2264549) (-1299 "WHILEAST.spad" 2263621 2263630 2263813 2263818) (-1298 "WHEREAST.spad" 2263292 2263301 2263611 2263616) (-1297 "WFFINTBS.spad" 2260955 2260977 2263282 2263287) (-1296 "WEIER.spad" 2259177 2259188 2260945 2260950) (-1295 "VSPACE.spad" 2258850 2258861 2259145 2259172) (-1294 "VSPACE.spad" 2258543 2258556 2258840 2258845) (-1293 "VOID.spad" 2258220 2258229 2258533 2258538) (-1292 "VIEW.spad" 2255900 2255909 2258210 2258215) (-1291 "VIEWDEF.spad" 2251101 2251110 2255890 2255895) (-1290 "VIEW3D.spad" 2235062 2235071 2251091 2251096) (-1289 "VIEW2D.spad" 2222953 2222962 2235052 2235057) (-1288 "VECTOR.spad" 2221474 2221485 2221725 2221752) (-1287 "VECTOR2.spad" 2220113 2220126 2221464 2221469) (-1286 "VECTCAT.spad" 2218017 2218028 2220081 2220108) (-1285 "VECTCAT.spad" 2215728 2215741 2217794 2217799) (-1284 "VARIABLE.spad" 2215508 2215523 2215718 2215723) (-1283 "UTYPE.spad" 2215152 2215161 2215498 2215503) (-1282 "UTSODETL.spad" 2214447 2214471 2215108 2215113) (-1281 "UTSODE.spad" 2212663 2212683 2214437 2214442) (-1280 "UTS.spad" 2207610 2207638 2211130 2211227) (-1279 "UTSCAT.spad" 2205089 2205105 2207508 2207605) (-1278 "UTSCAT.spad" 2202212 2202230 2204633 2204638) (-1277 "UTS2.spad" 2201807 2201842 2202202 2202207) (-1276 "URAGG.spad" 2196480 2196491 2201797 2201802) (-1275 "URAGG.spad" 2191117 2191130 2196436 2196441) (-1274 "UPXSSING.spad" 2188762 2188788 2190198 2190331) (-1273 "UPXS.spad" 2186058 2186086 2186894 2187043) (-1272 "UPXSCONS.spad" 2183817 2183837 2184190 2184339) (-1271 "UPXSCCA.spad" 2182388 2182408 2183663 2183812) (-1270 "UPXSCCA.spad" 2181101 2181123 2182378 2182383) (-1269 "UPXSCAT.spad" 2179690 2179706 2180947 2181096) (-1268 "UPXS2.spad" 2179233 2179286 2179680 2179685) (-1267 "UPSQFREE.spad" 2177647 2177661 2179223 2179228) (-1266 "UPSCAT.spad" 2175434 2175458 2177545 2177642) (-1265 "UPSCAT.spad" 2172927 2172953 2175040 2175045) (-1264 "UPOLYC.spad" 2167967 2167978 2172769 2172922) (-1263 "UPOLYC.spad" 2162899 2162912 2167703 2167708) (-1262 "UPOLYC2.spad" 2162370 2162389 2162889 2162894) (-1261 "UP.spad" 2159476 2159491 2159863 2160016) (-1260 "UPMP.spad" 2158376 2158389 2159466 2159471) (-1259 "UPDIVP.spad" 2157941 2157955 2158366 2158371) (-1258 "UPDECOMP.spad" 2156186 2156200 2157931 2157936) (-1257 "UPCDEN.spad" 2155395 2155411 2156176 2156181) (-1256 "UP2.spad" 2154759 2154780 2155385 2155390) (-1255 "UNISEG.spad" 2154112 2154123 2154678 2154683) (-1254 "UNISEG2.spad" 2153609 2153622 2154068 2154073) (-1253 "UNIFACT.spad" 2152712 2152724 2153599 2153604) (-1252 "ULS.spad" 2142496 2142524 2143441 2143870) (-1251 "ULSCONS.spad" 2133630 2133650 2134000 2134149) (-1250 "ULSCCAT.spad" 2131367 2131387 2133476 2133625) (-1249 "ULSCCAT.spad" 2129212 2129234 2131323 2131328) (-1248 "ULSCAT.spad" 2127444 2127460 2129058 2129207) (-1247 "ULS2.spad" 2126958 2127011 2127434 2127439) (-1246 "UINT8.spad" 2126835 2126844 2126948 2126953) (-1245 "UINT64.spad" 2126711 2126720 2126825 2126830) (-1244 "UINT32.spad" 2126587 2126596 2126701 2126706) (-1243 "UINT16.spad" 2126463 2126472 2126577 2126582) (-1242 "UFD.spad" 2125528 2125537 2126389 2126458) (-1241 "UFD.spad" 2124655 2124666 2125518 2125523) (-1240 "UDVO.spad" 2123536 2123545 2124645 2124650) (-1239 "UDPO.spad" 2121029 2121040 2123492 2123497) (-1238 "TYPE.spad" 2120961 2120970 2121019 2121024) (-1237 "TYPEAST.spad" 2120880 2120889 2120951 2120956) (-1236 "TWOFACT.spad" 2119532 2119547 2120870 2120875) (-1235 "TUPLE.spad" 2119018 2119029 2119431 2119436) (-1234 "TUBETOOL.spad" 2115885 2115894 2119008 2119013) (-1233 "TUBE.spad" 2114532 2114549 2115875 2115880) (-1232 "TS.spad" 2113131 2113147 2114097 2114194) (-1231 "TSETCAT.spad" 2100258 2100275 2113099 2113126) (-1230 "TSETCAT.spad" 2087371 2087390 2100214 2100219) (-1229 "TRMANIP.spad" 2081737 2081754 2087077 2087082) (-1228 "TRIMAT.spad" 2080700 2080725 2081727 2081732) (-1227 "TRIGMNIP.spad" 2079227 2079244 2080690 2080695) (-1226 "TRIGCAT.spad" 2078739 2078748 2079217 2079222) (-1225 "TRIGCAT.spad" 2078249 2078260 2078729 2078734) (-1224 "TREE.spad" 2076707 2076718 2077739 2077766) (-1223 "TRANFUN.spad" 2076546 2076555 2076697 2076702) (-1222 "TRANFUN.spad" 2076383 2076394 2076536 2076541) (-1221 "TOPSP.spad" 2076057 2076066 2076373 2076378) (-1220 "TOOLSIGN.spad" 2075720 2075731 2076047 2076052) (-1219 "TEXTFILE.spad" 2074281 2074290 2075710 2075715) (-1218 "TEX.spad" 2071427 2071436 2074271 2074276) (-1217 "TEX1.spad" 2070983 2070994 2071417 2071422) (-1216 "TEMUTL.spad" 2070538 2070547 2070973 2070978) (-1215 "TBCMPPK.spad" 2068631 2068654 2070528 2070533) (-1214 "TBAGG.spad" 2067681 2067704 2068611 2068626) (-1213 "TBAGG.spad" 2066739 2066764 2067671 2067676) (-1212 "TANEXP.spad" 2066147 2066158 2066729 2066734) (-1211 "TALGOP.spad" 2065871 2065882 2066137 2066142) (-1210 "TABLE.spad" 2063840 2063863 2064110 2064137) (-1209 "TABLEAU.spad" 2063321 2063332 2063830 2063835) (-1208 "TABLBUMP.spad" 2060124 2060135 2063311 2063316) (-1207 "SYSTEM.spad" 2059352 2059361 2060114 2060119) (-1206 "SYSSOLP.spad" 2056835 2056846 2059342 2059347) (-1205 "SYSPTR.spad" 2056734 2056743 2056825 2056830) (-1204 "SYSNNI.spad" 2055916 2055927 2056724 2056729) (-1203 "SYSINT.spad" 2055320 2055331 2055906 2055911) (-1202 "SYNTAX.spad" 2051526 2051535 2055310 2055315) (-1201 "SYMTAB.spad" 2049594 2049603 2051516 2051521) (-1200 "SYMS.spad" 2045617 2045626 2049584 2049589) (-1199 "SYMPOLY.spad" 2044624 2044635 2044706 2044833) (-1198 "SYMFUNC.spad" 2044125 2044136 2044614 2044619) (-1197 "SYMBOL.spad" 2041628 2041637 2044115 2044120) (-1196 "SWITCH.spad" 2038399 2038408 2041618 2041623) (-1195 "SUTS.spad" 2035447 2035475 2036866 2036963) (-1194 "SUPXS.spad" 2032730 2032758 2033579 2033728) (-1193 "SUP.spad" 2029450 2029461 2030223 2030376) (-1192 "SUPFRACF.spad" 2028555 2028573 2029440 2029445) (-1191 "SUP2.spad" 2027947 2027960 2028545 2028550) (-1190 "SUMRF.spad" 2026921 2026932 2027937 2027942) (-1189 "SUMFS.spad" 2026558 2026575 2026911 2026916) (-1188 "SULS.spad" 2016329 2016357 2017287 2017716) (-1187 "SUCHTAST.spad" 2016098 2016107 2016319 2016324) (-1186 "SUCH.spad" 2015780 2015795 2016088 2016093) (-1185 "SUBSPACE.spad" 2007895 2007910 2015770 2015775) (-1184 "SUBRESP.spad" 2007065 2007079 2007851 2007856) (-1183 "STTF.spad" 2003164 2003180 2007055 2007060) (-1182 "STTFNC.spad" 1999632 1999648 2003154 2003159) (-1181 "STTAYLOR.spad" 1992267 1992278 1999513 1999518) (-1180 "STRTBL.spad" 1990318 1990335 1990467 1990494) (-1179 "STRING.spad" 1989105 1989114 1989326 1989353) (-1178 "STREAM.spad" 1985906 1985917 1988513 1988528) (-1177 "STREAM3.spad" 1985479 1985494 1985896 1985901) (-1176 "STREAM2.spad" 1984607 1984620 1985469 1985474) (-1175 "STREAM1.spad" 1984313 1984324 1984597 1984602) (-1174 "STINPROD.spad" 1983249 1983265 1984303 1984308) (-1173 "STEP.spad" 1982450 1982459 1983239 1983244) (-1172 "STEPAST.spad" 1981684 1981693 1982440 1982445) (-1171 "STBL.spad" 1979768 1979796 1979935 1979950) (-1170 "STAGG.spad" 1978843 1978854 1979758 1979763) (-1169 "STAGG.spad" 1977916 1977929 1978833 1978838) (-1168 "STACK.spad" 1977156 1977167 1977406 1977433) (-1167 "SREGSET.spad" 1974824 1974841 1976766 1976793) (-1166 "SRDCMPK.spad" 1973385 1973405 1974814 1974819) (-1165 "SRAGG.spad" 1968528 1968537 1973353 1973380) (-1164 "SRAGG.spad" 1963691 1963702 1968518 1968523) (-1163 "SQMATRIX.spad" 1961234 1961252 1962150 1962237) (-1162 "SPLTREE.spad" 1955630 1955643 1960514 1960541) (-1161 "SPLNODE.spad" 1952218 1952231 1955620 1955625) (-1160 "SPFCAT.spad" 1951027 1951036 1952208 1952213) (-1159 "SPECOUT.spad" 1949579 1949588 1951017 1951022) (-1158 "SPADXPT.spad" 1941174 1941183 1949569 1949574) (-1157 "spad-parser.spad" 1940639 1940648 1941164 1941169) (-1156 "SPADAST.spad" 1940340 1940349 1940629 1940634) (-1155 "SPACEC.spad" 1924539 1924550 1940330 1940335) (-1154 "SPACE3.spad" 1924315 1924326 1924529 1924534) (-1153 "SORTPAK.spad" 1923864 1923877 1924271 1924276) (-1152 "SOLVETRA.spad" 1921627 1921638 1923854 1923859) (-1151 "SOLVESER.spad" 1920155 1920166 1921617 