aboutsummaryrefslogtreecommitdiff
path: root/src/share/algebra/browse.daase
diff options
context:
space:
mode:
Diffstat (limited to 'src/share/algebra/browse.daase')
-rw-r--r--src/share/algebra/browse.daase52
1 files changed, 26 insertions, 26 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index 73d7d45c..a51de56f 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,5 +1,5 @@
-(2264462 . 3462551506)
+(2264288 . 3462558060)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
@@ -88,7 +88,7 @@ NIL
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-40 -1975 UP UPUP -2317)
+(-40 -1975 UP UPUP -2689)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
((-4408 |has| (-409 |#2|) (-365)) (-4413 |has| (-409 |#2|) (-365)) (-4407 |has| (-409 |#2|) (-365)) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
((|HasCategory| (-409 |#2|) (QUOTE (-145))) (|HasCategory| (-409 |#2|) (QUOTE (-147))) (|HasCategory| (-409 |#2|) (QUOTE (-351))) (-2676 (|HasCategory| (-409 |#2|) (QUOTE (-365))) (|HasCategory| (-409 |#2|) (QUOTE (-351)))) (|HasCategory| (-409 |#2|) (QUOTE (-365))) (|HasCategory| (-409 |#2|) (QUOTE (-370))) (-2676 (-12 (|HasCategory| (-409 |#2|) (QUOTE (-233))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (|HasCategory| (-409 |#2|) (QUOTE (-351)))) (-2676 (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-351))))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -639) (QUOTE (-566)))) (-2676 (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-409 |#2|) (QUOTE (-233))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))))
@@ -594,7 +594,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-909))) (|HasCategory| |#2| (QUOTE (-547))) (|HasCategory| |#2| (QUOTE (-1002))) (|HasCategory| |#2| (QUOTE (-1200))) (|HasCategory| |#2| (QUOTE (-1059))) (|HasCategory| |#2| (QUOTE (-1022))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4411)) (|HasAttribute| |#2| (QUOTE -4414)) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-558))))
(-166 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4408 -2676 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))) (-4413 |has| |#1| (-365)) (-4407 |has| |#1| (-365)) (-4411 |has| |#1| (-6 -4411)) (-4414 |has| |#1| (-6 -4414)) (-1560 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4408 -2676 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))) (-4413 |has| |#1| (-365)) (-4407 |has| |#1| (-365)) (-4411 |has| |#1| (-6 -4411)) (-4414 |has| |#1| (-6 -4414)) (-1561 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
NIL
(-167 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -606,7 +606,7 @@ NIL
NIL
(-169 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4408 -2676 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))) (-4413 |has| |#1| (-365)) (-4407 |has| |#1| (-365)) (-4411 |has| |#1| (-6 -4411)) (-4414 |has| |#1| (-6 -4414)) (-1560 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4408 -2676 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))) (-4413 |has| |#1| (-365)) (-4407 |has| |#1| (-365)) (-4411 |has| |#1| (-6 -4411)) (-4414 |has| |#1| (-6 -4414)) (-1561 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-828)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-1022)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-1200)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (-2676 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-909))))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-909))))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-1002))) (|HasCategory| |#1| (QUOTE (-1200)))) (|HasCategory| |#1| (QUOTE (-1200))) (|HasCategory| |#1| (QUOTE (-1022))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2676 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-558)))) (-2676 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-1059))) (-12 (|HasCategory| |#1| (QUOTE (-1059))) (|HasCategory| |#1| (QUOTE (-1200)))) (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365)))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasAttribute| |#1| (QUOTE -4411)) (|HasAttribute| |#1| (QUOTE -4414)) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175))))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-351)))))
(-170 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
@@ -1088,7 +1088,7 @@ NIL
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-290 S R |Mod| -3007 -4374 |exactQuo|)
+(-290 S R |Mod| -4270 -3848 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
((-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
NIL
@@ -1211,7 +1211,7 @@ NIL
(-320 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4413 |has| |#1| (-365)) (-4407 |has| |#1| (-365)) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -2725) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1200))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -4235) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -2725) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1200))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1879) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))))
(-321 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1528,7 +1528,7 @@ NIL
((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}")))
NIL
NIL
-(-400 -3534 |returnType| -3099 |symbols|)
+(-400 -3534 |returnType| -3098 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
@@ -1835,7 +1835,7 @@ NIL
(-476 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4413 |has| |#1| (-365)) (-4407 |has| |#1| (-365)) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -2725) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1200))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -4235) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -2725) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1200))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1879) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))))
(-477 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
((-4416 . T))
@@ -2113,11 +2113,11 @@ NIL
NIL
NIL
(-546 S)
-((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
+((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
NIL
NIL
(-547)
-((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
+((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
((-4413 . T) (-4414 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
NIL
(-548)
@@ -2193,7 +2193,7 @@ NIL
NIL
NIL
(-566)
-((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")))
+((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
((-4397 . T) (-4403 . T) (-4407 . T) (-4402 . T) (-4413 . T) (-4414 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
NIL
(-567)
@@ -2560,7 +2560,7 @@ NIL
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-658 A -3209)
+(-658 A -2431)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
((-4409 . T) (-4410 . T) (-4412 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-365))))
@@ -2706,7 +2706,7 @@ NIL
NIL
(-694)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4408 . T) (-4413 |has| (-699) (-365)) (-4407 |has| (-699) (-365)) (-1560 . T) (-4414 |has| (-699) (-6 -4414)) (-4411 |has| (-699) (-6 -4411)) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4408 . T) (-4413 |has| (-699) (-365)) (-4407 |has| (-699) (-365)) (-1561 . T) (-4414 |has| (-699) (-6 -4414)) (-4411 |has| (-699) (-6 -4411)) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
((|HasCategory| (-699) (QUOTE (-147))) (|HasCategory| (-699) (QUOTE (-145))) (|HasCategory| (-699) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-699) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| (-699) (QUOTE (-370))) (|HasCategory| (-699) (QUOTE (-365))) (-2676 (|HasCategory| (-699) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-699) (QUOTE (-365)))) (|HasCategory| (-699) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-699) (QUOTE (-233))) (-2676 (|HasCategory| (-699) (QUOTE (-365))) (|HasCategory| (-699) (QUOTE (-351)))) (|HasCategory| (-699) (QUOTE (-351))) (|HasCategory| (-699) (LIST (QUOTE -287) (QUOTE (-699)) (QUOTE (-699)))) (|HasCategory| (-699) (LIST (QUOTE -310) (QUOTE (-699)))) (|HasCategory| (-699) (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE (-699)))) (|HasCategory| (-699) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-699) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-699) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-699) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (-2676 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-365))) (|HasCategory| (-699) (QUOTE (-351)))) (|HasCategory| (-699) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-699) (QUOTE (-1022))) (|HasCategory| (-699) (QUOTE (-1200))) (-12 (|HasCategory| (-699) (QUOTE (-1002))) (|HasCategory| (-699) (QUOTE (-1200)))) (-2676 (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-365))) (-12 (|HasCategory| (-699) (QUOTE (-351))) (|HasCategory| (-699) (QUOTE (-909))))) (-2676 (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (-12 (|HasCategory| (-699) (QUOTE (-365))) (|HasCategory| (-699) (QUOTE (-909)))) (-12 (|HasCategory| (-699) (QUOTE (-351))) (|HasCategory| (-699) (QUOTE (-909))))) (|HasCategory| (-699) (QUOTE (-547))) (-12 (|HasCategory| (-699) (QUOTE (-1059))) (|HasCategory| (-699) (QUOTE (-1200)))) (|HasCategory| (-699) (QUOTE (-1059))) (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909))) (-2676 (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-365)))) (-2676 (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-558)))) (-12 (|HasCategory| (-699) (QUOTE (-233))) (|HasCategory| (-699) (QUOTE (-365)))) (-12 (|HasCategory| (-699) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-699) (QUOTE (-365)))) (|HasCategory| (-699) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-699) (QUOTE (-558))) (|HasAttribute| (-699) (QUOTE -4414)) (|HasAttribute| (-699) (QUOTE -4411)) (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-145)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-351)))))
(-695 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
@@ -2772,7 +2772,7 @@ NIL
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-711 R |Mod| -3007 -4374 |exactQuo|)
+(-711 R |Mod| -4270 -3848 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
NIL
@@ -2788,7 +2788,7 @@ NIL
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
((-4410 |has| |#1| (-172)) (-4409 |has| |#1| (-172)) (-4412 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))))
-(-715 R |Mod| -3007 -4374 |exactQuo|)
+(-715 R |Mod| -4270 -3848 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
((-4412 . T))
NIL
@@ -3013,7 +3013,7 @@ NIL
NIL
NIL
(-771)
-((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
+((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
(((-4417 "*") . T))
NIL
(-772 R -1975)
@@ -4595,7 +4595,7 @@ NIL
(-1166 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
(((-4417 "*") -2676 (-3144 (|has| |#1| (-365)) (|has| (-1173 |#1| |#2| |#3|) (-820))) (|has| |#1| (-172)) (-3144 (|has| |#1| (-365)) (|has| (-1173 |#1| |#2| |#3|) (-909)))) (-4408 -2676 (-3144 (|has| |#1| (-365)) (|has| (-1173 |#1| |#2| |#3|) (-820))) (|has| |#1| (-558)) (-3144 (|has| |#1| (-365)) (|has| (-1173 |#1| |#2| |#3|) (-909)))) (-4413 |has| |#1| (-365)) (-4407 |has| |#1| (-365)) (-4409 . T) (-4410 . T) (-4412 . T))
-((-2676 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-2676 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2676 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2676 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|)))))) (-2676 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasCategory| (-566) (QUOTE (-1111))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-2676 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365))))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2725) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1200))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -4235) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2676 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-558)))) (-2676 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2676 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))))
+((-2676 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-2676 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2676 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2676 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|)))))) (-2676 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasCategory| (-566) (QUOTE (-1111))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-2676 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365))))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2725) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1200))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1879) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2676 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-558)))) (-2676 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2676 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-1167 R -1975)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
@@ -4619,11 +4619,11 @@ NIL
(-1172 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4413 |has| |#1| (-365)) (-4407 |has| |#1| (-365)) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -2725) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1200))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -4235) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -2725) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1200))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1879) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))))
(-1173 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|)))) (|HasCategory| (-771) (QUOTE (-1111))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasSignature| |#1| (LIST (QUOTE -2725) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasCategory| |#1| (QUOTE (-365))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1200))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -4235) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|)))) (|HasCategory| (-771) (QUOTE (-1111))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasSignature| |#1| (LIST (QUOTE -2725) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasCategory| |#1| (QUOTE (-365))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1200))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1879) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))))
(-1174)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
@@ -4843,11 +4843,11 @@ NIL
(-1228 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4413 |has| |#1| (-365)) (-4407 |has| |#1| (-365)) (-4409 . T) (-4410 . T) (-4412 . T))
-((-2676 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1022)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-2676 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145))))) (-2676 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-147))))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasCategory| (-566) (QUOTE (-1111))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1022)))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850))))) (-2676 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1022)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2725) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1200))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -4235) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-909))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-547)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145))))))
+((-2676 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1022)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-2676 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145))))) (-2676 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-147))))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasCategory| (-566) (QUOTE (-1111))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1022)))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850))))) (-2676 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1022)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2725) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1200))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1879) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-909))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-547)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145))))))
(-1229 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
(((-4417 "*") -2676 (-3144 (|has| |#1| (-365)) (|has| (-1257 |#1| |#2| |#3|) (-820))) (|has| |#1| (-172)) (-3144 (|has| |#1| (-365)) (|has| (-1257 |#1| |#2| |#3|) (-909)))) (-4408 -2676 (-3144 (|has| |#1| (-365)) (|has| (-1257 |#1| |#2| |#3|) (-820))) (|has| |#1| (-558)) (-3144 (|has| |#1| (-365)) (|has| (-1257 |#1| |#2| |#3|) (-909)))) (-4413 |has| |#1| (-365)) (-4407 |has| |#1| (-365)) (-4409 . T) (-4410 . T) (-4412 . T))
-((-2676 (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1257) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1257) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1257) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1257) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-2676 (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2676 (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2676 (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|)))))) (-2676 (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasCategory| (-566) (QUOTE (-1111))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-2676 (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365))))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1257) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1257) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1257) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1257) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2725) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1200))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -4235) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2676 (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-558)))) (-2676 (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2676 (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))))
