diff options
Diffstat (limited to 'src/share/algebra/browse.daase')
-rw-r--r-- | src/share/algebra/browse.daase | 642 |
1 files changed, 321 insertions, 321 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index a767c6a0..bbf70d39 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,5 +1,5 @@ -(2283967 . 3450528888) +(2284013 . 3450896460) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL @@ -56,7 +56,7 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -3438) +(-32 R -2210) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL ((|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) @@ -88,11 +88,11 @@ NIL ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -3438 UP UPUP -3756) +(-40 -2210 UP UPUP -4347) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) ((-4405 |has| (-407 |#2|) (-363)) (-4410 |has| (-407 |#2|) (-363)) (-4404 |has| (-407 |#2|) (-363)) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) -((|HasCategory| (-407 |#2|) (QUOTE (-145))) (|HasCategory| (-407 |#2|) (QUOTE (-147))) (|HasCategory| (-407 |#2|) (QUOTE (-349))) (-4012 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-368))) (-4012 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (-4012 (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-349))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -637) (QUOTE (-564)))) (-4012 (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363))))) -(-41 R -3438) +((|HasCategory| (-407 |#2|) (QUOTE (-145))) (|HasCategory| (-407 |#2|) (QUOTE (-147))) (|HasCategory| (-407 |#2|) (QUOTE (-349))) (-2713 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-368))) (-2713 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (-2713 (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-349))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -637) (QUOTE (-564)))) (-2713 (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363))))) +(-41 R -2210) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|))))) @@ -111,7 +111,7 @@ NIL (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) ((-4412 . T) (-4413 . T)) -((-4012 (-12 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-847))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1350) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2575) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1350) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2575) (|devaluate| |#2|))))))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-847))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-847))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1350) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2575) (|devaluate| |#2|))))))) +((-2713 (-12 (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-847))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2381) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3096) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2381) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3096) (|devaluate| |#2|))))))) (-2713 (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-847))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-2713 (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-847))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-1094))) (-2713 (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (-2713 (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2381) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3096) (|devaluate| |#2|))))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL @@ -144,12 +144,12 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -3438) +(-54 |Base| R -2210) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL (-55) -((|constructor| (NIL "This domain implements the arity of a function or an operator,{} \\spadignore{e.g.} the number of arguments that an operator can take. An arity is either a definition nonnegative integer,{} and the special value `arbitrary',{} signifying that an operation can take any number of arguments.")) (|arbitrary| (($) "aribitrary is the arity of a function that accepts any number of arguments."))) +((|constructor| (NIL "This domain implements the arity of a function or an operator,{} \\spadignore{e.g.} the number of arguments that an operator can take. An arity is either a definition nonnegative integer,{} and the special value `arbitrary',{} signifying that an operation can take any number of arguments.")) (|one?| (((|Boolean|) $) "\\spad{one? a} holds if \\spad{a} is the arity of nullary function.")) (|zero?| (((|Boolean|) $) "\\spad{zero? a} holds if \\spad{a} is the arity of niladic function.")) (|arbitrary| (($) "aribitrary is the arity of a function that accepts any number of arguments."))) NIL NIL (-56 S R |Row| |Col|) @@ -167,64 +167,64 @@ NIL (-59 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) ((-4413 . T) (-4412 . T)) -((-4012 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4012 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +((-2713 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2713 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) ((-4412 . T) (-4413 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) -(-61 -4337) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +(-61 -2540) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-62 -4337) +(-62 -2540) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-63 -4337) +(-63 -2540) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -4337) +(-64 -2540) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-65 -4337) +(-65 -2540) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -4337) +(-66 -2540) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-67 -4337) +(-67 -2540) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -4337) +(-68 -2540) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-69 -4337) +(-69 -2540) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-70 -4337) +(-70 -2540) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-71 -4337) +(-71 -2540) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-72 -4337) +(-72 -2540) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-73 -4337) +(-73 -2540) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-74 -4337) +(-74 -2540) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL @@ -236,55 +236,55 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-77 -4337) +(-77 -2540) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-78 -4337) +(-78 -2540) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-79 -4337) +(-79 -2540) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -4337) +(-80 -2540) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -4337) +(-81 -2540) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}"))) NIL NIL -(-82 -4337) +(-82 -2540) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -4337) +(-83 -2540) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -4337) +(-84 -2540) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -4337) +(-85 -2540) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -4337) +(-86 -2540) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -4337) +(-87 -2540) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-88 -4337) +(-88 -2540) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-89 -4337) +(-89 -2540) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -295,7 +295,7 @@ NIL (-91 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) ((-4412 . T) (-4413 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (-92 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -343,7 +343,7 @@ NIL (-103 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) ((-4412 . T) (-4413 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (-104 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL @@ -363,7 +363,7 @@ NIL (-108) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) ((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) -((|HasCategory| (-564) (QUOTE (-906))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1019))) (|HasCategory| (-564) (QUOTE (-817))) (-4012 (|HasCategory| (-564) (QUOTE (-817))) (|HasCategory| (-564) (QUOTE (-847)))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1145))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (|HasCategory| (-564) (QUOTE (-145))))) +((|HasCategory| (-564) (QUOTE (-906))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1019))) (|HasCategory| (-564) (QUOTE (-817))) (-2713 (|HasCategory| (-564) (QUOTE (-817))) (|HasCategory| (-564) (QUOTE (-847)))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1145))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (-2713 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (|HasCategory| (-564) (QUOTE (-145))))) (-109) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL @@ -385,10 +385,10 @@ NIL NIL ((|HasCategory| |#1| (QUOTE (-847)))) (-114) -((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op,{} p,{} v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op,{} p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op,{} p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad}op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}."))) +((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op,{} p,{} v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op,{} p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op,{} p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad}op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f,{} a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}."))) NIL NIL -(-115 -3438 UP) +(-115 -2210 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL @@ -399,7 +399,7 @@ NIL (-117 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) ((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) -((|HasCategory| (-116 |#1|) (QUOTE (-906))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-116 |#1|) (QUOTE (-1019))) (|HasCategory| (-116 |#1|) (QUOTE (-817))) (-4012 (|HasCategory| (-116 |#1|) (QUOTE (-817))) (|HasCategory| (-116 |#1|) (QUOTE (-847)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-116 |#1|) (QUOTE (-1145))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-116 |#1|) (QUOTE (-233))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -309) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-307))) (|HasCategory| (-116 |#1|) (QUOTE (-545))) (|HasCategory| (-116 |#1|) (QUOTE (-847))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-906)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))))) +((|HasCategory| (-116 |#1|) (QUOTE (-906))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-116 |#1|) (QUOTE (-1019))) (|HasCategory| (-116 |#1|) (QUOTE (-817))) (-2713 (|HasCategory| (-116 |#1|) (QUOTE (-817))) (|HasCategory| (-116 |#1|) (QUOTE (-847)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-116 |#1|) (QUOTE (-1145))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-116 |#1|) (QUOTE (-233))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -309) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-307))) (|HasCategory| (-116 |#1|) (QUOTE (-545))) (|HasCategory| (-116 |#1|) (QUOTE (-847))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-906)))) (-2713 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-906)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))))) (-118 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL @@ -415,7 +415,7 @@ NIL (-121 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) ((-4412 . T) (-4413 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (-122 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) NIL @@ -435,15 +435,15 @@ NIL (-126 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) ((-4412 . T) (-4413 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (-127 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) ((-4412 . T) (-4413 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (-128) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,{}n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) ((-4413 . T) (-4412 . T)) -((-4012 (-12 (|HasCategory| (-129) (QUOTE (-847))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1094))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129)))))) (-4012 (-12 (|HasCategory| (-129) (QUOTE (-1094))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-129) (LIST (QUOTE -612) (QUOTE (-536)))) (-4012 (|HasCategory| (-129) (QUOTE (-847))) (|HasCategory| (-129) (QUOTE (-1094)))) (|HasCategory| (-129) (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-129) (QUOTE (-1094))) (|HasCategory| (-129) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-129) (QUOTE (-1094))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129)))))) +((-2713 (-12 (|HasCategory| (-129) (QUOTE (-847))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1094))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129)))))) (-2713 (-12 (|HasCategory| (-129) (QUOTE (-1094))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-129) (LIST (QUOTE -612) (QUOTE (-536)))) (-2713 (|HasCategory| (-129) (QUOTE (-847))) (|HasCategory| (-129) (QUOTE (-1094)))) (|HasCategory| (-129) (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-129) (QUOTE (-1094))) (|HasCategory| (-129) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-129) (QUOTE (-1094))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129)))))) (-129) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL @@ -468,11 +468,11 @@ NIL ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative."))) (((-4414 "*") . T)) NIL -(-135 |minix| -2880 S T$) +(-135 |minix| -3926 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-136 |minix| -2880 R) +(-136 |minix| -3926 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL @@ -495,7 +495,7 @@ NIL (-141) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) ((-4412 . T) (-4402 . T) (-4413 . T)) -((-4012 (-12 (|HasCategory| (-144) (QUOTE (-368))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-144) (QUOTE (-368))) (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) +((-2713 (-12 (|HasCategory| (-144) (QUOTE (-368))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-144) (QUOTE (-368))) (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (-142 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL @@ -520,7 +520,7 @@ NIL ((|constructor| (NIL "Rings of Characteristic Zero."))) ((-4409 . T)) NIL -(-148 -3438 UP UPUP) +(-148 -2210 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}."))) NIL NIL @@ -560,7 +560,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-158 R -3438) +(-158 R -2210) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -594,7 +594,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-999))) (|HasCategory| |#2| (QUOTE (-1194))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4408)) (|HasAttribute| |#2| (QUOTE -4411)) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-847)))) (-166 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4405 -4012 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))) (-4410 |has| |#1| (-363)) (-4404 |has| |#1| (-363)) (-4408 |has| |#1| (-6 -4408)) (-4411 |has| |#1| (-6 -4411)) (-2453 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) +((-4405 -2713 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))) (-4410 |has| |#1| (-363)) (-4404 |has| |#1| (-363)) (-4408 |has| |#1| (-6 -4408)) (-4411 |has| |#1| (-6 -4411)) (-4134 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) NIL (-167 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) @@ -606,8 +606,8 @@ NIL NIL (-169 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4405 -4012 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))) (-4410 |has| |#1| (-363)) (-4404 |has| |#1| (-363)) (-4408 |has| |#1| (-6 -4408)) (-4411 |has| |#1| (-6 -4411)) (-2453 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-4012 (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-847)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1019)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1194)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-906))))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-906))))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-999))) (|HasCategory| |#1| (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4012 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-556)))) (-4012 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1055))) (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363)))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasAttribute| |#1| (QUOTE -4408)) (|HasAttribute| |#1| (QUOTE -4411)) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170))))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-349))))) +((-4405 -2713 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))) (-4410 |has| |#1| (-363)) (-4404 |has| |#1| (-363)) (-4408 |has| |#1| (-6 -4408)) (-4411 |has| |#1| (-6 -4411)) (-4134 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349))) (-2713 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-2713 (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-847)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1019)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1194)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-2713 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-906))))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-906))))) (-2713 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-999))) (|HasCategory| |#1| (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2713 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-556)))) (-2713 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1055))) (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363)))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasAttribute| |#1| (QUOTE -4408)) (|HasAttribute| |#1| (QUOTE -4411)) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170))))) (-2713 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2713 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-349))))) (-170 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL @@ -680,7 +680,7 @@ NIL ((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-188 R -3438) +(-188 R -2210) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -788,23 +788,23 @@ NIL ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-215 -3438 UP UPUP R) +(-215 -2210 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-216 -3438 FP) +(-216 -2210 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL (-217) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) ((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) -((|HasCategory| (-564) (QUOTE (-906))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1019))) (|HasCategory| (-564) (QUOTE (-817))) (-4012 (|HasCategory| (-564) (QUOTE (-817))) (|HasCategory| (-564) (QUOTE (-847)))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1145))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (|HasCategory| (-564) (QUOTE (-145))))) +((|HasCategory| (-564) (QUOTE (-906))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1019))) (|HasCategory| (-564) (QUOTE (-817))) (-2713 (|HasCategory| (-564) (QUOTE (-817))) (|HasCategory| (-564) (QUOTE (-847)))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1145))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (-2713 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (|HasCategory| (-564) (QUOTE (-145))))) (-218) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-219 R -3438) +(-219 R -2210) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL @@ -819,18 +819,18 @@ NIL (-222 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) ((-4412 . T) (-4413 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (-223 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) ((-4409 . T)) NIL -(-224 R -3438) +(-224 R -2210) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL (-225) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-2441 . T) (-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) +((-4124 . T) (-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) NIL (-226) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}"))) @@ -839,7 +839,7 @@ NIL (-227 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) ((-4412 . T) (-4413 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))) (|HasAttribute| |#1| (QUOTE (-4414 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))) (|HasAttribute| |#1| (QUOTE (-4414 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (-228 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL @@ -876,22 +876,22 @@ NIL ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-237 S -2880 R) +(-237 S -3926 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL ((|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (QUOTE (-845))) (|HasAttribute| |#3| (QUOTE -4409)) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (QUOTE (-1094)))) -(-238 -2880 R) +(-238 -3926 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) ((-4406 |has| |#2| (-1046)) (-4407 |has| |#2| (-1046)) (-4409 |has| |#2| (-6 -4409)) ((-4414 "*") |has| |#2| (-172)) (-4412 . T)) NIL -(-239 -2880 A B) +(-239 -3926 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-240 -2880 R) +(-240 -3926 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) ((-4406 |has| |#2| (-1046)) (-4407 |has| |#2| (-1046)) (-4409 |has| |#2| (-6 -4409)) ((-4414 "*") |has| |#2| (-172)) (-4412 . T)) -((-4012 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-4012 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-363))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-790))) (-4012 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845)))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-172))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-790)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-845)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094))))) (-4012 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-4012 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-4012 (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasAttribute| |#2| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))))) +((-2713 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-2713 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-363))) (-2713 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-2713 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-790))) (-2713 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845)))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-172))) (-2713 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (-2713 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-1094)))) (-2713 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-2713 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-2713 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-2713 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1094))) (-2713 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-790)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-845)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094))))) (-2713 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-2713 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-2713 (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasAttribute| |#2| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))))) (-241) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL @@ -911,7 +911,7 @@ NIL (-245 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) ((-4413 . T) (-4412 . T)) -((-4012 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4012 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +((-2713 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2713 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-246 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL @@ -919,7 +919,7 @@ NIL (-247 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) (((-4414 "*") |has| |#2| (-172)) (-4405 |has| |#2| (-556)) (-4410 |has| |#2| (-6 -4410)) (-4407 . T) (-4406 . T) (-4409 . T)) -((|HasCategory| |#2| (QUOTE (-906))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4410)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145))))) +((|HasCategory| |#2| (QUOTE (-906))) (-2713 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-2713 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-2713 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-2713 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-2713 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4410)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-2713 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145))))) (-248) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}."))) NIL @@ -930,12 +930,12 @@ NIL NIL (-250 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4409 -4012 (-4264 (|has| |#4| (-1046)) (|has| |#4| (-233))) (-4264 (|has| |#4| (-1046)) (|has| |#4| (-897 (-1170)))) (|has| |#4| (-6 -4409)) (-4264 (|has| |#4| (-1046)) (|has| |#4| (-637 (-564))))) (-4406 |has| |#4| (-1046)) (-4407 |has| |#4| (-1046)) ((-4414 "*") |has| |#4| (-172)) (-4412 . T)) -((-4012 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-723))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-790))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-845))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#4| (QUOTE (-363))) (-4012 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (QUOTE (-1046)))) (-4012 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-363)))) (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (QUOTE (-790))) (-4012 (|HasCategory| |#4| (QUOTE (-790))) (|HasCategory| |#4| (QUOTE (-845)))) (|HasCategory| |#4| (QUOTE (-845))) (|HasCategory| |#4| (QUOTE (-723))) (|HasCategory| |#4| (QUOTE (-172))) (-4012 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-1046)))) (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4012 (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1046)))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-172)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-233)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-363)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-368)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-723)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-790)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-845)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1046)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1094))))) (-4012 (-12 (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-723))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-790))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-845))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1046))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-4012 (-12 (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-723))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-790))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-845))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1046)))) (-4012 (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1046)))) (|HasCategory| |#4| (QUOTE (-723))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-4012 (|HasCategory| |#4| (QUOTE (-1046))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1094)))) (-4012 (|HasAttribute| |#4| (QUOTE -4409)) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1046)))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))))) +((-4409 -2713 (-2832 (|has| |#4| (-1046)) (|has| |#4| (-233))) (-2832 (|has| |#4| (-1046)) (|has| |#4| (-897 (-1170)))) (|has| |#4| (-6 -4409)) (-2832 (|has| |#4| (-1046)) (|has| |#4| (-637 (-564))))) (-4406 |has| |#4| (-1046)) (-4407 |has| |#4| (-1046)) ((-4414 "*") |has| |#4| (-172)) (-4412 . T)) +((-2713 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-723))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-790))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-845))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#4| (QUOTE (-363))) (-2713 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (QUOTE (-1046)))) (-2713 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-363)))) (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (QUOTE (-790))) (-2713 (|HasCategory| |#4| (QUOTE (-790))) (|HasCategory| |#4| (QUOTE (-845)))) (|HasCategory| |#4| (QUOTE (-845))) (|HasCategory| |#4| (QUOTE (-723))) (|HasCategory| |#4| (QUOTE (-172))) (-2713 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-1046)))) (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))) (-2713 (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1046)))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1094))) (-2713 (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-172)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-233)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-363)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-368)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-723)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-790)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-845)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1046)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1094))))) (-2713 (-12 (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-723))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-790))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-845))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1046))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-2713 (-12 (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-723))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-790))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-845))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1046)))) (-2713 (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1046)))) (|HasCategory| |#4| (QUOTE (-723))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-2713 (|HasCategory| |#4| (QUOTE (-1046))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1094)))) (-2713 (|HasAttribute| |#4| (QUOTE -4409)) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1046)))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))))) (-251 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4409 -4012 (-4264 (|has| |#3| (-1046)) (|has| |#3| (-233))) (-4264 (|has| |#3| (-1046)) (|has| |#3| (-897 (-1170)))) (|has| |#3| (-6 -4409)) (-4264 (|has| |#3| (-1046)) (|has| |#3| (-637 (-564))))) (-4406 |has| |#3| (-1046)) (-4407 |has| |#3| (-1046)) ((-4414 "*") |has| |#3| (-172)) (-4412 . T)) -((-4012 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#3| (QUOTE (-363))) (-4012 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1046)))) (-4012 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (QUOTE (-790))) (-4012 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (QUOTE (-845)))) (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-172))) (-4012 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1046)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4012 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-723)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-790)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-845)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1046)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094))))) (-4012 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1046))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-4012 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (-4012 (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (|HasCategory| |#3| (QUOTE (-723))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-4012 (|HasCategory| |#3| (QUOTE (-1046))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094)))) (-4012 (|HasAttribute| |#3| (QUOTE -4409)) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) +((-4409 -2713 (-2832 (|has| |#3| (-1046)) (|has| |#3| (-233))) (-2832 (|has| |#3| (-1046)) (|has| |#3| (-897 (-1170)))) (|has| |#3| (-6 -4409)) (-2832 (|has| |#3| (-1046)) (|has| |#3| (-637 (-564))))) (-4406 |has| |#3| (-1046)) (-4407 |has| |#3| (-1046)) ((-4414 "*") |has| |#3| (-172)) (-4412 . T)) +((-2713 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#3| (QUOTE (-363))) (-2713 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1046)))) (-2713 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (QUOTE (-790))) (-2713 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (QUOTE (-845)))) (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-172))) (-2713 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1046)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (-2713 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1094))) (-2713 (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-723)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-790)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-845)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1046)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094))))) (-2713 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1046))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-2713 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (-2713 (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (|HasCategory| |#3| (QUOTE (-723))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-2713 (|HasCategory| |#3| (QUOTE (-1046))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094)))) (-2713 (|HasAttribute| |#3| (QUOTE -4409)) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) (-252 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL @@ -987,7 +987,7 @@ NIL (-264 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) (((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-6 -4410)) (-4407 . T) (-4406 . T) (-4409 . T)) -((|HasCategory| |#1| (QUOTE (-906))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#3| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#3| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4410)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) +((|HasCategory| |#1| (QUOTE (-906))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-2713 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-2713 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#3| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#3| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-2713 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4410)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-2713 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) (-265 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL @@ -1032,11 +1032,11 @@ NIL ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-276 R -3438) +(-276 R -2210) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-277 R -3438) +(-277 R -2210) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL @@ -1084,7 +1084,7 @@ NIL ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-289 S R |Mod| -3126 -3678 |exactQuo|) +(-289 S R |Mod| -3895 -2057 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) ((-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) NIL @@ -1106,21 +1106,21 @@ NIL NIL (-294 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4409 -4012 (|has| |#1| (-1046)) (|has| |#1| (-473))) (-4406 |has| |#1| (-1046)) (-4407 |has| |#1| (-1046))) -((|HasCategory| |#1| (QUOTE (-363))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4012 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-723)))) (|HasCategory| |#1| (QUOTE (-473))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-1094)))) (-4012 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-302))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-473)))) (-4012 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-723)))) (-4012 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1046)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-172)))) +((-4409 -2713 (|has| |#1| (-1046)) (|has| |#1| (-473))) (-4406 |has| |#1| (-1046)) (-4407 |has| |#1| (-1046))) +((|HasCategory| |#1| (QUOTE (-363))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1046)))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (-2713 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-1046)))) (-2713 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1046)))) (-2713 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1046)))) (-2713 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-723)))) (|HasCategory| |#1| (QUOTE (-473))) (-2713 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-1094)))) (-2713 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-302))) (-2713 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-473)))) (-2713 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-723)))) (-2713 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1046)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-172)))) (-295 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) ((-4412 . T) (-4413 . T)) -((-12 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1350) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2575) (|devaluate| |#2|)))))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2381) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3096) (|devaluate| |#2|)))))) (-2713 (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-2713 (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094))) (-2713 (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -611) (QUOTE (-859))))) (-296) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-297 -3438 S) +(-297 -2210 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-298 E -3438) +(-298 E -2210) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}."))) NIL NIL @@ -1168,7 +1168,7 @@ NIL ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-310 -3438) +(-310 -2210) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL @@ -1183,7 +1183,7 @@ NIL (-313 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}."))) ((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) -((|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-906))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-1019))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-817))) (-4012 (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-817))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-847)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-1145))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-233))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -309) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -286) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-307))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-545))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-847))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (-4012 (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))))) +((|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-906))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-1019))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-817))) (-2713 (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-817))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-847)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-1145))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-233))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -309) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -286) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-307))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-545))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-847))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (-2713 (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))))) (-314 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL @@ -1194,9 +1194,9 @@ NIL NIL (-316 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4409 -4012 (-4264 (|has| |#1| (-1046)) (|has| |#1| (-637 (-564)))) (-12 (|has| |#1| (-556)) (-4012 (-4264 (|has| |#1| (-1046)) (|has| |#1| (-637 (-564)))) (|has| |#1| (-1046)) (|has| |#1| (-473)))) (|has| |#1| (-1046)) (|has| |#1| (-473))) (-4407 |has| |#1| (-172)) (-4406 |has| |#1| (-172)) ((-4414 "*") |has| |#1| (-556)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-556)) (-4404 |has| |#1| (-556))) -((-4012 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-556))) (-4012 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-4012 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4012 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1046)))) (-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556)))) (-4012 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1106)))) (-4012 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))))) (-4012 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1106)))) (-4012 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))))) (-4012 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4012 (-12 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| $ (QUOTE (-1046))) (|HasCategory| $ (LIST (QUOTE -1035) (QUOTE (-564))))) -(-317 R -3438) +((-4409 -2713 (-2832 (|has| |#1| (-1046)) (|has| |#1| (-637 (-564)))) (-12 (|has| |#1| (-556)) (-2713 (-2832 (|has| |#1| (-1046)) (|has| |#1| (-637 (-564)))) (|has| |#1| (-1046)) (|has| |#1| (-473)))) (|has| |#1| (-1046)) (|has| |#1| (-473))) (-4407 |has| |#1| (-172)) (-4406 |has| |#1| (-172)) ((-4414 "*") |has| |#1| (-556)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-556)) (-4404 |has| |#1| (-556))) +((-2713 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-556))) (-2713 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1046)))) (-2713 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-2713 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2713 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (-2713 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1046)))) (-2713 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1046)))) (-2713 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1046)))) (-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556)))) (-2713 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1106)))) (-2713 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))))) (-2713 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1106)))) (-2713 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))))) (-2713 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1046)))) (-2713 (-12 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| $ (QUOTE (-1046))) (|HasCategory| $ (LIST (QUOTE -1035) (QUOTE (-564))))) +(-317 R -2210) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}."))) NIL NIL @@ -1207,7 +1207,7 @@ NIL (-319 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) (((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-363)) (-4404 |has| |#1| (-363)) (-4406 . T) (-4407 . T) (-4409 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -3714) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4012 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -4039) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4292) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-2713 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -1721) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2713 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2052) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4153) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|))))))) (-320 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL @@ -1239,12 +1239,12 @@ NIL (-327 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) ((-4413 . T) (-4412 . T)) -((-4012 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4012 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) -(-328 S -3438) +((-2713 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2713 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +(-328 S -2210) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL ((|HasCategory| |#2| (QUOTE (-368)))) -(-329 -3438) +(-329 -2210) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) ((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) NIL @@ -1264,15 +1264,15 @@ NIL ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}"))) NIL NIL -(-334 S -3438 UP UPUP R) +(-334 S -2210 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-335 -3438 UP UPUP R) +(-335 -2210 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-336 -3438 UP UPUP R) +(-336 -2210 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL @@ -1292,26 +1292,26 @@ NIL ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-341 S -3438 UP UPUP) +(-341 S -2210 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL ((|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-363)))) -(-342 -3438 UP UPUP) +(-342 -2210 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) ((-4405 |has| (-407 |#2|) (-363)) (-4410 |has| (-407 |#2|) (-363)) (-4404 |has| (-407 |#2|) (-363)) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) NIL (-343 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) ((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) -((-4012 (|HasCategory| (-907 |#1|) (QUOTE (-145))) (|HasCategory| (-907 |#1|) (QUOTE (-368)))) (|HasCategory| (-907 |#1|) (QUOTE (-147))) (|HasCategory| (-907 |#1|) (QUOTE (-368))) (|HasCategory| (-907 |#1|) (QUOTE (-145)))) +((-2713 (|HasCategory| (-907 |#1|) (QUOTE (-145))) (|HasCategory| (-907 |#1|) (QUOTE (-368)))) (|HasCategory| (-907 |#1|) (QUOTE (-147))) (|HasCategory| (-907 |#1|) (QUOTE (-368))) (|HasCategory| (-907 |#1|) (QUOTE (-145)))) (-344 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) ((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) -((-4012 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) +((-2713 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) (-345 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) ((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) -((-4012 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) +((-2713 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) (-346 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL @@ -1328,31 +1328,31 @@ NIL ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) ((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) NIL -(-350 R UP -3438) +(-350 R UP -2210) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-351 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) ((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) -((-4012 (|HasCategory| (-907 |#1|) (QUOTE (-145))) (|HasCategory| (-907 |#1|) (QUOTE (-368)))) (|HasCategory| (-907 |#1|) (QUOTE (-147))) (|HasCategory| (-907 |#1|) (QUOTE (-368))) (|HasCategory| (-907 |#1|) (QUOTE (-145)))) +((-2713 (|HasCategory| (-907 |#1|) (QUOTE (-145))) (|HasCategory| (-907 |#1|) (QUOTE (-368)))) (|HasCategory| (-907 |#1|) (QUOTE (-147))) (|HasCategory| (-907 |#1|) (QUOTE (-368))) (|HasCategory| (-907 |#1|) (QUOTE (-145)))) (-352 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) ((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) -((-4012 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) +((-2713 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) (-353 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) ((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) -((-4012 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) +((-2713 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) (-354 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) ((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) -((-4012 (|HasCategory| (-907 |#1|) (QUOTE (-145))) (|HasCategory| (-907 |#1|) (QUOTE (-368)))) (|HasCategory| (-907 |#1|) (QUOTE (-147))) (|HasCategory| (-907 |#1|) (QUOTE (-368))) (|HasCategory| (-907 |#1|) (QUOTE (-145)))) +((-2713 (|HasCategory| (-907 |#1|) (QUOTE (-145))) (|HasCategory| (-907 |#1|) (QUOTE (-368)))) (|HasCategory| (-907 |#1|) (QUOTE (-147))) (|HasCategory| (-907 |#1|) (QUOTE (-368))) (|HasCategory| (-907 |#1|) (QUOTE (-145)))) (-355 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) ((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) -((-4012 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) -(-356 -3438 GF) +((-2713 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) +(-356 -2210 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL @@ -1360,14 +1360,14 @@ NIL ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-358 -3438 FP FPP) +(-358 -2210 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL (-359 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) ((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) -((-4012 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) +((-2713 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) (-360 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL @@ -1446,7 +1446,7 @@ NIL NIL (-379) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4395 . T) (-4403 . T) (-2441 . T) (-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) +((-4395 . T) (-4403 . T) (-4124 . T) (-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) NIL (-380 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) @@ -1496,7 +1496,7 @@ NIL ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-392 -3438 UP UPUP R) +(-392 -2210 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL @@ -1520,11 +1520,11 @@ NIL ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}"))) NIL NIL -(-398 -4337 |returnType| -2841 |symbols|) +(-398 -2540 |returnType| -2037 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-399 -3438 UP) +(-399 -2210 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL @@ -1546,7 +1546,7 @@ NIL ((|HasAttribute| |#1| (QUOTE -4395)) (|HasAttribute| |#1| (QUOTE -4403))) (-404) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-2441 . T) (-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) +((-4124 . T) (-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) NIL (-405 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) @@ -1559,7 +1559,7 @@ NIL (-407 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) ((-4399 -12 (|has| |#1| (-6 -4410)) (|has| |#1| (-452)) (|has| |#1| (-6 -4399))) (-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) -((|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-817))) (-4012 (|HasCategory| |#1| (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-847)))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825))))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-545))) (-12 (|HasAttribute| |#1| (QUOTE -4410)) (|HasAttribute| |#1| (QUOTE -4399)) (|HasCategory| |#1| (QUOTE (-452)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) +((|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-817))) (-2713 (|HasCategory| |#1| (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-847)))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (-2713 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825))))) (-2713 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-545))) (-12 (|HasAttribute| |#1| (QUOTE -4410)) (|HasAttribute| |#1| (QUOTE -4399)) (|HasCategory| |#1| (QUOTE (-452)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-2713 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) (-408 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL @@ -1580,11 +1580,11 @@ NIL ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}"))) NIL NIL -(-413 R -3438 UP A) +(-413 R -2210 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}."))) ((-4409 . T)) NIL -(-414 R -3438 UP A |ibasis|) +(-414 R -2210 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}."))) NIL ((|HasCategory| |#4| (LIST (QUOTE -1035) (|devaluate| |#2|)))) @@ -1603,7 +1603,7 @@ NIL (-418 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) ((-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) -((|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -309) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -286) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-1213))) (-4012 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-1213)))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-452)))) +((|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -309) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -286) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-1213))) (-2713 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-1213)))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-452)))) (-419 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}."))) NIL @@ -1632,7 +1632,7 @@ NIL ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) ((-4412 . T) (-4402 . T) (-4413 . T)) NIL -(-426 R -3438) +(-426 R -2210) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL @@ -1640,7 +1640,7 @@ NIL ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) ((-4399 -12 (|has| |#1| (-6 -4399)) (|has| |#2| (-6 -4399))) (-4406 . T) (-4407 . T) (-4409 . T)) ((-12 (|HasAttribute| |#1| (QUOTE -4399)) (|HasAttribute| |#2| (QUOTE -4399)))) -(-428 R -3438) +(-428 R -2210) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL @@ -1650,17 +1650,17 @@ NIL ((|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (-430 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4409 -4012 (|has| |#1| (-1046)) (|has| |#1| (-473))) (-4407 |has| |#1| (-172)) (-4406 |has| |#1| (-172)) ((-4414 "*") |has| |#1| (-556)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-556)) (-4404 |has| |#1| (-556))) +((-4409 -2713 (|has| |#1| (-1046)) (|has| |#1| (-473))) (-4407 |has| |#1| (-172)) (-4406 |has| |#1| (-172)) ((-4414 "*") |has| |#1| (-556)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-556)) (-4404 |has| |#1| (-556))) NIL -(-431 R -3438) +(-431 R -2210) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-432 R -3438) +(-432 R -2210) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-433 R -3438) +(-433 R -2210) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL @@ -1668,7 +1668,7 @@ NIL ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-435 R -3438 UP) +(-435 R -2210 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL ((|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-48))))) @@ -1700,7 +1700,7 @@ NIL ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-443 R UP -3438) +(-443 R UP -2210) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL @@ -1747,7 +1747,7 @@ NIL (-454 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) (((-4414 "*") |has| |#2| (-172)) (-4405 |has| |#2| (-556)) (-4410 |has| |#2| (-6 -4410)) (-4407 . T) (-4406 . T) (-4409 . T)) -((|HasCategory| |#2| (QUOTE (-906))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4410)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145))))) +((|HasCategory| |#2| (QUOTE (-906))) (-2713 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-2713 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-2713 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-2713 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-2713 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4410)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-2713 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145))))) (-455 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL @@ -1812,7 +1812,7 @@ NIL ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-471 |lv| -3438 R) +(-471 |lv| -2210 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL @@ -1827,11 +1827,11 @@ NIL (-474 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) (((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-363)) (-4404 |has| |#1| (-363)) (-4406 . T) (-4407 . T) (-4409 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -3714) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4012 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -4039) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4292) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-2713 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -1721) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2713 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2052) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4153) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|))))))) (-475 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) ((-4413 . T)) -((-12 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1350) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2575) (|devaluate| |#2|)))))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-847))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094)))) +((-12 (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2381) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3096) (|devaluate| |#2|)))))) (-2713 (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-2713 (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-847))) (-2713 (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-1094)))) (-476 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) ((-4413 . T) (-4412 . T)) @@ -1847,7 +1847,7 @@ NIL (-479 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) ((-4412 . T) (-4413 . T)) -((-12 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1350) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2575) (|devaluate| |#2|)))))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2381) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3096) (|devaluate| |#2|)))))) (-2713 (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-2713 (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094))) (-2713 (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -611) (QUOTE (-859))))) (-480) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL @@ -1855,11 +1855,11 @@ NIL (-481 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) (((-4414 "*") |has| |#2| (-172)) (-4405 |has| |#2| (-556)) (-4410 |has| |#2| (-6 -4410)) (-4407 . T) (-4406 . T) (-4409 . T)) -((|HasCategory| |#2| (QUOTE (-906))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4410)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145))))) -(-482 -2880 S) +((|HasCategory| |#2| (QUOTE (-906))) (-2713 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-2713 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-2713 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-2713 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-2713 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4410)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-2713 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145))))) +(-482 -3926 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) ((-4406 |has| |#2| (-1046)) (-4407 |has| |#2| (-1046)) (-4409 |has| |#2| (-6 -4409)) ((-4414 "*") |has| |#2| (-172)) (-4412 . T)) -((-4012 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-4012 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-363))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-790))) (-4012 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845)))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-172))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-790)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-845)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094))))) (-4012 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-4012 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-4012 (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasAttribute| |#2| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))))) +((-2713 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-2713 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-363))) (-2713 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-2713 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-790))) (-2713 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845)))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-172))) (-2713 