1921622) (-1150 "SOLVERAD.spad" 1916181 1916192 1920145 1920150) (-1149 "SOLVEFOR.spad" 1914643 1914661 1916171 1916176) (-1148 "SNTSCAT.spad" 1914243 1914260 1914611 1914638) (-1147 "SMTS.spad" 1912515 1912541 1913808 1913905) (-1146 "SMP.spad" 1909990 1910010 1910380 1910507) (-1145 "SMITH.spad" 1908835 1908860 1909980 1909985) (-1144 "SMATCAT.spad" 1906945 1906975 1908779 1908830) (-1143 "SMATCAT.spad" 1904987 1905019 1906823 1906828) (-1142 "SKAGG.spad" 1903950 1903961 1904955 1904982) (-1141 "SINT.spad" 1902890 1902899 1903816 1903945) (-1140 "SIMPAN.spad" 1902618 1902627 1902880 1902885) (-1139 "SIG.spad" 1901948 1901957 1902608 1902613) (-1138 "SIGNRF.spad" 1901066 1901077 1901938 1901943) (-1137 "SIGNEF.spad" 1900345 1900362 1901056 1901061) (-1136 "SIGAST.spad" 1899730 1899739 1900335 1900340) (-1135 "SHP.spad" 1897658 1897673 1899686 1899691) (-1134 "SHDP.spad" 1885336 1885363 1885845 1885944) (-1133 "SGROUP.spad" 1884944 1884953 1885326 1885331) (-1132 "SGROUP.spad" 1884550 1884561 1884934 1884939) (-1131 "SGCF.spad" 1877689 1877698 1884540 1884545) (-1130 "SFRTCAT.spad" 1876619 1876636 1877657 1877684) (-1129 "SFRGCD.spad" 1875682 1875702 1876609 1876614) (-1128 "SFQCMPK.spad" 1870319 1870339 1875672 1875677) (-1127 "SFORT.spad" 1869758 1869772 1870309 1870314) (-1126 "SEXOF.spad" 1869601 1869641 1869748 1869753) (-1125 "SEX.spad" 1869493 1869502 1869591 1869596) (-1124 "SEXCAT.spad" 1867265 1867305 1869483 1869488) (-1123 "SET.spad" 1865553 1865564 1866650 1866689) (-1122 "SETMN.spad" 1864003 1864020 1865543 1865548) (-1121 "SETCAT.spad" 1863488 1863497 1863993 1863998) (-1120 "SETCAT.spad" 1862971 1862982 1863478 1863483) (-1119 "SETAGG.spad" 1859520 1859531 1862951 1862966) (-1118 "SETAGG.spad" 1856077 1856090 1859510 1859515) (-1117 "SEQAST.spad" 1855780 1855789 1856067 1856072) (-1116 "SEGXCAT.spad" 1854936 1854949 1855770 1855775) (-1115 "SEG.spad" 1854749 1854760 1854855 1854860) (-1114 "SEGCAT.spad" 1853674 1853685 1854739 1854744) (-1113 "SEGBIND.spad" 1853432 1853443 1853621 1853626) (-1112 "SEGBIND2.spad" 1853130 1853143 1853422 1853427) (-1111 "SEGAST.spad" 1852844 1852853 1853120 1853125) (-1110 "SEG2.spad" 1852279 1852292 1852800 1852805) (-1109 "SDVAR.spad" 1851555 1851566 1852269 1852274) (-1108 "SDPOL.spad" 1848888 1848899 1849179 1849306) (-1107 "SCPKG.spad" 1846977 1846988 1848878 1848883) (-1106 "SCOPE.spad" 1846130 1846139 1846967 1846972) (-1105 "SCACHE.spad" 1844826 1844837 1846120 1846125) (-1104 "SASTCAT.spad" 1844735 1844744 1844816 1844821) (-1103 "SAOS.spad" 1844607 1844616 1844725 1844730) (-1102 "SAERFFC.spad" 1844320 1844340 1844597 1844602) (-1101 "SAE.spad" 1841790 1841806 1842401 1842536) (-1100 "SAEFACT.spad" 1841491 1841511 1841780 1841785) (-1099 "RURPK.spad" 1839150 1839166 1841481 1841486) (-1098 "RULESET.spad" 1838603 1838627 1839140 1839145) (-1097 "RULE.spad" 1836843 1836867 1838593 1838598) (-1096 "RULECOLD.spad" 1836695 1836708 1836833 1836838) (-1095 "RTVALUE.spad" 1836430 1836439 1836685 1836690) (-1094 "RSTRCAST.spad" 1836147 1836156 1836420 1836425) (-1093 "RSETGCD.spad" 1832525 1832545 1836137 1836142) (-1092 "RSETCAT.spad" 1822461 1822478 1832493 1832520) (-1091 "RSETCAT.spad" 1812417 1812436 1822451 1822456) (-1090 "RSDCMPK.spad" 1810869 1810889 1812407 1812412) (-1089 "RRCC.spad" 1809253 1809283 1810859 1810864) (-1088 "RRCC.spad" 1807635 1807667 1809243 1809248) (-1087 "RPTAST.spad" 1807337 1807346 1807625 1807630) (-1086 "RPOLCAT.spad" 1786697 1786712 1807205 1807332) (-1085 "RPOLCAT.spad" 1765770 1765787 1786280 1786285) (-1084 "ROUTINE.spad" 1761191 1761200 1763955 1763982) (-1083 "ROMAN.spad" 1760519 1760528 1761057 1761186) (-1082 "ROIRC.spad" 1759599 1759631 1760509 1760514) (-1081 "RNS.spad" 1758502 1758511 1759501 1759594) (-1080 "RNS.spad" 1757491 1757502 1758492 1758497) (-1079 "RNG.spad" 1757226 1757235 1757481 1757486) (-1078 "RNGBIND.spad" 1756386 1756400 1757181 1757186) (-1077 "RMODULE.spad" 1756151 1756162 1756376 1756381) (-1076 "RMCAT2.spad" 1755571 1755628 1756141 1756146) (-1075 "RMATRIX.spad" 1754359 1754378 1754702 1754741) (-1074 "RMATCAT.spad" 1749938 1749969 1754315 1754354) (-1073 "RMATCAT.spad" 1745407 1745440 1749786 1749791) (-1072 "RLINSET.spad" 1745111 1745122 1745397 1745402) (-1071 "RINTERP.spad" 1744999 1745019 1745101 1745106) (-1070 "RING.spad" 1744469 1744478 1744979 1744994) (-1069 "RING.spad" 1743947 1743958 1744459 1744464) (-1068 "RIDIST.spad" 1743339 1743348 1743937 1743942) (-1067 "RGCHAIN.spad" 1741867 1741883 1742769 1742796) (-1066 "RGBCSPC.spad" 1741648 1741660 1741857 1741862) (-1065 "RGBCMDL.spad" 1741178 1741190 1741638 1741643) (-1064 "RF.spad" 1738820 1738831 1741168 1741173) (-1063 "RFFACTOR.spad" 1738282 1738293 1738810 1738815) (-1062 "RFFACT.spad" 1738017 1738029 1738272 1738277) (-1061 "RFDIST.spad" 1737013 1737022 1738007 1738012) (-1060 "RETSOL.spad" 1736432 1736445 1737003 1737008) (-1059 "RETRACT.spad" 1735860 1735871 1736422 1736427) (-1058 "RETRACT.spad" 1735286 1735299 1735850 1735855) (-1057 "RETAST.spad" 1735098 1735107 1735276 1735281) (-1056 "RESULT.spad" 1732696 1732705 1733283 1733310) (-1055 "RESRING.spad" 1732043 1732090 1732634 1732691) (-1054 "RESLATC.spad" 1731367 1731378 1732033 1732038) (-1053 "REPSQ.spad" 1731098 1731109 1731357 1731362) (-1052 "REP.spad" 1728652 1728661 1731088 1731093) (-1051 "REPDB.spad" 1728359 1728370 1728642 1728647) (-1050 "REP2.spad" 1718017 1718028 1728201 1728206) (-1049 "REP1.spad" 1712213 1712224 1717967 1717972) (-1048 "REGSET.spad" 1709974 1709991 1711823 1711850) (-1047 "REF.spad" 1709309 1709320 1709929 1709934) (-1046 "REDORDER.spad" 1708515 1708532 1709299 1709304) (-1045 "RECLOS.spad" 1707298 1707318 1708002 1708095) (-1044 "REALSOLV.spad" 1706438 1706447 1707288 1707293) (-1043 "REAL.spad" 1706310 1706319 1706428 1706433) (-1042 "REAL0Q.spad" 1703608 1703623 1706300 1706305) (-1041 "REAL0.spad" 1700452 1700467 1703598 1703603) (-1040 "RDUCEAST.spad" 1700173 1700182 1700442 1700447) (-1039 "RDIV.spad" 1699828 1699853 1700163 1700168) (-1038 "RDIST.spad" 1699395 1699406 1699818 1699823) (-1037 "RDETRS.spad" 1698259 1698277 1699385 1699390) (-1036 "RDETR.spad" 1696398 1696416 1698249 1698254) (-1035 "RDEEFS.spad" 1695497 1695514 1696388 1696393) (-1034 "RDEEF.spad" 1694507 1694524 1695487 1695492) (-1033 "RCFIELD.spad" 1691693 1691702 1694409 1694502) (-1032 "RCFIELD.spad" 1688965 1688976 1691683 1691688) (-1031 "RCAGG.spad" 1686893 1686904 1688955 1688960) (-1030 "RCAGG.spad" 1684748 1684761 1686812 1686817) (-1029 "RATRET.spad" 1684108 1684119 1684738 1684743) (-1028 "RATFACT.spad" 1683800 1683812 1684098 1684103) (-1027 "RANDSRC.spad" 1683119 1683128 1683790 1683795) (-1026 "RADUTIL.spad" 1682875 1682884 1683109 1683114) (-1025 "RADIX.spad" 1679699 1679713 1681245 1681338) (-1024 "RADFF.spad" 1677438 1677475 1677557 1677713) (-1023 "RADCAT.spad" 1677033 1677042 1677428 1677433) (-1022 "RADCAT.spad" 1676626 1676637 1677023 1677028) (-1021 "QUEUE.spad" 1675857 1675868 1676116 1676143) (-1020 "QUAT.spad" 1674345 1674356 1674688 1674753) (-1019 "QUATCT2.spad" 1673965 1673984 1674335 1674340) (-1018 "QUATCAT.spad" 1672135 1672146 1673895 1673960) (-1017 "QUATCAT.spad" 1670056 1670069 1671818 1671823) (-1016 "QUAGG.spad" 1668883 1668894 1670024 1670051) (-1015 "QQUTAST.spad" 1668651 1668660 1668873 1668878) (-1014 "QFORM.spad" 1668269 1668284 1668641 1668646) (-1013 "QFCAT.spad" 1666971 1666982 1668171 1668264) (-1012 "QFCAT.spad" 1665264 1665277 1666466 1666471) (-1011 "QFCAT2.spad" 1664956 1664973 1665254 1665259) (-1010 "QEQUAT.spad" 1664514 1664523 1664946 1664951) (-1009 "QCMPACK.spad" 1659260 1659280 1664504 1664509) (-1008 "QALGSET.spad" 1655338 1655371 1659174 1659179) (-1007 "QALGSET2.spad" 1653333 1653352 1655328 1655333) (-1006 "PWFFINTB.spad" 1650748 1650770 1653323 1653328) (-1005 "PUSHVAR.spad" 1650086 1650106 1650738 1650743) (-1004 "PTRANFN.spad" 1646213 1646224 1650076 1650081) (-1003 "PTPACK.spad" 1643300 1643311 1646203 1646208) (-1002 "PTFUNC2.spad" 1643122 1643137 1643290 1643295) (-1001 "PTCAT.spad" 