+((-2676 (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1257) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1257) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1257) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1257) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-2676 (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2676 (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2676 (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|)))))) (-2676 (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasCategory| (-566) (QUOTE (-1111))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-2676 (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365))))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1257) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1257) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1257) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1257) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2725) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1200))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1879) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2676 (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-558)))) (-2676 (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2676 (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-1230 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
@@ -4927,11 +4927,11 @@ NIL
(-1249 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4413 |has| |#1| (-365)) (-4407 |has| |#1| (-365)) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -2725) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1200))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -4235) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))))
+((|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -2725) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1200))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1879) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))))
(-1250 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4413 |has| |#1| (-365)) (-4407 |has| |#1| (-365)) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -2725) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1200))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -4235) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -2725) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1200))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1879) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))))
(-1251 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}.")))
(((-4417 "*") |has| (-1250 |#2| |#3| |#4|) (-172)) (-4408 |has| (-1250 |#2| |#3| |#4|) (-558)) (-4409 . T) (-4410 . T) (-4412 . T))
@@ -4951,7 +4951,7 @@ NIL
(-1255 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-959))) (|HasCategory| |#2| (QUOTE (-1200))) (|HasSignature| |#2| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4235) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1175))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365))))
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-959))) (|HasCategory| |#2| (QUOTE (-1200))) (|HasSignature| |#2| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1879) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1175))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365))))
(-1256 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4409 . T) (-4410 . T) (-4412 . T))
@@ -4959,7 +4959,7 @@ NIL
(-1257 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|)))) (|HasCategory| (-771) (QUOTE (-1111))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasSignature| |#1| (LIST (QUOTE -2725) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasCategory| |#1| (QUOTE (-365))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1200))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -4235) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|)))) (|HasCategory| (-771) (QUOTE (-1111))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasSignature| |#1| (LIST (QUOTE -2725) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasCategory| |#1| (QUOTE (-365))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1200))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1879) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))))
(-1258 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
@@ -5120,4 +5120,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2264442 2264447 2264452 2264457) (-2 NIL 2264422 2264427 2264432 2264437) (-1 NIL 2264402 2264407 2264412 2264417) (0 NIL 2264382 2264387 2264392 2264397) (-1293 "ZMOD.spad" 2264191 2264204 2264320 2264377) (-1292 "ZLINDEP.spad" 2263257 2263268 2264181 2264186) (-1291 "ZDSOLVE.spad" 2253202 2253224 2263247 2263252) (-1290 "YSTREAM.spad" 2252697 2252708 2253192 2253197) (-1289 "XRPOLY.spad" 2251917 2251937 2252553 2252622) (-1288 "XPR.spad" 2249712 2249725 2251635 2251734) (-1287 "XPOLY.spad" 2249267 2249278 2249568 2249637) (-1286 "XPOLYC.spad" 2248586 2248602 2249193 2249262) (-1285 "XPBWPOLY.spad" 2247023 2247043 2248366 2248435) (-1284 "XF.spad" 2245486 2245501 2246925 2247018) (-1283 "XF.spad" 2243929 2243946 2245370 2245375) (-1282 "XFALG.spad" 2240977 2240993 2243855 2243924) (-1281 "XEXPPKG.spad" 2240228 2240254 2240967 2240972) (-1280 "XDPOLY.spad" 2239842 2239858 2240084 2240153) (-1279 "XALG.spad" 2239502 2239513 2239798 2239837) (-1278 "WUTSET.spad" 2235341 2235358 2239148 2239175) (-1277 "WP.spad" 2234540 2234584 2235199 2235266) (-1276 "WHILEAST.spad" 2234338 2234347 2234530 2234535) (-1275 "WHEREAST.spad" 2234009 2234018 2234328 2234333) (-1274 "WFFINTBS.spad" 2231672 2231694 2233999 2234004) (-1273 "WEIER.spad" 2229894 2229905 2231662 2231667) (-1272 "VSPACE.spad" 2229567 2229578 2229862 2229889) (-1271 "VSPACE.spad" 2229260 2229273 2229557 2229562) (-1270 "VOID.spad" 2228937 2228946 2229250 2229255) (-1269 "VIEW.spad" 2226617 2226626 2228927 2228932) (-1268 "VIEWDEF.spad" 2221818 2221827 2226607 2226612) (-1267 "VIEW3D.spad" 2205779 2205788 2221808 2221813) (-1266 "VIEW2D.spad" 2193670 2193679 2205769 2205774) (-1265 "VECTOR.spad" 2192344 2192355 2192595 2192622) (-1264 "VECTOR2.spad" 2190983 2190996 2192334 2192339) (-1263 "VECTCAT.spad" 2188887 2188898 2190951 2190978) (-1262 "VECTCAT.spad" 2186598 2186611 2188664 2188669) (-1261 "VARIABLE.spad" 2186378 2186393 2186588 2186593) (-1260 "UTYPE.spad" 2186022 2186031 2186368 2186373) (-1259 "UTSODETL.spad" 2185317 2185341 2185978 2185983) (-1258 "UTSODE.spad" 2183533 2183553 2185307 2185312) (-1257 "UTS.spad" 2178346 2178374 2182000 2182097) (-1256 "UTSCAT.spad" 2175825 2175841 2178244 2178341) (-1255 "UTSCAT.spad" 2172948 2172966 2175369 2175374) (-1254 "UTS2.spad" 2172543 2172578 2172938 2172943) (-1253 "URAGG.spad" 2167216 2167227 2172533 2172538) (-1252 "URAGG.spad" 2161853 2161866 2167172 2167177) (-1251 "UPXSSING.spad" 2159498 2159524 2160934 2161067) (-1250 "UPXS.spad" 2156652 2156680 2157630 2157779) (-1249 "UPXSCONS.spad" 2154411 2154431 2154784 2154933) (-1248 "UPXSCCA.spad" 2152982 2153002 2154257 2154406) (-1247 "UPXSCCA.spad" 2151695 2151717 2152972 2152977) (-1246 "UPXSCAT.spad" 2150284 2150300 2151541 2151690) (-1245 "UPXS2.spad" 2149827 2149880 2150274 2150279) (-1244 "UPSQFREE.spad" 2148241 2148255 2149817 2149822) (-1243 "UPSCAT.spad" 2145852 2145876 2148139 2148236) (-1242 "UPSCAT.spad" 2143169 2143195 2145458 2145463) (-1241 "UPOLYC.spad" 2138209 2138220 2143011 2143164) (-1240 "UPOLYC.spad" 2133141 2133154 2137945 2137950) (-1239 "UPOLYC2.spad" 2132612 2132631 2133131 2133136) (-1238 "UP.spad" 2129811 2129826 2130198 2130351) (-1237 "UPMP.spad" 2128711 2128724 2129801 2129806) (-1236 "UPDIVP.spad" 2128276 2128290 2128701 2128706) (-1235 "UPDECOMP.spad" 2126521 2126535 2128266 2128271) (-1234 "UPCDEN.spad" 2125730 2125746 2126511 2126516) (-1233 "UP2.spad" 2125094 2125115 2125720 2125725) (-1232 "UNISEG.spad" 2124447 2124458 2125013 2125018) (-1231 "UNISEG2.spad" 2123944 2123957 2124403 2124408) (-1230 "UNIFACT.spad" 2123047 2123059 2123934 2123939) (-1229 "ULS.spad" 2113605 2113633 2114692 2115121) (-1228 "ULSCONS.spad" 2106001 2106021 2106371 2106520) (-1227 "ULSCCAT.spad" 2103738 2103758 2105847 2105996) (-1226 "ULSCCAT.spad" 2101583 2101605 2103694 2103699) (-1225 "ULSCAT.spad" 2099815 2099831 2101429 2101578) (-1224 "ULS2.spad" 2099329 2099382 2099805 2099810) (-1223 "UINT8.spad" 2099206 2099215 2099319 2099324) (-1222 "UINT64.spad" 2099082 2099091 2099196 2099201) (-1221 "UINT32.spad" 2098958 2098967 2099072 2099077) (-1220 "UINT16.spad" 2098834 2098843 2098948 2098953) (-1219 "UFD.spad" 2097899 2097908 2098760 2098829) (-1218 "UFD.spad" 2097026 2097037 2097889 2097894) (-1217 "UDVO.spad" 2095907 2095916 2097016 2097021) (-1216 "UDPO.spad" 2093400 2093411 2095863 2095868) (-1215 "TYPE.spad" 2093332 2093341 2093390 2093395) (-1214 "TYPEAST.spad" 2093251 2093260 2093322 2093327) (-1213 "TWOFACT.spad" 2091903 2091918 2093241 2093246) (-1212 "TUPLE.spad" 2091389 2091400 2091802 2091807) (-1211 "TUBETOOL.spad" 2088256 2088265 2091379 2091384) (-1210 "TUBE.spad" 2086903 2086920 2088246 2088251) (-1209 "TS.spad" 2085502 2085518 2086468 2086565) (-1208 "TSETCAT.spad" 2072629 2072646 2085470 2085497) (-1207 "TSETCAT.spad" 2059742 2059761 2072585 2072590) (-1206 "TRMANIP.spad" 2054108 2054125 2059448 2059453) (-1205 "TRIMAT.spad" 2053071 2053096 2054098 2054103) (-1204 "TRIGMNIP.spad" 2051598 2051615 2053061 2053066) (-1203 "TRIGCAT.spad" 2051110 2051119 2051588 2051593) (-1202 "TRIGCAT.spad" 2050620 2050631 2051100 2051105) (-1201 "TREE.spad" 2049195 2049206 2050227 2050254) (-1200 "TRANFUN.spad" 2049034 2049043 2049185 2049190) (-1199 "TRANFUN.spad" 2048871 2048882 2049024 2049029) (-1198 "TOPSP.spad" 2048545 2048554 2048861 2048866) (-1197 "TOOLSIGN.spad" 2048208 2048219 2048535 2048540) (-1196 "TEXTFILE.spad" 2046769 2046778 2048198 2048203) (-1195 "TEX.spad" 2043915 2043924 2046759 2046764) (-1194 "TEX1.spad" 2043471 2043482 2043905 2043910) (-1193 "TEMUTL.spad" 2043026 2043035 2043461 2043466) (-1192 "TBCMPPK.spad" 2041119 2041142 2043016 2043021) (-1191 "TBAGG.spad" 2040169 2040192 2041099 2041114) (-1190 "TBAGG.spad" 2039227 2039252 2040159 2040164) (-1189 "TANEXP.spad" 2038635 2038646 2039217 2039222) (-1188 "TABLE.spad" 2037046 2037069 2037316 2037343) (-1187 "TABLEAU.spad" 2036527 2036538 2037036 2037041) (-1186 "TABLBUMP.spad" 2033330 2033341 2036517 2036522) (-1185 "SYSTEM.spad" 2032558 2032567 2033320 2033325) (-1184 "SYSSOLP.spad" 2030041 2030052 2032548 2032553) (-1183 "SYSPTR.spad" 2029940 2029949 2030031 2030036) (-1182 "SYSNNI.spad" 2029122 2029133 2029930 2029935) (-1181 "SYSINT.spad" 2028526 2028537 2029112 2029117) (-1180 "SYNTAX.spad" 2024732 2024741 2028516 2028521) (-1179 "SYMTAB.spad" 2022800 2022809 2024722 2024727) (-1178 "SYMS.spad" 2018823 2018832 2022790 2022795) (-1177 "SYMPOLY.spad" 2017830 2017841 2017912 2018039) (-1176 "SYMFUNC.spad" 2017331 2017342 2017820 2017825) (-1175 "SYMBOL.spad" 2014834 2014843 2017321 2017326) (-1174 "SWITCH.spad" 2011605 2011614 2014824 2014829) (-1173 "SUTS.spad" 2008510 2008538 2010072 2010169) (-1172 "SUPXS.spad" 2005651 2005679 2006642 2006791) (-1171 "SUP.spad" 2002464 2002475 2003237 2003390) (-1170 "SUPFRACF.spad" 2001569 2001587 2002454 2002459) (-1169 "SUP2.spad" 2000961 2000974 2001559 2001564) (-1168 "SUMRF.spad" 1999935 1999946 2000951 2000956) (-1167 "SUMFS.spad" 1999572 1999589 1999925 1999930) (-1166 "SULS.spad" 1990117 1990145 1991217 1991646) (-1165 "SUCHTAST.spad" 1989886 1989895 1990107 1990112) (-1164 "SUCH.spad" 1989568 1989583 1989876 1989881) (-1163 "SUBSPACE.spad" 1981683 1981698 1989558 1989563) (-1162 "SUBRESP.spad" 1980853 1980867 1981639 1981644) (-1161 "STTF.spad" 1976952 1976968 1980843 1980848) (-1160 "STTFNC.spad" 1973420 1973436 1976942 1976947) (-1159 "STTAYLOR.spad" 1966074 1966085 1973301 1973306) (-1158 "STRTBL.spad" 1964579 1964596 1964728 1964755) (-1157 "STRING.spad" 1963988 1963997 1964002 1964029) (-1156 "STRICAT.spad" 1963776 1963785 1963956 1963983) (-1155 "STREAM.spad" 1960694 1960705 1963301 1963316) (-1154 "STREAM3.spad" 1960267 1960282 1960684 1960689) (-1153 "STREAM2.spad" 1959395 1959408 1960257 1960262) (-1152 "STREAM1.spad" 1959101 1959112 1959385 1959390) (-1151 "STINPROD.spad" 1958037 1958053 1959091 1959096) (-1150 "STEP.spad" 1957238 1957247 1958027 1958032) (-1149 "STBL.spad" 1955764 1955792 1955931 1955946) (-1148 "STAGG.spad" 1954839 1954850 1955754 1955759) (-1147 "STAGG.spad" 1953912 1953925 1954829 1954834) (-1146 "STACK.spad" 1953269 1953280 1953519 1953546) (-1145 "SREGSET.spad" 1950973 1950990 1952915 1952942) (-1144 "SRDCMPK.spad" 1949534 1949554 1950963 1950968) (-1143 "SRAGG.spad" 1944677 1944686 1949502 1949529) (-1142 "SRAGG.spad" 1939840 1939851 1944667 1944672) (-1141 "SQMATRIX.spad" 1937456 1937474 1938372 1938459) (-1140 "SPLTREE.spad" 1932008 1932021 1936892 1936919) (-1139 "SPLNODE.spad" 1928596 1928609 1931998 1932003) (-1138 "SPFCAT.spad" 1927405 1927414 1928586 1928591) (-1137 "SPECOUT.spad" 1925957 1925966 1927395 1927400) (-1136 "SPADXPT.spad" 1918096 1918105 1925947 1925952) (-1135 "spad-parser.spad" 1917561 1917570 1918086 1918091) (-1134 "SPADAST.spad" 1917262 1917271 1917551 1917556) (-1133 "SPACEC.spad" 1901461 1901472 1917252 1917257) (-1132 "SPACE3.spad" 1901237 1901248 1901451 1901456) (-1131 "SORTPAK.spad" 1900786 1900799 1901193 1901198) (-1130 "SOLVETRA.spad" 1898549 1898560 1900776 1900781) (-1129 "SOLVESER.spad" 1897077 1897088 1898539 1898544) (-1128 "SOLVERAD.spad" 1893103 1893114 1897067 1897072) (-1127 "SOLVEFOR.spad" 1891565 1891583 1893093 1893098) (-1126 "SNTSCAT.spad" 1891165 1891182 1891533 1891560) (-1125 "SMTS.spad" 1889437 1889463 1890730 1890827) (-1124 "SMP.spad" 1886912 1886932 1887302 1887429) (-1123 "SMITH.spad" 1885757 1885782 1886902 1886907) (-1122 "SMATCAT.spad" 1883867 1883897 1885701 1885752) (-1121 "SMATCAT.spad" 1881909 1881941 1883745 1883750) (-1120 "SKAGG.spad" 1880872 1880883 1881877 1881904) (-1119 "SINT.spad" 1879704 1879713 1880738 1880867) (-1118 "SIMPAN.spad" 1879432 1879441 1879694 1879699) (-1117 "SIG.spad" 1878762 1878771 1879422 1879427) (-1116 "SIGNRF.spad" 1877880 1877891 1878752 1878757) (-1115 "SIGNEF.spad" 1877159 1877176 1877870 1877875) (-1114 "SIGAST.spad" 1876544 1876553 1877149 1877154) (-1113 "SHP.spad" 1874472 1874487 1876500 1876505) (-1112 "SHDP.spad" 1864183 1864210 1864692 1864823) (-1111 "SGROUP.spad" 1863791 1863800 1864173 1864178) (-1110 "SGROUP.spad" 1863397 1863408 1863781 1863786) (-1109 "SGCF.spad" 1856560 1856569 1863387 1863392) (-1108 "SFRTCAT.spad" 1855490 1855507 1856528 1856555) (-1107 "SFRGCD.spad" 1854553 1854573 1855480 1855485) (-1106 "SFQCMPK.spad" 1849190 1849210 1854543 1854548) (-1105 "SFORT.spad" 1848629 1848643 1849180 1849185) (-1104 "SEXOF.spad" 1848472 1848512 1848619 1848624) (-1103 "SEX.spad" 1848364 1848373 1848462 1848467) (-1102 "SEXCAT.spad" 1845965 1846005 1848354 1848359) (-1101 "SET.spad" 1844289 1844300 1845386 1845425) (-1100 "SETMN.spad" 1842739 1842756 1844279 1844284) (-1099 "SETCAT.spad" 1842061 1842070 1842729 1842734) (-1098 "SETCAT.spad" 1841381 1841392 1842051 1842056) (-1097 "SETAGG.spad" 1837930 1837941 1841361 1841376) (-1096 "SETAGG.spad" 1834487 1834500 1837920 1837925) (-1095 "SEQAST.spad" 1834190 1834199 1834477 1834482) (-1094 "SEGXCAT.spad" 1833346 1833359 1834180 1834185) (-1093 "SEG.spad" 1833159 1833170 1833265 1833270) (-1092 "SEGCAT.spad" 1832084 1832095 1833149 1833154) (-1091 "SEGBIND.spad" 1831158 1831169 1832039 1832044) (-1090 "SEGBIND2.spad" 1830856 1830869 1831148 1831153) (-1089 "SEGAST.spad" 1830570 1830579 1830846 1830851) (-1088 "SEG2.spad" 1830005 1830018 1830526 1830531) (-1087 "SDVAR.spad" 1829281 1829292 1829995 1830000) (-1086 "SDPOL.spad" 1826707 1826718 1826998 1827125) (-1085 "SCPKG.spad" 1824796 1824807 1826697 1826702) (-1084 "SCOPE.spad" 1823949 1823958 1824786 1824791) (-1083 "SCACHE.spad" 1822645 1822656 1823939 1823944) (-1082 "SASTCAT.spad" 1822554 1822563 1822635 1822640) (-1081 "SAOS.spad" 1822426 1822435 1822544 1822549) (-1080 "SAERFFC.spad" 1822139 1822159 1822416 1822421) (-1079 "SAE.spad" 1820314 1820330 1820925 1821060) (-1078 "SAEFACT.spad" 1820015 1820035 1820304 1820309) (-1077 "RURPK.spad" 1817674 1817690 1820005 1820010) (-1076 "RULESET.spad" 1817127 1817151 1817664 1817669) (-1075 "RULE.spad" 1815367 1815391 1817117 1817122) (-1074 "RULECOLD.spad" 1815219 1815232 1815357 1815362) (-1073 "RTVALUE.spad" 1814954 1814963 1815209 1815214) (-1072 "RSTRCAST.spad" 1814671 1814680 1814944 1814949) (-1071 "RSETGCD.spad" 1811049 1811069 1814661 1814666) (-1070 "RSETCAT.spad" 1800985 1801002 1811017 1811044) (-1069 "RSETCAT.spad" 1790941 1790960 1800975 1800980) (-1068 "RSDCMPK.spad" 1789393 1789413 1790931 1790936) (-1067 "RRCC.spad" 1787777 1787807 1789383 1789388) (-1066 "RRCC.spad" 1786159 1786191 1787767 1787772) (-1065 "RPTAST.spad" 1785861 1785870 1786149 1786154) (-1064 "RPOLCAT.spad" 1765221 1765236 1785729 1785856) (-1063 "RPOLCAT.spad" 1744295 1744312 1764805 1764810) (-1062 "ROUTINE.spad" 1740178 1740187 1742942 1742969) (-1061 "ROMAN.spad" 1739506 1739515 1740044 1740173) (-1060 "ROIRC.spad" 1738586 1738618 1739496 1739501) (-1059 "RNS.spad" 1737489 1737498 1738488 1738581) (-1058 "RNS.spad" 1736478 1736489 1737479 1737484) (-1057 "RNG.spad" 1736213 1736222 1736468 1736473) (-1056 "RMODULE.spad" 1735978 1735989 1736203 1736208) (-1055 "RMCAT2.spad" 1735398 1735455 1735968 1735973) (-1054 "RMATRIX.spad" 1734222 1734241 1734565 1734604) (-1053 "RMATCAT.spad" 1729801 1729832 1734178 1734217) (-1052 "RMATCAT.spad" 1725270 1725303 1729649 1729654) (-1051 "RLINSET.spad" 1724664 1724675 1725260 1725265) (-1050 "RINTERP.spad" 1724552 1724572 1724654 1724659) (-1049 "RING.spad" 1724022 1724031 1724532 1724547) (-1048 "RING.spad" 1723500 1723511 1724012 