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (-2713 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-1094)))) (-2713 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-2713 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-2713 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-2713 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1094))) (-2713 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-790)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-845)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094))))) (-2713 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-2713 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-2713 (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasAttribute| |#2| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))))) (-483) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|Identifier|))) "\\spad{headAst(f,{}[x1,{}..,{}xn])} constructs a function definition header."))) NIL @@ -1867,8 +1867,8 @@ NIL (-484 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) ((-4412 . T) (-4413 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) -(-485 -3438 UP UPUP R) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +(-485 -2210 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL @@ -1879,7 +1879,7 @@ NIL (-487) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) ((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) -((|HasCategory| (-564) (QUOTE (-906))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1019))) (|HasCategory| (-564) (QUOTE (-817))) (-4012 (|HasCategory| (-564) (QUOTE (-817))) (|HasCategory| (-564) (QUOTE (-847)))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1145))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (|HasCategory| (-564) (QUOTE (-145))))) +((|HasCategory| (-564) (QUOTE (-906))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1019))) (|HasCategory| (-564) (QUOTE (-817))) (-2713 (|HasCategory| (-564) (QUOTE (-817))) (|HasCategory| (-564) (QUOTE (-847)))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1145))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (-2713 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (|HasCategory| (-564) (QUOTE (-145))))) (-488 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL @@ -1904,7 +1904,7 @@ NIL ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-494 -3438 UP |AlExt| |AlPol|) +(-494 -2210 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL @@ -1915,16 +1915,16 @@ NIL (-496 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) ((-4413 . T) (-4412 . T)) -((-4012 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4012 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +((-2713 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2713 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-497 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) ((-4412 . T) (-4413 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (-498 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented"))) NIL NIL -(-499 R UP -3438) +(-499 R UP -2210) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL @@ -1944,7 +1944,7 @@ NIL ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-504 -3438 |Expon| |VarSet| |DPoly|) +(-504 -2210 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -612) (QUOTE (-1170))))) @@ -1995,7 +1995,7 @@ NIL (-516 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) ((-4413 . T) (-4412 . T)) -((-4012 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4012 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +((-2713 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2713 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-517) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL @@ -2003,15 +2003,15 @@ NIL (-518 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) ((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) -((-4012 (|HasCategory| (-581 |#1|) (QUOTE (-145))) (|HasCategory| (-581 |#1|) (QUOTE (-368)))) (|HasCategory| (-581 |#1|) (QUOTE (-147))) (|HasCategory| (-581 |#1|) (QUOTE (-368))) (|HasCategory| (-581 |#1|) (QUOTE (-145)))) +((-2713 (|HasCategory| (-581 |#1|) (QUOTE (-145))) (|HasCategory| (-581 |#1|) (QUOTE (-368)))) (|HasCategory| (-581 |#1|) (QUOTE (-147))) (|HasCategory| (-581 |#1|) (QUOTE (-368))) (|HasCategory| (-581 |#1|) (QUOTE (-145)))) (-519 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) ((-4412 . T) (-4413 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (-520 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) ((-4413 . T) (-4412 . T)) -((-4012 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4012 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +((-2713 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2713 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-521 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL @@ -2023,7 +2023,7 @@ NIL (-523 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) ((-4412 . T) (-4413 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))) (|HasAttribute| |#1| (QUOTE (-4414 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))) (|HasAttribute| |#1| (QUOTE (-4414 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (-524) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL @@ -2056,7 +2056,7 @@ NIL ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL NIL -(-532 K -3438 |Par|) +(-532 K -2210 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL @@ -2080,7 +2080,7 @@ NIL ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-538 K -3438 |Par|) +(-538 K -2210 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL @@ -2131,12 +2131,12 @@ NIL (-550 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) ((-4412 . T) (-4413 . T)) -((-12 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1350) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2575) (|devaluate| |#2|)))))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859))))) -(-551 R -3438) +((-12 (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2381) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3096) (|devaluate| |#2|)))))) (-2713 (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-2713 (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094))) (-2713 (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -611) (QUOTE (-859))))) +(-551 R -2210) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-552 R0 -3438 UP UPUP R) +(-552 R0 -2210 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL @@ -2146,7 +2146,7 @@ NIL NIL (-554 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-2441 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) +((-4124 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) NIL (-555 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) @@ -2156,7 +2156,7 @@ NIL ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) ((-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) NIL -(-557 R -3438) +(-557 R -2210) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL @@ -2168,7 +2168,7 @@ NIL ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-560 R -3438 L) +(-560 R -2210 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -652) (|devaluate| |#2|)))) @@ -2176,11 +2176,11 @@ NIL ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-562 -3438 UP UPUP R) +(-562 -2210 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-563 -3438 UP) +(-563 -2210 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL @@ -2192,15 +2192,15 @@ NIL ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-566 R -3438 L) +(-566 R -2210 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -652) (|devaluate| |#2|)))) -(-567 R -3438) +(-567 R -2210) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL ((-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-1133)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-627))))) -(-568 -3438 UP) +(-568 -2210 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL @@ -2208,27 +2208,27 @@ NIL ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-570 -3438) +(-570 -2210) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL (-571 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-2441 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) +((-4124 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) NIL (-572) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-573 R -3438) +(-573 R -2210) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL ((-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-284))) (|HasCategory| |#2| (QUOTE (-627))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-284)))) (|HasCategory| |#1| (QUOTE (-556)))) -(-574 -3438 UP) +(-574 -2210 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-575 R -3438) +(-575 R -2210) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL @@ -2260,15 +2260,15 @@ NIL ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-583 R -3438) +(-583 R -2210) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-584 E -3438) +(-584 E -2210) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented"))) NIL NIL -(-585 -3438) +(-585 -2210) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) ((-4407 . T) (-4406 . T)) ((|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-1170))))) @@ -2299,7 +2299,7 @@ NIL (-592 |mn|) ((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings"))) ((-4413 . T) (-4412 . T)) -((-4012 (-12 (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (-4012 (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -612) (QUOTE (-536)))) (-4012 (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-144) (QUOTE (-1094)))) (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) +((-2713 (-12 (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (-2713 (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -612) (QUOTE (-536)))) (-2713 (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-144) (QUOTE (-1094)))) (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (-593 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL @@ -2307,7 +2307,7 @@ NIL (-594 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) (((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4406 . T) (-4407 . T) (-4409 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|)))) (|HasCategory| (-564) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3714) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564)))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|)))) (|HasCategory| (-564) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -1721) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564)))))) (-595 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) ((-4407 |has| |#1| (-556)) (-4406 |has| |#1| (-556)) ((-4414 "*") |has| |#1| (-556)) (-4405 |has| |#1| (-556)) (-4409 . T)) @@ -2320,7 +2320,7 @@ NIL ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented"))) NIL NIL -(-598 R -3438 FG) +(-598 R -2210 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL @@ -2331,7 +2331,7 @@ NIL (-600 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) ((-4413 . T) (-4412 . T)) -((-4012 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4012 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-1046))) (-12 (|HasCategory| |#1| (QUOTE (-999))) (|HasCategory| |#1| (QUOTE (-1046)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +((-2713 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2713 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-1046))) (-12 (|HasCategory| |#1| (QUOTE (-999))) (|HasCategory| |#1| (QUOTE (-1046)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-601 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL @@ -2350,12 +2350,12 @@ NIL NIL (-605 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4409 -4012 (-4264 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))) (-4407 . T) (-4406 . T)) -((-4012 (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) +((-4409 -2713 (-2832 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))) (-4407 . T) (-4406 . T)) +((-2713 (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-606 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) ((-4412 . T) (-4413 . T)) -((-12 (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1350) (QUOTE (-1152))) (LIST (QUOTE |:|) (QUOTE -2575) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| (-1152) (QUOTE (-847))) (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| (-2 (|:| -2381 (-1152)) (|:| -3096 |#1|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2381 (-1152)) (|:| -3096 |#1|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2381) (QUOTE (-1152))) (LIST (QUOTE |:|) (QUOTE -3096) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2381 (-1152)) (|:| -3096 |#1|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| (-1152) (QUOTE (-847))) (|HasCategory| (-2 (|:| -2381 (-1152)) (|:| -3096 |#1|)) (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2381 (-1152)) (|:| -3096 |#1|)) (LIST (QUOTE -611) (QUOTE (-859))))) (-607 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL @@ -2380,7 +2380,7 @@ NIL ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-613 -3438 UP) +(-613 -2210 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL @@ -2408,7 +2408,7 @@ NIL ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) ((-4406 . T) (-4407 . T) (-4409 . T)) ((|HasCategory| |#1| (QUOTE (-845)))) -(-620 R -3438) +(-620 R -2210) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform."))) NIL NIL @@ -2440,18 +2440,18 @@ NIL ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-628 R -3438) +(-628 R -2210) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-629 |lv| -3438) +(-629 |lv| -2210) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL (-630) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) ((-4413 . T)) -((-12 (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1350) (QUOTE (-1152))) (LIST (QUOTE |:|) (QUOTE -2575) (QUOTE (-52))))))) (-4012 (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (QUOTE (-1094))) (|HasCategory| (-52) (QUOTE (-1094)))) (-4012 (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-1152) (QUOTE (-847))) (-4012 (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (QUOTE (-1094)))) +((-12 (|HasCategory| (-2 (|:| -2381 (-1152)) (|:| -3096 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2381 (-1152)) (|:| -3096 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2381) (QUOTE (-1152))) (LIST (QUOTE |:|) (QUOTE -3096) (QUOTE (-52))))))) (-2713 (|HasCategory| (-2 (|:| -2381 (-1152)) (|:| -3096 (-52))) (QUOTE (-1094))) (|HasCategory| (-52) (QUOTE (-1094)))) (-2713 (|HasCategory| (-2 (|:| -2381 (-1152)) (|:| -3096 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2381 (-1152)) (|:| -3096 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -2381 (-1152)) (|:| -3096 (-52))) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-1152) (QUOTE (-847))) (-2713 (|HasCategory| (-2 (|:| -2381 (-1152)) (|:| -3096 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2381 (-1152)) (|:| -3096 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2381 (-1152)) (|:| -3096 (-52))) (QUOTE (-1094)))) (-631 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL @@ -2462,8 +2462,8 @@ NIL NIL (-633 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4409 -4012 (-4264 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))) (-4407 . T) (-4406 . T)) -((-4012 (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) +((-4409 -2713 (-2832 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))) (-4407 . T) (-4406 . T)) +((-2713 (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-634 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}."))) NIL @@ -2475,7 +2475,7 @@ NIL (-636 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-4253 (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-363)))) +((-2819 (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-363)))) (-637 R) ((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}."))) ((-4409 . T)) @@ -2495,7 +2495,7 @@ NIL (-641 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) ((-4413 . T) (-4412 . T)) -((-4012 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4012 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +((-2713 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2713 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-642 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL @@ -2503,7 +2503,7 @@ NIL (-643 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) ((-4412 . T) (-4413 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (-644 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL @@ -2520,7 +2520,7 @@ NIL ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-648 R -3438 L) +(-648 R -2210 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL @@ -2540,11 +2540,11 @@ NIL ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) ((-4406 . T) (-4407 . T) (-4409 . T)) NIL -(-653 -3438 UP) +(-653 -2210 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-654 A -3750) +(-654 A -2034) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) ((-4406 . T) (-4407 . T) (-4409 . T)) ((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363)))) @@ -2580,11 +2580,11 @@ NIL ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) ((-4413 . T) (-4412 . T)) NIL -(-663 -3438) +(-663 -2210) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-664 -3438 |Row| |Col| M) +(-664 -2210 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL @@ -2595,7 +2595,7 @@ NIL (-666 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) ((-4409 . T) (-4412 . T) (-4406 . T) (-4407 . T)) -((|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4414 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-556))) (-4012 (|HasAttribute| |#2| (QUOTE (-4414 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172)))) +((|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4414 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-2713 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-556))) (-2713 (|HasAttribute| |#2| (QUOTE (-4414 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172)))) (-667) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL @@ -2615,7 +2615,7 @@ NIL (-671 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms"))) NIL -((-4012 (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +((-2713 (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1094))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-672) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL @@ -2671,7 +2671,7 @@ NIL (-685 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) ((-4412 . T) (-4413 . T)) -((-4012 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))) (|HasAttribute| |#1| (QUOTE (-4414 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +((-2713 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1094))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))) (|HasAttribute| |#1| (QUOTE (-4414 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-686 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL @@ -2680,7 +2680,7 @@ NIL ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%."))) NIL NIL -(-688 S -3438 FLAF FLAS) +(-688 S -2210 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL @@ -2690,8 +2690,8 @@ NIL NIL (-690) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4405 . T) (-4410 |has| (-695) (-363)) (-4404 |has| (-695) (-363)) (-2453 . T) (-4411 |has| (-695) (-6 -4411)) (-4408 |has| (-695) (-6 -4408)) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) -((|HasCategory| (-695) (QUOTE (-147))) (|HasCategory| (-695) (QUOTE (-145))) (|HasCategory| (-695) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-695) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-695) (QUOTE (-368))) (|HasCategory| (-695) (QUOTE (-363))) (-4012 (|HasCategory| (-695) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-695) (QUOTE (-363)))) (|HasCategory| (-695) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-695) (QUOTE (-233))) (-4012 (|HasCategory| (-695) (QUOTE (-363))) (|HasCategory| (-695) (QUOTE (-349)))) (|HasCategory| (-695) (QUOTE (-349))) (|HasCategory| (-695) (LIST (QUOTE -286) (QUOTE (-695)) (QUOTE (-695)))) (|HasCategory| (-695) (LIST (QUOTE -309) (QUOTE (-695)))) (|HasCategory| (-695) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-695)))) (|HasCategory| (-695) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-695) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-695) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-695) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (-4012 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-363))) (|HasCategory| (-695) (QUOTE (-349)))) (|HasCategory| (-695) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-695) (QUOTE (-1019))) (|HasCategory| (-695) (QUOTE (-1194))) (-12 (|HasCategory| (-695) (QUOTE (-999))) (|HasCategory| (-695) (QUOTE (-1194)))) (-4012 (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (|HasCategory| (-695) (QUOTE (-363))) (-12 (|HasCategory| (-695) (QUOTE (-349))) (|HasCategory| (-695) (QUOTE (-906))))) (-4012 (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (-12 (|HasCategory| (-695) (QUOTE (-363))) (|HasCategory| (-695) (QUOTE (-906)))) (-12 (|HasCategory| (-695) (QUOTE (-349))) (|HasCategory| (-695) (QUOTE (-906))))) (|HasCategory| (-695) (QUOTE (-545))) (-12 (|HasCategory| (-695) (QUOTE (-1055))) (|HasCategory| (-695) (QUOTE (-1194)))) (|HasCategory| (-695) (QUOTE (-1055))) (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906))) (-4012 (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (|HasCategory| (-695) (QUOTE (-363)))) (-4012 (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (|HasCategory| (-695) (QUOTE (-556)))) (-12 (|HasCategory| (-695) (QUOTE (-233))) (|HasCategory| (-695) (QUOTE (-363)))) (-12 (|HasCategory| (-695) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-695) (QUOTE (-363)))) (|HasCategory| (-695) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-695) (QUOTE (-847))) (|HasCategory| (-695) (QUOTE (-556))) (|HasAttribute| (-695) (QUOTE -4411)) (|HasAttribute| (-695) (QUOTE -4408)) (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (|HasCategory| (-695) (QUOTE (-145)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (|HasCategory| (-695) (QUOTE (-349))))) +((-4405 . T) (-4410 |has| (-695) (-363)) (-4404 |has| (-695) (-363)) (-4134 . T) (-4411 |has| (-695) (-6 -4411)) (-4408 |has| (-695) (-6 -4408)) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) +((|HasCategory| (-695) (QUOTE (-147))) (|HasCategory| (-695) (QUOTE (-145))) (|HasCategory| (-695) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-695) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-695) (QUOTE (-368))) (|HasCategory| (-695) (QUOTE (-363))) (-2713 (|HasCategory| (-695) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-695) (QUOTE (-363)))) (|HasCategory| (-695) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-695) (QUOTE (-233))) (-2713 (|HasCategory| (-695) (QUOTE (-363))) (|HasCategory| (-695) (QUOTE (-349)))) (|HasCategory| (-695) (QUOTE (-349))) (|HasCategory| (-695) (LIST (QUOTE -286) (QUOTE (-695)) (QUOTE (-695)))) (|HasCategory| (-695) (LIST (QUOTE -309) (QUOTE (-695)))) (|HasCategory| (-695) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-695)))) (|HasCategory| (-695) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-695) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-695) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-695) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (-2713 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-363))) (|HasCategory| (-695) (QUOTE (-349)))) (|HasCategory| (-695) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-695) (QUOTE (-1019))) (|HasCategory| (-695) (QUOTE (-1194))) (-12 (|HasCategory| (-695) (QUOTE (-999))) (|HasCategory| (-695) (QUOTE (-1194)))) (-2713 (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (|HasCategory| (-695) (QUOTE (-363))) (-12 (|HasCategory| (-695) (QUOTE (-349))) (|HasCategory| (-695) (QUOTE (-906))))) (-2713 (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (-12 (|HasCategory| (-695) (QUOTE (-363))) (|HasCategory| (-695) (QUOTE (-906)))) (-12 (|HasCategory| (-695) (QUOTE (-349))) (|HasCategory| (-695) (QUOTE (-906))))) (|HasCategory| (-695) (QUOTE (-545))) (-12 (|HasCategory| (-695) (QUOTE (-1055))) (|HasCategory| (-695) (QUOTE (-1194)))) (|HasCategory| (-695) (QUOTE (-1055))) (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906))) (-2713 (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (|HasCategory| (-695) (QUOTE (-363)))) (-2713 (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (|HasCategory| (-695) (QUOTE (-556)))) (-12 (|HasCategory| (-695) (QUOTE (-233))) (|HasCategory| (-695) (QUOTE (-363)))) (-12 (|HasCategory| (-695) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-695) (QUOTE (-363)))) (|HasCategory| (-695) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-695) (QUOTE (-847))) (|HasCategory| (-695) (QUOTE (-556))) (|HasAttribute| (-695) (QUOTE -4411)) (|HasAttribute| (-695) (QUOTE -4408)) (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (-2713 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (|HasCategory| (-695) (QUOTE (-145)))) (-2713 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (|HasCategory| (-695) (QUOTE (-349))))) (-691 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) ((-4413 . T)) @@ -2704,13 +2704,13 @@ NIL ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented"))) NIL NIL -(-694 OV E -3438 PG) +(-694 OV E -2210 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL (-695) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-2441 . T) (-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) +((-4124 . T) (-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) NIL (-696 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) @@ -2740,7 +2740,7 @@ NIL ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-703 S -2238 I) +(-703 S -3256 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL @@ -2760,14 +2760,14 @@ NIL ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-708 R |Mod| -3126 -3678 |exactQuo|) +(-708 R |Mod| -3895 -2057 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) ((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) NIL (-709 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) (((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4408 |has| |#1| (-363)) (-4410 |has| |#1| (-6 -4410)) (-4407 . T) (-4406 . T) (-4409 . T)) -((|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4410)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) +((|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-2713 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-2713 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-2713 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4410)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-2713 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) (-710 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL @@ -2776,7 +2776,7 @@ NIL ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) ((-4407 |has| |#1| (-172)) (-4406 |has| |#1| (-172)) (-4409 . T)) ((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147)))) -(-712 R |Mod| -3126 -3678 |exactQuo|) +(-712 R |Mod| -3895 -2057 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) ((-4409 . T)) NIL @@ -2788,7 +2788,7 @@ NIL ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) ((-4407 . T) (-4406 . T)) NIL -(-715 -3438) +(-715 -2210) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}."))) ((-4409 . T)) NIL @@ -2824,7 +2824,7 @@ NIL ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-724 -3438 UP) +(-724 -2210 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL @@ -2843,7 +2843,7 @@ NIL (-728 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) (((-4414 "*") |has| |#2| (-172)) (-4405 |has| |#2| (-556)) (-4410 |has| |#2| (-6 -4410)) (-4407 . T) (-4406 . T) (-4409 . T)) -((|HasCategory| |#2| (QUOTE (-906))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4410)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145))))) +((|HasCategory| |#2| (QUOTE (-906))) (-2713 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-2713 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-2713 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-2713 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-2713 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4410)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-2713 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145))))) (-729 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL @@ -2976,11 +2976,11 @@ NIL ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-762 -3438) +(-762 -2210) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-763 P -3438) +(-763 P -2210) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL @@ -2988,7 +2988,7 @@ NIL NIL NIL NIL -(-765 UP -3438) +(-765 UP -2210) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL @@ -3004,7 +3004,7 @@ NIL ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) (((-4414 "*") . T)) NIL -(-769 R -3438) +(-769 R -2210) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL @@ -3024,7 +3024,7 @@ NIL ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-774 -3438 |ExtF| |SUEx| |ExtP| |n|) +(-774 -2210 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL @@ -3039,7 +3039,7 @@ NIL (-777 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) (((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-6 -4410)) (-4407 . T) (-4406 . T) (-4409 . T)) -((|HasCategory| |#1| (QUOTE (-906))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170))))) (-4012 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (-4253 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))))) (-4012 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (-4253 (|HasCategory| |#1| (QUOTE (-545)))) (-4253 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (-4253 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-564))))) (-4253 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (-4253 (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-564))))))) (|HasAttribute| |#1| (QUOTE -4410)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) +((|HasCategory| |#1| (QUOTE (-906))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-2713 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-2713 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-2713 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170))))) (-2713 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (-2819 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))))) (-2713 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (-2819 (|HasCategory| |#1| (QUOTE (-545)))) (-2819 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (-2819 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-564))))) (-2819 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (-2819 (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-564))))))) (|HasAttribute| |#1| (QUOTE -4410)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-2713 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) (-778 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL @@ -3047,7 +3047,7 @@ NIL (-779 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) (((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4408 |has| |#1| (-363)) (-4410 |has| |#1| (-6 -4410)) (-4407 . T) (-4406 . T) (-4409 . T)) -((|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4410)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) +((|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-2713 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-2713 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-2713 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4410)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-2713 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) (-780 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented"))) NIL @@ -3108,23 +3108,23 @@ NIL ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) ((-4406 . T) (-4407 . T) (-4409 . T)) NIL -(-795 -4012 R OS S) +(-795 -2713 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL (-796 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) ((-4406 . T) (-4407 . T) (-4409 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (-4012 (|HasCategory| (-996 |#1|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4012 (|HasCategory| (-996 |#1|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-996 |#1|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-996 |#1|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (-2713 (|HasCategory| (-996 |#1|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2713 (|HasCategory| (-996 |#1|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-996 |#1|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-996 |#1|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (-797) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-798 R -3438 L) +(-798 R -2210 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-799 R -3438) +(-799 R -2210) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL @@ -3132,7 +3132,7 @@ NIL ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-801 R -3438) +(-801 R -2210) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL @@ -3140,11 +3140,11 @@ NIL ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-803 -3438 UP UPUP R) +(-803 -2210 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-804 -3438 UP L LQ) +(-804 -2210 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL @@ -3152,38 +3152,38 @@ NIL ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-806 -3438 UP L LQ) +(-806 -2210 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-807 -3438 UP) +(-807 -2210 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-808 -3438 L UP A LO) +(-808 -2210 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-809 -3438 UP) +(-809 -2210 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-810 -3438 LO) +(-810 -2210 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-811 -3438 LODO) +(-811 -2210 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}."))) NIL NIL -(-812 -2880 S |f|) +(-812 -3926 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) ((-4406 |has| |#2| (-1046)) (-4407 |has| |#2| (-1046)) (-4409 |has| |#2| (-6 -4409)) ((-4414 "*") |has| |#2| (-172)) (-4412 . T)) -((-4012 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-4012 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-363))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-790))) (-4012 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845)))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-172))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-790)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-845)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094))))) (-4012 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-4012 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-4012 (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasAttribute| |#2| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))))) +((-2713 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-2713 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-363))) (-2713 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-2713 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-790))) (-2713 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845)))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-172))) (-2713 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (-2713 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-1094)))) (-2713 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-2713 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-2713 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-2713 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1094))) (-2713 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-790)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-845)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094))))) (-2713 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-2713 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-2713 (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasAttribute| |#2| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))))) (-813 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) (((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-6 -4410)) (-4407 . T) (-4406 . T) (-4409 . T)) -((|HasCategory| |#1| (QUOTE (-906))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-815 (-1170)) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-815 (-1170)) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-815 (-1170)) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-815 (-1170)) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-815 (-1170)) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4410)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) +((|HasCategory| |#1| (QUOTE (-906))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-2713 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-2713 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-815 (-1170)) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-815 (-1170)) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-815 (-1170)) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-815 (-1170)) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-815 (-1170)) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-2713 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4410)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-2713 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) (-814 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) (((-4414 "*") |has| |#2| (-363)) (-4405 |has| |#2| (-363)) (-4410 |has| |#2| (-363)) (-4404 |has| |#2| (-363)) (-4409 . T) (-4407 . T) (-4406 . T)) @@ -3251,7 +3251,7 @@ NIL (-830 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) ((-4409 |has| |#1| (-845))) -((|HasCategory| |#1| (QUOTE (-845))) (-4012 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-845)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-4012 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-21)))) +((|HasCategory| |#1| (QUOTE (-845))) (-2713 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-845)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-2713 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-21)))) (-831 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator `op'.