1642376 1642387 1643090 1643117) (-1000 "PSQFR.spad" 1641682 1641707 1642366 1642371) (-999 "PSEUDLIN.spad" 1640568 1640578 1641672 1641677) (-998 "PSETPK.spad" 1626001 1626017 1640446 1640451) (-997 "PSETCAT.spad" 1619921 1619944 1625981 1625996) (-996 "PSETCAT.spad" 1613815 1613840 1619877 1619882) (-995 "PSCURVE.spad" 1612798 1612806 1613805 1613810) (-994 "PSCAT.spad" 1611581 1611610 1612696 1612793) (-993 "PSCAT.spad" 1610454 1610485 1611571 1611576) (-992 "PRTITION.spad" 1609152 1609160 1610444 1610449) (-991 "PRTDAST.spad" 1608871 1608879 1609142 1609147) (-990 "PRS.spad" 1598433 1598450 1608827 1608832) (-989 "PRQAGG.spad" 1597868 1597878 1598401 1598428) (-988 "PROPLOG.spad" 1597440 1597448 1597858 1597863) (-987 "PROPFUN2.spad" 1597063 1597076 1597430 1597435) (-986 "PROPFUN1.spad" 1596461 1596472 1597053 1597058) (-985 "PROPFRML.spad" 1595029 1595040 1596451 1596456) (-984 "PROPERTY.spad" 1594517 1594525 1595019 1595024) (-983 "PRODUCT.spad" 1592199 1592211 1592483 1592538) (-982 "PR.spad" 1590591 1590603 1591290 1591417) (-981 "PRINT.spad" 1590343 1590351 1590581 1590586) (-980 "PRIMES.spad" 1588596 1588606 1590333 1590338) (-979 "PRIMELT.spad" 1586677 1586691 1588586 1588591) (-978 "PRIMCAT.spad" 1586304 1586312 1586667 1586672) (-977 "PRIMARR.spad" 1585156 1585166 1585334 1585361) (-976 "PRIMARR2.spad" 1583923 1583935 1585146 1585151) (-975 "PREASSOC.spad" 1583305 1583317 1583913 1583918) (-974 "PPCURVE.spad" 1582442 1582450 1583295 1583300) (-973 "PORTNUM.spad" 1582217 1582225 1582432 1582437) (-972 "POLYROOT.spad" 1581066 1581088 1582173 1582178) (-971 "POLY.spad" 1578401 1578411 1578916 1579043) (-970 "POLYLIFT.spad" 1577666 1577689 1578391 1578396) (-969 "POLYCATQ.spad" 1575784 1575806 1577656 1577661) (-968 "POLYCAT.spad" 1569254 1569275 1575652 1575779) (-967 "POLYCAT.spad" 1562062 1562085 1568462 1568467) (-966 "POLY2UP.spad" 1561514 1561528 1562052 1562057) (-965 "POLY2.spad" 1561111 1561123 1561504 1561509) (-964 "POLUTIL.spad" 1560052 1560081 1561067 1561072) (-963 "POLTOPOL.spad" 1558800 1558815 1560042 1560047) (-962 "POINT.spad" 1557485 1557495 1557572 1557599) (-961 "PNTHEORY.spad" 1554187 1554195 1557475 1557480) (-960 "PMTOOLS.spad" 1552962 1552976 1554177 1554182) (-959 "PMSYM.spad" 1552511 1552521 1552952 1552957) (-958 "PMQFCAT.spad" 1552102 1552116 1552501 1552506) (-957 "PMPRED.spad" 1551581 1551595 1552092 1552097) (-956 "PMPREDFS.spad" 1551035 1551057 1551571 1551576) (-955 "PMPLCAT.spad" 1550115 1550133 1550967 1550972) (-954 "PMLSAGG.spad" 1549700 1549714 1550105 1550110) (-953 "PMKERNEL.spad" 1549279 1549291 1549690 1549695) (-952 "PMINS.spad" 1548859 1548869 1549269 1549274) (-951 "PMFS.spad" 1548436 1548454 1548849 1548854) (-950 "PMDOWN.spad" 1547726 1547740 1548426 1548431) (-949 "PMASS.spad" 1546736 1546744 1547716 1547721) (-948 "PMASSFS.spad" 1545703 1545719 1546726 1546731) (-947 "PLOTTOOL.spad" 1545483 1545491 1545693 1545698) (-946 "PLOT.spad" 1540406 1540414 1545473 1545478) (-945 "PLOT3D.spad" 1536870 1536878 1540396 1540401) (-944 "PLOT1.spad" 1536027 1536037 1536860 1536865) (-943 "PLEQN.spad" 1523317 1523344 1536017 1536022) (-942 "PINTERP.spad" 1522939 1522958 1523307 1523312) (-941 "PINTERPA.spad" 1522723 1522739 1522929 1522934) (-940 "PI.spad" 1522332 1522340 1522697 1522718) (-939 "PID.spad" 1521302 1521310 1522258 1522327) (-938 "PICOERCE.spad" 1520959 1520969 1521292 1521297) (-937 "PGROEB.spad" 1519560 1519574 1520949 1520954) (-936 "PGE.spad" 1511177 1511185 1519550 1519555) (-935 "PGCD.spad" 1510067 1510084 1511167 1511172) (-934 "PFRPAC.spad" 1509216 1509226 1510057 1510062) (-933 "PFR.spad" 1505879 1505889 1509118 1509211) (-932 "PFOTOOLS.spad" 1505137 1505153 1505869 1505874) (-931 "PFOQ.spad" 1504507 1504525 1505127 1505132) (-930 "PFO.spad" 1503926 1503953 1504497 1504502) (-929 "PF.spad" 1503500 1503512 1503731 1503824) (-928 "PFECAT.spad" 1501182 1501190 1503426 1503495) (-927 "PFECAT.spad" 1498892 1498902 1501138 1501143) (-926 "PFBRU.spad" 1496780 1496792 1498882 1498887) (-925 "PFBR.spad" 1494340 1494363 1496770 1496775) (-924 "PERM.spad" 1490147 1490157 1494170 1494185) (-923 "PERMGRP.spad" 1484917 1484927 1490137 1490142) (-922 "PERMCAT.spad" 1483578 1483588 1484897 1484912) (-921 "PERMAN.spad" 1482110 1482124 1483568 1483573) (-920 "PENDTREE.spad" 1481334 1481344 1481622 1481627) (-919 "PDSPC.spad" 1480147 1480157 1481324 1481329) (-918 "PDSPC.spad" 1478958 1478970 1480137 1480142) (-917 "PDRING.spad" 1478800 1478810 1478938 1478953) (-916 "PDMOD.spad" 1478616 1478628 1478768 1478795) (-915 "PDEPROB.spad" 1477631 1477639 1478606 1478611) (-914 "PDEPACK.spad" 1471671 1471679 1477621 1477626) (-913 "PDECOMP.spad" 1471141 1471158 1471661 1471666) (-912 "PDECAT.spad" 1469497 1469505 1471131 1471136) (-911 "PDDOM.spad" 1468935 1468948 1469487 1469492) (-910 "PDDOM.spad" 1468371 1468386 1468925 1468930) (-909 "PCOMP.spad" 1468224 1468237 1468361 1468366) (-908 "PBWLB.spad" 1466812 1466829 1468214 1468219) (-907 "PATTERN.spad" 1461351 1461361 1466802 1466807) (-906 "PATTERN2.spad" 1461089 1461101 1461341 1461346) (-905 "PATTERN1.spad" 1459425 1459441 1461079 1461084) (-904 "PATRES.spad" 1457000 1457012 1459415 1459420) (-903 "PATRES2.spad" 1456672 1456686 1456990 1456995) (-902 "PATMATCH.spad" 1454869 1454900 1456380 1456385) (-901 "PATMAB.spad" 1454298 1454308 1454859 1454864) (-900 "PATLRES.spad" 1453384 1453398 1454288 1454293) (-899 "PATAB.spad" 1453148 1453158 1453374 1453379) (-898 "PARTPERM.spad" 1451156 1451164 1453138 1453143) (-897 "PARSURF.spad" 1450590 1450618 1451146 1451151) (-896 "PARSU2.spad" 1450387 1450403 1450580 1450585) (-895 "script-parser.spad" 1449907 1449915 1450377 1450382) (-894 "PARSCURV.spad" 1449341 1449369 1449897 1449902) (-893 "PARSC2.spad" 1449132 1449148 1449331 1449336) (-892 "PARPCURV.spad" 1448594 1448622 1449122 1449127) (-891 "PARPC2.spad" 1448385 1448401 1448584 1448589) (-890 "PARAMAST.spad" 1447513 1447521 1448375 1448380) (-889 "PAN2EXPR.spad" 1446925 1446933 1447503 1447508) (-888 "PALETTE.spad" 1445895 1445903 1446915 1446920) (-887 "PAIR.spad" 1444882 1444895 1445483 1445488) (-886 "PADICRC.spad" 1442123 1442141 1443294 1443387) (-885 "PADICRAT.spad" 1440031 1440043 1440252 1440345) (-884 "PADIC.spad" 1439726 1439738 1439957 1440026) (-883 "PADICCT.spad" 1438275 1438287 1439652 1439721) (-882 "PADEPAC.spad" 1436964 1436983 1438265 1438270) (-881 "PADE.spad" 1435716 1435732 1436954 1436959) (-880 "OWP.spad" 1434956 1434986 1435574 1435641) (-879 "OVERSET.spad" 1434529 1434537 1434946 1434951) (-878 "OVAR.spad" 1434310 1434333 1434519 1434524) (-877 "OUT.spad" 1433396 1433404 1434300 1434305) (-876 "OUTFORM.spad" 1422788 1422796 1433386 1433391) (-875 "OUTBFILE.spad" 1422206 1422214 1422778 1422783) (-874 "OUTBCON.spad" 1421212 1421220 1422196 1422201) (-873 "OUTBCON.spad" 1420216 1420226 1421202 1421207) (-872 "OSI.spad" 1419691 1419699 1420206 1420211) (-871 "OSGROUP.spad" 1419609 1419617 1419681 1419686) (-870 "ORTHPOL.spad" 1418094 1418104 1419526 1419531) (-869 "OREUP.spad" 1417547 1417575 1417774 1417813) (-868 "ORESUP.spad" 1416848 1416872 1417227 1417266) (-867 "OREPCTO.spad" 1414705 1414717 1416768 1416773) (-866 "OREPCAT.spad" 1408852 1408862 1414661 1414700) (-865 "OREPCAT.spad" 1402889 1402901 1408700 1408705) (-864 "ORDTYPE.spad" 1402126 1402134 1402879 1402884) (-863 "ORDTYPE.spad" 1401361 1401371 1402116 1402121) (-862 "ORDSTRCT.spad" 1401188 1401203 1401351 1401356) (-861 "ORDSET.spad" 1400888 1400896 1401178 1401183) (-860 "ORDRING.spad" 1400278 1400286 1400868 1400883) (-859 "ORDRING.spad" 1399676 1399686 1400268 1400273) (-858 "ORDMON.spad" 1399531 1399539 1399666 1399671) (-857 "ORDFUNS.spad" 1398663 1398679 1399521 1399526) (-856 "ORDFIN.spad" 1398483 1398491 1398653 1398658) (-855 "ORDCOMP.spad" 1396948 1396958 1398030 1398059) (-854 "ORDCOMP2.spad" 1396241 1396253 1396938 1396943) (-853 "OPTPROB.spad" 1394879 1394887 1396231 1396236) (-852 "OPTPACK.spad" 1387288 1387296 1394869 1394874) (-851 "OPTCAT.spad" 1384967 1384975 1387278 1387283) (-850 "OPSIG.spad" 