1724017) (-1047 "RIDIST.spad" 1722892 1722901 1723490 1723495) (-1046 "RGCHAIN.spad" 1721475 1721491 1722377 1722404) (-1045 "RGBCSPC.spad" 1721256 1721268 1721465 1721470) (-1044 "RGBCMDL.spad" 1720786 1720798 1721246 1721251) (-1043 "RF.spad" 1718428 1718439 1720776 1720781) (-1042 "RFFACTOR.spad" 1717890 1717901 1718418 1718423) (-1041 "RFFACT.spad" 1717625 1717637 1717880 1717885) (-1040 "RFDIST.spad" 1716621 1716630 1717615 1717620) (-1039 "RETSOL.spad" 1716040 1716053 1716611 1716616) (-1038 "RETRACT.spad" 1715468 1715479 1716030 1716035) (-1037 "RETRACT.spad" 1714894 1714907 1715458 1715463) (-1036 "RETAST.spad" 1714706 1714715 1714884 1714889) (-1035 "RESULT.spad" 1712766 1712775 1713353 1713380) (-1034 "RESRING.spad" 1712113 1712160 1712704 1712761) (-1033 "RESLATC.spad" 1711437 1711448 1712103 1712108) (-1032 "REPSQ.spad" 1711168 1711179 1711427 1711432) (-1031 "REP.spad" 1708722 1708731 1711158 1711163) (-1030 "REPDB.spad" 1708429 1708440 1708712 1708717) (-1029 "REP2.spad" 1698087 1698098 1708271 1708276) (-1028 "REP1.spad" 1692283 1692294 1698037 1698042) (-1027 "REGSET.spad" 1690080 1690097 1691929 1691956) (-1026 "REF.spad" 1689415 1689426 1690035 1690040) (-1025 "REDORDER.spad" 1688621 1688638 1689405 1689410) (-1024 "RECLOS.spad" 1687404 1687424 1688108 1688201) (-1023 "REALSOLV.spad" 1686544 1686553 1687394 1687399) (-1022 "REAL.spad" 1686416 1686425 1686534 1686539) (-1021 "REAL0Q.spad" 1683714 1683729 1686406 1686411) (-1020 "REAL0.spad" 1680558 1680573 1683704 1683709) (-1019 "RDUCEAST.spad" 1680279 1680288 1680548 1680553) (-1018 "RDIV.spad" 1679934 1679959 1680269 1680274) (-1017 "RDIST.spad" 1679501 1679512 1679924 1679929) (-1016 "RDETRS.spad" 1678365 1678383 1679491 1679496) (-1015 "RDETR.spad" 1676504 1676522 1678355 1678360) (-1014 "RDEEFS.spad" 1675603 1675620 1676494 1676499) (-1013 "RDEEF.spad" 1674613 1674630 1675593 1675598) (-1012 "RCFIELD.spad" 1671799 1671808 1674515 1674608) (-1011 "RCFIELD.spad" 1669071 1669082 1671789 1671794) (-1010 "RCAGG.spad" 1666999 1667010 1669061 1669066) (-1009 "RCAGG.spad" 1664854 1664867 1666918 1666923) (-1008 "RATRET.spad" 1664214 1664225 1664844 1664849) (-1007 "RATFACT.spad" 1663906 1663918 1664204 1664209) (-1006 "RANDSRC.spad" 1663225 1663234 1663896 1663901) (-1005 "RADUTIL.spad" 1662981 1662990 1663215 1663220) (-1004 "RADIX.spad" 1659902 1659916 1661448 1661541) (-1003 "RADFF.spad" 1658315 1658352 1658434 1658590) (-1002 "RADCAT.spad" 1657910 1657919 1658305 1658310) (-1001 "RADCAT.spad" 1657503 1657514 1657900 1657905) (-1000 "QUEUE.spad" 1656851 1656862 1657110 1657137) (-999 "QUAT.spad" 1655433 1655443 1655775 1655840) (-998 "QUATCT2.spad" 1655054 1655072 1655423 1655428) (-997 "QUATCAT.spad" 1653225 1653235 1654984 1655049) (-996 "QUATCAT.spad" 1651147 1651159 1652908 1652913) (-995 "QUAGG.spad" 1649975 1649985 1651115 1651142) (-994 "QQUTAST.spad" 1649744 1649752 1649965 1649970) (-993 "QFORM.spad" 1649209 1649223 1649734 1649739) (-992 "QFCAT.spad" 1647912 1647922 1649111 1649204) (-991 "QFCAT.spad" 1646206 1646218 1647407 1647412) (-990 "QFCAT2.spad" 1645899 1645915 1646196 1646201) (-989 "QEQUAT.spad" 1645458 1645466 1645889 1645894) (-988 "QCMPACK.spad" 1640205 1640224 1645448 1645453) (-987 "QALGSET.spad" 1636284 1636316 1640119 1640124) (-986 "QALGSET2.spad" 1634280 1634298 1636274 1636279) (-985 "PWFFINTB.spad" 1631696 1631717 1634270 1634275) (-984 "PUSHVAR.spad" 1631035 1631054 1631686 1631691) (-983 "PTRANFN.spad" 1627163 1627173 1631025 1631030) (-982 "PTPACK.spad" 1624251 1624261 1627153 1627158) (-981 "PTFUNC2.spad" 1624074 1624088 1624241 1624246) (-980 "PTCAT.spad" 1623329 1623339 1624042 1624069) (-979 "PSQFR.spad" 1622636 1622660 1623319 1623324) (-978 "PSEUDLIN.spad" 1621522 1621532 1622626 1622631) (-977 "PSETPK.spad" 1606955 1606971 1621400 1621405) (-976 "PSETCAT.spad" 1600875 1600898 1606935 1606950) (-975 "PSETCAT.spad" 1594769 1594794 1600831 1600836) (-974 "PSCURVE.spad" 1593752 1593760 1594759 1594764) (-973 "PSCAT.spad" 1592535 1592564 1593650 1593747) (-972 "PSCAT.spad" 1591408 1591439 1592525 1592530) (-971 "PRTITION.spad" 1590369 1590377 1591398 1591403) (-970 "PRTDAST.spad" 1590088 1590096 1590359 1590364) (-969 "PRS.spad" 1579650 1579667 1590044 1590049) (-968 "PRQAGG.spad" 1579085 1579095 1579618 1579645) (-967 "PROPLOG.spad" 1578384 1578392 1579075 1579080) (-966 "PROPFRML.spad" 1577200 1577211 1578374 1578379) (-965 "PROPERTY.spad" 1576688 1576696 1577190 1577195) (-964 "PRODUCT.spad" 1574370 1574382 1574654 1574709) (-963 "PR.spad" 1572762 1572774 1573461 1573588) (-962 "PRINT.spad" 1572514 1572522 1572752 1572757) (-961 "PRIMES.spad" 1570767 1570777 1572504 1572509) (-960 "PRIMELT.spad" 1568848 1568862 1570757 1570762) (-959 "PRIMCAT.spad" 1568475 1568483 1568838 1568843) (-958 "PRIMARR.spad" 1567480 1567490 1567658 1567685) (-957 "PRIMARR2.spad" 1566247 1566259 1567470 1567475) (-956 "PREASSOC.spad" 1565629 1565641 1566237 1566242) (-955 "PPCURVE.spad" 1564766 1564774 1565619 1565624) (-954 "PORTNUM.spad" 1564541 1564549 1564756 1564761) (-953 "POLYROOT.spad" 1563390 1563412 1564497 1564502) (-952 "POLY.spad" 1560725 1560735 1561240 1561367) (-951 "POLYLIFT.spad" 1559990 1560013 1560715 1560720) (-950 "POLYCATQ.spad" 1558108 1558130 1559980 1559985) (-949 "POLYCAT.spad" 1551578 1551599 1557976 1558103) (-948 "POLYCAT.spad" 1544386 1544409 1550786 1550791) (-947 "POLY2UP.spad" 1543838 1543852 1544376 1544381) (-946 "POLY2.spad" 1543435 1543447 1543828 1543833) (-945 "POLUTIL.spad" 1542376 1542405 1543391 1543396) (-944 "POLTOPOL.spad" 1541124 1541139 1542366 1542371) (-943 "POINT.spad" 1539962 1539972 1540049 1540076) (-942 "PNTHEORY.spad" 1536664 1536672 1539952 1539957) (-941 "PMTOOLS.spad" 1535439 1535453 1536654 1536659) (-940 "PMSYM.spad" 1534988 1534998 1535429 1535434) (-939 "PMQFCAT.spad" 1534579 1534593 1534978 1534983) (-938 "PMPRED.spad" 1534058 1534072 1534569 1534574) (-937 "PMPREDFS.spad" 1533512 1533534 1534048 1534053) (-936 "PMPLCAT.spad" 1532592 1532610 1533444 1533449) (-935 "PMLSAGG.spad" 1532177 1532191 1532582 1532587) (-934 "PMKERNEL.spad" 1531756 1531768 1532167 1532172) (-933 "PMINS.spad" 1531336 1531346 1531746 1531751) (-932 "PMFS.spad" 1530913 1530931 1531326 1531331) (-931 "PMDOWN.spad" 1530203 1530217 1530903 1530908) (-930 "PMASS.spad" 1529213 1529221 1530193 1530198) (-929 "PMASSFS.spad" 1528180 1528196 1529203 1529208) (-928 "PLOTTOOL.spad" 1527960 1527968 1528170 1528175) (-927 "PLOT.spad" 1522883 1522891 1527950 1527955) (-926 "PLOT3D.spad" 1519347 1519355 1522873 1522878) (-925 "PLOT1.spad" 1518504 1518514 1519337 1519342) (-924 "PLEQN.spad" 1505794 1505821 1518494 1518499) (-923 "PINTERP.spad" 1505416 1505435 1505784 1505789) (-922 "PINTERPA.spad" 1505200 1505216 1505406 1505411) (-921 "PI.spad" 1504809 1504817 1505174 1505195) (-920 "PID.spad" 1503779 1503787 1504735 1504804) (-919 "PICOERCE.spad" 1503436 1503446 1503769 1503774) (-918 "PGROEB.spad" 1502037 1502051 1503426 1503431) (-917 "PGE.spad" 1493654 1493662 1502027 1502032) (-916 "PGCD.spad" 1492544 1492561 1493644 1493649) (-915 "PFRPAC.spad" 1491693 1491703 1492534 1492539) (-914 "PFR.spad" 1488356 1488366 1491595 1491688) (-913 "PFOTOOLS.spad" 1487614 1487630 1488346 1488351) (-912 "PFOQ.spad" 1486984 1487002 1487604 1487609) (-911 "PFO.spad" 1486403 1486430 1486974 1486979) (-910 "PF.spad" 1485977 1485989 1486208 1486301) (-909 "PFECAT.spad" 1483659 1483667 1485903 1485972) (-908 "PFECAT.spad" 1481369 1481379 1483615 1483620) (-907 "PFBRU.spad" 1479257 1479269 1481359 1481364) (-906 "PFBR.spad" 1476817 1476840 1479247 1479252) (-905 "PERM.spad" 1472502 1472512 1476647 1476662) (-904 "PERMGRP.spad" 1467264 1467274 1472492 1472497) (-903 "PERMCAT.spad" 1465822 1465832 1467244 1467259) (-902 "PERMAN.spad" 1464354 1464368 1465812 1465817) (-901 "PENDTREE.spad" 1463695 1463705 1463983 1463988) (-900 "PDRING.spad" 1462246 1462256 1463675 1463690) (-899 "PDRING.spad" 1460805 1460817 1462236 1462241) (-898 "PDEPROB.spad" 1459820 1459828 1460795 1460800) (-897 "PDEPACK.spad" 1453860 1453868 1459810 1459815) (-896 "PDECOMP.spad" 1453330 1453347 1453850 1453855) (-895 "PDECAT.spad" 1451686 1451694 1453320 1453325) (-894 "PCOMP.spad" 1451539 1451552 1451676 1451681) (-893 "PBWLB.spad" 1450127 1450144 1451529 1451534) (-892 "PATTERN.spad" 1444666 1444676 1450117 1450122) (-891 "PATTERN2.spad" 1444404 1444416 1444656 1444661) (-890 "PATTERN1.spad" 1442740 1442756 1444394 1444399) (-889 "PATRES.spad" 1440315 1440327 1442730 1442735) (-888 "PATRES2.spad" 1439987 1440001 1440305 1440310) (-887 "PATMATCH.spad" 1438184 1438215 1439695 1439700) (-886 "PATMAB.spad" 1437613 1437623 1438174 1438179) (-885 "PATLRES.spad" 1436699 1436713 1437603 1437608) (-884 "PATAB.spad" 1436463 1436473 1436689 1436694) (-883 "PARTPERM.spad" 1433863 1433871 1436453 1436458) (-882 "PARSURF.spad" 1433297 1433325 1433853 1433858) (-881 "PARSU2.spad" 1433094 1433110 1433287 1433292) (-880 "script-parser.spad" 1432614 1432622 1433084 1433089) (-879 "PARSCURV.spad" 1432048 1432076 1432604 1432609) (-878 "PARSC2.spad" 1431839 1431855 1432038 1432043) (-877 "PARPCURV.spad" 1431301 1431329 1431829 1431834) (-876 "PARPC2.spad" 1431092 1431108 1431291 1431296) (-875 "PAN2EXPR.spad" 1430504 1430512 1431082 1431087) (-874 "PALETTE.spad" 1429474 1429482 1430494 1430499) (-873 "PAIR.spad" 1428461 1428474 1429062 1429067) (-872 "PADICRC.spad" 1425795 1425813 1426966 1427059) (-871 "PADICRAT.spad" 1423810 1423822 1424031 1424124) (-870 "PADIC.spad" 1423505 1423517 1423736 1423805) (-869 "PADICCT.spad" 1422054 1422066 1423431 1423500) (-868 "PADEPAC.spad" 1420743 1420762 1422044 1422049) (-867 "PADE.spad" 1419495 1419511 1420733 1420738) (-866 "OWP.spad" 1418735 1418765 1419353 1419420) (-865 "OVERSET.spad" 1418308 1418316 1418725 1418730) (-864 "OVAR.spad" 1418089 1418112 1418298 1418303) (-863 "OUT.spad" 1417175 1417183 1418079 1418084) (-862 "OUTFORM.spad" 1406567 1406575 1417165 1417170) (-861 "OUTBFILE.spad" 1405985 1405993 1406557 1406562) (-860 "OUTBCON.spad" 1404991 1404999 1405975 1405980) (-859 "OUTBCON.spad" 1403995 1404005 1404981 1404986) (-858 "OSI.spad" 1403470 1403478 1403985 1403990) (-857 "OSGROUP.spad" 1403388 1403396 1403460 1403465) (-856 "ORTHPOL.spad" 1401873 1401883 1403305 1403310) (-855 "OREUP.spad" 1401326 1401354 1401553 1401592) (-854 "ORESUP.spad" 1400627 1400651 1401006 1401045) (-853 "OREPCTO.spad" 1398484 1398496 1400547 1400552) (-852 "OREPCAT.spad" 1392631 1392641 1398440 1398479) (-851 "OREPCAT.spad" 1386668 1386680 1392479 1392484) (-850 "ORDSET.spad" 1385840 1385848 1386658 1386663) (-849 "ORDSET.spad" 1385010 1385020 1385830 1385835) (-848 "ORDRING.spad" 1384400 1384408 1384990 1385005) (-847 "ORDRING.spad" 1383798 1383808 1384390 1384395) (-846 "ORDMON.spad" 1383653 1383661 1383788 1383793) (-845 "ORDFUNS.spad" 1382785 1382801 1383643 1383648) (-844 "ORDFIN.spad" 1382605 1382613 1382775 1382780) (-843 "ORDCOMP.spad" 1381070 1381080 1382152 1382181) (-842 "ORDCOMP2.spad" 1380363 1380375 1381060 1381065) (-841 "OPTPROB.spad" 1379001 1379009 1380353 1380358) (-840 "OPTPACK.spad" 1371410 1371418 1378991 1378996) (-839 "OPTCAT.spad" 1369089 1369097 1371400 1371405) (-838 "OPSIG.spad" 1368743 1368751 1369079 1369084) (-837 "OPQUERY.spad" 1368292 1368300 1368733 1368738) (-836 "OP.spad" 1368034 1368044 1368114 1368181) (-835 "OPERCAT.spad" 1367500 1367510 1368024 1368029) (-834 "OPERCAT.spad" 1366964 1366976 1367490 1367495) (-833 "ONECOMP.spad" 1365709 1365719 1366511 1366540) (-832 "ONECOMP2.spad" 1365133 1365145 1365699 1365704) (-831 "OMSERVER.spad" 1364139 1364147 1365123 1365128) (-830 "OMSAGG.spad" 1363927 1363937 1364095 1364134) (-829 "OMPKG.spad" 1362543 1362551 1363917 1363922) (-828 "OM.spad" 1361516 1361524 1362533 1362538) (-827 "OMLO.spad" 1360941 1360953 1361402 1361441) (-826 "OMEXPR.spad" 1360775 1360785 1360931 1360936) (-825 "OMERR.spad" 1360320 1360328 1360765 1360770) (-824 "OMERRK.spad" 1359354 1359362 1360310 1360315) (-823 "OMENC.spad" 1358698 1358706 1359344 1359349) (-822 "OMDEV.spad" 1353007 1353015 1358688 1358693) (-821 "OMCONN.spad" 1352416 1352424 1352997 1353002) (-820 "OINTDOM.spad" 1352179 1352187 1352342 1352411) (-819 "OFMONOID.spad" 1348428 1348438 1352169 1352174) (-818 "ODVAR.spad" 1347689 1347699 1348418 1348423) (-817 "ODR.spad" 1347333 1347359 1347501 1347650) (-816 "ODPOL.spad" 1344715 1344725 1345055 1345182) (-815 "ODP.spad" 1334562 1334582 1334935 1335066) (-814 "ODETOOLS.spad" 1333211 1333230 1334552 1334557) (-813 "ODESYS.spad" 1330905 1330922 1333201 1333206) (-812 "ODERTRIC.spad" 1326914 1326931 1330862 1330867) (-811 "ODERED.spad" 1326313 1326337 1326904 1326909) (-810 "ODERAT.spad" 1323928 1323945 1326303 1326308) (-809 "ODEPRRIC.spad" 1320965 1320987 1323918 1323923) (-808 "ODEPROB.spad" 1320222 1320230 1320955 1320960) (-807 "ODEPRIM.spad" 1317556 1317578 1320212 1320217) (-806 "ODEPAL.spad" 1316942 1316966 1317546 1317551) (-805 "ODEPACK.spad" 1303608 1303616 1316932 1316937) (-804 "ODEINT.spad" 1303043 1303059 1303598 1303603) (-803 "ODEIFTBL.spad" 1300438 1300446 1303033 1303038) (-802 "ODEEF.spad" 1295929 1295945 1300428 1300433) (-801 "ODECONST.spad" 1295466 1295484 1295919 1295924) (-800 "ODECAT.spad" 1294064 1294072 1295456 1295461) (-799 "OCT.spad" 1292204 1292214 1292918 1292957) (-798 "OCTCT2.spad" 1291850 1291871 1292194 1292199) (-797 "OC.spad" 1289646 1289656 1291806 1291845) (-796 "OC.spad" 1287167 1287179 1289329 1289334) (-795 "OCAMON.spad" 1287015 1287023 1287157 1287162) (-794 "OASGP.spad" 1286830 1286838 1287005 1287010) (-793 "OAMONS.spad" 1286352 1286360 1286820 1286825) (-792 "OAMON.spad" 1286213 1286221 1286342 1286347) (-791 "OAGROUP.spad" 1286075 1286083 1286203 1286208) (-790 "NUMTUBE.spad" 1285666 1285682 1286065 1286070) (-789 "NUMQUAD.spad" 1273642 1273650 1285656 1285661) (-788 "NUMODE.spad" 1264996 1265004 1273632 1273637) (-787 "NUMINT.spad" 1262562 1262570 1264986 1264991) (-786 "NUMFMT.spad" 1261402 1261410 1262552 1262557) (-785 "NUMERIC.spad" 1253516 1253526 1261207 1261212) (-784 "NTSCAT.spad" 1252024 1252040 1253484 1253511) (-783 "NTPOLFN.spad" 1251575 1251585 1251941 1251946) (-782 "NSUP.spad" 1244621 1244631 1249161 1249314) (-781 "NSUP2.spad" 1244013 1244025 1244611 1244616) (-780 "NSMP.spad" 1240244 1240263 1240552 1240679) (-779 "NREP.spad" 1238622 1238636 1240234 1240239) (-778 "NPCOEF.spad" 1237868 1237888 1238612 1238617) (-777 "NORMRETR.spad" 1237466 1237505 1237858 1237863) (-776 "NORMPK.spad" 1235368 1235387 1237456 1237461) (-775 "NORMMA.spad" 1235056 1235082 1235358 1235363) (-774 "NONE.spad" 1234797 1234805 1235046 1235051) (-773 "NONE1.spad" 1234473 1234483 1234787 1234792) (-772 "NODE1.spad" 1233960 1233976 1234463 1234468) (-771 "NNI.spad" 1232855 1232863 1233934 1233955) (-770 "NLINSOL.spad" 1231481 1231491 1232845 1232850) (-769 "NIPROB.spad" 1230022 1230030 1231471 1231476) (-768 "NFINTBAS.spad" 1227582 1227599 1230012 1230017) (-767 "NETCLT.spad" 1227556 1227567 1227572 1227577) (-766 "NCODIV.spad" 1225772 1225788 1227546 1227551) (-765 "NCNTFRAC.spad" 1225414 1225428 1225762 1225767) (-764 "NCEP.spad" 1223580 1223594 1225404 1225409) (-763 "NASRING.spad" 1223176 1223184 1223570 1223575) (-762 "NASRING.spad" 1222770 1222780 1223166 1223171) (-761 "NARNG.spad" 1222122 1222130 1222760 1222765) (-760 "NARNG.spad" 1221472 1221482 1222112 1222117) (-759 "NAGSP.spad" 1220549 1220557 1221462 1221467) (-758 "NAGS.spad" 1210210 1210218 1220539 1220544) (-757 "NAGF07.spad" 1208641 1208649 1210200 1210205) (-756 "NAGF04.spad" 1203043 1203051 1208631 1208636) (-755 "NAGF02.spad" 1197112 1197120 1203033 1203038) (-754 "NAGF01.spad" 1192873 1192881 1197102 1197107) (-753 "NAGE04.spad" 1186573 1186581 1192863 1192868) (-752 "NAGE02.spad" 1177233 1177241 1186563 1186568) (-751 "NAGE01.spad" 1173235 1173243 1177223 1177228) (-750 "NAGD03.spad" 1171239 1171247 1173225 1173230) (-749 "NAGD02.spad" 1163986 1163994 1171229 1171234) (-748 "NAGD01.spad" 1158279 1158287 1163976 1163981) (-747 "NAGC06.spad" 1154154 1154162 1158269 1158274) (-746 "NAGC05.spad" 1152655 1152663 1154144 1154149) (-745 "NAGC02.spad" 1151922 1151930 1152645 1152650) (-744 "NAALG.spad" 1151463 1151473 1151890 1151917) (-743 "NAALG.spad" 1151024 1151036 1151453 1151458) (-742 "MULTSQFR.spad" 1147982 1147999 1151014 1151019) (-741 "MULTFACT.spad" 1147365 1147382 1147972 1147977) (-740 "MTSCAT.spad" 1145459 1145480 1147263 1147360) (-739 "MTHING.spad" 1145118 1145128 1145449 1145454) (-738 "MSYSCMD.spad" 1144552 1144560 1145108 1145113) (-737 "MSET.spad" 1142510 1142520 1144258 1144297) (-736 "MSETAGG.spad" 1142355 1142365 1142478 1142505) (-735 "MRING.spad" 1139332 1139344 1142063 1142130) (-734 "MRF2.spad" 1138902 1138916 1139322 1139327) (-733 "MRATFAC.spad" 1138448 1138465 1138892 1138897) (-732 "MPRFF.spad" 1136488 1136507 1138438 1138443) (-731 "MPOLY.spad" 1133959 1133974 1134318 1134445) (-730 "MPCPF.spad" 1133223 1133242 1133949 1133954) (-729 "MPC3.spad" 1133040 1133080 1133213 1133218) (-728 "MPC2.spad" 1132686 1132719 1133030 1133035) (-727 "MONOTOOL.spad" 1131037 1131054 1132676 1132681) (-726 "MONOID.spad" 1130356 1130364 1131027 1131032) (-725 "MONOID.spad" 1129673 1129683 1130346 1130351) (-724 "MONOGEN.spad" 1128421 1128434 1129533 1129668) (-723 "MONOGEN.spad" 1127191 1127206 1128305 1128310) (-722 "MONADWU.spad" 1125221 1125229 1127181 1127186) (-721 "MONADWU.spad" 1123249 1123259 1125211 1125216) (-720 "MONAD.spad" 1122409 1122417 1123239 1123244) (-719 "MONAD.spad" 1121567 1121577 1122399 1122404) (-718 "MOEBIUS.spad" 1120303 1120317 1121547 1121562) (-717 "MODULE.spad" 1120173 1120183 1120271 1120298) (-716 "MODULE.spad" 1120063 1120075 1120163 1120168) (-715 "MODRING.spad" 1119398 1119437 1120043 1120058) (-714 "MODOP.spad" 1118063 1118075 1119220 1119287) (-713 "MODMONOM.spad" 1117794 1117812 1118053 1118058) (-712 "MODMON.spad" 1114589 1114605 1115308 1115461) (-711 "MODFIELD.spad" 1113951 1113990 1114491 1114584) (-710 "MMLFORM.spad" 1112811 1112819 1113941 1113946) (-709 "MMAP.spad" 1112553 1112587 1112801 1112806) (-708 "MLO.spad" 1111012 1111022 1112509 