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of `op'."))) NIL @@ -3291,12 +3291,12 @@ NIL (-840 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) ((-4409 |has| |#1| (-845))) -((|HasCategory| |#1| (QUOTE (-845))) (-4012 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-845)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-4012 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-21)))) +((|HasCategory| |#1| (QUOTE (-845))) (-2713 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-845)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-2713 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-21)))) (-841) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-842 -2880 S) +(-842 -3926 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL @@ -3332,11 +3332,11 @@ NIL ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL ((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) -(-851 R |sigma| -3225) +(-851 R |sigma| -4287) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) ((-4406 . T) (-4407 . T) (-4409 . T)) ((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363)))) -(-852 |x| R |sigma| -3225) +(-852 |x| R |sigma| -4287) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) ((-4406 . T) (-4407 . T) (-4409 . T)) ((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-363)))) @@ -3403,15 +3403,15 @@ NIL (-868 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) ((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) -((|HasCategory| (-867 |#1|) (QUOTE (-906))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-867 |#1|) (QUOTE (-145))) (|HasCategory| (-867 |#1|) (QUOTE (-147))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-867 |#1|) (QUOTE (-1019))) (|HasCategory| (-867 |#1|) (QUOTE (-817))) (-4012 (|HasCategory| (-867 |#1|) (QUOTE (-817))) (|HasCategory| (-867 |#1|) (QUOTE (-847)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-867 |#1|) (QUOTE (-1145))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-867 |#1|) (QUOTE (-233))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -867) (|devaluate| |#1|)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -309) (LIST (QUOTE -867) (|devaluate| |#1|)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -867) (|devaluate| |#1|)) (LIST (QUOTE -867) (|devaluate| |#1|)))) (|HasCategory| (-867 |#1|) (QUOTE (-307))) (|HasCategory| (-867 |#1|) (QUOTE (-545))) (|HasCategory| (-867 |#1|) (QUOTE (-847))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-867 |#1|) (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-867 |#1|) (QUOTE (-906)))) (|HasCategory| (-867 |#1|) (QUOTE (-145))))) +((|HasCategory| (-867 |#1|) (QUOTE (-906))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-867 |#1|) (QUOTE (-145))) (|HasCategory| (-867 |#1|) (QUOTE (-147))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-867 |#1|) (QUOTE (-1019))) (|HasCategory| (-867 |#1|) (QUOTE (-817))) (-2713 (|HasCategory| (-867 |#1|) (QUOTE (-817))) (|HasCategory| (-867 |#1|) (QUOTE (-847)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-867 |#1|) (QUOTE (-1145))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-867 |#1|) (QUOTE (-233))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -867) (|devaluate| |#1|)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -309) (LIST (QUOTE -867) (|devaluate| |#1|)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -867) (|devaluate| |#1|)) (LIST (QUOTE -867) (|devaluate| |#1|)))) (|HasCategory| (-867 |#1|) (QUOTE (-307))) (|HasCategory| (-867 |#1|) (QUOTE (-545))) (|HasCategory| (-867 |#1|) (QUOTE (-847))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-867 |#1|) (QUOTE (-906)))) (-2713 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-867 |#1|) (QUOTE (-906)))) (|HasCategory| (-867 |#1|) (QUOTE (-145))))) (-869 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) ((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) -((|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-817))) (-4012 (|HasCategory| |#2| (QUOTE (-817))) (|HasCategory| |#2| (QUOTE (-847)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-1145))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-847))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145))))) +((|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-817))) (-2713 (|HasCategory| |#2| (QUOTE (-817))) (|HasCategory| |#2| (QUOTE (-847)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-1145))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-847))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-2713 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145))))) (-870 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))))) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))))) (-871) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL @@ -3467,7 +3467,7 @@ NIL (-884 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-4253 (|HasCategory| |#2| (QUOTE (-1046)))) (-4253 (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (-4253 (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170))))) +((-12 (-2819 (|HasCategory| |#2| (QUOTE (-1046)))) (-2819 (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (-2819 (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170))))) (-885 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL @@ -3476,7 +3476,7 @@ NIL ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-887 R -2238) +(-887 R -3256) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL @@ -3500,7 +3500,7 @@ NIL ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-893 UP -3438) +(-893 UP -2210) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL @@ -3523,7 +3523,7 @@ NIL (-898 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (-899 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL @@ -3539,7 +3539,7 @@ NIL (-902 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) ((-4409 . T)) -((-4012 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-847)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-847)))) +((-2713 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-847)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-847)))) (-903 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL @@ -3560,7 +3560,7 @@ NIL ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) ((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) ((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-368)))) -(-908 R0 -3438 UP UPUP R) +(-908 R0 -2210 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL @@ -3588,7 +3588,7 @@ NIL ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}."))) NIL NIL -(-915 -3438) +(-915 -2210) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL @@ -3604,11 +3604,11 @@ NIL ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) (((-4414 "*") . T)) NIL -(-919 -3438 P) +(-919 -2210 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented"))) NIL NIL -(-920 |xx| -3438) +(-920 |xx| -2210) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented"))) NIL NIL @@ -3632,7 +3632,7 @@ NIL ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-926 R -3438) +(-926 R -2210) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL @@ -3644,7 +3644,7 @@ NIL ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-929 S R -3438) +(-929 S R -2210) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL @@ -3664,11 +3664,11 @@ NIL ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -883) (|devaluate| |#1|)))) -(-934 R -3438 -2238) +(-934 R -2210 -3256) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-935 -2238) +(-935 -3256) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL @@ -3691,7 +3691,7 @@ NIL (-940 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) ((-4413 . T) (-4412 . T)) -((-4012 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4012 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-1046))) (-12 (|HasCategory| |#1| (QUOTE (-999))) (|HasCategory| |#1| (QUOTE (-1046)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +((-2713 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2713 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-1046))) (-12 (|HasCategory| |#1| (QUOTE (-999))) (|HasCategory| |#1| (QUOTE (-1046)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-941 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL @@ -3716,7 +3716,7 @@ NIL ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) (((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-6 -4410)) (-4407 . T) (-4406 . T) (-4409 . T)) NIL -(-947 E V R P -3438) +(-947 E V R P -2210) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL @@ -3727,8 +3727,8 @@ NIL (-949 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) (((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-6 -4410)) (-4407 . T) (-4406 . T) (-4409 . T)) -((|HasCategory| |#1| (QUOTE (-906))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4410)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-950 E V R P -3438) +((|HasCategory| |#1| (QUOTE (-906))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-2713 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-2713 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-2713 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4410)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-2713 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-950 E V R P -2210) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL ((|HasCategory| |#3| (QUOTE (-452)))) @@ -3751,12 +3751,12 @@ NIL (-955 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) ((-4413 . T) (-4412 . T)) -((-4012 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4012 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +((-2713 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2713 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-956) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-957 -3438) +(-957 -2210) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL @@ -3771,11 +3771,11 @@ NIL (-960 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) (((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-6 -4410)) (-4406 . T) (-4407 . T) (-4409 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4410))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2713 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4410))) (-961 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented"))) ((-4409 -12 (|has| |#2| (-473)) (|has| |#1| (-473)))) -((-4012 (-12 (|HasCategory| |#1| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-790)))) (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-847))))) (-12 (|HasCategory| |#1| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-790)))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-790))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-790))))) (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-723))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-368)))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#1| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-790))))) (-12 (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-847))))) +((-2713 (-12 (|HasCategory| |#1| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-790)))) (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-847))))) (-12 (|HasCategory| |#1| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-790)))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-790))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-790))))) (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-723))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-368)))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#1| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-790))))) (-12 (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-847))))) (-962) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL @@ -3856,7 +3856,7 @@ NIL ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-982 K R UP -3438) +(-982 K R UP -2210) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL @@ -3915,11 +3915,11 @@ NIL (-996 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) ((-4405 |has| |#1| (-290)) (-4406 . T) (-4407 . T) (-4409 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363))) (-4012 (|HasCategory| |#1| (QUOTE (-290))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-290))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (QUOTE (-545)))) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363))) (-2713 (|HasCategory| |#1| (QUOTE (-290))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-290))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (-2713 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (QUOTE (-545)))) (-997 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) ((-4412 . T) (-4413 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (-998 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL @@ -3928,14 +3928,14 @@ NIL ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1000 -3438 UP UPUP |radicnd| |n|) +(-1000 -2210 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) ((-4405 |has| (-407 |#2|) (-363)) (-4410 |has| (-407 |#2|) (-363)) (-4404 |has| (-407 |#2|) (-363)) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) -((|HasCategory| (-407 |#2|) (QUOTE (-145))) (|HasCategory| (-407 |#2|) (QUOTE (-147))) (|HasCategory| (-407 |#2|) (QUOTE (-349))) (-4012 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-368))) (-4012 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (-4012 (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-349))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -637) (QUOTE (-564)))) (-4012 (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363))))) +((|HasCategory| (-407 |#2|) (QUOTE (-145))) (|HasCategory| (-407 |#2|) (QUOTE (-147))) (|HasCategory| (-407 |#2|) (QUOTE (-349))) (-2713 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-368))) (-2713 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (-2713 (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-349))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -637) (QUOTE (-564)))) (-2713 (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363))))) (-1001 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) ((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) -((|HasCategory| (-564) (QUOTE (-906))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1019))) (|HasCategory| (-564) (QUOTE (-817))) (-4012 (|HasCategory| (-564) (QUOTE (-817))) (|HasCategory| (-564) (QUOTE (-847)))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1145))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (|HasCategory| (-564) (QUOTE (-145))))) +((|HasCategory| (-564) (QUOTE (-906))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1019))) (|HasCategory| (-564) (QUOTE (-817))) (-2713 (|HasCategory| (-564) (QUOTE (-817))) (|HasCategory| (-564) (QUOTE (-847)))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1145))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (-2713 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (|HasCategory| (-564) (QUOTE (-145))))) (-1002) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL @@ -3968,19 +3968,19 @@ NIL ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) ((-4405 . T) (-4410 . T) (-4404 . T) (-4407 . T) (-4406 . T) ((-4414 "*") . T) (-4409 . T)) NIL -(-1010 R -3438) +(-1010 R -2210) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-1011 R -3438) +(-1011 R -2210) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-1012 -3438 UP) +(-1012 -2210 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-1013 -3438 UP) +(-1013 -2210 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use."))) NIL NIL @@ -4015,8 +4015,8 @@ NIL (-1021 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) ((-4405 . T) (-4410 . T) (-4404 . T) (-4407 . T) (-4406 . T) ((-4414 "*") . T) (-4409 . T)) -((-4012 (|HasCategory| (-407 (-564)) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-407 (-564)) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 (-564)) (LIST (QUOTE -1035) (QUOTE (-564))))) -(-1022 -3438 L) +((-2713 (|HasCategory| (-407 (-564)) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-407 (-564)) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 (-564)) (LIST (QUOTE -1035) (QUOTE (-564))))) +(-1022 -2210 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL @@ -4052,14 +4052,14 @@ NIL ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1031 -3438 |Expon| |VarSet| |FPol| |LFPol|) +(-1031 -2210 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) (((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) NIL (-1032) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) ((-4412 . T) (-4413 . T)) -((-12 (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1350) (QUOTE (-1170))) (LIST (QUOTE |:|) (QUOTE -2575) (QUOTE (-52))))))) (-4012 (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (QUOTE (-1094))) (|HasCategory| (-52) (QUOTE (-1094)))) (-4012 (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (QUOTE (-1094))) (|HasCategory| (-1170) (QUOTE (-847))) (|HasCategory| (-52) (QUOTE (-1094))) (-4012 (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| (-2 (|:| -2381 (-1170)) (|:| -3096 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2381 (-1170)) (|:| -3096 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2381) (QUOTE (-1170))) (LIST (QUOTE |:|) (QUOTE -3096) (QUOTE (-52))))))) (-2713 (|HasCategory| (-2 (|:| -2381 (-1170)) (|:| -3096 (-52))) (QUOTE (-1094))) (|HasCategory| (-52) (QUOTE (-1094)))) (-2713 (|HasCategory| (-2 (|:| -2381 (-1170)) (|:| -3096 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2381 (-1170)) (|:| -3096 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -2381 (-1170)) (|:| -3096 (-52))) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2381 (-1170)) (|:| -3096 (-52))) (QUOTE (-1094))) (|HasCategory| (-1170) (QUOTE (-847))) (|HasCategory| (-52) (QUOTE (-1094))) (-2713 (|HasCategory| (-2 (|:| -2381 (-1170)) (|:| -3096 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2381 (-1170)) (|:| -3096 (-52))) (LIST (QUOTE -611) (QUOTE (-859))))) (-1033) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL @@ -4116,7 +4116,7 @@ NIL ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) ((-4409 . T)) NIL -(-1047 |xx| -3438) +(-1047 |xx| -2210) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL @@ -4131,7 +4131,7 @@ NIL (-1050 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) ((-4412 . T) (-4407 . T) (-4406 . T)) -((-4012 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -612) (QUOTE (-536)))) (-4012 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (QUOTE (-307))) (|HasCategory| |#3| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-172))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-859))))) +((-2713 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -612) (QUOTE (-536)))) (-2713 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (QUOTE (-307))) (|HasCategory| |#3| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-172))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-859))))) (-1051 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL @@ -4163,7 +4163,7 @@ NIL (-1058) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}"))) ((-4412 . T) (-4413 . T)) -((-12 (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1350) (QUOTE (-1170))) (LIST (QUOTE |:|) (QUOTE -2575) (QUOTE (-52))))))) (-4012 (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (QUOTE (-1094))) (|HasCategory| (-52) (QUOTE (-1094)))) (-4012 (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (QUOTE (-1094))) (|HasCategory| (-1170) (QUOTE (-847))) (|HasCategory| (-52) (QUOTE (-1094))) (-4012 (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| (-2 (|:| -2381 (-1170)) (|:| -3096 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2381 (-1170)) (|:| -3096 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2381) (QUOTE (-1170))) (LIST (QUOTE |:|) (QUOTE -3096) (QUOTE (-52))))))) (-2713 (|HasCategory| (-2 (|:| -2381 (-1170)) (|:| -3096 (-52))) (QUOTE (-1094))) (|HasCategory| (-52) (QUOTE (-1094)))) (-2713 (|HasCategory| (-2 (|:| -2381 (-1170)) (|:| -3096 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2381 (-1170)) (|:| -3096 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -2381 (-1170)) (|:| -3096 (-52))) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2381 (-1170)) (|:| -3096 (-52))) (QUOTE (-1094))) (|HasCategory| (-1170) (QUOTE (-847))) (|HasCategory| (-52) (QUOTE (-1094))) (-2713 (|HasCategory| (-2 (|:| -2381 (-1170)) (|:| -3096 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2381 (-1170)) (|:| -3096 (-52))) (LIST (QUOTE -611) (QUOTE (-859))))) (-1059 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL @@ -4208,11 +4208,11 @@ NIL ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1070 |Base| R -3438) +(-1070 |Base| R -2210) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1071 |Base| R -3438) +(-1071 |Base| R -2210) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}."))) NIL NIL @@ -4227,7 +4227,7 @@ NIL (-1074 