1384621 1384629 1384957 1384962) (-849 "OPQUERY.spad" 1384170 1384178 1384611 1384616) (-848 "OP.spad" 1383912 1383922 1383992 1384059) (-847 "OPERCAT.spad" 1383378 1383388 1383902 1383907) (-846 "OPERCAT.spad" 1382842 1382854 1383368 1383373) (-845 "ONECOMP.spad" 1381587 1381597 1382389 1382418) (-844 "ONECOMP2.spad" 1381011 1381023 1381577 1381582) (-843 "OMSERVER.spad" 1380017 1380025 1381001 1381006) (-842 "OMSAGG.spad" 1379805 1379815 1379973 1380012) (-841 "OMPKG.spad" 1378421 1378429 1379795 1379800) (-840 "OM.spad" 1377394 1377402 1378411 1378416) (-839 "OMLO.spad" 1376819 1376831 1377280 1377319) (-838 "OMEXPR.spad" 1376653 1376663 1376809 1376814) (-837 "OMERR.spad" 1376198 1376206 1376643 1376648) (-836 "OMERRK.spad" 1375232 1375240 1376188 1376193) (-835 "OMENC.spad" 1374576 1374584 1375222 1375227) (-834 "OMDEV.spad" 1368885 1368893 1374566 1374571) (-833 "OMCONN.spad" 1368294 1368302 1368875 1368880) (-832 "OINTDOM.spad" 1368057 1368065 1368220 1368289) (-831 "OFMONOID.spad" 1366180 1366190 1368013 1368018) (-830 "ODVAR.spad" 1365441 1365451 1366170 1366175) (-829 "ODR.spad" 1365085 1365111 1365253 1365402) (-828 "ODPOL.spad" 1362374 1362384 1362714 1362841) (-827 "ODP.spad" 1350188 1350208 1350561 1350660) (-826 "ODETOOLS.spad" 1348837 1348856 1350178 1350183) (-825 "ODESYS.spad" 1346531 1346548 1348827 1348832) (-824 "ODERTRIC.spad" 1342540 1342557 1346488 1346493) (-823 "ODERED.spad" 1341939 1341963 1342530 1342535) (-822 "ODERAT.spad" 1339554 1339571 1341929 1341934) (-821 "ODEPRRIC.spad" 1336591 1336613 1339544 1339549) (-820 "ODEPROB.spad" 1335848 1335856 1336581 1336586) (-819 "ODEPRIM.spad" 1333182 1333204 1335838 1335843) (-818 "ODEPAL.spad" 1332568 1332592 1333172 1333177) (-817 "ODEPACK.spad" 1319234 1319242 1332558 1332563) (-816 "ODEINT.spad" 1318669 1318685 1319224 1319229) (-815 "ODEIFTBL.spad" 1316064 1316072 1318659 1318664) (-814 "ODEEF.spad" 1311555 1311571 1316054 1316059) (-813 "ODECONST.spad" 1311092 1311110 1311545 1311550) (-812 "ODECAT.spad" 1309690 1309698 1311082 1311087) (-811 "OCT.spad" 1307826 1307836 1308540 1308579) (-810 "OCTCT2.spad" 1307472 1307493 1307816 1307821) (-809 "OC.spad" 1305268 1305278 1307428 1307467) (-808 "OC.spad" 1302789 1302801 1304951 1304956) (-807 "OCAMON.spad" 1302637 1302645 1302779 1302784) (-806 "OASGP.spad" 1302452 1302460 1302627 1302632) (-805 "OAMONS.spad" 1301974 1301982 1302442 1302447) (-804 "OAMON.spad" 1301835 1301843 1301964 1301969) (-803 "OAGROUP.spad" 1301697 1301705 1301825 1301830) (-802 "NUMTUBE.spad" 1301288 1301304 1301687 1301692) (-801 "NUMQUAD.spad" 1289264 1289272 1301278 1301283) (-800 "NUMODE.spad" 1280618 1280626 1289254 1289259) (-799 "NUMINT.spad" 1278184 1278192 1280608 1280613) (-798 "NUMFMT.spad" 1277024 1277032 1278174 1278179) (-797 "NUMERIC.spad" 1269138 1269148 1276829 1276834) (-796 "NTSCAT.spad" 1267646 1267662 1269106 1269133) (-795 "NTPOLFN.spad" 1267197 1267207 1267563 1267568) (-794 "NSUP.spad" 1260150 1260160 1264690 1264843) (-793 "NSUP2.spad" 1259542 1259554 1260140 1260145) (-792 "NSMP.spad" 1255772 1255791 1256080 1256207) (-791 "NREP.spad" 1254150 1254164 1255762 1255767) (-790 "NPCOEF.spad" 1253396 1253416 1254140 1254145) (-789 "NORMRETR.spad" 1252994 1253033 1253386 1253391) (-788 "NORMPK.spad" 1250896 1250915 1252984 1252989) (-787 "NORMMA.spad" 1250584 1250610 1250886 1250891) (-786 "NONE.spad" 1250325 1250333 1250574 1250579) (-785 "NONE1.spad" 1250001 1250011 1250315 1250320) (-784 "NODE1.spad" 1249488 1249504 1249991 1249996) (-783 "NNI.spad" 1248383 1248391 1249462 1249483) (-782 "NLINSOL.spad" 1247009 1247019 1248373 1248378) (-781 "NIPROB.spad" 1245550 1245558 1246999 1247004) (-780 "NFINTBAS.spad" 1243110 1243127 1245540 1245545) (-779 "NETCLT.spad" 1243084 1243095 1243100 1243105) (-778 "NCODIV.spad" 1241300 1241316 1243074 1243079) (-777 "NCNTFRAC.spad" 1240942 1240956 1241290 1241295) (-776 "NCEP.spad" 1239108 1239122 1240932 1240937) (-775 "NASRING.spad" 1238704 1238712 1239098 1239103) (-774 "NASRING.spad" 1238298 1238308 1238694 1238699) (-773 "NARNG.spad" 1237650 1237658 1238288 1238293) (-772 "NARNG.spad" 1237000 1237010 1237640 1237645) (-771 "NAGSP.spad" 1236077 1236085 1236990 1236995) (-770 "NAGS.spad" 1225738 1225746 1236067 1236072) (-769 "NAGF07.spad" 1224169 1224177 1225728 1225733) (-768 "NAGF04.spad" 1218571 1218579 1224159 1224164) (-767 "NAGF02.spad" 1212640 1212648 1218561 1218566) (-766 "NAGF01.spad" 1208401 1208409 1212630 1212635) (-765 "NAGE04.spad" 1202101 1202109 1208391 1208396) (-764 "NAGE02.spad" 1192761 1192769 1202091 1202096) (-763 "NAGE01.spad" 1188763 1188771 1192751 1192756) (-762 "NAGD03.spad" 1186767 1186775 1188753 1188758) (-761 "NAGD02.spad" 1179514 1179522 1186757 1186762) (-760 "NAGD01.spad" 1173807 1173815 1179504 1179509) (-759 "NAGC06.spad" 1169682 1169690 1173797 1173802) (-758 "NAGC05.spad" 1168183 1168191 1169672 1169677) (-757 "NAGC02.spad" 1167450 1167458 1168173 1168178) (-756 "NAALG.spad" 1166991 1167001 1167418 1167445) (-755 "NAALG.spad" 1166552 1166564 1166981 1166986) (-754 "MULTSQFR.spad" 1163510 1163527 1166542 1166547) (-753 "MULTFACT.spad" 1162893 1162910 1163500 1163505) (-752 "MTSCAT.spad" 1160987 1161008 1162791 1162888) (-751 "MTHING.spad" 1160646 1160656 1160977 1160982) (-750 "MSYSCMD.spad" 1160080 1160088 1160636 1160641) (-749 "MSET.spad" 1158002 1158012 1159750 1159789) (-748 "MSETAGG.spad" 1157847 1157857 1157970 1157997) (-747 "MRING.spad" 1154824 1154836 1157555 1157622) (-746 "MRF2.spad" 1154394 1154408 1154814 1154819) (-745 "MRATFAC.spad" 1153940 1153957 1154384 1154389) (-744 "MPRFF.spad" 1151980 1151999 1153930 1153935) (-743 "MPOLY.spad" 1149451 1149466 1149810 1149937) (-742 "MPCPF.spad" 1148715 1148734 1149441 1149446) (-741 "MPC3.spad" 1148532 1148572 1148705 1148710) (-740 "MPC2.spad" 1148178 1148211 1148522 1148527) (-739 "MONOTOOL.spad" 1146529 1146546 1148168 1148173) (-738 "MONOID.spad" 1145848 1145856 1146519 1146524) (-737 "MONOID.spad" 1145165 1145175 1145838 1145843) (-736 "MONOGEN.spad" 1143913 1143926 1145025 1145160) (-735 "MONOGEN.spad" 1142683 1142698 1143797 1143802) (-734 "MONADWU.spad" 1140713 1140721 1142673 1142678) (-733 "MONADWU.spad" 1138741 1138751 1140703 1140708) (-732 "MONAD.spad" 1137901 1137909 1138731 1138736) (-731 "MONAD.spad" 1137059 1137069 1137891 1137896) (-730 "MOEBIUS.spad" 1135795 1135809 1137039 1137054) (-729 "MODULE.spad" 1135665 1135675 1135763 1135790) (-728 "MODULE.spad" 1135555 1135567 1135655 1135660) (-727 "MODRING.spad" 1134890 1134929 1135535 1135550) (-726 "MODOP.spad" 1133555 1133567 1134712 1134779) (-725 "MODMONOM.spad" 1133286 1133304 1133545 1133550) (-724 "MODMON.spad" 1129988 1130004 1130707 1130860) (-723 "MODFIELD.spad" 1129350 1129389 1129890 1129983) (-722 "MMLFORM.spad" 1128210 1128218 1129340 1129345) (-721 "MMAP.spad" 1127952 1127986 1128200 1128205) (-720 "MLO.spad" 1126411 1126421 1127908 1127947) (-719 "MLIFT.spad" 1125023 1125040 1126401 1126406) (-718 "MKUCFUNC.spad" 1124558 1124576 1125013 1125018) (-717 "MKRECORD.spad" 1124162 1124175 1124548 1124553) (-716 "MKFUNC.spad" 1123569 1123579 1124152 1124157) (-715 "MKFLCFN.spad" 1122537 1122547 1123559 1123564) (-714 "MKBCFUNC.spad" 1122032 1122050 1122527 1122532) (-713 "MINT.spad" 1121471 1121479 1121934 1122027) (-712 "MHROWRED.spad" 1119982 1119992 1121461 1121466) (-711 "MFLOAT.spad" 1118502 1118510 1119872 1119977) (-710 "MFINFACT.spad" 1117902 1117924 1118492 1118497) (-709 "MESH.spad" 1115684 1115692 1117892 1117897) (-708 "MDDFACT.spad" 1113895 1113905 1115674 1115679) (-707 "MDAGG.spad" 1113186 1113196 1113875 1113890) (-706 "MCMPLX.spad" 1108617 1108625 1109231 1109432) (-705 "MCDEN.spad" 1107827 1107839 1108607 1108612) (-704 "MCALCFN.spad" 1104949 1104975 1107817 1107822) (-703 "MAYBE.spad" 1104233 1104244 1104939 1104944) (-702 "MATSTOR.spad" 1101541 1101551 1104223 1104228) (-701 "MATRIX.spad" 1100128 1100138 1100612 1100639) (-700 "MATLIN.spad" 1097472 1097496 1100012 1100017) (-699 "MATCAT.spad" 1088994 1089016 1097440 1097467) (-698 "MATCAT.spad" 