1112548) (-707 "MLIFT.spad" 1109624 1109641 1111002 1111007) (-706 "MKUCFUNC.spad" 1109159 1109177 1109614 1109619) (-705 "MKRECORD.spad" 1108763 1108776 1109149 1109154) (-704 "MKFUNC.spad" 1108170 1108180 1108753 1108758) (-703 "MKFLCFN.spad" 1107138 1107148 1108160 1108165) (-702 "MKBCFUNC.spad" 1106633 1106651 1107128 1107133) (-701 "MINT.spad" 1106072 1106080 1106535 1106628) (-700 "MHROWRED.spad" 1104583 1104593 1106062 1106067) (-699 "MFLOAT.spad" 1103103 1103111 1104473 1104578) (-698 "MFINFACT.spad" 1102503 1102525 1103093 1103098) (-697 "MESH.spad" 1100285 1100293 1102493 1102498) (-696 "MDDFACT.spad" 1098496 1098506 1100275 1100280) (-695 "MDAGG.spad" 1097787 1097797 1098476 1098491) (-694 "MCMPLX.spad" 1093798 1093806 1094412 1094613) (-693 "MCDEN.spad" 1093008 1093020 1093788 1093793) (-692 "MCALCFN.spad" 1090130 1090156 1092998 1093003) (-691 "MAYBE.spad" 1089414 1089425 1090120 1090125) (-690 "MATSTOR.spad" 1086722 1086732 1089404 1089409) (-689 "MATRIX.spad" 1085426 1085436 1085910 1085937) (-688 "MATLIN.spad" 1082770 1082794 1085310 1085315) (-687 "MATCAT.spad" 1074499 1074521 1082738 1082765) (-686 "MATCAT.spad" 1066100 1066124 1074341 1074346) (-685 "MATCAT2.spad" 1065382 1065430 1066090 1066095) (-684 "MAPPKG3.spad" 1064297 1064311 1065372 1065377) (-683 "MAPPKG2.spad" 1063635 1063647 1064287 1064292) (-682 "MAPPKG1.spad" 1062463 1062473 1063625 1063630) (-681 "MAPPAST.spad" 1061778 1061786 1062453 1062458) (-680 "MAPHACK3.spad" 1061590 1061604 1061768 1061773) (-679 "MAPHACK2.spad" 1061359 1061371 1061580 1061585) (-678 "MAPHACK1.spad" 1061003 1061013 1061349 1061354) (-677 "MAGMA.spad" 1058793 1058810 1060993 1060998) (-676 "MACROAST.spad" 1058372 1058380 1058783 1058788) (-675 "M3D.spad" 1056092 1056102 1057750 1057755) (-674 "LZSTAGG.spad" 1053330 1053340 1056082 1056087) (-673 "LZSTAGG.spad" 1050566 1050578 1053320 1053325) (-672 "LWORD.spad" 1047271 1047288 1050556 1050561) (-671 "LSTAST.spad" 1047055 1047063 1047261 1047266) (-670 "LSQM.spad" 1045285 1045299 1045679 1045730) (-669 "LSPP.spad" 1044820 1044837 1045275 1045280) (-668 "LSMP.spad" 1043670 1043698 1044810 1044815) (-667 "LSMP1.spad" 1041488 1041502 1043660 1043665) (-666 "LSAGG.spad" 1041157 1041167 1041456 1041483) (-665 "LSAGG.spad" 1040846 1040858 1041147 1041152) (-664 "LPOLY.spad" 1039800 1039819 1040702 1040771) (-663 "LPEFRAC.spad" 1039071 1039081 1039790 1039795) (-662 "LO.spad" 1038472 1038486 1039005 1039032) (-661 "LOGIC.spad" 1038074 1038082 1038462 1038467) (-660 "LOGIC.spad" 1037674 1037684 1038064 1038069) (-659 "LODOOPS.spad" 1036604 1036616 1037664 1037669) (-658 "LODO.spad" 1035988 1036004 1036284 1036323) (-657 "LODOF.spad" 1035034 1035051 1035945 1035950) (-656 "LODOCAT.spad" 1033700 1033710 1034990 1035029) (-655 "LODOCAT.spad" 1032364 1032376 1033656 1033661) (-654 "LODO2.spad" 1031637 1031649 1032044 1032083) (-653 "LODO1.spad" 1031037 1031047 1031317 1031356) (-652 "LODEEF.spad" 1029839 1029857 1031027 1031032) (-651 "LNAGG.spad" 1025671 1025681 1029829 1029834) (-650 "LNAGG.spad" 1021467 1021479 1025627 1025632) (-649 "LMOPS.spad" 1018235 1018252 1021457 1021462) (-648 "LMODULE.spad" 1018003 1018013 1018225 1018230) (-647 "LMDICT.spad" 1017290 1017300 1017554 1017581) (-646 "LLINSET.spad" 1016687 1016697 1017280 1017285) (-645 "LITERAL.spad" 1016593 1016604 1016677 1016682) (-644 "LIST.spad" 1014328 1014338 1015740 1015767) (-643 "LIST3.spad" 1013639 1013653 1014318 1014323) (-642 "LIST2.spad" 1012341 1012353 1013629 1013634) (-641 "LIST2MAP.spad" 1009244 1009256 1012331 1012336) (-640 "LINSET.spad" 1008866 1008876 1009234 1009239) (-639 "LINEXP.spad" 1008300 1008310 1008846 1008861) (-638 "LINDEP.spad" 1007109 1007121 1008212 1008217) (-637 "LIMITRF.spad" 1005037 1005047 1007099 1007104) (-636 "LIMITPS.spad" 1003940 1003953 1005027 1005032) (-635 "LIE.spad" 1001956 1001968 1003230 1003375) (-634 "LIECAT.spad" 1001432 1001442 1001882 1001951) (-633 "LIECAT.spad" 1000936 1000948 1001388 1001393) (-632 "LIB.spad" 998986 998994 999595 999610) (-631 "LGROBP.spad" 996339 996358 998976 998981) (-630 "LF.spad" 995294 995310 996329 996334) (-629 "LFCAT.spad" 994353 994361 995284 995289) (-628 "LEXTRIPK.spad" 989856 989871 994343 994348) (-627 "LEXP.spad" 987859 987886 989836 989851) (-626 "LETAST.spad" 987558 987566 987849 987854) (-625 "LEADCDET.spad" 985956 985973 987548 987553) (-624 "LAZM3PK.spad" 984660 984682 985946 985951) (-623 "LAUPOL.spad" 983353 983366 984253 984322) (-622 "LAPLACE.spad" 982936 982952 983343 983348) (-621 "LA.spad" 982376 982390 982858 982897) (-620 "LALG.spad" 982152 982162 982356 982371) (-619 "LALG.spad" 981936 981948 982142 982147) (-618 "KVTFROM.spad" 981671 981681 981926 981931) (-617 "KTVLOGIC.spad" 981183 981191 981661 981666) (-616 "KRCFROM.spad" 980921 980931 981173 981178) (-615 "KOVACIC.spad" 979644 979661 980911 980916) (-614 "KONVERT.spad" 979366 979376 979634 979639) (-613 "KOERCE.spad" 979103 979113 979356 979361) (-612 "KERNEL.spad" 977758 977768 978887 978892) (-611 "KERNEL2.spad" 977461 977473 977748 977753) (-610 "KDAGG.spad" 976570 976592 977441 977456) (-609 "KDAGG.spad" 975687 975711 976560 976565) (-608 "KAFILE.spad" 974650 974666 974885 974912) (-607 "JORDAN.spad" 972479 972491 973940 974085) (-606 "JOINAST.spad" 972173 972181 972469 972474) (-605 "JAVACODE.spad" 972039 972047 972163 972168) (-604 "IXAGG.spad" 970172 970196 972029 972034) (-603 "IXAGG.spad" 968160 968186 970019 970024) (-602 "IVECTOR.spad" 966930 966945 967085 967112) (-601 "ITUPLE.spad" 966091 966101 966920 966925) (-600 "ITRIGMNP.spad" 964930 964949 966081 966086) (-599 "ITFUN3.spad" 964436 964450 964920 964925) (-598 "ITFUN2.spad" 964180 964192 964426 964431) (-597 "ITAYLOR.spad" 961974 961989 964016 964141) (-596 "ISUPS.spad" 954411 954426 960948 961045) (-595 "ISUMP.spad" 953912 953928 954401 954406) (-594 "ISTRING.spad" 952915 952928 953081 953108) (-593 "ISAST.spad" 952634 952642 952905 952910) (-592 "IRURPK.spad" 951351 951370 952624 952629) (-591 "IRSN.spad" 949355 949363 951341 951346) (-590 "IRRF2F.spad" 947840 947850 949311 949316) (-589 "IRREDFFX.spad" 947441 947452 947830 947835) (-588 "IROOT.spad" 945780 945790 947431 947436) (-587 "IR.spad" 943581 943595 945635 945662) (-586 "IR2.spad" 942609 942625 943571 943576) (-585 "IR2F.spad" 941815 941831 942599 942604) (-584 "IPRNTPK.spad" 941575 941583 941805 941810) (-583 "IPF.spad" 941140 941152 941380 941473) (-582 "IPADIC.spad" 940901 940927 941066 941135) (-581 "IP4ADDR.spad" 940458 940466 940891 940896) (-580 "IOMODE.spad" 940079 940087 940448 940453) (-579 "IOBFILE.spad" 939440 939448 940069 940074) (-578 "IOBCON.spad" 939305 939313 939430 939435) (-577 "INVLAPLA.spad" 938954 938970 939295 939300) (-576 "INTTR.spad" 932336 932353 938944 938949) (-575 "INTTOOLS.spad" 930091 930107 931910 931915) (-574 "INTSLPE.spad" 929411 929419 930081 930086) (-573 "INTRVL.spad" 928977 928987 929325 929406) (-572 "INTRF.spad" 927401 927415 928967 928972) (-571 "INTRET.spad" 926833 926843 927391 927396) (-570 "INTRAT.spad" 925560 925577 926823 926828) (-569 "INTPM.spad" 923945 923961 925203 925208) (-568 "INTPAF.spad" 921809 921827 923877 923882) (-567 "INTPACK.spad" 912183 912191 921799 921804) (-566 "INT.spad" 911544 911552 912037 912178) (-565 "INTHERTR.spad" 910818 910835 911534 911539) (-564 "INTHERAL.spad" 910488 910512 910808 910813) (-563 "INTHEORY.spad" 906927 906935 910478 910483) (-562 "INTG0.spad" 900660 900678 906859 906864) (-561 "INTFTBL.spad" 894689 894697 900650 900655) (-560 "INTFACT.spad" 893748 893758 894679 894684) (-559 "INTEF.spad" 892133 892149 893738 893743) (-558 "INTDOM.spad" 890756 890764 892059 892128) (-557 "INTDOM.spad" 889441 889451 890746 890751) (-556 "INTCAT.spad" 887700 887710 889355 889436) (-555 "INTBIT.spad" 887207 887215 887690 887695) (-554 "INTALG.spad" 886395 886422 887197 887202) (-553 "INTAF.spad" 885895 885911 886385 886390) (-552 "INTABL.spad" 884413 884444 884576 884603) (-551 "INT8.spad" 884293 884301 884403 884408) (-550 "INT64.spad" 884172 884180 884283 884288) (-549 "INT32.spad" 884051 884059 884162 884167) (-548 "INT16.spad" 883930 883938 884041 884046) (-547 "INS.spad" 881433 881441 883832 883925) (-546 "INS.spad" 879022 879032 881423 881428) (-545 "INPSIGN.spad" 878470 878483 879012 879017) (-544 "INPRODPF.spad" 877566 877585 878460 878465) (-543 "INPRODFF.spad" 876654 876678 877556 877561) (-542 "INNMFACT.spad" 875629 875646 876644 876649) (-541 "INMODGCD.spad" 875117 875147 875619 875624) (-540 "INFSP.spad" 873414 873436 875107 875112) (-539 "INFPROD0.spad" 872494 872513 873404 873409) (-538 "INFORM.spad" 869693 869701 872484 872489) (-537 "INFORM1.spad" 869318 869328 869683 869688) (-536 "INFINITY.spad" 868870 868878 869308 869313) (-535 "INETCLTS.spad" 868847 868855 868860 868865) (-534 "INEP.spad" 867385 867407 868837 868842) (-533 "INDE.spad" 867114 867131 867375 867380) (-532 "INCRMAPS.spad" 866535 866545 867104 867109) (-531 "INBFILE.spad" 865607 865615 866525 866530) (-530 "INBFF.spad" 861401 861412 865597 865602) (-529 "INBCON.spad" 859691 859699 861391 861396) (-528 "INBCON.spad" 857979 857989 859681 859686) (-527 "INAST.spad" 857640 857648 857969 857974) (-526 "IMPTAST.spad" 857348 857356 857630 857635) (-525 "IMATRIX.spad" 856293 856319 856805 856832) (-524 "IMATQF.spad" 855387 855431 856249 856254) (-523 "IMATLIN.spad" 853992 854016 855343 855348) (-522 "ILIST.spad" 852650 852665 853175 853202) (-521 "IIARRAY2.spad" 852038 852076 852257 852284) (-520 "IFF.spad" 851448 851464 851719 851812) (-519 "IFAST.spad" 851062 851070 851438 851443) (-518 "IFARRAY.spad" 848555 848570 850245 850272) (-517 "IFAMON.spad" 848417 848434 848511 848516) (-516 "IEVALAB.spad" 847822 847834 848407 848412) (-515 "IEVALAB.spad" 847225 847239 847812 847817) (-514 "IDPO.spad" 847023 847035 847215 847220) (-513 "IDPOAMS.spad" 846779 846791 847013 847018) (-512 "IDPOAM.spad" 846499 846511 846769 846774) (-511 "IDPC.spad" 845437 845449 846489 846494) (-510 "IDPAM.spad" 845182 845194 845427 845432) (-509 "IDPAG.spad" 844929 844941 845172 845177) (-508 "IDENT.spad" 844579 844587 844919 844924) (-507 "IDECOMP.spad" 841818 841836 844569 844574) (-506 "IDEAL.spad" 836767 836806 841753 841758) (-505 "ICDEN.spad" 835956 835972 836757 836762) (-504 "ICARD.spad" 835147 835155 835946 835951) (-503 "IBPTOOLS.spad" 833754 833771 835137 835142) (-502 "IBITS.spad" 832957 832970 833390 833417) (-501 "IBATOOL.spad" 829934 829953 832947 832952) (-500 "IBACHIN.spad" 828441 828456 829924 829929) (-499 "IARRAY2.spad" 827429 827455 828048 828075) (-498 "IARRAY1.spad" 826474 826489 826612 826639) (-497 "IAN.spad" 824697 824705 826290 826383) (-496 "IALGFACT.spad" 824300 824333 824687 824692) (-495 "HYPCAT.spad" 823724 823732 824290 824295) (-494 "HYPCAT.spad" 823146 823156 823714 823719) (-493 "HOSTNAME.spad" 822954 822962 823136 823141) (-492 "HOMOTOP.spad" 822697 822707 822944 822949) (-491 "HOAGG.spad" 819979 819989 822687 822692) (-490 "HOAGG.spad" 817036 817048 819746 819751) (-489 "HEXADEC.spad" 815138 815146 815503 815596) (-488 "HEUGCD.spad" 814173 814184 815128 815133) (-487 "HELLFDIV.spad" 813763 813787 814163 814168) (-486 "HEAP.spad" 813155 813165 813370 813397) (-485 "HEADAST.spad" 812692 812700 813145 813150) (-484 "HDP.spad" 802535 802551 802912 803043) (-483 "HDMP.spad" 799749 799764 800365 800492) (-482 "HB.spad" 798000 798008 799739 799744) (-481 "HASHTBL.spad" 796470 796501 796681 796708) (-480 "HASAST.spad" 796186 796194 796460 796465) (-479 "HACKPI.spad" 795677 795685 796088 796181) (-478 "GTSET.spad" 794616 794632 795323 795350) (-477 "GSTBL.spad" 793135 793170 793309 793324) (-476 "GSERIES.spad" 790306 790333 791267 791416) (-475 "GROUP.spad" 789579 789587 790286 790301) (-474 "GROUP.spad" 788860 788870 789569 789574) (-473 "GROEBSOL.spad" 787354 787375 788850 788855) (-472 "GRMOD.spad" 785925 785937 787344 787349) (-471 "GRMOD.spad" 784494 784508 785915 785920) (-470 "GRIMAGE.spad" 777383 777391 784484 784489) (-469 "GRDEF.spad" 775762 775770 777373 777378) (-468 "GRAY.spad" 774225 774233 775752 775757) (-467 "GRALG.spad" 773302 773314 774215 774220) (-466 "GRALG.spad" 772377 772391 773292 773297) (-465 "GPOLSET.spad" 771831 771854 772059 772086) (-464 "GOSPER.spad" 771100 771118 771821 771826) (-463 "GMODPOL.spad" 770248 770275 771068 771095) (-462 "GHENSEL.spad" 769331 769345 770238 770243) (-461 "GENUPS.spad" 765624 765637 769321 769326) (-460 "GENUFACT.spad" 765201 765211 765614 765619) (-459 "GENPGCD.spad" 764787 764804 765191 765196) (-458 "GENMFACT.spad" 764239 764258 764777 764782) (-457 "GENEEZ.spad" 762190 762203 764229 764234) (-456 "GDMP.spad" 759246 759263 760020 760147) (-455 "GCNAALG.spad" 753169 753196 759040 759107) (-454 "GCDDOM.spad" 752345 752353 753095 753164) (-453 "GCDDOM.spad" 751583 751593 752335 752340) (-452 "GB.spad" 749109 749147 751539 751544) (-451 "GBINTERN.spad" 745129 745167 749099 749104) (-450 "GBF.spad" 740896 740934 745119 745124) (-449 "GBEUCLID.spad" 738778 738816 740886 740891) (-448 "GAUSSFAC.spad" 738091 738099 738768 738773) (-447 "GALUTIL.spad" 736417 736427 738047 738052) (-446 "GALPOLYU.spad" 734871 734884 736407 736412) (-445 "GALFACTU.spad" 733044 733063 734861 734866) (-444 "GALFACT.spad" 723233 723244 733034 733039) (-443 "FVFUN.spad" 720256 720264 723223 723228) (-442 "FVC.spad" 719308 719316 720246 720251) (-441 "FUNDESC.spad" 718986 718994 719298 719303) (-440 "FUNCTION.spad" 718835 718847 718976 718981) (-439 "FT.spad" 717132 717140 718825 718830) (-438 "FTEM.spad" 716297 716305 717122 717127) (-437 "FSUPFACT.spad" 715197 715216 716233 716238) (-436 "FST.spad" 713283 713291 715187 715192) (-435 "FSRED.spad" 712763 712779 713273 713278) (-434 "FSPRMELT.spad" 711645 711661 712720 712725) (-433 "FSPECF.spad" 709736 709752 711635 711640) (-432 "FS.spad" 704004 704014 709511 709731) (-431 "FS.spad" 698050 698062 703559 703564) (-430 "FSINT.spad" 697710 697726 698040 698045) (-429 "FSERIES.spad" 696901 696913 697530 697629) (-428 "FSCINT.spad" 696218 696234 696891 696896) (-427 "FSAGG.spad" 695335 695345 696174 696213) (-426 "FSAGG.spad" 694414 694426 695255 695260) (-425 "FSAGG2.spad" 693157 693173 694404 694409) (-424 "FS2UPS.spad" 687648 687682 693147 693152) (-423 "FS2.spad" 687295 687311 687638 687643) (-422 "FS2EXPXP.spad" 686420 686443 687285 687290) (-421 "FRUTIL.spad" 685374 685384 686410 686415) (-420 "FR.spad" 679090 679100 684398 684467) (-419 "FRNAALG.spad" 674209 674219 679032 679085) (-418 "FRNAALG.spad" 669340 669352 674165 674170) (-417 "FRNAAF2.spad" 668796 668814 669330 669335) (-416 "FRMOD.spad" 668206 668236 668727 668732) (-415 "FRIDEAL.spad" 667431 667452 668186 668201) (-414 "FRIDEAL2.spad" 667035 667067 667421 667426) (-413 "FRETRCT.spad" 666546 666556 667025 667030) (-412 "FRETRCT.spad" 665923 665935 666404 666409) (-411 "FRAMALG.spad" 664271 664284 665879 665918) (-410 "FRAMALG.spad" 662651 662666 664261 664266) (-409 "FRAC.spad" 659750 659760 660153 660326) (-408 "FRAC2.spad" 659355 659367 659740 659745) (-407 "FR2.spad" 658691 658703 659345 659350) (-406 "FPS.spad" 655506 655514 658581 658686) (-405 "FPS.spad" 652349 652359 655426 655431) (-404 "FPC.spad" 651395 651403 652251 652344) (-403 "FPC.spad" 650527 650537 651385 651390) (-402 "FPATMAB.spad" 650289 650299 650517 650522) (-401 "FPARFRAC.spad" 648776 648793 650279 650284) (-400 "FORTRAN.spad" 647282 647325 648766 648771) (-399 "FORT.spad" 646231 646239 647272 647277) (-398 "FORTFN.spad" 643401 643409 646221 646226) (-397 "FORTCAT.spad" 643085 643093 643391 643396) (-396 "FORMULA.spad" 640559 640567 643075 643080) (-395 "FORMULA1.spad" 640038 640048 640549 640554) (-394 "FORDER.spad" 639729 639753 640028 640033) (-393 "FOP.spad" 638930 638938 639719 639724) (-392 "FNLA.spad" 638354 638376 638898 638925) (-391 "FNCAT.spad" 636949 636957 638344 638349) (-390 "FNAME.spad" 636841 636849 636939 636944) (-389 "FMTC.spad" 636639 636647 636767 636836) (-388 "FMONOID.spad" 633756 633766 636595 636600) (-387 "FM.spad" 633451 633463 633690 633717) (-386 "FMFUN.spad" 630481 630489 633441 633446) (-385 "FMC.spad" 629533 629541 630471 630476) (-384 "FMCAT.spad" 627201 627219 629501 629528) (-383 "FM1.spad" 626558 626570 627135 627162) (-382 "FLOATRP.spad" 624293 624307 626548 626553) (-381 "FLOAT.spad" 617607 617615 624159 624288) (-380 "FLOATCP.spad" 615038 615052 617597 617602) (-379 "FLINEXP.spad" 614750 614760 615018 615033) (-378 "FLINEXP.spad" 614416 614428 614686 614691) (-377 "FLASORT.spad" 613742 613754 614406 614411) (-376 "FLALG.spad" 611388 611407 613668 613737) (-375 "FLAGG.spad" 608430 608440 611368 611383) (-374 "FLAGG.spad" 605373 605385 608313 608318) (-373 "FLAGG2.spad" 604098 604114 605363 605368) (-372 "FINRALG.spad" 602159 602172 604054 604093) (-371 "FINRALG.spad" 600146 600161 602043 602048) (-370 "FINITE.spad" 599298 599306 600136 600141) (-369 "FINAALG.spad" 588419 588429 599240 599293) (-368 "FINAALG.spad" 577552 577564 588375 588380) (-367 "FILE.spad" 577135 577145 577542 577547) (-366 "FILECAT.spad" 575661 575678 577125 577130) (-365 "FIELD.spad" 575067 575075 575563 575656) (-364 "FIELD.spad" 574559 574569 575057 575062) (-363 "FGROUP.spad" 573206 573216 574539 574554) (-362 "FGLMICPK.spad" 571993 572008 573196 573201) (-361 "FFX.spad" 571368 571383 571709 571802) (-360 "FFSLPE.spad" 570871 570892 571358 571363) (-359 "FFPOLY.spad" 562133 562144 570861 570866) (-358 "FFPOLY2.spad" 561193 561210 562123 562128) (-357 "FFP.spad" 560590 560610 560909 561002) (-356 "FF.spad" 560038 560054 560271 560364) (-355 "FFNBX.spad" 558550 558570 559754 559847) (-354 "FFNBP.spad" 557063 557080 558266 558359) (-353 "FFNB.spad" 555528 555549 556744 556837) (-352 "FFINTBAS.spad" 553042 553061 555518 555523) (-351 "FFIELDC.spad" 550619 550627 552944 553037) (-350 "FFIELDC.spad" 548282 548292 550609 550614) (-349 "FFHOM.spad" 547030 547047 548272 548277) (-348 "FFF.spad" 544465 544476 547020 547025) (-347 "FFCGX.spad" 543312 543332 544181 544274) (-346 "FFCGP.spad" 542201 542221 543028 543121) (-345 "FFCG.spad" 540993 541014 541882 541975) (-344 "FFCAT.spad" 534166 534188 540832 540988) (-343 "FFCAT.spad" 