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) ((-4405 |has| |#1| (-363)) (-4410 |has| |#1| (-363)) (-4404 |has| |#1| (-363)) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-349)))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363))))) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349))) (-2713 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-349)))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-2713 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363))))) (-1075 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL @@ -4255,7 +4255,7 @@ NIL (-1081 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) (((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-6 -4410)) (-4407 . T) (-4406 . T) (-4409 . T)) -((|HasCategory| |#1| (QUOTE (-906))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4410)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) +((|HasCategory| |#1| (QUOTE (-906))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-2713 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-2713 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-2713 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4410)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-2713 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) (-1082 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL @@ -4315,7 +4315,7 @@ NIL (-1096 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}"))) ((-4412 . T) (-4402 . T) (-4413 . T)) -((-4012 (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +((-2713 (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-1097 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) NIL @@ -4359,7 +4359,7 @@ NIL (-1107 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) ((-4406 |has| |#3| (-1046)) (-4407 |has| |#3| (-1046)) (-4409 |has| |#3| (-6 -4409)) ((-4414 "*") |has| |#3| (-172)) (-4412 . T)) -((-4012 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-4012 (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#3| (QUOTE (-363))) (-4012 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1046)))) (-4012 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (QUOTE (-790))) (-4012 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (QUOTE (-845)))) (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-172))) (-4012 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1046)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4012 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (QUOTE (-1094)))) (-4012 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1046)))) (-4012 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1046)))) (-4012 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1046)))) (-4012 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-131)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-723)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-790)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-845)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1046)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094))))) (-4012 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1046))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-4012 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170))))) (-4012 (|HasCategory| |#3| (QUOTE (-1046))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094)))) (|HasAttribute| |#3| (QUOTE -4409)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) +((-2713 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-2713 (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#3| (QUOTE (-363))) (-2713 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1046)))) (-2713 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (QUOTE (-790))) (-2713 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (QUOTE (-845)))) (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-172))) (-2713 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1046)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (-2713 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (QUOTE (-1094)))) (-2713 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1046)))) (-2713 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1046)))) (-2713 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1046)))) (-2713 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1094))) (-2713 (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-131)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-723)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-790)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-845)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1046)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094))))) (-2713 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1046))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-2713 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170))))) (-2713 (|HasCategory| |#3| (QUOTE (-1046))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094)))) (|HasAttribute| |#3| (QUOTE -4409)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) (-1108 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL @@ -4368,7 +4368,7 @@ NIL ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,{}s,{}t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) NIL NIL -(-1110 R -3438) +(-1110 R -2210) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL @@ -4407,16 +4407,16 @@ NIL (-1119 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) (((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-6 -4410)) (-4407 . T) (-4406 . T) (-4409 . T)) -((|HasCategory| |#1| (QUOTE (-906))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4410)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) +((|HasCategory| |#1| (QUOTE (-906))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-2713 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-2713 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-2713 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4410)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-2713 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) (-1120 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) (((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4407 . T) (-4406 . T) (-4409 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-363)))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-363)))) (-1121 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) ((-4413 . T) (-4412 . T)) NIL -(-1122 UP -3438) +(-1122 UP -2210) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL @@ -4471,11 +4471,11 @@ NIL (-1135 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) ((-4412 . T) (-4413 . T)) -((-12 (|HasCategory| (-1134 |#1| |#2|) (LIST (QUOTE -309) (LIST (QUOTE -1134) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1134 |#1| |#2|) (QUOTE (-1094)))) (|HasCategory| (-1134 |#1| |#2|) (QUOTE (-1094))) (-4012 (|HasCategory| (-1134 |#1| |#2|) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-1134 |#1| |#2|) (LIST (QUOTE -309) (LIST (QUOTE -1134) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1134 |#1| |#2|) (QUOTE (-1094))))) (|HasCategory| (-1134 |#1| |#2|) (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| (-1134 |#1| |#2|) (LIST (QUOTE -309) (LIST (QUOTE -1134) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1134 |#1| |#2|) (QUOTE (-1094)))) (|HasCategory| (-1134 |#1| |#2|) (QUOTE (-1094))) (-2713 (|HasCategory| (-1134 |#1| |#2|) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-1134 |#1| |#2|) (LIST (QUOTE -309) (LIST (QUOTE -1134) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1134 |#1| |#2|) (QUOTE (-1094))))) (|HasCategory| (-1134 |#1| |#2|) (LIST (QUOTE -611) (QUOTE (-859))))) (-1136 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) ((-4409 . T) (-4401 |has| |#2| (-6 (-4414 "*"))) (-4412 . T) (-4406 . T) (-4407 . T)) -((|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4414 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-363))) (-4012 (|HasAttribute| |#2| (QUOTE (-4414 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172)))) +((|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4414 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-2713 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-363))) (-2713 (|HasAttribute| |#2| (QUOTE (-4414 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172)))) (-1137 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL @@ -4495,7 +4495,7 @@ NIL (-1141 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) ((-4412 . T) (-4413 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (-1142 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL @@ -4507,7 +4507,7 @@ NIL (-1144 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) ((-4413 . T)) -((-12 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1350) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2575) (|devaluate| |#2|)))))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-847))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094)))) +((-12 (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2381) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3096) (|devaluate| |#2|)))))) (-2713 (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-2713 (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-847))) (-2713 (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-1094)))) (-1145) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL @@ -4531,7 +4531,7 @@ NIL (-1150 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) ((-4413 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (-1151) ((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) ((-4413 . T) (-4412 . T)) @@ -4539,11 +4539,11 @@ NIL (-1152) NIL ((-4413 . T) (-4412 . T)) -((-4012 (-12 (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) +((-2713 (-12 (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (-1153 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) ((-4412 . T) (-4413 . T)) -((-12 (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1350) (QUOTE (-1152))) (LIST (QUOTE |:|) (QUOTE -2575) (|devaluate| |#1|)))))) (-4012 (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-1094)))) (-4012 (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (QUOTE (-1094))) (|HasCategory| (-1152) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| (-2 (|:| -2381 (-1152)) (|:| -3096 |#1|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2381 (-1152)) (|:| -3096 |#1|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2381) (QUOTE (-1152))) (LIST (QUOTE |:|) (QUOTE -3096) (|devaluate| |#1|)))))) (-2713 (|HasCategory| (-2 (|:| -2381 (-1152)) (|:| -3096 |#1|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-1094)))) (-2713 (|HasCategory| (-2 (|:| -2381 (-1152)) (|:| -3096 |#1|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2381 (-1152)) (|:| -3096 |#1|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -2381 (-1152)) (|:| -3096 |#1|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2381 (-1152)) (|:| -3096 |#1|)) (QUOTE (-1094))) (|HasCategory| (-1152) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (-2713 (|HasCategory| (-2 (|:| -2381 (-1152)) (|:| -3096 |#1|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2381 (-1152)) (|:| -3096 |#1|)) (LIST (QUOTE -611) (QUOTE (-859))))) (-1154 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}"))) NIL @@ -4574,9 +4574,9 @@ NIL NIL (-1161 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4414 "*") -4012 (-4264 (|has| |#1| (-363)) (|has| (-1168 |#1| |#2| |#3|) (-817))) (|has| |#1| (-172)) (-4264 (|has| |#1| (-363)) (|has| (-1168 |#1| |#2| |#3|) (-906)))) (-4405 -4012 (-4264 (|has| |#1| (-363)) (|has| (-1168 |#1| |#2| |#3|) (-817))) (|has| |#1| (-556)) (-4264 (|has| |#1| (-363)) (|has| (-1168 |#1| |#2| |#3|) (-906)))) (-4410 |has| |#1| (-363)) (-4404 |has| |#1| (-363)) (-4406 . T) (-4407 . T) (-4409 . T)) -((-4012 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-4012 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))) (-4012 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-147)))) (-4012 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|)))))) (-4012 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasCategory| (-564) (QUOTE (-1106))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-363)))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-4012 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363))))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3714) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (-4012 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -4039) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4292) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-4012 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-556)))) (-4012 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4012 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-1162 R -3438) +(((-4414 "*") -2713 (-2832 (|has| |#1| (-363)) (|has| (-1168 |#1| |#2| |#3|) (-817))) (|has| |#1| (-172)) (-2832 (|has| |#1| (-363)) (|has| (-1168 |#1| |#2| |#3|) (-906)))) (-4405 -2713 (-2832 (|has| |#1| (-363)) (|has| (-1168 |#1| |#2| |#3|) (-817))) (|has| |#1| (-556)) (-2832 (|has| |#1| (-363)) (|has| (-1168 |#1| |#2| |#3|) (-906)))) (-4410 |has| |#1| (-363)) (-4404 |has| |#1| (-363)) (-4406 . T) (-4407 . T) (-4409 . T)) +((-2713 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-2713 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2713 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2713 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|)))))) (-2713 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasCategory| (-564) (QUOTE (-1106))) (-2713 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-363)))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-2713 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363))))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -1721) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (-2713 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2052) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4153) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2713 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-556)))) (-2713 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2713 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-2713 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-1162 R -2210) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL @@ -4595,15 +4595,15 @@ NIL (-1166 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) (((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4408 |has| |#1| (-363)) (-4410 |has| |#1| (-6 -4410)) (-4407 . T) (-4406 . T) (-4409 . T)) -((|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4410)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) +((|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-2713 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-2713 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-2713 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4410)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-2713 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) (-1167 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) (((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-363)) (-4404 |has| |#1| (-363)) (-4406 . T) (-4407 . T) (-4409 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -3714) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4012 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -4039) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4292) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-2713 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -1721) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2713 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2052) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4153) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|))))))) (-1168 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) (((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4406 . T) (-4407 . T) (-4409 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-768)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-768)) (|devaluate| |#1|)))) (|HasCategory| (-768) (QUOTE (-1106))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-768))))) (|HasSignature| |#1| (LIST (QUOTE -3714) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-768))))) (|HasCategory| |#1| (QUOTE (-363))) (-4012 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -4039) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4292) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-768)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-768)) (|devaluate| |#1|)))) (|HasCategory| (-768) (QUOTE (-1106))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-768))))) (|HasSignature| |#1| (LIST (QUOTE -1721) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-768))))) (|HasCategory| |#1| (QUOTE (-363))) (-2713 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2052) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4153) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|))))))) (-1169) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL @@ -4619,7 +4619,7 @@ NIL (-1172 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) (((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-6 -4410)) (-4406 . T) (-4407 . T) (-4409 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| (-968) (QUOTE (-131))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasAttribute| |#1| (QUOTE -4410))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2713 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| (-968) (QUOTE (-131))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasAttribute| |#1| (QUOTE -4410))) (-1173) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL @@ -4659,7 +4659,7 @@ NIL (-1182 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) ((-4412 . T) (-4413 . T)) -((-12 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1350) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2575) (|devaluate| |#2|)))))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2381) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3096) (|devaluate| |#2|)))))) (-2713 (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-2713 (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094))) (-2713 (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2381 |#1|) (|:| -3096 |#2|)) (LIST (QUOTE -611) (QUOTE (-859))))) (-1183 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}."))) NIL @@ -4711,7 +4711,7 @@ NIL (-1195 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) ((-4413 . T) (-4412 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (-1196 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL @@ -4720,7 +4720,7 @@ NIL ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1198 R -3438) +(-1198 R -2210) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -4728,7 +4728,7 @@ NIL ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1200 R -3438) +(-1200 R -2210) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL ((-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -883) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -883) (|devaluate| |#1|))))) @@ -4743,7 +4743,7 @@ NIL (-1203 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) (((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4407 . T) (-4406 . T) (-4409 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-363)))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-363)))) (-1204 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL @@ -4756,7 +4756,7 @@ NIL ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL ((|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) -(-1207 -3438) +(-1207 -2210) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL @@ -4819,11 +4819,11 @@ NIL (-1222 