1080388 1080412 1088836 1088841) (-697 "MATCAT2.spad" 1079670 1079718 1080378 1080383) (-696 "MAPPKG3.spad" 1078585 1078599 1079660 1079665) (-695 "MAPPKG2.spad" 1077923 1077935 1078575 1078580) (-694 "MAPPKG1.spad" 1076751 1076761 1077913 1077918) (-693 "MAPPAST.spad" 1076066 1076074 1076741 1076746) (-692 "MAPHACK3.spad" 1075878 1075892 1076056 1076061) (-691 "MAPHACK2.spad" 1075647 1075659 1075868 1075873) (-690 "MAPHACK1.spad" 1075291 1075301 1075637 1075642) (-689 "MAGMA.spad" 1073081 1073098 1075281 1075286) (-688 "MACROAST.spad" 1072660 1072668 1073071 1073076) (-687 "M3D.spad" 1070263 1070273 1071921 1071926) (-686 "LZSTAGG.spad" 1067501 1067511 1070253 1070258) (-685 "LZSTAGG.spad" 1064737 1064749 1067491 1067496) (-684 "LWORD.spad" 1061442 1061459 1064727 1064732) (-683 "LSTAST.spad" 1061226 1061234 1061432 1061437) (-682 "LSQM.spad" 1059383 1059397 1059777 1059828) (-681 "LSPP.spad" 1058918 1058935 1059373 1059378) (-680 "LSMP.spad" 1057768 1057796 1058908 1058913) (-679 "LSMP1.spad" 1055586 1055600 1057758 1057763) (-678 "LSAGG.spad" 1055255 1055265 1055554 1055581) (-677 "LSAGG.spad" 1054944 1054956 1055245 1055250) (-676 "LPOLY.spad" 1053898 1053917 1054800 1054869) (-675 "LPEFRAC.spad" 1053169 1053179 1053888 1053893) (-674 "LO.spad" 1052570 1052584 1053103 1053130) (-673 "LOGIC.spad" 1052172 1052180 1052560 1052565) (-672 "LOGIC.spad" 1051772 1051782 1052162 1052167) (-671 "LODOOPS.spad" 1050702 1050714 1051762 1051767) (-670 "LODO.spad" 1050086 1050102 1050382 1050421) (-669 "LODOF.spad" 1049132 1049149 1050043 1050048) (-668 "LODOCAT.spad" 1047798 1047808 1049088 1049127) (-667 "LODOCAT.spad" 1046462 1046474 1047754 1047759) (-666 "LODO2.spad" 1045735 1045747 1046142 1046181) (-665 "LODO1.spad" 1045135 1045145 1045415 1045454) (-664 "LODEEF.spad" 1043937 1043955 1045125 1045130) (-663 "LNAGG.spad" 1040084 1040094 1043927 1043932) (-662 "LNAGG.spad" 1036195 1036207 1040040 1040045) (-661 "LMOPS.spad" 1032963 1032980 1036185 1036190) (-660 "LMODULE.spad" 1032731 1032741 1032953 1032958) (-659 "LMDICT.spad" 1031901 1031911 1032165 1032192) (-658 "LLINSET.spad" 1031608 1031618 1031891 1031896) (-657 "LITERAL.spad" 1031514 1031525 1031598 1031603) (-656 "LIST.spad" 1029096 1029106 1030508 1030535) (-655 "LIST3.spad" 1028407 1028421 1029086 1029091) (-654 "LIST2.spad" 1027109 1027121 1028397 1028402) (-653 "LIST2MAP.spad" 1024012 1024024 1027099 1027104) (-652 "LINSET.spad" 1023791 1023801 1024002 1024007) (-651 "LINEXP.spad" 1022534 1022544 1023781 1023786) (-650 "LINDEP.spad" 1021343 1021355 1022446 1022451) (-649 "LIMITRF.spad" 1019271 1019281 1021333 1021338) (-648 "LIMITPS.spad" 1018174 1018187 1019261 1019266) (-647 "LIE.spad" 1016190 1016202 1017464 1017609) (-646 "LIECAT.spad" 1015666 1015676 1016116 1016185) (-645 "LIECAT.spad" 1015170 1015182 1015622 1015627) (-644 "LIB.spad" 1012921 1012929 1013367 1013382) (-643 "LGROBP.spad" 1010274 1010293 1012911 1012916) (-642 "LF.spad" 1009229 1009245 1010264 1010269) (-641 "LFCAT.spad" 1008288 1008296 1009219 1009224) (-640 "LEXTRIPK.spad" 1003791 1003806 1008278 1008283) (-639 "LEXP.spad" 1001794 1001821 1003771 1003786) (-638 "LETAST.spad" 1001493 1001501 1001784 1001789) (-637 "LEADCDET.spad" 999891 999908 1001483 1001488) (-636 "LAZM3PK.spad" 998595 998617 999881 999886) (-635 "LAUPOL.spad" 997195 997208 998095 998164) (-634 "LAPLACE.spad" 996778 996794 997185 997190) (-633 "LA.spad" 996218 996232 996700 996739) (-632 "LALG.spad" 995994 996004 996198 996213) (-631 "LALG.spad" 995778 995790 995984 995989) (-630 "KVTFROM.spad" 995513 995523 995768 995773) (-629 "KTVLOGIC.spad" 995025 995033 995503 995508) (-628 "KRCFROM.spad" 994763 994773 995015 995020) (-627 "KOVACIC.spad" 993486 993503 994753 994758) (-626 "KONVERT.spad" 993208 993218 993476 993481) (-625 "KOERCE.spad" 992945 992955 993198 993203) (-624 "KERNEL.spad" 991600 991610 992729 992734) (-623 "KERNEL2.spad" 991303 991315 991590 991595) (-622 "KDAGG.spad" 990412 990434 991283 991298) (-621 "KDAGG.spad" 989529 989553 990402 990407) (-620 "KAFILE.spad" 988383 988399 988618 988645) (-619 "JORDAN.spad" 986212 986224 987673 987818) (-618 "JOINAST.spad" 985906 985914 986202 986207) (-617 "JAVACODE.spad" 985772 985780 985896 985901) (-616 "IXAGG.spad" 983905 983929 985762 985767) (-615 "IXAGG.spad" 981893 981919 983752 983757) (-614 "IVECTOR.spad" 980510 980525 980665 980692) (-613 "ITUPLE.spad" 979671 979681 980500 980505) (-612 "ITRIGMNP.spad" 978510 978529 979661 979666) (-611 "ITFUN3.spad" 978016 978030 978500 978505) (-610 "ITFUN2.spad" 977760 977772 978006 978011) (-609 "ITFORM.spad" 977115 977123 977750 977755) (-608 "ITAYLOR.spad" 975109 975124 976979 977076) (-607 "ISUPS.spad" 967546 967561 974083 974180) (-606 "ISUMP.spad" 967047 967063 967536 967541) (-605 "ISTRING.spad" 965974 965987 966055 966082) (-604 "ISAST.spad" 965693 965701 965964 965969) (-603 "IRURPK.spad" 964410 964429 965683 965688) (-602 "IRSN.spad" 962382 962390 964400 964405) (-601 "IRRF2F.spad" 960867 960877 962338 962343) (-600 "IRREDFFX.spad" 960468 960479 960857 960862) (-599 "IROOT.spad" 958807 958817 960458 960463) (-598 "IR.spad" 956608 956622 958662 958689) (-597 "IRFORM.spad" 955932 955940 956598 956603) (-596 "IR2.spad" 954960 954976 955922 955927) (-595 "IR2F.spad" 954166 954182 954950 954955) (-594 "IPRNTPK.spad" 953926 953934 954156 954161) (-593 "IPF.spad" 953491 953503 953731 953824) (-592 "IPADIC.spad" 953252 953278 953417 953486) (-591 "IP4ADDR.spad" 952809 952817 953242 953247) (-590 "IOMODE.spad" 952331 952339 952799 952804) (-589 "IOBFILE.spad" 951692 951700 952321 952326) (-588 "IOBCON.spad" 951557 951565 951682 951687) (-587 "INVLAPLA.spad" 951206 951222 951547 951552) (-586 "INTTR.spad" 944588 944605 951196 951201) (-585 "INTTOOLS.spad" 942343 942359 944162 944167) (-584 "INTSLPE.spad" 941663 941671 942333 942338) (-583 "INTRVL.spad" 941229 941239 941577 941658) (-582 "INTRF.spad" 939653 939667 941219 941224) (-581 "INTRET.spad" 939085 939095 939643 939648) (-580 "INTRAT.spad" 937812 937829 939075 939080) (-579 "INTPM.spad" 936197 936213 937455 937460) (-578 "INTPAF.spad" 934061 934079 936129 936134) (-577 "INTPACK.spad" 924435 924443 934051 934056) (-576 "INT.spad" 923883 923891 924289 924430) (-575 "INTHERTR.spad" 923157 923174 923873 923878) (-574 "INTHERAL.spad" 922827 922851 923147 923152) (-573 "INTHEORY.spad" 919266 919274 922817 922822) (-572 "INTG0.spad" 912999 913017 919198 919203) (-571 "INTFTBL.spad" 907028 907036 912989 912994) (-570 "INTFACT.spad" 906087 906097 907018 907023) (-569 "INTEF.spad" 904472 904488 906077 906082) (-568 "INTDOM.spad" 903095 903103 904398 904467) (-567 "INTDOM.spad" 901780 901790 903085 903090) (-566 "INTCAT.spad" 900039 900049 901694 901775) (-565 "INTBIT.spad" 899546 899554 900029 900034) (-564 "INTALG.spad" 898734 898761 899536 899541) (-563 "INTAF.spad" 898234 898250 898724 898729) (-562 "INTABL.spad" 896310 896341 896473 896500) (-561 "INT8.spad" 896190 896198 896300 896305) (-560 "INT64.spad" 896069 896077 896180 896185) (-559 "INT32.spad" 895948 895956 896059 896064) (-558 "INT16.spad" 895827 895835 895938 895943) (-557 "INS.spad" 893330 893338 895729 895822) (-556 "INS.spad" 890919 890929 893320 893325) (-555 "INPSIGN.spad" 890367 890380 890909 890914) (-554 "INPRODPF.spad" 889463 889482 890357 890362) (-553 "INPRODFF.spad" 888551 888575 889453 889458) (-552 "INNMFACT.spad" 887526 887543 888541 888546) (-551 "INMODGCD.spad" 887014 887044 887516 887521) (-550 "INFSP.spad" 885311 885333 887004 887009) (-549 "INFPROD0.spad" 884391 884410 885301 885306) (-548 "INFORM.spad" 881590 881598 884381 884386) (-547 "INFORM1.spad" 881215 881225 881580 881585) (-546 "INFINITY.spad" 880767 880775 881205 881210) (-545 "INETCLTS.spad" 880744 880752 880757 880762) (-544 "INEP.spad" 879282 879304 880734 880739) (-543 "INDE.spad" 879011 879028 879272 879277) (-542 "INCRMAPS.spad" 878432 878442 879001 879006) (-541 "INBFILE.spad" 877504 877512 878422 878427) (-540 "INBFF.spad" 873298 873309 877494 877499) (-539 "INBCON.spad" 871588 871596 873288 