527418 527442 534086 534091) (-342 "FFCAT2.spad" 527165 527205 527408 527413) (-341 "FEXPR.spad" 518882 518928 526921 526960) (-340 "FEVALAB.spad" 518590 518600 518872 518877) (-339 "FEVALAB.spad" 518083 518095 518367 518372) (-338 "FDIV.spad" 517525 517549 518073 518078) (-337 "FDIVCAT.spad" 515589 515613 517515 517520) (-336 "FDIVCAT.spad" 513651 513677 515579 515584) (-335 "FDIV2.spad" 513307 513347 513641 513646) (-334 "FCTRDATA.spad" 512315 512323 513297 513302) (-333 "FCPAK1.spad" 510882 510890 512305 512310) (-332 "FCOMP.spad" 510261 510271 510872 510877) (-331 "FC.spad" 500268 500276 510251 510256) (-330 "FAXF.spad" 493239 493253 500170 500263) (-329 "FAXF.spad" 486262 486278 493195 493200) (-328 "FARRAY.spad" 484412 484422 485445 485472) (-327 "FAMR.spad" 482548 482560 484310 484407) (-326 "FAMR.spad" 480668 480682 482432 482437) (-325 "FAMONOID.spad" 480336 480346 480622 480627) (-324 "FAMONC.spad" 478632 478644 480326 480331) (-323 "FAGROUP.spad" 478256 478266 478528 478555) (-322 "FACUTIL.spad" 476460 476477 478246 478251) (-321 "FACTFUNC.spad" 475654 475664 476450 476455) (-320 "EXPUPXS.spad" 472487 472510 473786 473935) (-319 "EXPRTUBE.spad" 469775 469783 472477 472482) (-318 "EXPRODE.spad" 466935 466951 469765 469770) (-317 "EXPR.spad" 462210 462220 462924 463331) (-316 "EXPR2UPS.spad" 458332 458345 462200 462205) (-315 "EXPR2.spad" 458037 458049 458322 458327) (-314 "EXPEXPAN.spad" 454977 455002 455609 455702) (-313 "EXIT.spad" 454648 454656 454967 454972) (-312 "EXITAST.spad" 454384 454392 454638 454643) (-311 "EVALCYC.spad" 453844 453858 454374 454379) (-310 "EVALAB.spad" 453416 453426 453834 453839) (-309 "EVALAB.spad" 452986 452998 453406 453411) (-308 "EUCDOM.spad" 450560 450568 452912 452981) (-307 "EUCDOM.spad" 448196 448206 450550 450555) (-306 "ESTOOLS.spad" 440042 440050 448186 448191) (-305 "ESTOOLS2.spad" 439645 439659 440032 440037) (-304 "ESTOOLS1.spad" 439330 439341 439635 439640) (-303 "ES.spad" 432145 432153 439320 439325) (-302 "ES.spad" 424866 424876 432043 432048) (-301 "ESCONT.spad" 421659 421667 424856 424861) (-300 "ESCONT1.spad" 421408 421420 421649 421654) (-299 "ES2.spad" 420913 420929 421398 421403) (-298 "ES1.spad" 420483 420499 420903 420908) (-297 "ERROR.spad" 417810 417818 420473 420478) (-296 "EQTBL.spad" 416282 416304 416491 416518) (-295 "EQ.spad" 411087 411097 413874 413986) (-294 "EQ2.spad" 410805 410817 411077 411082) (-293 "EP.spad" 407131 407141 410795 410800) (-292 "ENV.spad" 405793 405801 407121 407126) (-291 "ENTIRER.spad" 405461 405469 405737 405788) (-290 "EMR.spad" 404668 404709 405387 405456) (-289 "ELTAGG.spad" 402922 402941 404658 404663) (-288 "ELTAGG.spad" 401140 401161 402878 402883) (-287 "ELTAB.spad" 400589 400607 401130 401135) (-286 "ELFUTS.spad" 399976 399995 400579 400584) (-285 "ELEMFUN.spad" 399665 399673 399966 399971) (-284 "ELEMFUN.spad" 399352 399362 399655 399660) (-283 "ELAGG.spad" 397323 397333 399332 399347) (-282 "ELAGG.spad" 395231 395243 397242 397247) (-281 "ELABEXPR.spad" 394163 394171 395221 395226) (-280 "EFUPXS.spad" 390939 390969 394119 394124) (-279 "EFULS.spad" 387775 387798 390895 390900) (-278 "EFSTRUC.spad" 385790 385806 387765 387770) (-277 "EF.spad" 380566 380582 385780 385785) (-276 "EAB.spad" 378842 378850 380556 380561) (-275 "E04UCFA.spad" 378378 378386 378832 378837) (-274 "E04NAFA.spad" 377955 377963 378368 378373) (-273 "E04MBFA.spad" 377535 377543 377945 377950) (-272 "E04JAFA.spad" 377071 377079 377525 377530) (-271 "E04GCFA.spad" 376607 376615 377061 377066) (-270 "E04FDFA.spad" 376143 376151 376597 376602) (-269 "E04DGFA.spad" 375679 375687 376133 376138) (-268 "E04AGNT.spad" 371529 371537 375669 375674) (-267 "DVARCAT.spad" 368218 368228 371519 371524) (-266 "DVARCAT.spad" 364905 364917 368208 368213) (-265 "DSMP.spad" 362372 362386 362677 362804) (-264 "DROPT.spad" 356331 356339 362362 362367) (-263 "DROPT1.spad" 355996 356006 356321 356326) (-262 "DROPT0.spad" 350853 350861 355986 355991) (-261 "DRAWPT.spad" 349026 349034 350843 350848) (-260 "DRAW.spad" 341902 341915 349016 349021) (-259 "DRAWHACK.spad" 341210 341220 341892 341897) (-258 "DRAWCX.spad" 338680 338688 341200 341205) (-257 "DRAWCURV.spad" 338227 338242 338670 338675) (-256 "DRAWCFUN.spad" 327759 327767 338217 338222) (-255 "DQAGG.spad" 325937 325947 327727 327754) (-254 "DPOLCAT.spad" 321286 321302 325805 325932) (-253 "DPOLCAT.spad" 316721 316739 321242 321247) (-252 "DPMO.spad" 308947 308963 309085 309386) (-251 "DPMM.spad" 301186 301204 301311 301612) (-250 "DOMTMPLT.spad" 300846 300854 301176 301181) (-249 "DOMCTOR.spad" 300601 300609 300836 300841) (-248 "DOMAIN.spad" 299688 299696 300591 300596) (-247 "DMP.spad" 296948 296963 297518 297645) (-246 "DLP.spad" 296300 296310 296938 296943) (-245 "DLIST.spad" 294879 294889 295483 295510) (-244 "DLAGG.spad" 293296 293306 294869 294874) (-243 "DIVRING.spad" 292838 292846 293240 293291) (-242 "DIVRING.spad" 292424 292434 292828 292833) (-241 "DISPLAY.spad" 290614 290622 292414 292419) (-240 "DIRPROD.spad" 280194 280210 280834 280965) (-239 "DIRPROD2.spad" 279012 279030 280184 280189) (-238 "DIRPCAT.spad" 277956 277972 278876 279007) (-237 "DIRPCAT.spad" 276629 276647 277551 277556) (-236 "DIOSP.spad" 275454 275462 276619 276624) (-235 "DIOPS.spad" 274450 274460 275434 275449) (-234 "DIOPS.spad" 273420 273432 274406 274411) (-233 "DIFRING.spad" 272716 272724 273400 273415) (-232 "DIFRING.spad" 272020 272030 272706 272711) (-231 "DIFEXT.spad" 271191 271201 272000 272015) (-230 "DIFEXT.spad" 270279 270291 271090 271095) (-229 "DIAGG.spad" 269909 269919 270259 270274) (-228 "DIAGG.spad" 269547 269559 269899 269904) (-227 "DHMATRIX.spad" 267859 267869 269004 269031) (-226 "DFSFUN.spad" 261499 261507 267849 267854) (-225 "DFLOAT.spad" 258230 258238 261389 261494) (-224 "DFINTTLS.spad" 256461 256477 258220 258225) (-223 "DERHAM.spad" 254375 254407 256441 256456) (-222 "DEQUEUE.spad" 253699 253709 253982 254009) (-221 "DEGRED.spad" 253316 253330 253689 253694) (-220 "DEFINTRF.spad" 250853 250863 253306 253311) (-219 "DEFINTEF.spad" 249363 249379 250843 250848) (-218 "DEFAST.spad" 248731 248739 249353 249358) (-217 "DECIMAL.spad" 246837 246845 247198 247291) (-216 "DDFACT.spad" 244650 244667 246827 246832) (-215 "DBLRESP.spad" 244250 244274 244640 244645) (-214 "DBASE.spad" 242914 242924 244240 244245) (-213 "DATAARY.spad" 242376 242389 242904 242909) (-212 "D03FAFA.spad" 242204 242212 242366 242371) (-211 "D03EEFA.spad" 242024 242032 242194 242199) (-210 "D03AGNT.spad" 241110 241118 242014 242019) (-209 "D02EJFA.spad" 240572 240580 241100 241105) (-208 "D02CJFA.spad" 240050 240058 240562 240567) (-207 "D02BHFA.spad" 239540 239548 240040 240045) (-206 "D02BBFA.spad" 239030 239038 239530 239535) (-205 "D02AGNT.spad" 233844 233852 239020 239025) (-204 "D01WGTS.spad" 232163 232171 233834 233839) (-203 "D01TRNS.spad" 232140 232148 232153 232158) (-202 "D01GBFA.spad" 231662 231670 232130 232135) (-201 "D01FCFA.spad" 231184 231192 231652 231657) (-200 "D01ASFA.spad" 230652 230660 231174 231179) (-199 "D01AQFA.spad" 230098 230106 230642 230647) (-198 "D01APFA.spad" 229522 229530 230088 230093) (-197 "D01ANFA.spad" 229016 229024 229512 229517) (-196 "D01AMFA.spad" 228526 228534 229006 229011) (-195 "D01ALFA.spad" 228066 228074 228516 228521) (-194 "D01AKFA.spad" 227592 227600 228056 228061) (-193 "D01AJFA.spad" 227115 227123 227582 227587) (-192 "D01AGNT.spad" 223182 223190 227105 227110) (-191 "CYCLOTOM.spad" 222688 222696 223172 223177) (-190 "CYCLES.spad" 219544 219552 222678 222683) (-189 "CVMP.spad" 218961 218971 219534 219539) (-188 "CTRIGMNP.spad" 217461 217477 218951 218956) (-187 "CTOR.spad" 217152 217160 217451 217456) (-186 "CTORKIND.spad" 216755 216763 217142 217147) (-185 "CTORCAT.spad" 216004 216012 216745 216750) (-184 "CTORCAT.spad" 215251 215261 215994 215999) (-183 "CTORCALL.spad" 214840 214850 215241 215246) (-182 "CSTTOOLS.spad" 214085 214098 214830 214835) (-181 "CRFP.spad" 207809 207822 214075 214080) (-180 "CRCEAST.spad" 207529 207537 207799 207804) (-179 "CRAPACK.spad" 206580 206590 207519 207524) (-178 "CPMATCH.spad" 206084 206099 206505 206510) (-177 "CPIMA.spad" 205789 205808 206074 206079) (-176 "COORDSYS.spad" 200798 200808 205779 205784) (-175 "CONTOUR.spad" 200209 200217 200788 200793) (-174 "CONTFRAC.spad" 195959 195969 200111 200204) (-173 "CONDUIT.spad" 195717 195725 195949 195954) (-172 "COMRING.spad" 195391 195399 195655 195712) (-171 "COMPPROP.spad" 194909 194917 195381 195386) (-170 "COMPLPAT.spad" 194676 194691 194899 194904) (-169 "COMPLEX.spad" 188813 188823 189057 189318) (-168 "COMPLEX2.spad" 188528 188540 188803 188808) (-167 "COMPFACT.spad" 188130 188144 188518 188523) (-166 "COMPCAT.spad" 186202 186212 187864 188125) (-165 "COMPCAT.spad" 184002 184014 185666 185671) (-164 "COMMUPC.spad" 183750 183768 183992 183997) (-163 "COMMONOP.spad" 183283 183291 183740 183745) (-162 "COMM.spad" 183094 183102 183273 183278) (-161 "COMMAAST.spad" 182857 182865 183084 183089) (-160 "COMBOPC.spad" 181772 181780 182847 182852) (-159 "COMBINAT.spad" 180539 180549 181762 181767) (-158 "COMBF.spad" 177921 177937 180529 180534) (-157 "COLOR.spad" 176758 176766 177911 177916) (-156 "COLONAST.spad" 176424 176432 176748 176753) (-155 "CMPLXRT.spad" 176135 176152 176414 176419) (-154 "CLLCTAST.spad" 175797 175805 176125 176130) (-153 "CLIP.spad" 171905 171913 175787 175792) (-152 "CLIF.spad" 170560 170576 171861 171900) (-151 "CLAGG.spad" 167065 167075 170550 170555) (-150 "CLAGG.spad" 163441 163453 166928 166933) (-149 "CINTSLPE.spad" 162772 162785 163431 163436) (-148 "CHVAR.spad" 160910 160932 162762 162767) (-147 "CHARZ.spad" 160825 160833 160890 160905) (-146 "CHARPOL.spad" 160335 160345 160815 160820) (-145 "CHARNZ.spad" 160088 160096 160315 160330) (-144 "CHAR.spad" 157962 157970 160078 160083) (-143 "CFCAT.spad" 157290 157298 157952 157957) (-142 "CDEN.spad" 156486 156500 157280 157285) (-141 "CCLASS.spad" 154635 154643 155897 155936) (-140 "CATEGORY.spad" 153677 153685 154625 154630) (-139 "CATCTOR.spad" 153568 153576 153667 153672) (-138 "CATAST.spad" 153186 153194 153558 153563) (-137 "CASEAST.spad" 152900 152908 153176 153181) (-136 "CARTEN.spad" 148187 148211 152890 152895) (-135 "CARTEN2.spad" 147577 147604 148177 148182) (-134 "CARD.spad" 144872 144880 147551 147572) (-133 "CAPSLAST.spad" 144646 144654 144862 144867) (-132 "CACHSET.spad" 144270 144278 144636 144641) (-131 "CABMON.spad" 143825 143833 144260 144265) (-130 "BYTEORD.spad" 143500 143508 143815 143820) (-129 "BYTE.spad" 142927 142935 143490 143495) (-128 "BYTEBUF.spad" 140786 140794 142096 142123) (-127 "BTREE.spad" 139859 139869 140393 140420) (-126 "BTOURN.spad" 138864 138874 139466 139493) (-125 "BTCAT.spad" 138256 138266 138832 138859) (-124 "BTCAT.spad" 137668 137680 138246 138251) (-123 "BTAGG.spad" 136796 136804 137636 137663) (-122 "BTAGG.spad" 135944 135954 136786 136791) (-121 "BSTREE.spad" 134685 134695 135551 135578) (-120 "BRILL.spad" 132882 132893 134675 134680) (-119 "BRAGG.spad" 131822 131832 132872 132877) (-118 "BRAGG.spad" 130726 130738 131778 131783) (-117 "BPADICRT.spad" 128707 128719 128962 129055) (-116 "BPADIC.spad" 128371 128383 128633 128702) (-115 "BOUNDZRO.spad" 128027 128044 128361 128366) (-114 "BOP.spad" 123209 123217 128017 128022) (-113 "BOP1.spad" 120675 120685 123199 123204) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2264268 2264273 2264278 2264283) (-2 NIL 2264248 2264253 2264258 2264263) (-1 NIL 2264228 2264233 2264238 2264243) (0 NIL 2264208 2264213 2264218 2264223) (-1293 "ZMOD.spad" 2264017 2264030 2264146 2264203) (-1292 "ZLINDEP.spad" 2263083 2263094 2264007 2264012) (-1291 "ZDSOLVE.spad" 2253028 2253050 2263073 2263078) (-1290 "YSTREAM.spad" 2252523 2252534 2253018 2253023) (-1289 "XRPOLY.spad" 2251743 2251763 2252379 2252448) (-1288 "XPR.spad" 2249538 2249551 2251461 2251560) (-1287 "XPOLY.spad" 2249093 2249104 2249394 2249463) (-1286 "XPOLYC.spad" 2248412 2248428 2249019 2249088) (-1285 "XPBWPOLY.spad" 2246849 2246869 2248192 2248261) (-1284 "XF.spad" 2245312 2245327 2246751 2246844) (-1283 "XF.spad" 2243755 2243772 2245196 2245201) (-1282 "XFALG.spad" 2240803 2240819 2243681 2243750) (-1281 "XEXPPKG.spad" 2240054 2240080 2240793 2240798) (-1280 "XDPOLY.spad" 2239668 2239684 2239910 2239979) (-1279 "XALG.spad" 2239328 2239339 2239624 2239663) (-1278 "WUTSET.spad" 2235167 2235184 2238974 2239001) (-1277 "WP.spad" 2234366 2234410 2235025 2235092) (-1276 "WHILEAST.spad" 2234164 2234173 2234356 2234361) (-1275 "WHEREAST.spad" 2233835 2233844 2234154 2234159) (-1274 "WFFINTBS.spad" 2231498 2231520 2233825 2233830) (-1273 "WEIER.spad" 2229720 2229731 2231488 2231493) (-1272 "VSPACE.spad" 2229393 2229404 2229688 2229715) (-1271 "VSPACE.spad" 2229086 2229099 2229383 2229388) (-1270 "VOID.spad" 2228763 2228772 2229076 2229081) (-1269 "VIEW.spad" 2226443 2226452 2228753 2228758) (-1268 "VIEWDEF.spad" 2221644 2221653 2226433 2226438) (-1267 "VIEW3D.spad" 2205605 2205614 2221634 2221639) (-1266 "VIEW2D.spad" 2193496 2193505 2205595 2205600) (-1265 "VECTOR.spad" 2192170 2192181 2192421 2192448) (-1264 "VECTOR2.spad" 2190809 2190822 2192160 2192165) (-1263 "VECTCAT.spad" 2188713 2188724 2190777 2190804) (-1262 "VECTCAT.spad" 2186424 2186437 2188490 2188495) (-1261 "VARIABLE.spad" 2186204 2186219 2186414 2186419) (-1260 "UTYPE.spad" 2185848 2185857 2186194 2186199) (-1259 "UTSODETL.spad" 2185143 2185167 2185804 2185809) (-1258 "UTSODE.spad" 2183359 2183379 2185133 2185138) (-1257 "UTS.spad" 2178172 2178200 2181826 2181923) (-1256 "UTSCAT.spad" 2175651 2175667 2178070 2178167) (-1255 "UTSCAT.spad" 2172774 2172792 2175195 2175200) (-1254 "UTS2.spad" 2172369 2172404 2172764 2172769) (-1253 "URAGG.spad" 2167042 2167053 2172359 2172364) (-1252 "URAGG.spad" 2161679 2161692 2166998 2167003) (-1251 "UPXSSING.spad" 2159324 2159350 2160760 2160893) (-1250 "UPXS.spad" 2156478 2156506 2157456 2157605) (-1249 "UPXSCONS.spad" 2154237 2154257 2154610 2154759) (-1248 "UPXSCCA.spad" 2152808 2152828 2154083 2154232) (-1247 "UPXSCCA.spad" 2151521 2151543 2152798 2152803) (-1246 "UPXSCAT.spad" 2150110 2150126 2151367 2151516) (-1245 "UPXS2.spad" 2149653 2149706 2150100 2150105) (-1244 "UPSQFREE.spad" 2148067 2148081 2149643 2149648) (-1243 "UPSCAT.spad" 2145678 2145702 2147965 2148062) (-1242 "UPSCAT.spad" 2142995 2143021 2145284 2145289) (-1241 "UPOLYC.spad" 2138035 2138046 2142837 2142990) (-1240 "UPOLYC.spad" 2132967 2132980 2137771 2137776) (-1239 "UPOLYC2.spad" 2132438 2132457 2132957 2132962) (-1238 "UP.spad" 2129637 2129652 2130024 2130177) (-1237 "UPMP.spad" 2128537 2128550 2129627 2129632) (-1236 "UPDIVP.spad" 2128102 2128116 2128527 2128532) (-1235 "UPDECOMP.spad" 2126347 2126361 2128092 2128097) (-1234 "UPCDEN.spad" 2125556 2125572 2126337 2126342) (-1233 "UP2.spad" 2124920 2124941 2125546 2125551) (-1232 "UNISEG.spad" 2124273 2124284 2124839 2124844) (-1231 "UNISEG2.spad" 2123770 2123783 2124229 2124234) (-1230 "UNIFACT.spad" 2122873 2122885 2123760 2123765) (-1229 "ULS.spad" 2113431 2113459 2114518 2114947) (-1228 "ULSCONS.spad" 2105827 2105847 2106197 2106346) (-1227 "ULSCCAT.spad" 2103564 2103584 2105673 2105822) (-1226 "ULSCCAT.spad" 2101409 2101431 2103520 2103525) (-1225 "ULSCAT.spad" 2099641 2099657 2101255 2101404) (-1224 "ULS2.spad" 2099155 2099208 2099631 2099636) (-1223 "UINT8.spad" 2099032 2099041 2099145 2099150) (-1222 "UINT64.spad" 2098908 2098917 2099022 2099027) (-1221 "UINT32.spad" 2098784 2098793 2098898 2098903) (-1220 "UINT16.spad" 2098660 2098669 2098774 2098779) (-1219 "UFD.spad" 2097725 2097734 2098586 2098655) (-1218 "UFD.spad" 2096852 2096863 2097715 2097720) (-1217 "UDVO.spad" 2095733 2095742 2096842 2096847) (-1216 "UDPO.spad" 2093226 2093237 2095689 2095694) (-1215 "TYPE.spad" 2093158 2093167 2093216 2093221) (-1214 "TYPEAST.spad" 2093077 2093086 2093148 2093153) (-1213 "TWOFACT.spad" 2091729 2091744 2093067 2093072) (-1212 "TUPLE.spad" 2091215 2091226 2091628 2091633) (-1211 "TUBETOOL.spad" 2088082 2088091 2091205 2091210) (-1210 "TUBE.spad" 2086729 2086746 2088072 2088077) (-1209 "TS.spad" 2085328 2085344 2086294 2086391) (-1208 "TSETCAT.spad" 2072455 2072472 2085296 2085323) (-1207 "TSETCAT.spad" 2059568 2059587 2072411 2072416) (-1206 "TRMANIP.spad" 2053934 2053951 2059274 2059279) (-1205 "TRIMAT.spad" 2052897 2052922 2053924 2053929) (-1204 "TRIGMNIP.spad" 2051424 2051441 2052887 2052892) (-1203 "TRIGCAT.spad" 2050936 2050945 2051414 2051419) (-1202 "TRIGCAT.spad" 2050446 2050457 2050926 2050931) (-1201 "TREE.spad" 2049021 2049032 2050053 2050080) (-1200 "TRANFUN.spad" 2048860 2048869 2049011 2049016) (-1199 "TRANFUN.spad" 2048697 2048708 2048850 2048855) (-1198 "TOPSP.spad" 2048371 2048380 2048687 2048692) (-1197 "TOOLSIGN.spad" 2048034 2048045 2048361 2048366) (-1196 "TEXTFILE.spad" 2046595 2046604 2048024 2048029) (-1195 "TEX.spad" 2043741 2043750 2046585 2046590) (-1194 "TEX1.spad" 2043297 2043308 2043731 2043736) (-1193 "TEMUTL.spad" 2042852 2042861 2043287 2043292) (-1192 "TBCMPPK.spad" 2040945 2040968 2042842 2042847) (-1191 "TBAGG.spad" 2039995 2040018 2040925 2040940) (-1190 "TBAGG.spad" 2039053 2039078 2039985 2039990) (-1189 "TANEXP.spad" 2038461 2038472 2039043 2039048) (-1188 "TABLE.spad" 2036872 2036895 2037142 2037169) (-1187 "TABLEAU.spad" 2036353 2036364 2036862 2036867) (-1186 "TABLBUMP.spad" 2033156 2033167 2036343 2036348) (-1185 "SYSTEM.spad" 2032384 2032393 2033146 2033151) (-1184 "SYSSOLP.spad" 2029867 2029878 2032374 2032379) (-1183 "SYSPTR.spad" 2029766 2029775 2029857 2029862) (-1182 "SYSNNI.spad" 2028948 2028959 2029756 2029761) (-1181 "SYSINT.spad" 2028352 2028363 2028938 2028943) (-1180 "SYNTAX.spad" 2024558 2024567 2028342 2028347) (-1179 "SYMTAB.spad" 2022626 2022635 2024548 2024553) (-1178 "SYMS.spad" 2018649 2018658 2022616 2022621) (-1177 "SYMPOLY.spad" 2017656 2017667 2017738 2017865) (-1176 "SYMFUNC.spad" 2017157 2017168 2017646 2017651) (-1175 "SYMBOL.spad" 2014660 2014669 2017147 2017152) (-1174 "SWITCH.spad" 2011431 2011440 2014650 2014655) (-1173 "SUTS.spad" 2008336 2008364 2009898 2009995) (-1172 "SUPXS.spad" 2005477 2005505 