873293) (-538 "INBCON.spad" 869876 869886 871578 871583) (-537 "INAST.spad" 869537 869545 869866 869871) (-536 "IMPTAST.spad" 869245 869253 869527 869532) (-535 "IMATRIX.spad" 868073 868099 868585 868612) (-534 "IMATQF.spad" 867167 867211 868029 868034) (-533 "IMATLIN.spad" 865772 865796 867123 867128) (-532 "ILIST.spad" 864277 864292 864802 864829) (-531 "IIARRAY2.spad" 863548 863586 863767 863794) (-530 "IFF.spad" 862958 862974 863229 863322) (-529 "IFAST.spad" 862572 862580 862948 862953) (-528 "IFARRAY.spad" 859912 859927 861602 861629) (-527 "IFAMON.spad" 859774 859791 859868 859873) (-526 "IEVALAB.spad" 859179 859191 859764 859769) (-525 "IEVALAB.spad" 858582 858596 859169 859174) (-524 "IDPO.spad" 858317 858329 858494 858499) (-523 "IDPOAMS.spad" 857995 858007 858229 858234) (-522 "IDPOAM.spad" 857637 857649 857907 857912) (-521 "IDPC.spad" 856366 856378 857627 857632) (-520 "IDPAM.spad" 856033 856045 856278 856283) (-519 "IDPAG.spad" 855702 855714 855945 855950) (-518 "IDENT.spad" 855352 855360 855692 855697) (-517 "IDECOMP.spad" 852591 852609 855342 855347) (-516 "IDEAL.spad" 847540 847579 852526 852531) (-515 "ICDEN.spad" 846729 846745 847530 847535) (-514 "ICARD.spad" 845920 845928 846719 846724) (-513 "IBPTOOLS.spad" 844527 844544 845910 845915) (-512 "IBITS.spad" 843692 843705 844125 844152) (-511 "IBATOOL.spad" 840669 840688 843682 843687) (-510 "IBACHIN.spad" 839176 839191 840659 840664) (-509 "IARRAY2.spad" 838047 838073 838666 838693) (-508 "IARRAY1.spad" 836939 836954 837077 837104) (-507 "IAN.spad" 835162 835170 836755 836848) (-506 "IALGFACT.spad" 834765 834798 835152 835157) (-505 "HYPCAT.spad" 834189 834197 834755 834760) (-504 "HYPCAT.spad" 833611 833621 834179 834184) (-503 "HOSTNAME.spad" 833419 833427 833601 833606) (-502 "HOMOTOP.spad" 833162 833172 833409 833414) (-501 "HOAGG.spad" 830444 830454 833152 833157) (-500 "HOAGG.spad" 827465 827477 830175 830180) (-499 "HEXADEC.spad" 825470 825478 825835 825928) (-498 "HEUGCD.spad" 824505 824516 825460 825465) (-497 "HELLFDIV.spad" 824095 824119 824495 824500) (-496 "HEAP.spad" 823370 823380 823585 823612) (-495 "HEADAST.spad" 822903 822911 823360 823365) (-494 "HDP.spad" 810713 810729 811090 811189) (-493 "HDMP.spad" 807927 807942 808543 808670) (-492 "HB.spad" 806178 806186 807917 807922) (-491 "HASHTBL.spad" 804206 804237 804417 804444) (-490 "HASAST.spad" 803922 803930 804196 804201) (-489 "HACKPI.spad" 803413 803421 803824 803917) (-488 "GTSET.spad" 802316 802332 803023 803050) (-487 "GSTBL.spad" 800393 800428 800567 800582) (-486 "GSERIES.spad" 797706 797733 798525 798674) (-485 "GROUP.spad" 796979 796987 797686 797701) (-484 "GROUP.spad" 796260 796270 796969 796974) (-483 "GROEBSOL.spad" 794754 794775 796250 796255) (-482 "GRMOD.spad" 793325 793337 794744 794749) (-481 "GRMOD.spad" 791894 791908 793315 793320) (-480 "GRIMAGE.spad" 784783 784791 791884 791889) (-479 "GRDEF.spad" 783162 783170 784773 784778) (-478 "GRAY.spad" 781625 781633 783152 783157) (-477 "GRALG.spad" 780702 780714 781615 781620) (-476 "GRALG.spad" 779777 779791 780692 780697) (-475 "GPOLSET.spad" 779195 779218 779423 779450) (-474 "GOSPER.spad" 778464 778482 779185 779190) (-473 "GMODPOL.spad" 777612 777639 778432 778459) (-472 "GHENSEL.spad" 776695 776709 777602 777607) (-471 "GENUPS.spad" 772988 773001 776685 776690) (-470 "GENUFACT.spad" 772565 772575 772978 772983) (-469 "GENPGCD.spad" 772151 772168 772555 772560) (-468 "GENMFACT.spad" 771603 771622 772141 772146) (-467 "GENEEZ.spad" 769554 769567 771593 771598) (-466 "GDMP.spad" 766610 766627 767384 767511) (-465 "GCNAALG.spad" 760533 760560 766404 766471) (-464 "GCDDOM.spad" 759709 759717 760459 760528) (-463 "GCDDOM.spad" 758947 758957 759699 759704) (-462 "GB.spad" 756473 756511 758903 758908) (-461 "GBINTERN.spad" 752493 752531 756463 756468) (-460 "GBF.spad" 748260 748298 752483 752488) (-459 "GBEUCLID.spad" 746142 746180 748250 748255) (-458 "GAUSSFAC.spad" 745455 745463 746132 746137) (-457 "GALUTIL.spad" 743781 743791 745411 745416) (-456 "GALPOLYU.spad" 742235 742248 743771 743776) (-455 "GALFACTU.spad" 740408 740427 742225 742230) (-454 "GALFACT.spad" 730597 730608 740398 740403) (-453 "FVFUN.spad" 727620 727628 730587 730592) (-452 "FVC.spad" 726672 726680 727610 727615) (-451 "FUNDESC.spad" 726350 726358 726662 726667) (-450 "FUNCTION.spad" 726199 726211 726340 726345) (-449 "FT.spad" 724496 724504 726189 726194) (-448 "FTEM.spad" 723661 723669 724486 724491) (-447 "FSUPFACT.spad" 722561 722580 723597 723602) (-446 "FST.spad" 720647 720655 722551 722556) (-445 "FSRED.spad" 720127 720143 720637 720642) (-444 "FSPRMELT.spad" 719009 719025 720084 720089) (-443 "FSPECF.spad" 717100 717116 718999 719004) (-442 "FS.spad" 711368 711378 716875 717095) (-441 "FS.spad" 705414 705426 710923 710928) (-440 "FSINT.spad" 705074 705090 705404 705409) (-439 "FSERIES.spad" 704265 704277 704894 704993) (-438 "FSCINT.spad" 703582 703598 704255 704260) (-437 "FSAGG.spad" 702699 702709 703538 703577) (-436 "FSAGG.spad" 701778 701790 702619 702624) (-435 "FSAGG2.spad" 700521 700537 701768 701773) (-434 "FS2UPS.spad" 695012 695046 700511 700516) (-433 "FS2.spad" 694659 694675 695002 695007) (-432 "FS2EXPXP.spad" 693784 693807 694649 694654) (-431 "FRUTIL.spad" 692738 692748 693774 693779) (-430 "FR.spad" 686361 686371 691669 691738) (-429 "FRNAALG.spad" 681630 681640 686303 686356) (-428 "FRNAALG.spad" 676911 676923 681586 681591) (-427 "FRNAAF2.spad" 676367 676385 676901 676906) (-426 "FRMOD.spad" 675777 675807 676298 676303) (-425 "FRIDEAL.spad" 675002 675023 675757 675772) (-424 "FRIDEAL2.spad" 674606 674638 674992 674997) (-423 "FRETRCT.spad" 674117 674127 674596 674601) (-422 "FRETRCT.spad" 673494 673506 673975 673980) (-421 "FRAMALG.spad" 671842 671855 673450 673489) (-420 "FRAMALG.spad" 670222 670237 671832 671837) (-419 "FRAC.spad" 667228 667238 667631 667804) (-418 "FRAC2.spad" 666833 666845 667218 667223) (-417 "FR2.spad" 666169 666181 666823 666828) (-416 "FPS.spad" 662984 662992 666059 666164) (-415 "FPS.spad" 659827 659837 662904 662909) (-414 "FPC.spad" 658873 658881 659729 659822) (-413 "FPC.spad" 658005 658015 658863 658868) (-412 "FPATMAB.spad" 657767 657777 657995 658000) (-411 "FPARFRAC.spad" 656617 656634 657757 657762) (-410 "FORTRAN.spad" 655123 655166 656607 656612) (-409 "FORT.spad" 654072 654080 655113 655118) (-408 "FORTFN.spad" 651242 651250 654062 654067) (-407 "FORTCAT.spad" 650926 650934 651232 651237) (-406 "FORMULA.spad" 648400 648408 650916 650921) (-405 "FORMULA1.spad" 647879 647889 648390 648395) (-404 "FORDER.spad" 647570 647594 647869 647874) (-403 "FOP.spad" 646771 646779 647560 647565) (-402 "FNLA.spad" 646195 646217 646739 646766) (-401 "FNCAT.spad" 644790 644798 646185 646190) (-400 "FNAME.spad" 644682 644690 644780 644785) (-399 "FMTC.spad" 644480 644488 644608 644677) (-398 "FMONOID.spad" 644145 644155 644436 644441) (-397 "FMONCAT.spad" 641298 641308 644135 644140) (-396 "FM.spad" 640993 641005 641232 641259) (-395 "FMFUN.spad" 638023 638031 640983 640988) (-394 "FMC.spad" 637075 637083 638013 638018) (-393 "FMCAT.spad" 634743 634761 637043 637070) (-392 "FM1.spad" 634100 634112 634677 634704) (-391 "FLOATRP.spad" 631835 631849 634090 634095) (-390 "FLOAT.spad" 625149 625157 631701 631830) (-389 "FLOATCP.spad" 622580 622594 625139 625144) (-388 "FLINEXP.spad" 622302 622312 622570 622575) (-387 "FLINEXP.spad" 621968 621980 622238 622243) (-386 "FLASORT.spad" 621294 621306 621958 621963) (-385 "FLALG.spad" 618940 618959 621220 621289) (-384 "FLAGG.spad" 615982 615992 618920 618935) (-383 "FLAGG.spad" 612925 612937 615865 615870) (-382 "FLAGG2.spad" 611650 611666 612915 612920) (-381 "FINRALG.spad" 609711 609724 611606 611645) (-380 "FINRALG.spad" 607698 607713 609595 609600) (-379 "FINITE.spad" 606850 606858 607688 607693) (-378 "FINAALG.spad" 595971 595981 606792 606845) (-377 "FINAALG.spad" 585104 585116 595927 595932) (-376 "FILE.spad" 584687 584697 585094 585099) (-375 "FILECAT.spad" 583213 583230 584677 584682) (-374 "FIELD.spad" 582619 582627 583115 583208) (-373 "FIELD.spad" 582111 582121 582609 582614) (-372 "FGROUP.spad" 580758 580768 582091 582106) (-371 "FGLMICPK.spad" 579545 579560 580748 580753) (-370 "FFX.spad" 578920 578935 579261 579354) (-369 "FFSLPE.spad" 578423 578444 578910 578915) (-368 "FFPOLY.spad" 569685 569696 578413 578418) (-367 "FFPOLY2.spad" 568745 568762 569675 569680) (-366 "FFP.spad" 568142 568162 568461 568554) (-365 "FF.spad" 567590 567606 567823 567916) (-364 "FFNBX.spad" 566102 566122 567306 567399) (-363 "FFNBP.spad" 564615 564632 565818 565911) (-362 "FFNB.spad" 563080 563101 564296 564389) (-361 "FFINTBAS.spad" 560594 560613 563070 563075) (-360 "FFIELDC.spad" 558171 558179 560496 560589) (-359 "FFIELDC.spad" 555834 555844 558161 558166) (-358 "FFHOM.spad" 554582 554599 555824 555829) (-357 "FFF.spad" 552017 552028 554572 554577) (-356 "FFCGX.spad" 550864 550884 551733 551826) (-355 "FFCGP.spad" 549753 549773 550580 550673) (-354 "FFCG.spad" 548545 548566 549434 549527) (-353 "FFCAT.spad" 541718 541740 548384 548540) (-352 "FFCAT.spad" 534970 534994 541638 541643) (-351 "FFCAT2.spad" 534717 534757 534960 534965) (-350 "FEXPR.spad" 526434 526480 534473 534512) (-349 "FEVALAB.spad" 526142 526152 526424 526429) (-348 "FEVALAB.spad" 525635 525647 525919 525924) (-347 "FDIV.spad" 525077 525101 525625 525630) (-346 "FDIVCAT.spad" 523141 523165 525067 525072) (-345 "FDIVCAT.spad" 521203 521229 523131 523136) (-344 "FDIV2.spad" 520859 520899 521193 521198) (-343 "FCTRDATA.spad" 519867 519875 520849 520854) (-342 "FCPAK1.spad" 518434 518442 519857 519862) (-341 "FCOMP.spad" 517813 517823 518424 518429) (-340 "FC.spad" 507820 507828 517803 517808) (-339 "FAXF.spad" 500791 500805 507722 507815) (-338 "FAXF.spad" 493814 493830 500747 500752) (-337 "FARRAY.spad" 491811 491821 492844 492871) (-336 "FAMR.spad" 489947 489959 491709 491806) (-335 "FAMR.spad" 488067 488081 489831 489836) (-334 "FAMONOID.spad" 487735 487745 488021 488026) (-333 "FAMONC.spad" 486031 486043 487725 487730) (-332 "FAGROUP.spad" 485655 485665 485927 485954) (-331 "FACUTIL.spad" 483859 483876 485645 485650) (-330 "FACTFUNC.spad" 483053 483063 483849 483854) (-329 "EXPUPXS.spad" 479886 479909 481185 481334) (-328 "EXPRTUBE.spad" 477174 477182 479876 479881) (-327 "EXPRODE.spad" 474334 474350 477164 477169) (-326 "EXPR.spad" 469509 469519 470223 470518) (-325 "EXPR2UPS.spad" 465631 465644 469499 469504) (-324 "EXPR2.spad" 465336 465348 465621 465626) (-323 "EXPEXPAN.spad" 462137 462162 462769 462862) (-322 "EXIT.spad" 461808 461816 462127 462132) (-321 "EXITAST.spad" 461544 461552 461798 461803) (-320 "EVALCYC.spad" 461004 461018 461534 461539) (-319 "EVALAB.spad" 460576 460586 460994 460999) (-318 "EVALAB.spad" 460146 460158 460566 460571) (-317 "EUCDOM.spad" 457720 457728 460072 460141) (-316 "EUCDOM.spad" 455356 455366 457710 457715) (-315 "ESTOOLS.spad" 447202 447210 455346 455351) (-314 "ESTOOLS2.spad" 446805 446819 447192 447197) (-313 "ESTOOLS1.spad" 446490 446501 446795 446800) (-312 "ES.spad" 439305 439313 446480 446485) (-311 "ES.spad" 432026 432036 439203 439208) (-310 "ESCONT.spad" 428819 428827 432016 432021) (-309 "ESCONT1.spad" 428568 428580 428809 428814) (-308 "ES2.spad" 428073 428089 428558 428563) (-307 "ES1.spad" 427643 427659 428063 428068) (-306 "ERROR.spad" 424970 424978 427633 427638) (-305 "EQTBL.spad" 423000 423022 423209 423236) (-304 "EQ.spad" 417805 417815 420592 420704) (-303 "EQ2.spad" 417523 417535 417795 417800) (-302 "EP.spad" 413849 413859 417513 417518) (-301 "ENV.spad" 412527 412535 413839 413844) (-300 "ENTIRER.spad" 412195 412203 412471 412522) (-299 "EMR.spad" 411483 411524 412121 412190) (-298 "ELTAGG.spad" 409737 409756 411473 411478) (-297 "ELTAGG.spad" 407955 407976 409693 409698) (-296 "ELTAB.spad" 407430 407443 407945 407950) (-295 "ELFUTS.spad" 406817 406836 407420 407425) (-294 "ELEMFUN.spad" 406506 406514 406807 406812) (-293 "ELEMFUN.spad" 406193 406203 406496 406501) (-292 "ELAGG.spad" 404164 404174 406173 406188) (-291 "ELAGG.spad" 402072 402084 404083 404088) (-290 "ELABOR.spad" 401418 401426 402062 402067) (-289 "ELABEXPR.spad" 400350 400358 401408 401413) (-288 "EFUPXS.spad" 397126 397156 400306 400311) (-287 "EFULS.spad" 393962 393985 397082 397087) (-286 "EFSTRUC.spad" 391977 391993 393952 393957) (-285 "EF.spad" 386753 386769 391967 391972) (-284 "EAB.spad" 385029 385037 386743 386748) (-283 "E04UCFA.spad" 384565 384573 385019 385024) (-282 "E04NAFA.spad" 384142 384150 384555 384560) (-281 "E04MBFA.spad" 383722 383730 384132 384137) (-280 "E04JAFA.spad" 383258 383266 383712 383717) (-279 "E04GCFA.spad" 382794 382802 383248 383253) (-278 "E04FDFA.spad" 382330 382338 382784 382789) (-277 "E04DGFA.spad" 381866 381874 382320 382325) (-276 "E04AGNT.spad" 377716 377724 381856 381861) (-275 "DVARCAT.spad" 374606 374616 377706 377711) (-274 "DVARCAT.spad" 371494 371506 374596 374601) (-273 "DSMP.spad" 368868 368882 369173 369300) (-272 "DSEXT.spad" 368170 368180 368858 368863) (-271 "DSEXT.spad" 367379 367391 368069 368074) (-270 "DROPT.spad" 361338 361346 367369 367374) (-269 "DROPT1.spad" 361003 361013 361328 361333) (-268 "DROPT0.spad" 355860 355868 360993 360998) (-267 "DRAWPT.spad" 354033 354041 355850 355855) (-266 "DRAW.spad" 346909 346922 354023 354028) (-265 "DRAWHACK.spad" 346217 346227 346899 346904) (-264 "DRAWCX.spad" 343687 343695 346207 346212) (-263 "DRAWCURV.spad" 343234 343249 343677 343682) (-262 "DRAWCFUN.spad" 332766 332774 343224 343229) (-261 "DQAGG.spad" 330944 330954 332734 332761) (-260 "DPOLCAT.spad" 326293 326309 330812 330939) (-259 "DPOLCAT.spad" 321728 321746 326249 326254) (-258 "DPMO.spad" 313488 313504 313626 313839) (-257 "DPMM.spad" 305261 305279 305386 305599) (-256 "DOMTMPLT.spad" 305032 305040 305251 305256) (-255 "DOMCTOR.spad" 304787 304795 305022 305027) (-254 "DOMAIN.spad" 303874 303882 304777 304782) (-253 "DMP.spad" 301134 301149 301704 301831) (-252 "DMEXT.spad" 301001 301011 301102 301129) (-251 "DLP.spad" 300353 300363 300991 300996) (-250 "DLIST.spad" 298779 298789 299383 299410) (-249 "DLAGG.spad" 297196 297206 298769 298774) (-248 "DIVRING.spad" 296738 296746 297140 297191) (-247 "DIVRING.spad" 296324 296334 296728 296733) (-246 "DISPLAY.spad" 294514 294522 296314 296319) (-245 "DIRPROD.spad" 282061 282077 282701 282800) (-244 "DIRPROD2.spad" 280879 280897 282051 282056) (-243 "DIRPCAT.spad" 280072 280088 280775 280874) (-242 "DIRPCAT.spad" 278892 278910 279597 279602) (-241 "DIOSP.spad" 277717 277725 278882 278887) (-240 "DIOPS.spad" 276713 276723 277697 277712) (-239 "DIOPS.spad" 275683 275695 276669 276674) (-238 "DIFRING.spad" 275521 275529 275663 275678) (-237 "DIFFSPC.spad" 275100 275108 275511 275516) (-236 "DIFFSPC.spad" 274677 274687 275090 275095) (-235 "DIFFMOD.spad" 274166 274176 274645 274672) (-234 "DIFFDOM.spad" 273331 273342 274156 274161) (-233 "DIFFDOM.spad" 272494 272507 273321 273326) (-232 "DIFEXT.spad" 272313 272323 272474 272489) (-231 "DIAGG.spad" 271943 271953 272293 272308) (-230 "DIAGG.spad" 271581 271593 271933 271938) (-229 "DHMATRIX.spad" 269776 269786 270921 270948) (-228 "DFSFUN.spad" 263416 263424 269766 269771) (-227 "DFLOAT.spad" 260147 260155 263306 263411) (-226 "DFINTTLS.spad" 258378 258394 260137 260142) (-225 "DERHAM.spad" 256292 256324 258358 258373) (-224 "DEQUEUE.spad" 255499 255509 255782 255809) (-223 "DEGRED.spad" 255116 255130 255489 255494) (-222 "DEFINTRF.spad" 252653 252663 255106 255111) (-221 "DEFINTEF.spad" 251163 251179 252643 252648) (-220 "DEFAST.spad" 250531 250539 251153 251158) (-219 "DECIMAL.spad" 248540 248548 248901 248994) (-218 "DDFACT.spad" 246353 246370 248530 248535) (-217 "DBLRESP.spad" 245953 245977 246343 246348) (-216 "DBASE.spad" 244617 244627 245943 245948) (-215 "DATAARY.spad" 244079 244092 244607 244612) (-214 "D03FAFA.spad" 243907 243915 244069 244074) (-213 "D03EEFA.spad" 243727 243735 243897 243902) (-212 "D03AGNT.spad" 242813 242821 243717 243722) (-211 "D02EJFA.spad" 242275 242283 242803 242808) (-210 "D02CJFA.spad" 241753 241761 242265 242270) (-209 "D02BHFA.spad" 241243 241251 241743 241748) (-208 "D02BBFA.spad" 240733 240741 241233 241238) (-207 "D02AGNT.spad" 235547 235555 240723 240728) (-206 "D01WGTS.spad" 233866 233874 235537 235542) (-205 "D01TRNS.spad" 233843 233851 233856 233861) (-204 "D01GBFA.spad" 233365 233373 233833 233838) (-203 "D01FCFA.spad" 232887 232895 233355 233360) (-202 "D01ASFA.spad" 232355 232363 232877 232882) (-201 "D01AQFA.spad" 231801 231809 232345 232350) (-200 "D01APFA.spad" 231225 231233 231791 231796) (-199 "D01ANFA.spad" 230719 230727 231215 231220) (-198 "D01AMFA.spad" 230229 230237 230709 230714) (-197 "D01ALFA.spad" 229769 229777 230219 230224) (-196 "D01AKFA.spad" 229295 229303 229759 229764) (-195 "D01AJFA.spad" 228818 228826 229285 229290) (-194 "D01AGNT.spad" 224885 224893 228808 228813) (-193 "CYCLOTOM.spad" 224391 224399 224875 224880) (-192 "CYCLES.spad" 221183 221191 224381 224386) (-191 "CVMP.spad" 220600 220610 221173 221178) (-190 "CTRIGMNP.spad" 219100 219116 220590 220595) (-189 "CTOR.spad" 218791 218799 219090 219095) (-188 "CTORKIND.spad" 218394 218402 218781 218786) (-187 "CTORCAT.spad" 217643 217651 218384 218389) (-186 "CTORCAT.spad" 216890 216900 217633 217638) (-185 "CTORCALL.spad" 216479 216489 216880 216885) (-184 "CSTTOOLS.spad" 215724 215737 216469 216474) (-183 "CRFP.spad" 209448 209461 215714 215719) (-182 "CRCEAST.spad" 209168 209176 209438 209443) (-181 "CRAPACK.spad" 208219 208229 209158 209163) (-180 "CPMATCH.spad" 207723 207738 208144 208149) (-179 "CPIMA.spad" 207428 207447 207713 207718) (-178 "COORDSYS.spad" 202437 202447 207418 207423) (-177 "CONTOUR.spad" 201848 201856 202427 202432) (-176 "CONTFRAC.spad" 197598 197608 201750 201843) (-175 "CONDUIT.spad" 197356 197364 197588 197593) (-174 "COMRING.spad" 197030 197038 197294 197351) (-173 "COMPPROP.spad" 196548 196556 197020 197025) (-172 "COMPLPAT.spad" 196315 196330 196538 196543) (-171 "COMPLEX.spad" 191692 191702 191936 192197) (-170 "COMPLEX2.spad" 191407 191419 191682 191687) (-169 "COMPILER.spad" 190956 190964 191397 191402) (-168 "COMPFACT.spad" 190558 190572 190946 190951) (-167 "COMPCAT.spad" 188630 188640 190292 190553) (-166 "COMPCAT.spad" 186430 186442 188094 188099) (-165 "COMMUPC.spad" 186178 186196 186420 186425) (-164 "COMMONOP.spad" 185711 185719 186168 186173) (-163 "COMM.spad" 185522 185530 185701 185706) (-162 "COMMAAST.spad" 185285 185293 185512 185517) (-161 "COMBOPC.spad" 184200 184208 185275 185280) (-160 "COMBINAT.spad" 182967 182977 184190 184195) (-159 "COMBF.spad" 180349 180365 182957 182962) (-158 "COLOR.spad" 179186 179194 180339 180344) (-157 "COLONAST.spad" 178852 178860 179176 179181) (-156 "CMPLXRT.spad" 178563 178580 178842 178847) (-155 "CLLCTAST.spad" 178225 178233 178553 178558) (-154 "CLIP.spad" 174333 174341 178215 178220) (-153 "CLIF.spad" 172988 173004 174289 174328) (-152 "CLAGG.spad" 169493 169503 172978 172983) (-151 "CLAGG.spad" 165869 165881 169356 169361) (-150 "CINTSLPE.spad" 165200 165213 165859 165864) (-149 "CHVAR.spad" 163338 163360 165190 165195) (-148 "CHARZ.spad" 163253 163261 163318 163333) (-147 "CHARPOL.spad" 162763 162773 163243 163248) (-146 "CHARNZ.spad" 162516 162524 162743 162758) (-145 "CHAR.spad" 160390 160398 162506 162511) (-144 "CFCAT.spad" 159718 159726 160380 160385) (-143 "CDEN.spad" 158914 158928 159708 159713) (-142 "CCLASS.spad" 157025 157033 158287 158326) (-141 "CATEGORY.spad" 156067 156075 157015 157020) (-140 "CATCTOR.spad" 155958 155966 156057 156062) (-139 "CATAST.spad" 155576 155584 155948 155953) (-138 "CASEAST.spad" 155290 155298 155566 155571) (-137 "CARTEN.spad" 150657 150681 155280 155285) (-136 "CARTEN2.spad" 150047 150074 150647 150652) (-135 "CARD.spad" 147342 147350 150021 150042) (-134 "CAPSLAST.spad" 147116 147124 147332 147337) (-133 "CACHSET.spad" 146740 146748 147106 147111) (-132 "CABMON.spad" 146295 146303 146730 146735) (-131 "BYTEORD.spad" 145970 145978 146285 146290) (-130 "BYTE.spad" 145397 145405 145960 145965) (-129 "BYTEBUF.spad" 143095 143103 144405 144432) (-128 "BTREE.spad" 142051 142061 142585 142612) (-127 "BTOURN.spad" 140939 140949 141541 141568) (-126 "BTCAT.spad" 140331 140341 140907 140934) (-125 "BTCAT.spad" 139743 139755 140321 140326) (-124 "BTAGG.spad" 139209 139217 139711 139738) (-123 "BTAGG.spad" 138695 138705 139199 139204) (-122 "BSTREE.spad" 137319 137329 138185 138212) (-121 "BRILL.spad" 135516 135527 137309 137314) (-120 "BRAGG.spad" 134456 134466 135506 135511) (-119 "BRAGG.spad" 133360 133372 134412 134417) (-118 "BPADICRT.spad" 131234 131246 131489 131582) (-117 "BPADIC.spad" 130898 130910 131160 131229) (-116 "BOUNDZRO.spad" 130554 130571 130888 130893) (-115 "BOP.spad" 125736 125744 130544 130549) (-114 "BOP1.spad" 123202 123212 125726 125731) (-113 "BOOLE.spad" 122852 122860 123192 123197) (-112 "BOOLEAN.spad" 122290 122298 122842 122847) (-111 "BMODULE.spad" 122002 122014 122258 122285) (-110 "BITS.spad" 121385 121393 121600 121627) (-109 "BINDING.spad" 120798 120806 121375 121380) (-108 "BINARY.spad" 118812 118820 119168 119261) (-107 "BGAGG.spad" 118017 118027 118792 118807) (-106 "BGAGG.spad" 117230 117242 118007 118012) (-105 "BFUNCT.spad" 116794 116802 117210 117225) (-104 "BEZOUT.spad" 115934 115961 116744 116749) (-103 "BBTREE.spad" 112662 112672 115424 115451) (-102 "BASTYPE.spad" 112158 112166 112652 112657) (-101 "BASTYPE.spad" 111652 111662 112148 112153) (-100 "BALFACT.spad" 111111 111124 111642 111647) (-99 "AUTOMOR.spad" 110562 110571 111091 111106) (-98 "ATTREG.spad" 107285 107292 110314 110557) (-97 "ATTRBUT.spad" 103308 103315 107265 107280) (-96 "ATTRAST.spad" 103025 103032 103298 103303) (-95 "ATRIG.spad" 102495 102502 103015 103020) (-94 "ATRIG.spad" 101963 101972 102485 102490) (-93 "ASTCAT.spad" 101867 101874 101953 101958) (-92 "ASTCAT.spad" 101769 101778 101857 101862) (-91 "ASTACK.spad" 100991 101000 101259 101286) (-90 "ASSOCEQ.spad" 99817 99828 100947 100952) (-89 "ASP9.spad" 98898 98911 99807 99812) (-88 "ASP8.spad" 97941 97954 98888 98893) (-87 "ASP80.spad" 97263 97276 97931 97936) (-86 "ASP7.spad" 96423 96436 97253 97258) (-85 "ASP78.spad" 95874 95887 96413 96418) (-84 "ASP77.spad" 95243 95256 95864 95869) (-83 "ASP74.spad" 94335 94348 95233 95238) (-82 "ASP73.spad" 93606 93619 94325 94330) (-81 "ASP6.spad" 92473 92486 93596 93601) (-80 "ASP55.spad" 90982 90995 92463 92468) (-79 "ASP50.spad" 88799 88812 90972 90977) (-78 "ASP4.spad" 88094 88107 88789 88794) (-77 "ASP49.spad" 87093 87106 88084 88089) (-76 "ASP42.spad" 85500 85539 87083 87088) (-75 "ASP41.spad" 84079 84118 85490 85495) (-74 "ASP35.spad" 83067 83080 84069 84074) (-73 "ASP34.spad" 82368 82381 83057 83062) (-72 "ASP33.spad" 81928 81941 82358 82363) (-71 "ASP31.spad" 81068 81081 81918 81923) (-70 "ASP30.spad" 79960 79973 81058 81063) (-69 "ASP29.spad" 79426 79439 79950 79955) (-68 "ASP28.spad" 70699 70712 79416 79421) (-67 "ASP27.spad" 69596 69609 70689 70694) (-66 "ASP24.spad" 68683 68696 69586 69591) (-65 "ASP20.spad" 68147 68160 68673 68678) (-64 "ASP1.spad" 67528 67541 68137 68142) (-63 "ASP19.spad" 62214 62227 67518 67523) (-62 "ASP12.spad" 61628 61641 62204 62209) (-61 "ASP10.spad" 60899 60912 61618 61623) (-60 "ARRAY2.spad" 60142 60151 60389 60416) (-59 "ARRAY1.spad" 58826 58835 59172 59199) (-58 "ARRAY12.spad" 57539 57550 58816 58821) (-57 "ARR2CAT.spad" 53313 53334 57507 57534) (-56 "ARR2CAT.spad" 49107 49130 53303 53308) (-55 "ARITY.spad" 48479 48486 49097 49102) (-54 "APPRULE.spad" 47739 47761 48469 48474) (-53 "APPLYORE.spad" 47358 47371 47729 47734) (-52 "ANY.spad" 46217 46224 47348 47353) (-51 "ANY1.spad" 45288 45297 46207 46212) (-50 "ANTISYM.spad" 43733 43749 45268 45283) (-49 "ANON.spad" 43426 43433 43723 43728) (-48 "AN.spad" 41735 41742 43242 43335) (-47 "AMR.spad" 39920 39931 41633 41730) (-46 "AMR.spad" 37942 37955 39657 39662) (-45 "ALIST.spad" 34842 34863 35192 35219) (-44 "ALGSC.spad" 33977 34003 34714 34767) (-43 "ALGPKG.spad" 29760 29771 33933 33938) (-42 "ALGMFACT.spad" 28953 28967 29750 29755) (-41 "ALGMANIP.spad" 26427 26442 28786 28791) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file |