2006468 2006617) (-1171 "SUP.spad" 2002290 2002301 2003063 2003216) (-1170 "SUPFRACF.spad" 2001395 2001413 2002280 2002285) (-1169 "SUP2.spad" 2000787 2000800 2001385 2001390) (-1168 "SUMRF.spad" 1999761 1999772 2000777 2000782) (-1167 "SUMFS.spad" 1999398 1999415 1999751 1999756) (-1166 "SULS.spad" 1989943 1989971 1991043 1991472) (-1165 "SUCHTAST.spad" 1989712 1989721 1989933 1989938) (-1164 "SUCH.spad" 1989394 1989409 1989702 1989707) (-1163 "SUBSPACE.spad" 1981509 1981524 1989384 1989389) (-1162 "SUBRESP.spad" 1980679 1980693 1981465 1981470) (-1161 "STTF.spad" 1976778 1976794 1980669 1980674) (-1160 "STTFNC.spad" 1973246 1973262 1976768 1976773) (-1159 "STTAYLOR.spad" 1965900 1965911 1973127 1973132) (-1158 "STRTBL.spad" 1964405 1964422 1964554 1964581) (-1157 "STRING.spad" 1963814 1963823 1963828 1963855) (-1156 "STRICAT.spad" 1963602 1963611 1963782 1963809) (-1155 "STREAM.spad" 1960520 1960531 1963127 1963142) (-1154 "STREAM3.spad" 1960093 1960108 1960510 1960515) (-1153 "STREAM2.spad" 1959221 1959234 1960083 1960088) (-1152 "STREAM1.spad" 1958927 1958938 1959211 1959216) (-1151 "STINPROD.spad" 1957863 1957879 1958917 1958922) (-1150 "STEP.spad" 1957064 1957073 1957853 1957858) (-1149 "STBL.spad" 1955590 1955618 1955757 1955772) (-1148 "STAGG.spad" 1954665 1954676 1955580 1955585) (-1147 "STAGG.spad" 1953738 1953751 1954655 1954660) (-1146 "STACK.spad" 1953095 1953106 1953345 1953372) (-1145 "SREGSET.spad" 1950799 1950816 1952741 1952768) (-1144 "SRDCMPK.spad" 1949360 1949380 1950789 1950794) (-1143 "SRAGG.spad" 1944503 1944512 1949328 1949355) (-1142 "SRAGG.spad" 1939666 1939677 1944493 1944498) (-1141 "SQMATRIX.spad" 1937282 1937300 1938198 1938285) (-1140 "SPLTREE.spad" 1931834 1931847 1936718 1936745) (-1139 "SPLNODE.spad" 1928422 1928435 1931824 1931829) (-1138 "SPFCAT.spad" 1927231 1927240 1928412 1928417) (-1137 "SPECOUT.spad" 1925783 1925792 1927221 1927226) (-1136 "SPADXPT.spad" 1917922 1917931 1925773 1925778) (-1135 "spad-parser.spad" 1917387 1917396 1917912 1917917) (-1134 "SPADAST.spad" 1917088 1917097 1917377 1917382) (-1133 "SPACEC.spad" 1901287 1901298 1917078 1917083) (-1132 "SPACE3.spad" 1901063 1901074 1901277 1901282) (-1131 "SORTPAK.spad" 1900612 1900625 1901019 1901024) (-1130 "SOLVETRA.spad" 1898375 1898386 1900602 1900607) (-1129 "SOLVESER.spad" 1896903 1896914 1898365 1898370) (-1128 "SOLVERAD.spad" 1892929 1892940 1896893 1896898) (-1127 "SOLVEFOR.spad" 1891391 1891409 1892919 1892924) (-1126 "SNTSCAT.spad" 1890991 1891008 1891359 1891386) (-1125 "SMTS.spad" 1889263 1889289 1890556 1890653) (-1124 "SMP.spad" 1886738 1886758 1887128 1887255) (-1123 "SMITH.spad" 1885583 1885608 1886728 1886733) (-1122 "SMATCAT.spad" 1883693 1883723 1885527 1885578) (-1121 "SMATCAT.spad" 1881735 1881767 1883571 1883576) (-1120 "SKAGG.spad" 1880698 1880709 1881703 1881730) (-1119 "SINT.spad" 1879530 1879539 1880564 1880693) (-1118 "SIMPAN.spad" 1879258 1879267 1879520 1879525) (-1117 "SIG.spad" 1878588 1878597 1879248 1879253) (-1116 "SIGNRF.spad" 1877706 1877717 1878578 1878583) (-1115 "SIGNEF.spad" 1876985 1877002 1877696 1877701) (-1114 "SIGAST.spad" 1876370 1876379 1876975 1876980) (-1113 "SHP.spad" 1874298 1874313 1876326 1876331) (-1112 "SHDP.spad" 1864009 1864036 1864518 1864649) (-1111 "SGROUP.spad" 1863617 1863626 1863999 1864004) (-1110 "SGROUP.spad" 1863223 1863234 1863607 1863612) (-1109 "SGCF.spad" 1856386 1856395 1863213 1863218) (-1108 "SFRTCAT.spad" 1855316 1855333 1856354 1856381) (-1107 "SFRGCD.spad" 1854379 1854399 1855306 1855311) (-1106 "SFQCMPK.spad" 1849016 1849036 1854369 1854374) (-1105 "SFORT.spad" 1848455 1848469 1849006 1849011) (-1104 "SEXOF.spad" 1848298 1848338 1848445 1848450) (-1103 "SEX.spad" 1848190 1848199 1848288 1848293) (-1102 "SEXCAT.spad" 1845791 1845831 1848180 1848185) (-1101 "SET.spad" 1844115 1844126 1845212 1845251) (-1100 "SETMN.spad" 1842565 1842582 1844105 1844110) (-1099 "SETCAT.spad" 1841887 1841896 1842555 1842560) (-1098 "SETCAT.spad" 1841207 1841218 1841877 1841882) (-1097 "SETAGG.spad" 1837756 1837767 1841187 1841202) (-1096 "SETAGG.spad" 1834313 1834326 1837746 1837751) (-1095 "SEQAST.spad" 1834016 1834025 1834303 1834308) (-1094 "SEGXCAT.spad" 1833172 1833185 1834006 1834011) (-1093 "SEG.spad" 1832985 1832996 1833091 1833096) (-1092 "SEGCAT.spad" 1831910 1831921 1832975 1832980) (-1091 "SEGBIND.spad" 1830984 1830995 1831865 1831870) (-1090 "SEGBIND2.spad" 1830682 1830695 1830974 1830979) (-1089 "SEGAST.spad" 1830396 1830405 1830672 1830677) (-1088 "SEG2.spad" 1829831 1829844 1830352 1830357) (-1087 "SDVAR.spad" 1829107 1829118 1829821 1829826) (-1086 "SDPOL.spad" 1826533 1826544 1826824 1826951) (-1085 "SCPKG.spad" 1824622 1824633 1826523 1826528) (-1084 "SCOPE.spad" 1823775 1823784 1824612 1824617) (-1083 "SCACHE.spad" 1822471 1822482 1823765 1823770) (-1082 "SASTCAT.spad" 1822380 1822389 1822461 1822466) (-1081 "SAOS.spad" 1822252 1822261 1822370 1822375) (-1080 "SAERFFC.spad" 1821965 1821985 1822242 1822247) (-1079 "SAE.spad" 1820140 1820156 1820751 1820886) (-1078 "SAEFACT.spad" 1819841 1819861 1820130 1820135) (-1077 "RURPK.spad" 1817500 1817516 1819831 1819836) (-1076 "RULESET.spad" 1816953 1816977 1817490 1817495) (-1075 "RULE.spad" 1815193 1815217 1816943 1816948) (-1074 "RULECOLD.spad" 1815045 1815058 1815183 1815188) (-1073 "RTVALUE.spad" 1814780 1814789 1815035 1815040) (-1072 "RSTRCAST.spad" 1814497 1814506 1814770 1814775) (-1071 "RSETGCD.spad" 1810875 1810895 1814487 1814492) (-1070 "RSETCAT.spad" 1800811 1800828 1810843 1810870) (-1069 "RSETCAT.spad" 1790767 1790786 1800801 1800806) (-1068 "RSDCMPK.spad" 1789219 1789239 1790757 1790762) (-1067 "RRCC.spad" 1787603 1787633 1789209 1789214) (-1066 "RRCC.spad" 1785985 1786017 1787593 1787598) (-1065 "RPTAST.spad" 1785687 1785696 1785975 1785980) (-1064 "RPOLCAT.spad" 1765047 1765062 1785555 1785682) (-1063 "RPOLCAT.spad" 1744121 1744138 1764631 1764636) (-1062 "ROUTINE.spad" 1740004 1740013 1742768 1742795) (-1061 "ROMAN.spad" 1739332 1739341 1739870 1739999) (-1060 "ROIRC.spad" 1738412 1738444 1739322 1739327) (-1059 "RNS.spad" 1737315 1737324 1738314 1738407) (-1058 "RNS.spad" 1736304 1736315 1737305 1737310) (-1057 "RNG.spad" 1736039 1736048 1736294 1736299) (-1056 "RMODULE.spad" 1735804 1735815 1736029 1736034) (-1055 "RMCAT2.spad" 1735224 1735281 1735794 1735799) (-1054 "RMATRIX.spad" 1734048 1734067 1734391 1734430) (-1053 "RMATCAT.spad" 1729627 1729658 1734004 1734043) (-1052 "RMATCAT.spad" 1725096 1725129 1729475 1729480) (-1051 "RLINSET.spad" 1724490 1724501 1725086 1725091) (-1050 "RINTERP.spad" 1724378 1724398 1724480 1724485) (-1049 "RING.spad" 1723848 1723857 1724358 1724373) (-1048 "RING.spad" 1723326 1723337 1723838 1723843) (-1047 "RIDIST.spad" 1722718 1722727 1723316 1723321) (-1046 "RGCHAIN.spad" 1721301 1721317 1722203 1722230) (-1045 "RGBCSPC.spad" 1721082 1721094 1721291 1721296) (-1044 "RGBCMDL.spad" 1720612 1720624 1721072 1721077) (-1043 "RF.spad" 1718254 1718265 1720602 1720607) (-1042 "RFFACTOR.spad" 1717716 1717727 1718244 1718249) (-1041 "RFFACT.spad" 1717451 1717463 1717706 1717711) (-1040 "RFDIST.spad" 1716447 1716456 1717441 1717446) (-1039 "RETSOL.spad" 1715866 1715879 1716437 1716442) (-1038 "RETRACT.spad" 1715294 1715305 1715856 1715861) (-1037 "RETRACT.spad" 1714720 1714733 1715284 1715289) (-1036 "RETAST.spad" 1714532 1714541 1714710 1714715) (-1035 "RESULT.spad" 1712592 1712601 1713179 1713206) (-1034 "RESRING.spad" 1711939 1711986 1712530 1712587) (-1033 "RESLATC.spad" 1711263 1711274 1711929 1711934) (-1032 "REPSQ.spad" 1710994 1711005 1711253 1711258) (-1031 "REP.spad" 1708548 1708557 1710984 1710989) (-1030 "REPDB.spad" 1708255 1708266 1708538 1708543) (-1029 "REP2.spad" 1697913 1697924 1708097 1708102) (-1028 "REP1.spad" 1692109 1692120 1697863 1697868) (-1027 "REGSET.spad" 1689906 1689923 1691755 1691782) (-1026 "REF.spad" 1689241 1689252 1689861 1689866) (-1025 "REDORDER.spad" 1688447 1688464 1689231 1689236) (-1024 "RECLOS.spad" 1687230 1687250 1687934 1688027) (-1023 "REALSOLV.spad" 1686370 1686379 1687220 1687225) (-1022 "REAL.spad" 1686242 1686251 1686360 1686365) (-1021 "REAL0Q.spad" 1683540 1683555 1686232 1686237) (-1020 "REAL0.spad" 1680384 1680399 1683530 1683535) (-1019 "RDUCEAST.spad" 1680105 1680114 1680374 1680379) (-1018 "RDIV.spad" 1679760 1679785 1680095 1680100) (-1017 "RDIST.spad" 1679327 1679338 1679750 1679755) (-1016 "RDETRS.spad" 1678191 1678209 1679317 1679322) (-1015 "RDETR.spad" 1676330 1676348 1678181 1678186) (-1014 "RDEEFS.spad" 1675429 1675446 1676320 1676325) (-1013 "RDEEF.spad" 1674439 1674456 1675419 1675424) (-1012 "RCFIELD.spad" 1671625 1671634 1674341 1674434) (-1011 "RCFIELD.spad" 1668897 1668908 1671615 1671620) (-1010 "RCAGG.spad" 1666825 1666836 1668887 1668892) (-1009 "RCAGG.spad" 1664680 1664693 1666744 1666749) (-1008 "RATRET.spad" 1664040 1664051 1664670 1664675) (-1007 "RATFACT.spad" 1663732 1663744 1664030 1664035) (-1006 "RANDSRC.spad" 1663051 1663060 1663722 1663727) (-1005 "RADUTIL.spad" 1662807 1662816 1663041 1663046) (-1004 "RADIX.spad" 1659728 1659742 1661274 1661367) (-1003 "RADFF.spad" 1658141 1658178 1658260 1658416) (-1002 "RADCAT.spad" 1657736 1657745 1658131 1658136) (-1001 "RADCAT.spad" 1657329 1657340 1657726 1657731) (-1000 "QUEUE.spad" 1656677 1656688 1656936 1656963) (-999 "QUAT.spad" 1655259 1655269 1655601 1655666) (-998 "QUATCT2.spad" 1654880 1654898 1655249 1655254) (-997 "QUATCAT.spad" 1653051 1653061 1654810 1654875) (-996 "QUATCAT.spad" 1650973 1650985 1652734 1652739) (-995 "QUAGG.spad" 1649801 1649811 1650941 1650968) (-994 "QQUTAST.spad" 1649570 1649578 1649791 1649796) (-993 "QFORM.spad" 1649035 1649049 1649560 1649565) (-992 "QFCAT.spad" 1647738 1647748 1648937 1649030) (-991 "QFCAT.spad" 1646032 1646044 1647233 1647238) (-990 "QFCAT2.spad" 1645725 1645741 1646022 1646027) (-989 "QEQUAT.spad" 1645284 1645292 1645715 1645720) (-988 "QCMPACK.spad" 1640031 1640050 1645274 1645279) (-987 "QALGSET.spad" 1636110 1636142 1639945 1639950) (-986 "QALGSET2.spad" 1634106 1634124 1636100 1636105) (-985 "PWFFINTB.spad" 1631522 1631543 1634096 1634101) (-984 "PUSHVAR.spad" 1630861 1630880 1631512 1631517) (-983 "PTRANFN.spad" 1626989 1626999 1630851 1630856) (-982 "PTPACK.spad" 1624077 1624087 1626979 1626984) (-981 "PTFUNC2.spad" 1623900 1623914 1624067 1624072) (-980 "PTCAT.spad" 1623155 1623165 1623868 1623895) (-979 "PSQFR.spad" 1622462 1622486 1623145 1623150) (-978 "PSEUDLIN.spad" 1621348 1621358 1622452 1622457) (-977 "PSETPK.spad" 1606781 1606797 1621226 1621231) (-976 "PSETCAT.spad" 1600701 1600724 1606761 1606776) (-975 "PSETCAT.spad" 1594595 1594620 1600657 1600662) (-974 "PSCURVE.spad" 1593578 1593586 1594585 1594590) (-973 "PSCAT.spad" 1592361 1592390 1593476 1593573) (-972 "PSCAT.spad" 1591234 1591265 1592351 1592356) (-971 "PRTITION.spad" 1590195 1590203 1591224 1591229) (-970 "PRTDAST.spad" 1589914 1589922 1590185 1590190) (-969 "PRS.spad" 1579476 1579493 1589870 1589875) (-968 "PRQAGG.spad" 1578911 1578921 1579444 1579471) (-967 "PROPLOG.spad" 1578210 1578218 1578901 1578906) (-966 "PROPFRML.spad" 1577026 1577037 1578200 1578205) (-965 "PROPERTY.spad" 1576514 1576522 1577016 1577021) (-964 "PRODUCT.spad" 1574196 1574208 1574480 1574535) (-963 "PR.spad" 1572588 1572600 1573287 1573414) (-962 "PRINT.spad" 1572340 1572348 1572578 1572583) (-961 "PRIMES.spad" 1570593 1570603 1572330 1572335) (-960 "PRIMELT.spad" 1568674 1568688 1570583 1570588) (-959 "PRIMCAT.spad" 1568301 1568309 1568664 1568669) (-958 "PRIMARR.spad" 1567306 1567316 1567484 1567511) (-957 "PRIMARR2.spad" 1566073 1566085 1567296 1567301) (-956 "PREASSOC.spad" 1565455 1565467 1566063 1566068) (-955 "PPCURVE.spad" 1564592 1564600 1565445 1565450) (-954 "PORTNUM.spad" 1564367 1564375 1564582 1564587) (-953 "POLYROOT.spad" 1563216 1563238 1564323 1564328) (-952 "POLY.spad" 1560551 1560561 1561066 1561193) (-951 "POLYLIFT.spad" 1559816 1559839 1560541 1560546) (-950 "POLYCATQ.spad" 1557934 1557956 1559806 1559811) (-949 "POLYCAT.spad" 1551404 1551425 1557802 1557929) (-948 "POLYCAT.spad" 1544212 1544235 1550612 1550617) (-947 "POLY2UP.spad" 1543664 1543678 1544202 1544207) (-946 "POLY2.spad" 1543261 1543273 1543654 1543659) (-945 "POLUTIL.spad" 1542202 1542231 1543217 1543222) (-944 "POLTOPOL.spad" 1540950 1540965 1542192 1542197) (-943 "POINT.spad" 1539788 1539798 1539875 1539902) (-942 "PNTHEORY.spad" 1536490 1536498 1539778 1539783) (-941 "PMTOOLS.spad" 1535265 1535279 1536480 1536485) (-940 "PMSYM.spad" 1534814 1534824 1535255 1535260) (-939 "PMQFCAT.spad" 1534405 1534419 1534804 1534809) (-938 "PMPRED.spad" 1533884 1533898 1534395 1534400) (-937 "PMPREDFS.spad" 1533338 1533360 1533874 1533879) (-936 "PMPLCAT.spad" 1532418 1532436 1533270 1533275) (-935 "PMLSAGG.spad" 1532003 1532017 1532408 1532413) (-934 "PMKERNEL.spad" 1531582 1531594 1531993 1531998) (-933 "PMINS.spad" 1531162 1531172 1531572 1531577) (-932 "PMFS.spad" 1530739 1530757 1531152 1531157) (-931 "PMDOWN.spad" 1530029 1530043 1530729 1530734) (-930 "PMASS.spad" 1529039 1529047 1530019 1530024) (-929 "PMASSFS.spad" 1528006 1528022 1529029 1529034) (-928 "PLOTTOOL.spad" 1527786 1527794 1527996 1528001) (-927 "PLOT.spad" 1522709 1522717 1527776 1527781) (-926 "PLOT3D.spad" 1519173 1519181 1522699 1522704) (-925 "PLOT1.spad" 1518330 1518340 1519163 1519168) (-924 "PLEQN.spad" 1505620 1505647 1518320 1518325) (-923 "PINTERP.spad" 1505242 1505261 1505610 1505615) (-922 "PINTERPA.spad" 1505026 1505042 1505232 1505237) (-921 "PI.spad" 1504635 1504643 1505000 1505021) (-920 "PID.spad" 1503605 1503613 1504561 1504630) (-919 "PICOERCE.spad" 1503262 1503272 1503595 1503600) (-918 "PGROEB.spad" 1501863 1501877 1503252 1503257) (-917 "PGE.spad" 1493480 1493488 1501853 1501858) (-916 "PGCD.spad" 1492370 1492387 1493470 1493475) (-915 "PFRPAC.spad" 1491519 1491529 1492360 1492365) (-914 "PFR.spad" 1488182 1488192 1491421 1491514) (-913 "PFOTOOLS.spad" 1487440 1487456 1488172 1488177) (-912 "PFOQ.spad" 1486810 1486828 1487430 1487435) (-911 "PFO.spad" 1486229 1486256 1486800 1486805) (-910 "PF.spad" 1485803 1485815 1486034 1486127) (-909 "PFECAT.spad" 1483485 1483493 1485729 1485798) (-908 "PFECAT.spad" 1481195 1481205 1483441 1483446) (-907 "PFBRU.spad" 1479083 1479095 1481185 1481190) (-906 "PFBR.spad" 1476643 1476666 1479073 1479078) (-905 "PERM.spad" 1472328 1472338 1476473 1476488) (-904 "PERMGRP.spad" 1467090 1467100 1472318 1472323) (-903 "PERMCAT.spad" 1465648 1465658 1467070 1467085) (-902 "PERMAN.spad" 1464180 1464194 1465638 1465643) (-901 "PENDTREE.spad" 1463521 1463531 1463809 1463814) (-900 "PDRING.spad" 1462072 1462082 1463501 1463516) (-899 "PDRING.spad" 1460631 1460643 1462062 1462067) (-898 "PDEPROB.spad" 1459646 1459654 1460621 1460626) (-897 "PDEPACK.spad" 1453686 1453694 1459636 1459641) (-896 "PDECOMP.spad" 1453156 1453173 1453676 1453681) (-895 "PDECAT.spad" 1451512 1451520 1453146 1453151) (-894 "PCOMP.spad" 1451365 1451378 1451502 1451507) (-893 "PBWLB.spad" 1449953 1449970 1451355 1451360) (-892 "PATTERN.spad" 1444492 1444502 1449943 1449948) (-891 "PATTERN2.spad" 1444230 1444242 1444482 1444487) (-890 "PATTERN1.spad" 1442566 1442582 1444220 1444225) (-889 "PATRES.spad" 1440141 1440153 1442556 1442561) (-888 "PATRES2.spad" 1439813 1439827 1440131 1440136) (-887 "PATMATCH.spad" 1438010 1438041 1439521 1439526) (-886 "PATMAB.spad" 1437439 1437449 1438000 1438005) (-885 "PATLRES.spad" 1436525 1436539 1437429 1437434) (-884 "PATAB.spad" 1436289 1436299 1436515 1436520) (-883 "PARTPERM.spad" 1433689 1433697 1436279 1436284) (-882 "PARSURF.spad" 1433123 1433151 1433679 1433684) (-881 "PARSU2.spad" 1432920 1432936 1433113 1433118) (-880 "script-parser.spad" 1432440 1432448 1432910 1432915) (-879 "PARSCURV.spad" 1431874 1431902 1432430 1432435) (-878 "PARSC2.spad" 1431665 1431681 1431864 1431869) (-877 "PARPCURV.spad" 1431127 1431155 1431655 1431660) (-876 "PARPC2.spad" 1430918 1430934 1431117 1431122) (-875 "PAN2EXPR.spad" 1430330 1430338 1430908 1430913) (-874 "PALETTE.spad" 1429300 1429308 1430320 1430325) (-873 "PAIR.spad" 1428287 1428300 1428888 1428893) (-872 "PADICRC.spad" 1425621 1425639 1426792 1426885) (-871 "PADICRAT.spad" 1423636 1423648 1423857 1423950) (-870 "PADIC.spad" 1423331 1423343 1423562 1423631) (-869 "PADICCT.spad" 1421880 1421892 1423257 1423326) (-868 "PADEPAC.spad" 1420569 1420588 1421870 1421875) (-867 "PADE.spad" 1419321 1419337 1420559 1420564) (-866 "OWP.spad" 1418561 1418591 1419179 1419246) (-865 "OVERSET.spad" 1418134 1418142 1418551 1418556) (-864 "OVAR.spad" 1417915 1417938 1418124 1418129) (-863 "OUT.spad" 1417001 1417009 1417905 1417910) (-862 "OUTFORM.spad" 1406393 1406401 1416991 1416996) (-861 "OUTBFILE.spad" 1405811 1405819 1406383 1406388) (-860 "OUTBCON.spad" 1404817 1404825 1405801 1405806) (-859 "OUTBCON.spad" 1403821 1403831 1404807 1404812) (-858 "OSI.spad" 1403296 1403304 1403811 1403816) (-857 "OSGROUP.spad" 1403214 1403222 1403286 1403291) (-856 "ORTHPOL.spad" 1401699 1401709 1403131 1403136) (-855 "OREUP.spad" 1401152 1401180 1401379 1401418) (-854 "ORESUP.spad" 1400453 1400477 1400832 1400871) (-853 "OREPCTO.spad" 1398310 1398322 1400373 1400378) (-852 "OREPCAT.spad" 1392457 1392467 1398266 1398305) (-851 "OREPCAT.spad" 1386494 1386506 1392305 1392310) (-850 "ORDSET.spad" 1385666 1385674 1386484 1386489) (-849 "ORDSET.spad" 1384836 1384846 1385656 1385661) (-848 "ORDRING.spad" 1384226 1384234 1384816 1384831) (-847 "ORDRING.spad" 1383624 1383634 1384216 1384221) (-846 "ORDMON.spad" 1383479 1383487 1383614 1383619) (-845 "ORDFUNS.spad" 1382611 1382627 1383469 1383474) (-844 "ORDFIN.spad" 1382431 1382439 1382601 1382606) (-843 "ORDCOMP.spad" 1380896 1380906 1381978 1382007) (-842 "ORDCOMP2.spad" 1380189 1380201 1380886 1380891) (-841 "OPTPROB.spad" 1378827 1378835 1380179 1380184) (-840 "OPTPACK.spad" 1371236 1371244 1378817 1378822) (-839 "OPTCAT.spad" 1368915 1368923 1371226 1371231) (-838 "OPSIG.spad" 1368569 1368577 1368905 1368910) (-837 "OPQUERY.spad" 1368118 1368126 1368559 1368564) (-836 "OP.spad" 1367860 1367870 1367940 1368007) (-835 "OPERCAT.spad" 1367326 1367336 1367850 1367855) (-834 "OPERCAT.spad" 1366790 1366802 1367316 1367321) (-833 "ONECOMP.spad" 1365535 1365545 1366337 1366366) (-832 "ONECOMP2.spad" 1364959 1364971 1365525 1365530) (-831 "OMSERVER.spad" 1363965 1363973 1364949 1364954) (-830 "OMSAGG.spad" 1363753 1363763 1363921 1363960) (-829 "OMPKG.spad" 1362369 1362377 1363743 1363748) (-828 "OM.spad" 1361342 1361350 1362359 1362364) (-827 "OMLO.spad" 1360767 1360779 1361228 1361267) (-826 "OMEXPR.spad" 1360601 1360611 1360757 1360762) (-825 "OMERR.spad" 1360146 1360154 1360591 1360596) (-824 "OMERRK.spad" 1359180 1359188 1360136 1360141) (-823 "OMENC.spad" 1358524 1358532 1359170 1359175) (-822 "OMDEV.spad" 1352833 1352841 1358514 1358519) (-821 "OMCONN.spad" 1352242 1352250 1352823 1352828) (-820 "OINTDOM.spad" 1352005 1352013 1352168 1352237) (-819 "OFMONOID.spad" 1348254 1348264 1351995 1352000) (-818 "ODVAR.spad" 1347515 1347525 1348244 1348249) (-817 "ODR.spad" 1347159 1347185 1347327 1347476) (-816 "ODPOL.spad" 1344541 1344551 1344881 1345008) (-815 "ODP.spad" 1334388 1334408 1334761 1334892) (-814 "ODETOOLS.spad" 1333037 1333056 1334378 1334383) (-813 "ODESYS.spad" 1330731 1330748 1333027 1333032) (-812 "ODERTRIC.spad" 1326740 1326757 1330688 1330693) (-811 "ODERED.spad" 1326139 1326163 1326730 1326735) (-810 "ODERAT.spad" 1323754 1323771 1326129 1326134) (-809 "ODEPRRIC.spad" 1320791 1320813 1323744 1323749) (-808 "ODEPROB.spad" 1320048 1320056 1320781 1320786) (-807 "ODEPRIM.spad" 1317382 1317404 1320038 1320043) (-806 "ODEPAL.spad" 1316768 1316792 1317372 1317377) (-805 "ODEPACK.spad" 1303434 1303442 1316758 1316763) (-804 "ODEINT.spad" 1302869 1302885 1303424 1303429) (-803 "ODEIFTBL.spad" 1300264 1300272 1302859 1302864) (-802 "ODEEF.spad" 1295755 1295771 1300254 1300259) (-801 "ODECONST.spad" 1295292 1295310 1295745 1295750) (-800 "ODECAT.spad" 1293890 1293898 1295282 1295287) (-799 "OCT.spad" 1292030 1292040 1292744 1292783) (-798 "OCTCT2.spad" 1291676 1291697 1292020 1292025) (-797 "OC.spad" 1289472 1289482 1291632 1291671) (-796 "OC.spad" 1286993 1287005 1289155 1289160) (-795 "OCAMON.spad" 1286841 1286849 1286983 1286988) (-794 "OASGP.spad" 1286656 1286664 1286831 1286836) (-793 "OAMONS.spad" 1286178 1286186 1286646 1286651) (-792 "OAMON.spad" 1286039 1286047 1286168 1286173) (-791 "OAGROUP.spad" 1285901 1285909 1286029 1286034) (-790 "NUMTUBE.spad" 1285492 1285508 1285891 1285896) (-789 "NUMQUAD.spad" 1273468 1273476 1285482 1285487) (-788 "NUMODE.spad" 1264822 1264830 1273458 1273463) (-787 "NUMINT.spad" 1262388 1262396 1264812 1264817) (-786 "NUMFMT.spad" 1261228 1261236 1262378 1262383) (-785 "NUMERIC.spad" 1253342 1253352 1261033 1261038) (-784 "NTSCAT.spad" 1251850 1251866 1253310 1253337) (-783 "NTPOLFN.spad" 1251401 1251411 1251767 1251772) (-782 "NSUP.spad" 1244447 1244457 1248987 1249140) (-781 "NSUP2.spad" 1243839 1243851 1244437 1244442) (-780 "NSMP.spad" 1240070 1240089 1240378 1240505) (-779 "NREP.spad" 1238448 1238462 1240060 1240065) (-778 "NPCOEF.spad" 1237694 1237714 1238438 1238443) (-777 "NORMRETR.spad" 1237292 1237331 1237684 1237689) (-776 "NORMPK.spad" 1235194 1235213 1237282 1237287) (-775 "NORMMA.spad" 1234882 1234908 1235184 1235189) (-774 "NONE.spad" 1234623 1234631 1234872 1234877) (-773 "NONE1.spad" 1234299 1234309 1234613 1234618) (-772 "NODE1.spad" 1233786 1233802 1234289 1234294) (-771 "NNI.spad" 1232768 1232776 1233760 1233781) (-770 "NLINSOL.spad" 1231394 1231404 1232758 1232763) (-769 "NIPROB.spad" 1229935 1229943 1231384 1231389) (-768 "NFINTBAS.spad" 1227495 1227512 1229925 1229930) (-767 "NETCLT.spad" 1227469 1227480 1227485 1227490) (-766 "NCODIV.spad" 1225685 1225701 1227459 1227464) (-765 "NCNTFRAC.spad" 1225327 1225341 1225675 1225680) (-764 "NCEP.spad" 1223493 1223507 1225317 1225322) (-763 "NASRING.spad" 1223089 1223097 1223483 1223488) (-762 "NASRING.spad" 1222683 1222693 1223079 1223084) (-761 "NARNG.spad" 1222035 1222043 1222673 1222678) (-760 "NARNG.spad" 1221385 1221395 1222025 1222030) (-759 "NAGSP.spad" 1220462 1220470 1221375 1221380) (-758 "NAGS.spad" 1210123 1210131 1220452 1220457) (-757 "NAGF07.spad" 1208554 1208562 1210113 1210118) (-756 "NAGF04.spad" 1202956 1202964 1208544 1208549) (-755 "NAGF02.spad" 1197025 1197033 1202946 1202951) (-754 "NAGF01.spad" 1192786 1192794 1197015 1197020) (-753 "NAGE04.spad" 1186486 1186494 1192776 1192781) (-752 "NAGE02.spad" 1177146 1177154 1186476 1186481) (-751 "NAGE01.spad" 1173148 1173156 1177136 1177141) (-750 "NAGD03.spad" 1171152 1171160 1173138 1173143) (-749 "NAGD02.spad" 1163899 1163907 1171142 1171147) (-748 "NAGD01.spad" 1158192 1158200 1163889 1163894) (-747 "NAGC06.spad" 1154067 1154075 1158182 1158187) (-746 "NAGC05.spad" 1152568 1152576 1154057 1154062) (-745 "NAGC02.spad" 1151835 1151843 1152558 1152563) (-744 "NAALG.spad" 1151376 1151386 1151803 1151830) (-743 "NAALG.spad" 1150937 1150949 1151366 1151371) (-742 "MULTSQFR.spad" 1147895 1147912 1150927 1150932) (-741 "MULTFACT.spad" 1147278 1147295 1147885 1147890) (-740 "MTSCAT.spad" 1145372 1145393 1147176 1147273) (-739 "MTHING.spad" 1145031 1145041 1145362 1145367) (-738 "MSYSCMD.spad" 1144465 1144473 1145021 1145026) (-737 "MSET.spad" 1142423 1142433 1144171 1144210) (-736 "MSETAGG.spad" 1142268 1142278 1142391 1142418) (-735 "MRING.spad" 1139245 1139257 1141976 1142043) (-734 "MRF2.spad" 1138815 1138829 1139235 1139240) (-733 "MRATFAC.spad" 1138361 1138378 1138805 1138810) (-732 "MPRFF.spad" 1136401 1136420 1138351 1138356) (-731 "MPOLY.spad" 1133872 1133887 1134231 1134358) (-730 "MPCPF.spad" 1133136 1133155 1133862 1133867) (-729 "MPC3.spad" 1132953 1132993 1133126 1133131) (-728 "MPC2.spad" 1132599 1132632 1132943 1132948) (-727 "MONOTOOL.spad" 1130950 1130967 1132589 1132594) (-726 "MONOID.spad" 1130269 1130277 1130940 1130945) (-725 "MONOID.spad" 1129586 1129596 1130259 1130264) (-724 "MONOGEN.spad" 1128334 1128347 1129446 1129581) (-723 "MONOGEN.spad" 1127104 1127119 1128218 1128223) (-722 "MONADWU.spad" 1125134 1125142 1127094 1127099) (-721 "MONADWU.spad" 1123162 1123172 1125124 1125129) (-720 "MONAD.spad" 1122322 1122330 1123152 1123157) (-719 "MONAD.spad" 1121480 1121490 1122312 1122317) (-718 "MOEBIUS.spad" 1120216 1120230 1121460 1121475) (-717 "MODULE.spad" 1120086 1120096 1120184 1120211) (-716 "MODULE.spad" 1119976 1119988 1120076 1120081) (-715 "MODRING.spad" 1119311 1119350 1119956 1119971) (-714 "MODOP.spad" 1117976 1117988 1119133 1119200) (-713 "MODMONOM.spad" 1117707 1117725 1117966 1117971) (-712 "MODMON.spad" 1114502 1114518 1115221 1115374) (-711 "MODFIELD.spad" 1113864 1113903 1114404 1114497) (-710 "MMLFORM.spad" 1112724 1112732 1113854 1113859) (-709 "MMAP.spad" 1112466 1112500 1112714 1112719) (-708 "MLO.spad" 1110925 1110935 1112422 1112461) (-707 "MLIFT.spad" 1109537 1109554 1110915 1110920) (-706 "MKUCFUNC.spad" 1109072 1109090 1109527 1109532) (-705 "MKRECORD.spad" 1108676 1108689 1109062 1109067) (-704 "MKFUNC.spad" 1108083 1108093 1108666 1108671) (-703 "MKFLCFN.spad" 1107051 1107061 1108073 1108078) (-702 "MKBCFUNC.spad" 1106546 1106564 1107041 1107046) (-701 "MINT.spad" 1105985 1105993 1106448 1106541) (-700 "MHROWRED.spad" 1104496 1104506 1105975 1105980) (-699 "MFLOAT.spad" 1103016 1103024 1104386 1104491) (-698 "MFINFACT.spad" 1102416 1102438 1103006 1103011) (-697 "MESH.spad" 1100198 1100206 1102406 1102411) (-696 "MDDFACT.spad" 1098409 1098419 1100188 1100193) (-695 "MDAGG.spad" 1097700 1097710 1098389 1098404) (-694 "MCMPLX.spad" 1093711 1093719 1094325 1094526) (-693 "MCDEN.spad" 1092921 1092933 1093701 1093706) (-692 "MCALCFN.spad" 1090043 1090069 1092911 1092916) (-691 "MAYBE.spad" 1089327 1089338 1090033 1090038) (-690 "MATSTOR.spad" 1086635 1086645 1089317 1089322) (-689 "MATRIX.spad" 1085339 1085349 1085823 1085850) (-688 "MATLIN.spad" 1082683 1082707 1085223 1085228) (-687 "MATCAT.spad" 1074412 1074434 1082651 1082678) (-686 "MATCAT.spad" 1066013 1066037 1074254 1074259) (-685 "MATCAT2.spad" 1065295 1065343 1066003 1066008) (-684 "MAPPKG3.spad" 1064210 1064224 1065285 1065290) (-683 "MAPPKG2.spad" 1063548 1063560 1064200 1064205) (-682 "MAPPKG1.spad" 1062376 1062386 1063538 1063543) (-681 "MAPPAST.spad" 1061691 1061699 1062366 1062371) (-680 "MAPHACK3.spad" 1061503 1061517 1061681 1061686) (-679 "MAPHACK2.spad" 1061272 1061284 1061493 1061498) (-678 "MAPHACK1.spad" 1060916 1060926 1061262 1061267) (-677 "MAGMA.spad" 1058706 1058723 1060906 1060911) (-676 "MACROAST.spad" 1058285 1058293 1058696 1058701) (-675 "M3D.spad" 1056005 1056015 1057663 1057668) (-674 "LZSTAGG.spad" 1053243 1053253 1055995 1056000) (-673 "LZSTAGG.spad" 1050479 1050491 1053233 1053238) (-672 "LWORD.spad" 1047184 1047201 1050469 1050474) (-671 "LSTAST.spad" 1046968 1046976 1047174 1047179) (-670 "LSQM.spad" 1045198 1045212 1045592 1045643) (-669 "LSPP.spad" 1044733 1044750 1045188 1045193) (-668 "LSMP.spad" 1043583 1043611 1044723 1044728) (-667 "LSMP1.spad" 1041401 1041415 1043573 1043578) (-666 "LSAGG.spad" 1041070 1041080 1041369 1041396) (-665 "LSAGG.spad" 1040759 1040771 1041060 1041065) (-664 "LPOLY.spad" 1039713 1039732 1040615 1040684) (-663 "LPEFRAC.spad" 1038984 1038994 1039703 1039708) (-662 "LO.spad" 1038385 1038399 1038918 1038945) (-661 "LOGIC.spad" 1037987 1037995 1038375 1038380) (-660 "LOGIC.spad" 1037587 1037597 1037977 1037982) (-659 "LODOOPS.spad" 1036517 1036529 1037577 1037582) (-658 "LODO.spad" 1035901 1035917 1036197 1036236) (-657 "LODOF.spad" 1034947 1034964 1035858 1035863) (-656 "LODOCAT.spad" 1033613 1033623 1034903 1034942) (-655 "LODOCAT.spad" 1032277 1032289 1033569 1033574) (-654 "LODO2.spad" 1031550 1031562 1031957 1031996) (-653 "LODO1.spad" 1030950 1030960 1031230 1031269) (-652 "LODEEF.spad" 1029752 1029770 1030940 1030945) (-651 "LNAGG.spad" 1025584 1025594 1029742 1029747) (-650 "LNAGG.spad" 1021380 1021392 1025540 1025545) (-649 "LMOPS.spad" 1018148 1018165 1021370 1021375) (-648 "LMODULE.spad" 1017916 1017926 1018138 1018143) (-647 "LMDICT.spad" 1017203 1017213 1017467 1017494) (-646 "LLINSET.spad" 1016600 1016610 1017193 1017198) (-645 "LITERAL.spad" 1016506 1016517 1016590 1016595) (-644 "LIST.spad" 1014241 1014251 1015653 1015680) (-643 "LIST3.spad" 1013552 1013566 1014231 1014236) (-642 "LIST2.spad" 1012254 1012266 1013542 1013547) (-641 "LIST2MAP.spad" 1009157 1009169 1012244 1012249) (-640 "LINSET.spad" 1008779 1008789 1009147 1009152) (-639 "LINEXP.spad" 1008213 1008223 1008759 1008774) (-638 "LINDEP.spad" 1007022 1007034 1008125 1008130) (-637 "LIMITRF.spad" 1004950 1004960 1007012 1007017) (-636 "LIMITPS.spad" 1003853 1003866 1004940 1004945) (-635 "LIE.spad" 1001869 1001881 1003143 1003288) (-634 "LIECAT.spad" 1001345 1001355 1001795 1001864) (-633 "LIECAT.spad" 1000849 1000861 1001301 1001306) (-632 "LIB.spad" 998899 998907 999508 999523) (-631 "LGROBP.spad" 996252 996271 998889 998894) (-630 "LF.spad" 995207 995223 996242 996247) (-629 "LFCAT.spad" 994266 994274 995197 995202) (-628 "LEXTRIPK.spad" 989769 989784 994256 994261) (-627 "LEXP.spad" 987772 987799 989749 989764) (-626 "LETAST.spad" 987471 987479 987762 987767) (-625 "LEADCDET.spad" 985869 985886 987461 987466) (-624 "LAZM3PK.spad" 984573 984595 985859 985864) (-623 "LAUPOL.spad" 983266 983279 984166 984235) (-622 "LAPLACE.spad" 982849 982865 983256 983261) (-621 "LA.spad" 982289 982303 982771 982810) (-620 "LALG.spad" 982065 982075 982269 982284) (-619 "LALG.spad" 981849 981861 982055 982060) (-618 "KVTFROM.spad" 981584 981594 981839 981844) (-617 "KTVLOGIC.spad" 981096 981104 981574 981579) (-616 "KRCFROM.spad" 980834 980844 981086 981091) (-615 "KOVACIC.spad" 979557 979574 980824 980829) (-614 "KONVERT.spad" 979279 979289 979547 979552) (-613 "KOERCE.spad" 979016 979026 979269 979274) (-612 "KERNEL.spad" 977671 977681 978800 978805) (-611 "KERNEL2.spad" 977374 977386 977661 977666) (-610 "KDAGG.spad" 976483 976505 977354 977369) (-609 "KDAGG.spad" 975600 975624 976473 976478) (-608 "KAFILE.spad" 974563 974579 974798 974825) (-607 "JORDAN.spad" 972392 972404 973853 973998) (-606 "JOINAST.spad" 972086 972094 972382 972387) (-605 "JAVACODE.spad" 971952 971960 972076 972081) (-604 "IXAGG.spad" 970085 970109 971942 971947) (-603 "IXAGG.spad" 968073 968099 969932 969937) (-602 "IVECTOR.spad" 966843 966858 966998 967025) (-601 "ITUPLE.spad" 966004 966014 966833 966838) (-600 "ITRIGMNP.spad" 964843 964862 965994 965999) (-599 "ITFUN3.spad" 964349 964363 964833 964838) (-598 "ITFUN2.spad" 964093 964105 964339 964344) (-597 "ITAYLOR.spad" 961887 961902 963929 964054) (-596 "ISUPS.spad" 954324 954339 960861 960958) (-595 "ISUMP.spad" 953825 953841 954314 954319) (-594 "ISTRING.spad" 952828 952841 952994 953021) (-593 "ISAST.spad" 952547 952555 952818 952823) (-592 "IRURPK.spad" 951264 951283 952537 952542) (-591 "IRSN.spad" 949268 949276 951254 951259) (-590 "IRRF2F.spad" 947753 947763 949224 949229) (-589 "IRREDFFX.spad" 947354 947365 947743 947748) (-588 "IROOT.spad" 945693 945703 947344 947349) (-587 "IR.spad" 943494 943508 945548 945575) (-586 "IR2.spad" 942522 942538 943484 943489) (-585 "IR2F.spad" 941728 941744 942512 942517) (-584 "IPRNTPK.spad" 941488 941496 941718 941723) (-583 "IPF.spad" 941053 941065 941293 941386) (-582 "IPADIC.spad" 940814 940840 940979 941048) (-581 "IP4ADDR.spad" 940371 940379 940804 940809) (-580 "IOMODE.spad" 939992 940000 940361 940366) (-579 "IOBFILE.spad" 939353 939361 939982 939987) (-578 "IOBCON.spad" 939218 939226 939343 939348) (-577 "INVLAPLA.spad" 938867 938883 939208 939213) (-576 "INTTR.spad" 932249 932266 938857 938862) (-575 "INTTOOLS.spad" 930004 930020 931823 931828) (-574 "INTSLPE.spad" 929324 929332 929994 929999) (-573 "INTRVL.spad" 928890 928900 929238 929319) (-572 "INTRF.spad" 927314 927328 928880 928885) (-571 "INTRET.spad" 926746 926756 927304 927309) (-570 "INTRAT.spad" 925473 925490 926736 926741) (-569 "INTPM.spad" 923858 923874 925116 925121) (-568 "INTPAF.spad" 921722 921740 923790 923795) (-567 "INTPACK.spad" 912096 912104 921712 921717) (-566 "INT.spad" 911544 911552 911950 912091) (-565 "INTHERTR.spad" 910818 910835 911534 911539) (-564 "INTHERAL.spad" 910488 910512 910808 910813) (-563 "INTHEORY.spad" 906927 906935 910478 910483) (-562 "INTG0.spad" 900660 900678 906859 906864) (-561 "INTFTBL.spad" 894689 894697 900650 900655) (-560 "INTFACT.spad" 893748 893758 894679 894684) (-559 "INTEF.spad" 892133 892149 893738 893743) (-558 "INTDOM.spad" 890756 890764 892059 892128) (-557 "INTDOM.spad" 889441 889451 890746 890751) (-556 "INTCAT.spad" 887700 887710 889355 889436) (-555 "INTBIT.spad" 887207 887215 887690 887695) (-554 "INTALG.spad" 886395 886422 887197 887202) (-553 "INTAF.spad" 885895 885911 886385 886390) (-552 "INTABL.spad" 884413 884444 884576 884603) (-551 "INT8.spad" 884293 884301 884403 884408) (-550 "INT64.spad" 884172 884180 884283 884288) (-549 "INT32.spad" 884051 884059 884162 884167) (-548 "INT16.spad" 883930 883938 884041 884046) (-547 "INS.spad" 881433 881441 883832 883925) (-546 "INS.spad" 879022 879032 881423 881428) (-545 "INPSIGN.spad" 878470 878483 879012 879017) (-544 "INPRODPF.spad" 877566 877585 878460 878465) (-543 "INPRODFF.spad" 876654 876678 877556 877561) (-542 "INNMFACT.spad" 875629 875646 876644 876649) (-541 "INMODGCD.spad" 875117 875147 875619 875624) (-540 "INFSP.spad" 873414 873436 875107 875112) (-539 "INFPROD0.spad" 872494 872513 873404 873409) (-538 "INFORM.spad" 869693 869701 872484 872489) (-537 "INFORM1.spad" 869318 869328 869683 869688) (-536 "INFINITY.spad" 868870 868878 869308 869313) (-535 "INETCLTS.spad" 868847 868855 868860 868865) (-534 "INEP.spad" 867385 867407 868837 868842) (-533 "INDE.spad" 867114 867131 867375 867380) (-532 "INCRMAPS.spad" 866535 866545 867104 867109) (-531 "INBFILE.spad" 865607 865615 866525 866530) (-530 "INBFF.spad" 861401 861412 865597 865602) (-529 "INBCON.spad" 859691 859699 861391 861396) (-528 "INBCON.spad" 857979 857989 859681 859686) (-527 "INAST.spad" 857640 857648 857969 857974) (-526 "IMPTAST.spad" 857348 857356 857630 857635) (-525 "IMATRIX.spad" 856293 856319 856805 856832) (-524 "IMATQF.spad" 855387 855431 856249 856254) (-523 "IMATLIN.spad" 853992 854016 855343 855348) (-522 "ILIST.spad" 852650 852665 853175 853202) (-521 "IIARRAY2.spad" 852038 852076 852257 852284) (-520 "IFF.spad" 851448 851464 851719 851812) (-519 "IFAST.spad" 851062 851070 851438 851443) (-518 "IFARRAY.spad" 848555 848570 850245 850272) (-517 "IFAMON.spad" 848417 848434 848511 848516) (-516 "IEVALAB.spad" 847822 847834 848407 848412) (-515 "IEVALAB.spad" 847225 847239 847812 847817) (-514 "IDPO.spad" 847023 847035 847215 847220) (-513 "IDPOAMS.spad" 846779 846791 847013 847018) (-512 "IDPOAM.spad" 846499 846511 846769 846774) (-511 "IDPC.spad" 845437 845449 846489 846494) (-510 "IDPAM.spad" 845182 845194 845427 845432) (-509 "IDPAG.spad" 844929 844941 845172 845177) (-508 "IDENT.spad" 844579 844587 844919 844924) (-507 "IDECOMP.spad" 841818 841836 844569 844574) (-506 "IDEAL.spad" 836767 836806 841753 841758) (-505 "ICDEN.spad" 835956 835972 836757 836762) (-504 "ICARD.spad" 835147 835155 835946 835951) (-503 "IBPTOOLS.spad" 833754 833771 835137 835142) (-502 "IBITS.spad" 832957 832970 833390 833417) (-501 "IBATOOL.spad" 829934 829953 832947 832952) (-500 "IBACHIN.spad" 828441 828456 829924 829929) (-499 "IARRAY2.spad" 827429 827455 828048 828075) (-498 "IARRAY1.spad" 826474 826489 826612 826639) (-497 "IAN.spad" 824697 824705 826290 826383) (-496 "IALGFACT.spad" 824300 824333 824687 824692) (-495 "HYPCAT.spad" 823724 823732 824290 824295) (-494 "HYPCAT.spad" 823146 823156 823714 823719) (-493 "HOSTNAME.spad" 822954 822962 823136 823141) (-492 "HOMOTOP.spad" 822697 822707 822944 822949) (-491 "HOAGG.spad" 819979 819989 822687 822692) (-490 "HOAGG.spad" 817036 817048 819746 819751) (-489 "HEXADEC.spad" 815138 815146 815503 815596) (-488 "HEUGCD.spad" 814173 814184 815128 815133) (-487 "HELLFDIV.spad" 813763 813787 814163 814168) (-486 "HEAP.spad" 813155 813165 813370 813397) (-485 "HEADAST.spad" 812692 812700 813145 813150) (-484 "HDP.spad" 802535 802551 802912 803043) (-483 "HDMP.spad" 799749 799764 800365 800492) (-482 "HB.spad" 798000 798008 799739 799744) (-481 "HASHTBL.spad" 796470 796501 796681 796708) (-480 "HASAST.spad" 796186 796194 796460 796465) (-479 "HACKPI.spad" 795677 795685 796088 796181) (-478 "GTSET.spad" 794616 794632 795323 795350) (-477 "GSTBL.spad" 793135 793170 793309 793324) (-476 "GSERIES.spad" 790306 790333 791267 791416) (-475 "GROUP.spad" 789579 789587 790286 790301) (-474 "GROUP.spad" 788860 788870 789569 789574) (-473 "GROEBSOL.spad" 787354 787375 788850 788855) (-472 "GRMOD.spad" 785925 785937 787344 787349) (-471 "GRMOD.spad" 784494 784508 785915 785920) (-470 "GRIMAGE.spad" 777383 777391 784484 784489) (-469 "GRDEF.spad" 775762 775770 777373 777378) (-468 "GRAY.spad" 774225 774233 775752 775757) (-467 "GRALG.spad" 773302 773314 774215 774220) (-466 "GRALG.spad" 772377 772391 773292 773297) (-465 "GPOLSET.spad" 771831 771854 772059 772086) (-464 "GOSPER.spad" 771100 771118 771821 771826) (-463 "GMODPOL.spad" 770248 770275 771068 771095) (-462 "GHENSEL.spad" 769331 769345 770238 770243) (-461 "GENUPS.spad" 765624 765637 769321 769326) (-460 "GENUFACT.spad" 765201 765211 765614 765619) (-459 "GENPGCD.spad" 764787 764804 765191 765196) (-458 "GENMFACT.spad" 764239 764258 764777 764782) (-457 "GENEEZ.spad" 762190 762203 764229 764234) (-456 "GDMP.spad" 759246 759263 760020 760147) (-455 "GCNAALG.spad" 753169 753196 759040 759107) (-454 "GCDDOM.spad" 752345 752353 753095 753164) (-453 "GCDDOM.spad" 751583 751593 752335 752340) (-452 "GB.spad" 749109 749147 751539 751544) (-451 "GBINTERN.spad" 745129 745167 749099 749104) (-450 "GBF.spad" 740896 740934 745119 745124) (-449 "GBEUCLID.spad" 738778 738816 740886 740891) (-448 "GAUSSFAC.spad" 738091 738099 738768 738773) (-447 "GALUTIL.spad" 736417 736427 738047 738052) (-446 "GALPOLYU.spad" 734871 734884 736407 736412) (-445 "GALFACTU.spad" 733044 733063 734861 734866) (-444 "GALFACT.spad" 723233 723244 733034 733039) (-443 "FVFUN.spad" 720256 720264 723223 723228) (-442 "FVC.spad" 719308 719316 720246 720251) (-441 "FUNDESC.spad" 718986 718994 719298 719303) (-440 "FUNCTION.spad" 718835 718847 718976 718981) (-439 "FT.spad" 717132 717140 718825 718830) (-438 "FTEM.spad" 716297 716305 717122 717127) (-437 "FSUPFACT.spad" 715197 715216 716233 716238) (-436 "FST.spad" 713283 713291 715187 715192) (-435 "FSRED.spad" 712763 712779 713273 713278) (-434 "FSPRMELT.spad" 711645 711661 712720 712725) (-433 "FSPECF.spad" 709736 709752 711635 711640) (-432 "FS.spad" 704004 704014 709511 709731) (-431 "FS.spad" 698050 698062 703559 703564) (-430 "FSINT.spad" 697710 697726 698040 698045) (-429 "FSERIES.spad" 696901 696913 697530 697629) (-428 "FSCINT.spad" 696218 696234 696891 696896) (-427 "FSAGG.spad" 695335 695345 696174 696213) (-426 "FSAGG.spad" 694414 694426 695255 695260) (-425 "FSAGG2.spad" 693157 693173 694404 694409) (-424 "FS2UPS.spad" 687648 687682 693147 693152) (-423 "FS2.spad" 687295 687311 687638 687643) (-422 "FS2EXPXP.spad" 686420 686443 687285 687290) (-421 "FRUTIL.spad" 685374 685384 686410 686415) (-420 "FR.spad" 679090 679100 684398 684467) (-419 "FRNAALG.spad" 674209 674219 679032 679085) (-418 "FRNAALG.spad" 669340 669352 674165 674170) (-417 "FRNAAF2.spad" 668796 668814 669330 669335) (-416 "FRMOD.spad" 668206 668236 668727 668732) (-415 "FRIDEAL.spad" 667431 667452 668186 668201) (-414 "FRIDEAL2.spad" 667035 667067 667421 667426) (-413 "FRETRCT.spad" 666546 666556 667025 667030) (-412 "FRETRCT.spad" 665923 665935 666404 666409) (-411 "FRAMALG.spad" 664271 664284 665879 665918) (-410 "FRAMALG.spad" 662651 662666 664261 664266) (-409 "FRAC.spad" 659750 659760 660153 660326) (-408 "FRAC2.spad" 659355 659367 659740 659745) (-407 "FR2.spad" 658691 658703 659345 659350) (-406 "FPS.spad" 655506 655514 658581 658686) (-405 "FPS.spad" 652349 652359 655426 655431) (-404 "FPC.spad" 651395 651403 652251 652344) (-403 "FPC.spad" 650527 650537 651385 651390) (-402 "FPATMAB.spad" 650289 650299 650517 650522) (-401 "FPARFRAC.spad" 648776 648793 650279 650284) (-400 "FORTRAN.spad" 647282 647325 648766 648771) (-399 "FORT.spad" 646231 646239 647272 647277) (-398 "FORTFN.spad" 643401 643409 646221 646226) (-397 "FORTCAT.spad" 643085 643093 643391 643396) (-396 "FORMULA.spad" 640559 640567 643075 643080) (-395 "FORMULA1.spad" 640038 640048 640549 640554) (-394 "FORDER.spad" 639729 639753 640028 640033) (-393 "FOP.spad" 638930 638938 639719 639724) (-392 "FNLA.spad" 638354 638376 638898 638925) (-391 "FNCAT.spad" 636949 636957 638344 638349) (-390 "FNAME.spad" 636841 636849 636939 636944) (-389 "FMTC.spad" 636639 636647 636767 636836) (-388 "FMONOID.spad" 633756 633766 636595 636600) (-387 "FM.spad" 633451 633463 633690 633717) (-386 "FMFUN.spad" 630481 630489 633441 633446) (-385 "FMC.spad" 629533 629541 630471 630476) (-384 "FMCAT.spad" 627201 627219 629501 629528) (-383 "FM1.spad" 626558 626570 627135 627162) (-382 "FLOATRP.spad" 624293 624307 626548 626553) (-381 "FLOAT.spad" 617607 617615 624159 624288) (-380 "FLOATCP.spad" 615038 615052 617597 617602) (-379 "FLINEXP.spad" 614750 614760 615018 615033) (-378 "FLINEXP.spad" 614416 614428 614686 614691) (-377 "FLASORT.spad" 613742 613754 614406 614411) (-376 "FLALG.spad" 611388 611407 613668 613737) (-375 "FLAGG.spad" 608430 608440 611368 611383) (-374 "FLAGG.spad" 605373 605385 608313 608318) (-373 "FLAGG2.spad" 604098 604114 605363 605368) (-372 "FINRALG.spad" 602159 602172 604054 604093) (-371 "FINRALG.spad" 600146 600161 602043 602048) (-370 "FINITE.spad" 599298 599306 600136 600141) (-369 "FINAALG.spad" 588419 588429 599240 599293) (-368 "FINAALG.spad" 577552 577564 588375 588380) (-367 "FILE.spad" 577135 577145 577542 577547) (-366 "FILECAT.spad" 575661 575678 577125 577130) (-365 "FIELD.spad" 575067 575075 575563 575656) (-364 "FIELD.spad" 574559 574569 575057 575062) (-363 "FGROUP.spad" 573206 573216 574539 574554) (-362 "FGLMICPK.spad" 571993 572008 573196 573201) (-361 "FFX.spad" 571368 571383 571709 571802) (-360 "FFSLPE.spad" 570871 570892 571358 571363) (-359 "FFPOLY.spad" 562133 562144 570861 570866) (-358 "FFPOLY2.spad" 561193 561210 562123 562128) (-357 "FFP.spad" 560590 560610 560909 561002) (-356 "FF.spad" 560038 560054 560271 560364) (-355 "FFNBX.spad" 558550 558570 559754 559847) (-354 "FFNBP.spad" 557063 557080 558266 558359) (-353 "FFNB.spad" 555528 555549 556744 556837) (-352 "FFINTBAS.spad" 553042 553061 555518 555523) (-351 "FFIELDC.spad" 550619 550627 552944 553037) (-350 "FFIELDC.spad" 548282 548292 550609 550614) (-349 "FFHOM.spad" 547030 547047 548272 548277) (-348 "FFF.spad" 544465 544476 547020 547025) (-347 "FFCGX.spad" 543312 543332 544181 544274) (-346 "FFCGP.spad" 542201 542221 543028 543121) (-345 "FFCG.spad" 540993 541014 541882 541975) (-344 "FFCAT.spad" 534166 534188 540832 540988) (-343 "FFCAT.spad" 527418 527442 534086 534091) (-342 "FFCAT2.spad" 527165 527205 527408 527413) (-341 "FEXPR.spad" 518882 518928 526921 526960) (-340 "FEVALAB.spad" 518590 518600 518872 518877) (-339 "FEVALAB.spad" 518083 518095 518367 518372) (-338 "FDIV.spad" 517525 517549 518073 518078) (-337 "FDIVCAT.spad" 515589 515613 517515 517520) (-336 "FDIVCAT.spad" 513651 513677 515579 515584) (-335 "FDIV2.spad" 513307 513347 513641 513646) (-334 "FCTRDATA.spad" 512315 512323 513297 513302) (-333 "FCPAK1.spad" 510882 510890 512305 512310) (-332 "FCOMP.spad" 510261 510271 510872 510877) (-331 "FC.spad" 500268 500276 510251 510256) (-330 "FAXF.spad" 493239 493253 500170 500263) (-329 "FAXF.spad" 486262 486278 493195 493200) (-328 "FARRAY.spad" 484412 484422 485445 485472) (-327 "FAMR.spad" 482548 482560 484310 484407) (-326 "FAMR.spad" 480668 480682 482432 482437) (-325 "FAMONOID.spad" 480336 480346 480622 480627) (-324 "FAMONC.spad" 478632 478644 480326 480331) (-323 "FAGROUP.spad" 478256 478266 478528 478555) (-322 "FACUTIL.spad" 476460 476477 478246 478251) (-321 "FACTFUNC.spad" 475654 475664 476450 476455) (-320 "EXPUPXS.spad" 472487 472510 473786 473935) (-319 "EXPRTUBE.spad" 469775 469783 472477 472482) (-318 "EXPRODE.spad" 466935 466951 469765 469770) (-317 "EXPR.spad" 462210 462220 462924 463331) (-316 "EXPR2UPS.spad" 458332 458345 462200 462205) (-315 "EXPR2.spad" 458037 458049 458322 458327) (-314 "EXPEXPAN.spad" 454977 455002 455609 455702) (-313 "EXIT.spad" 454648 454656 454967 454972) (-312 "EXITAST.spad" 454384 454392 454638 454643) (-311 "EVALCYC.spad" 453844 453858 454374 454379) (-310 "EVALAB.spad" 453416 453426 453834 453839) (-309 "EVALAB.spad" 452986 452998 453406 453411) (-308 "EUCDOM.spad" 450560 450568 452912 452981) (-307 "EUCDOM.spad" 448196 448206 450550 450555) (-306 "ESTOOLS.spad" 440042 440050 448186 448191) (-305 "ESTOOLS2.spad" 439645 439659 440032 440037) (-304 "ESTOOLS1.spad" 439330 439341 439635 439640) (-303 "ES.spad" 432145 432153 439320 439325) (-302 "ES.spad" 424866 424876 432043 432048) (-301 "ESCONT.spad" 421659 421667 424856 424861) (-300 "ESCONT1.spad" 421408 421420 421649 421654) (-299 "ES2.spad" 420913 420929 421398 421403) (-298 "ES1.spad" 420483 420499 420903 420908) (-297 "ERROR.spad" 417810 417818 420473 420478) (-296 "EQTBL.spad" 416282 416304 416491 416518) (-295 "EQ.spad" 411087 411097 413874 413986) (-294 "EQ2.spad" 410805 410817 411077 411082) (-293 "EP.spad" 407131 407141 410795 410800) (-292 "ENV.spad" 405793 405801 407121 407126) (-291 "ENTIRER.spad" 405461 405469 405737 405788) (-290 "EMR.spad" 404668 404709 405387 405456) (-289 "ELTAGG.spad" 402922 402941 404658 404663) (-288 "ELTAGG.spad" 401140 401161 402878 402883) (-287 "ELTAB.spad" 400589 400607 401130 401135) (-286 "ELFUTS.spad" 399976 399995 400579 400584) (-285 "ELEMFUN.spad" 399665 399673 399966 399971) (-284 "ELEMFUN.spad" 399352 399362 399655 399660) (-283 "ELAGG.spad" 397323 397333 399332 399347) (-282 "ELAGG.spad" 395231 395243 397242 397247) (-281 "ELABEXPR.spad" 394163 394171 395221 395226) (-280 "EFUPXS.spad" 390939 390969 394119 394124) (-279 "EFULS.spad" 387775 387798 390895 390900) (-278 "EFSTRUC.spad" 385790 385806 387765 387770) (-277 "EF.spad" 380566 380582 385780 385785) (-276 "EAB.spad" 378842 378850 380556 380561) (-275 "E04UCFA.spad" 378378 378386 378832 378837) (-274 "E04NAFA.spad" 377955 377963 378368 378373) (-273 "E04MBFA.spad" 377535 377543 377945 377950) (-272 "E04JAFA.spad" 377071 377079 377525 377530) (-271 "E04GCFA.spad" 376607 376615 377061 377066) (-270 "E04FDFA.spad" 376143 376151 376597 376602) (-269 "E04DGFA.spad" 375679 375687 376133 376138) (-268 "E04AGNT.spad" 371529 371537 375669 375674) (-267 "DVARCAT.spad" 368218 368228 371519 371524) (-266 "DVARCAT.spad" 364905 364917 368208 368213) (-265 "DSMP.spad" 362372 362386 362677 362804) (-264 "DROPT.spad" 356331 356339 362362 362367) (-263 "DROPT1.spad" 355996 356006 356321 356326) (-262 "DROPT0.spad" 350853 350861 355986 355991) (-261 "DRAWPT.spad" 349026 349034 350843 350848) (-260 "DRAW.spad" 341902 341915 349016 349021) (-259 "DRAWHACK.spad" 341210 341220 341892 341897) (-258 "DRAWCX.spad" 338680 338688 341200 341205) (-257 "DRAWCURV.spad" 338227 338242 338670 338675) (-256 "DRAWCFUN.spad" 327759 327767 338217 338222) (-255 "DQAGG.spad" 325937 325947 327727 327754) (-254 "DPOLCAT.spad" 321286 321302 325805 325932) (-253 "DPOLCAT.spad" 316721 316739 321242 321247) (-252 "DPMO.spad" 308947 308963 309085 309386) (-251 "DPMM.spad" 301186 301204 301311 301612) (-250 "DOMTMPLT.spad" 300846 300854 301176 301181) (-249 "DOMCTOR.spad" 300601 300609 300836 300841) (-248 "DOMAIN.spad" 299688 299696 300591 300596) (-247 "DMP.spad" 296948 296963 297518 297645) (-246 "DLP.spad" 296300 296310 296938 296943) (-245 "DLIST.spad" 294879 294889 295483 295510) (-244 "DLAGG.spad" 293296 293306 294869 294874) (-243 "DIVRING.spad" 292838 292846 293240 293291) (-242 "DIVRING.spad" 292424 292434 292828 292833) (-241 "DISPLAY.spad" 290614 290622 292414 292419) (-240 "DIRPROD.spad" 280194 280210 280834 280965) (-239 "DIRPROD2.spad" 279012 279030 280184 280189) (-238 "DIRPCAT.spad" 277956 277972 278876 279007) (-237 "DIRPCAT.spad" 276629 276647 277551 277556) (-236 "DIOSP.spad" 275454 275462 276619 276624) (-235 "DIOPS.spad" 274450 274460 275434 275449) (-234 "DIOPS.spad" 273420 273432 274406 274411) (-233 "DIFRING.spad" 272716 272724 273400 273415) (-232 "DIFRING.spad" 272020 272030 272706 272711) (-231 "DIFEXT.spad" 271191 271201 272000 272015) (-230 "DIFEXT.spad" 270279 270291 271090 271095) (-229 "DIAGG.spad" 269909 269919 270259 270274) (-228 "DIAGG.spad" 269547 269559 269899 269904) (-227 "DHMATRIX.spad" 267859 267869 269004 269031) (-226 "DFSFUN.spad" 261499 261507 267849 267854) (-225 "DFLOAT.spad" 258230 258238 261389 261494) (-224 "DFINTTLS.spad" 256461 256477 258220 258225) (-223 "DERHAM.spad" 254375 254407 256441 256456) (-222 "DEQUEUE.spad" 253699 253709 253982 254009) (-221 "DEGRED.spad" 253316 253330 253689 253694) (-220 "DEFINTRF.spad" 250853 250863 253306 253311) (-219 "DEFINTEF.spad" 249363 249379 250843 250848) (-218 "DEFAST.spad" 248731 248739 249353 249358) (-217 "DECIMAL.spad" 246837 246845 247198 247291) (-216 "DDFACT.spad" 244650 244667 246827 246832) (-215 "DBLRESP.spad" 244250 244274 244640 244645) (-214 "DBASE.spad" 242914 242924 244240 244245) (-213 "DATAARY.spad" 242376 242389 242904 242909) (-212 "D03FAFA.spad" 242204 242212 242366 242371) (-211 "D03EEFA.spad" 242024 242032 242194 242199) (-210 "D03AGNT.spad" 241110 241118 242014 242019) (-209 "D02EJFA.spad" 240572 240580 241100 241105) (-208 "D02CJFA.spad" 240050 240058 240562 240567) (-207 "D02BHFA.spad" 239540 239548 240040 240045) (-206 "D02BBFA.spad" 239030 239038 239530 239535) (-205 "D02AGNT.spad" 233844 233852 239020 239025) (-204 "D01WGTS.spad" 232163 232171 233834 233839) (-203 "D01TRNS.spad" 232140 232148 232153 232158) (-202 "D01GBFA.spad" 231662 231670 232130 232135) (-201 "D01FCFA.spad" 231184 231192 231652 231657) (-200 "D01ASFA.spad" 230652 230660 231174 231179) (-199 "D01AQFA.spad" 230098 230106 230642 230647) (-198 "D01APFA.spad" 229522 229530 230088 230093) (-197 "D01ANFA.spad" 229016 229024 229512 229517) (-196 "D01AMFA.spad" 228526 228534 229006 229011) (-195 "D01ALFA.spad" 228066 228074 228516 228521) (-194 "D01AKFA.spad" 227592 227600 228056 228061) (-193 "D01AJFA.spad" 227115 227123 227582 227587) (-192 "D01AGNT.spad" 223182 223190 227105 227110) (-191 "CYCLOTOM.spad" 222688 222696 223172 223177) (-190 "CYCLES.spad" 219544 219552 222678 222683) (-189 "CVMP.spad" 218961 218971 219534 219539) (-188 "CTRIGMNP.spad" 217461 217477 218951 218956) (-187 "CTOR.spad" 217152 217160 217451 217456) (-186 "CTORKIND.spad" 216755 216763 217142 217147) (-185 "CTORCAT.spad" 216004 216012 216745 216750) (-184 "CTORCAT.spad" 215251 215261 215994 215999) (-183 "CTORCALL.spad" 214840 214850 215241 215246) (-182 "CSTTOOLS.spad" 214085 214098 214830 214835) (-181 "CRFP.spad" 207809 207822 214075 214080) (-180 "CRCEAST.spad" 207529 207537 207799 207804) (-179 "CRAPACK.spad" 206580 206590 207519 207524) (-178 "CPMATCH.spad" 206084 206099 206505 206510) (-177 "CPIMA.spad" 205789 205808 206074 206079) (-176 "COORDSYS.spad" 200798 200808 205779 205784) (-175 "CONTOUR.spad" 200209 200217 200788 200793) (-174 "CONTFRAC.spad" 195959 195969 200111 200204) (-173 "CONDUIT.spad" 195717 195725 195949 195954) (-172 "COMRING.spad" 195391 195399 195655 195712) (-171 "COMPPROP.spad" 194909 194917 195381 195386) (-170 "COMPLPAT.spad" 194676 194691 194899 194904) (-169 "COMPLEX.spad" 188813 188823 189057 189318) (-168 "COMPLEX2.spad" 188528 188540 188803 188808) (-167 "COMPFACT.spad" 188130 188144 188518 188523) (-166 "COMPCAT.spad" 186202 186212 187864 188125) (-165 "COMPCAT.spad" 184002 184014 185666 185671) (-164 "COMMUPC.spad" 183750 183768 183992 183997) (-163 "COMMONOP.spad" 183283 183291 183740 183745) (-162 "COMM.spad" 183094 183102 183273 183278) (-161 "COMMAAST.spad" 182857 182865 183084 183089) (-160 "COMBOPC.spad" 181772 181780 182847 182852) (-159 "COMBINAT.spad" 180539 180549 181762 181767) (-158 "COMBF.spad" 177921 177937 180529 180534) (-157 "COLOR.spad" 176758 176766 177911 177916) (-156 "COLONAST.spad" 176424 176432 176748 176753) (-155 "CMPLXRT.spad" 176135 176152 176414 176419) (-154 "CLLCTAST.spad" 175797 175805 176125 176130) (-153 "CLIP.spad" 171905 171913 175787 175792) (-152 "CLIF.spad" 170560 170576 171861 171900) (-151 "CLAGG.spad" 167065 167075 170550 170555) (-150 "CLAGG.spad" 163441 163453 166928 166933) (-149 "CINTSLPE.spad" 162772 162785 163431 163436) (-148 "CHVAR.spad" 160910 160932 162762 162767) (-147 "CHARZ.spad" 160825 160833 160890 160905) (-146 "CHARPOL.spad" 160335 160345 160815 160820) (-145 "CHARNZ.spad" 160088 160096 160315 160330) (-144 "CHAR.spad" 157962 157970 160078 160083) (-143 "CFCAT.spad" 157290 157298 157952 157957) (-142 "CDEN.spad" 156486 156500 157280 157285) (-141 "CCLASS.spad" 154635 154643 155897 155936) (-140 "CATEGORY.spad" 153677 153685 154625 154630) (-139 "CATCTOR.spad" 153568 153576 153667 153672) (-138 "CATAST.spad" 153186 153194 153558 153563) (-137 "CASEAST.spad" 152900 152908 153176 153181) (-136 "CARTEN.spad" 148187 148211 152890 152895) (-135 "CARTEN2.spad" 147577 147604 148177 148182) (-134 "CARD.spad" 144872 144880 147551 147572) (-133 "CAPSLAST.spad" 144646 144654 144862 144867) (-132 "CACHSET.spad" 144270 144278 144636 144641) (-131 "CABMON.spad" 143825 143833 144260 144265) (-130 "BYTEORD.spad" 143500 143508 143815 143820) (-129 "BYTE.spad" 142927 142935 143490 143495) (-128 "BYTEBUF.spad" 140786 140794 142096 142123) (-127 "BTREE.spad" 139859 139869 140393 140420) (-126 "BTOURN.spad" 138864 138874 139466 139493) (-125 "BTCAT.spad" 138256 138266 138832 138859) (-124 "BTCAT.spad" 137668 137680 138246 138251) (-123 "BTAGG.spad" 136796 136804 137636 137663) (-122 "BTAGG.spad" 135944 135954 136786 136791) (-121 "BSTREE.spad" 134685 134695 135551 135578) (-120 "BRILL.spad" 132882 132893 134675 134680) (-119 "BRAGG.spad" 131822 131832 132872 132877) (-118 "BRAGG.spad" 130726 130738 131778 131783) (-117 "BPADICRT.spad" 128707 128719 128962 129055) (-116 "BPADIC.spad" 128371 128383 128633 128702) (-115 "BOUNDZRO.spad" 128027 128044 128361 128366) (-114 "BOP.spad" 123209 123217 128017 128022) (-113 "BOP1.spad" 120675 120685 123199 123204) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file