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) (((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-363)) (-4404 |has| |#1| (-363)) (-4406 . T) (-4407 . T) (-4409 . T)) -((-4012 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-817)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-847)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1019)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1145)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-4012 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-145))))) (-4012 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-147))))) (-4012 (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasCategory| (-564) (QUOTE (-1106))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1019)))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-817)))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-817)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-847))))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-817)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-847)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1019)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1145)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1145)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3714) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (-4012 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -4039) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4292) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-847)))) (|HasCategory| |#2| (QUOTE (-906))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-307)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-145)))))) +((-2713 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-817)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-847)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1019)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1145)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-2713 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-145))))) (-2713 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-147))))) (-2713 (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasCategory| (-564) (QUOTE (-1106))) (-2713 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1019)))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-817)))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-817)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-847))))) (-2713 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-817)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-847)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1019)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1145)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1145)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -1721) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (-2713 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2052) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4153) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-847)))) (|HasCategory| |#2| (QUOTE (-906))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-307)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906)))) (-2713 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-145)))))) (-1223 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4414 "*") -4012 (-4264 (|has| |#1| (-363)) (|has| (-1251 |#1| |#2| |#3|) (-817))) (|has| |#1| (-172)) (-4264 (|has| |#1| (-363)) (|has| (-1251 |#1| |#2| |#3|) (-906)))) (-4405 -4012 (-4264 (|has| |#1| (-363)) (|has| (-1251 |#1| |#2| |#3|) (-817))) (|has| |#1| (-556)) (-4264 (|has| |#1| (-363)) (|has| (-1251 |#1| |#2| |#3|) (-906)))) (-4410 |has| |#1| (-363)) (-4404 |has| |#1| (-363)) (-4406 . T) (-4407 . T) (-4409 . T)) -((-4012 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-4012 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))) (-4012 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-147)))) (-4012 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|)))))) (-4012 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasCategory| (-564) (QUOTE (-1106))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-363)))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-4012 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363))))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3714) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (-4012 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -4039) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4292) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-4012 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-556)))) (-4012 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4012 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))))) +(((-4414 "*") -2713 (-2832 (|has| |#1| (-363)) (|has| (-1251 |#1| |#2| |#3|) (-817))) (|has| |#1| (-172)) (-2832 (|has| |#1| (-363)) (|has| (-1251 |#1| |#2| |#3|) (-906)))) (-4405 -2713 (-2832 (|has| |#1| (-363)) (|has| (-1251 |#1| |#2| |#3|) (-817))) (|has| |#1| (-556)) (-2832 (|has| |#1| (-363)) (|has| (-1251 |#1| |#2| |#3|) (-906)))) (-4410 |has| |#1| (-363)) (-4404 |has| |#1| (-363)) (-4406 . T) (-4407 . T) (-4409 . T)) +((-2713 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-2713 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2713 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2713 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|)))))) (-2713 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasCategory| (-564) (QUOTE (-1106))) (-2713 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-363)))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-2713 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363))))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -1721) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (-2713 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2052) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4153) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2713 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-556)))) (-2713 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2713 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-2713 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))))) (-1224 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL @@ -4859,7 +4859,7 @@ NIL (-1232 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) (((-4414 "*") |has| |#2| (-172)) (-4405 |has| |#2| (-556)) (-4408 |has| |#2| (-363)) (-4410 |has| |#2| (-6 -4410)) (-4407 . T) (-4406 . T) (-4409 . T)) -((|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1145))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE -4410)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145))))) +((|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-2713 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-2713 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-2713 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-2713 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-2713 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1145))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE -4410)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-2713 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145))))) (-1233 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL @@ -4875,7 +4875,7 @@ NIL (-1236 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1106))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3714) (LIST (|devaluate| |#2|) (QUOTE (-1170)))))) +((|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1106))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -1721) (LIST (|devaluate| |#2|) (QUOTE (-1170)))))) (-1237 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) (((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4406 . T) (-4407 . T) (-4409 . T)) @@ -4903,15 +4903,15 @@ NIL (-1243 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) (((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-363)) (-4404 |has| |#1| (-363)) (-4406 . T) (-4407 . T) (-4409 . T)) -((|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -3714) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4012 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -4039) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4292) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) +((|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-2713 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -1721) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2713 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2052) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4153) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-1244 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) (((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-363)) (-4404 |has| |#1| (-363)) (-4406 . T) (-4407 . T) (-4409 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -3714) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4012 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -4039) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4292) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-2713 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -1721) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-2713 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2052) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4153) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|))))))) (-1245 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}."))) (((-4414 "*") |has| (-1244 |#2| |#3| |#4|) (-172)) (-4405 |has| (-1244 |#2| |#3| |#4|) (-556)) (-4406 . T) (-4407 . T) (-4409 . T)) -((|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-172))) (-4012 (|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-363))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-452))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-556)))) +((|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-172))) (-2713 (|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-363))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-452))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-556)))) (-1246 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL @@ -4927,7 +4927,7 @@ NIL (-1249 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-956))) (|HasCategory| |#2| (QUOTE (-1194))) (|HasSignature| |#2| (LIST (QUOTE -4292) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4039) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1170))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-956))) (|HasCategory| |#2| (QUOTE (-1194))) (|HasSignature| |#2| (LIST (QUOTE -4153) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2052) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1170))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) (-1250 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) (((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4406 . T) (-4407 . T) (-4409 . T)) @@ -4935,12 +4935,12 @@ NIL (-1251 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) (((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4406 . T) (-4407 . T) (-4409 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-768)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-768)) (|devaluate| |#1|)))) (|HasCategory| (-768) (QUOTE (-1106))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-768))))) (|HasSignature| |#1| (LIST (QUOTE -3714) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-768))))) (|HasCategory| |#1| (QUOTE (-363))) (-4012 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -4039) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4292) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-2713 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-768)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-768)) (|devaluate| |#1|)))) (|HasCategory| (-768) (QUOTE (-1106))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-768))))) (|HasSignature| |#1| (LIST (QUOTE -1721) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-768))))) (|HasCategory| |#1| (QUOTE (-363))) (-2713 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -2052) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4153) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|))))))) (-1252 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1253 -3438 UP L UTS) +(-1253 -2210 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL ((|HasCategory| |#1| (QUOTE (-556)))) @@ -4967,7 +4967,7 @@ NIL (-1259 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) ((-4413 . T) (-4412 . T)) -((-4012 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4012 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-1046))) (-12 (|HasCategory| |#1| (QUOTE (-999))) (|HasCategory| |#1| (QUOTE (-1046)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +((-2713 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2713 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-2713 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-1046))) (-12 (|HasCategory| |#1| (QUOTE (-999))) (|HasCategory| |#1| (QUOTE (-1046)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-1260) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL @@ -5000,7 +5000,7 @@ NIL ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1268 K R UP -3438) +(-1268 K R UP -2210) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL @@ -5036,11 +5036,11 @@ NIL ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) ((-4405 |has| |#2| (-6 -4405)) (-4407 . T) (-4406 . T) (-4409 . T)) NIL -(-1277 S -3438) +(-1277 S -2210) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL ((|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147)))) -(-1278 -3438) +(-1278 -2210) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) ((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T)) NIL @@ -5096,4 +5096,4 @@ NIL NIL NIL NIL -((-3 NIL 2283947 2283952 2283957 2283962) (-2 NIL 2283927 2283932 2283937 2283942) (-1 NIL 2283907 2283912 2283917 2283922) (0 NIL 2283887 2283892 2283897 2283902) (-1287 "ZMOD.spad" 2283696 2283709 2283825 2283882) (-1286 "ZLINDEP.spad" 2282740 2282751 2283686 2283691) (-1285 "ZDSOLVE.spad" 2272589 2272611 2282730 2282735) (-1284 "YSTREAM.spad" 2272082 2272093 2272579 2272584) (-1283 "XRPOLY.spad" 2271302 2271322 2271938 2272007) (-1282 "XPR.spad" 2269093 2269106 2271020 2271119) (-1281 "XPOLY.spad" 2268648 2268659 2268949 2269018) (-1280 "XPOLYC.spad" 2267965 2267981 2268574 2268643) (-1279 "XPBWPOLY.spad" 2266402 2266422 2267745 2267814) (-1278 "XF.spad" 2264863 2264878 2266304 2266397) (-1277 "XF.spad" 2263304 2263321 2264747 2264752) (-1276 "XFALG.spad" 2260328 2260344 2263230 2263299) (-1275 "XEXPPKG.spad" 2259579 2259605 2260318 2260323) (-1274 "XDPOLY.spad" 2259193 2259209 2259435 2259504) (-1273 "XALG.spad" 2258853 2258864 2259149 2259188) (-1272 "WUTSET.spad" 2254692 2254709 2258499 2258526) (-1271 "WP.spad" 2253891 2253935 2254550 2254617) (-1270 "WHILEAST.spad" 2253689 2253698 2253881 2253886) (-1269 "WHEREAST.spad" 2253360 2253369 2253679 2253684) (-1268 "WFFINTBS.spad" 2250923 2250945 2253350 2253355) (-1267 "WEIER.spad" 2249137 2249148 2250913 2250918) (-1266 "VSPACE.spad" 2248810 2248821 2249105 2249132) (-1265 "VSPACE.spad" 2248503 2248516 2248800 2248805) (-1264 "VOID.spad" 2248180 2248189 2248493 2248498) (-1263 "VIEW.spad" 2245802 2245811 2248170 2248175) (-1262 "VIEWDEF.spad" 2240999 2241008 2245792 2245797) (-1261 "VIEW3D.spad" 2224834 2224843 2240989 2240994) (-1260 "VIEW2D.spad" 2212571 2212580 2224824 2224829) (-1259 "VECTOR.spad" 2211246 2211257 2211497 2211524) (-1258 "VECTOR2.spad" 2209873 2209886 2211236 2211241) (-1257 "VECTCAT.spad" 2207773 2207784 2209841 2209868) (-1256 "VECTCAT.spad" 2205481 2205494 2207551 2207556) (-1255 "VARIABLE.spad" 2205261 2205276 2205471 2205476) (-1254 "UTYPE.spad" 2204905 2204914 2205251 2205256) (-1253 "UTSODETL.spad" 2204198 2204222 2204861 2204866) (-1252 "UTSODE.spad" 2202386 2202406 2204188 2204193) (-1251 "UTS.spad" 2197175 2197203 2200853 2200950) (-1250 "UTSCAT.spad" 2194626 2194642 2197073 2197170) (-1249 "UTSCAT.spad" 2191721 2191739 2194170 2194175) (-1248 "UTS2.spad" 2191314 2191349 2191711 2191716) (-1247 "URAGG.spad" 2185946 2185957 2191304 2191309) (-1246 "URAGG.spad" 2180542 2180555 2185902 2185907) (-1245 "UPXSSING.spad" 2178185 2178211 2179623 2179756) (-1244 "UPXS.spad" 2175333 2175361 2176317 2176466) (-1243 "UPXSCONS.spad" 2173090 2173110 2173465 2173614) (-1242 "UPXSCCA.spad" 2171655 2171675 2172936 2173085) (-1241 "UPXSCCA.spad" 2170362 2170384 2171645 2171650) (-1240 "UPXSCAT.spad" 2168943 2168959 2170208 2170357) (-1239 "UPXS2.spad" 2168484 2168537 2168933 2168938) (-1238 "UPSQFREE.spad" 2166896 2166910 2168474 2168479) (-1237 "UPSCAT.spad" 2164489 2164513 2166794 2166891) (-1236 "UPSCAT.spad" 2161788 2161814 2164095 2164100) (-1235 "UPOLYC.spad" 2156766 2156777 2161630 2161783) (-1234 "UPOLYC.spad" 2151636 2151649 2156502 2156507) (-1233 "UPOLYC2.spad" 2151105 2151124 2151626 2151631) (-1232 "UP.spad" 2148262 2148277 2148655 2148808) (-1231 "UPMP.spad" 2147152 2147165 2148252 2148257) (-1230 "UPDIVP.spad" 2146715 2146729 2147142 2147147) (-1229 "UPDECOMP.spad" 2144952 2144966 2146705 2146710) (-1228 "UPCDEN.spad" 2144159 2144175 2144942 2144947) (-1227 "UP2.spad" 2143521 2143542 2144149 2144154) (-1226 "UNISEG.spad" 2142874 2142885 2143440 2143445) (-1225 "UNISEG2.spad" 2142367 2142380 2142830 2142835) (-1224 "UNIFACT.spad" 2141468 2141480 2142357 2142362) (-1223 "ULS.spad" 2132020 2132048 2133113 2133542) (-1222 "ULSCONS.spad" 2124414 2124434 2124786 2124935) (-1221 "ULSCCAT.spad" 2122143 2122163 2124260 2124409) (-1220 "ULSCCAT.spad" 2119980 2120002 2122099 2122104) (-1219 "ULSCAT.spad" 2118196 2118212 2119826 2119975) (-1218 "ULS2.spad" 2117708 2117761 2118186 2118191) (-1217 "UINT8.spad" 2117585 2117594 2117698 2117703) (-1216 "UINT64.spad" 2117461 2117470 2117575 2117580) (-1215 "UINT32.spad" 2117337 2117346 2117451 2117456) (-1214 "UINT16.spad" 2117213 2117222 2117327 2117332) (-1213 "UFD.spad" 2116278 2116287 2117139 2117208) (-1212 "UFD.spad" 2115405 2115416 2116268 2116273) (-1211 "UDVO.spad" 2114252 2114261 2115395 2115400) (-1210 "UDPO.spad" 2111679 2111690 2114208 2114213) (-1209 "TYPE.spad" 2111611 2111620 2111669 2111674) (-1208 "TYPEAST.spad" 2111530 2111539 2111601 2111606) (-1207 "TWOFACT.spad" 2110180 2110195 2111520 2111525) (-1206 "TUPLE.spad" 2109664 2109675 2110079 2110084) (-1205 "TUBETOOL.spad" 2106501 2106510 2109654 2109659) (-1204 "TUBE.spad" 2105142 2105159 2106491 2106496) (-1203 "TS.spad" 2103731 2103747 2104707 2104804) (-1202 "TSETCAT.spad" 2090858 2090875 2103699 2103726) (-1201 "TSETCAT.spad" 2077971 2077990 2090814 2090819) (-1200 "TRMANIP.spad" 2072337 2072354 2077677 2077682) (-1199 "TRIMAT.spad" 2071296 2071321 2072327 2072332) (-1198 "TRIGMNIP.spad" 2069813 2069830 2071286 2071291) (-1197 "TRIGCAT.spad" 2069325 2069334 2069803 2069808) (-1196 "TRIGCAT.spad" 2068835 2068846 2069315 2069320) (-1195 "TREE.spad" 2067406 2067417 2068442 2068469) (-1194 "TRANFUN.spad" 2067237 2067246 2067396 2067401) (-1193 "TRANFUN.spad" 2067066 2067077 2067227 2067232) (-1192 "TOPSP.spad" 2066740 2066749 2067056 2067061) (-1191 "TOOLSIGN.spad" 2066403 2066414 2066730 2066735) (-1190 "TEXTFILE.spad" 2064960 2064969 2066393 2066398) (-1189 "TEX.spad" 2062092 2062101 2064950 2064955) (-1188 "TEX1.spad" 2061648 2061659 2062082 2062087) (-1187 "TEMUTL.spad" 2061203 2061212 2061638 2061643) (-1186 "TBCMPPK.spad" 2059296 2059319 2061193 2061198) (-1185 "TBAGG.spad" 2058332 2058355 2059276 2059291) (-1184 "TBAGG.spad" 2057376 2057401 2058322 2058327) (-1183 "TANEXP.spad" 2056752 2056763 2057366 2057371) (-1182 "TABLE.spad" 2055163 2055186 2055433 2055460) (-1181 "TABLEAU.spad" 2054644 2054655 2055153 2055158) (-1180 "TABLBUMP.spad" 2051427 2051438 2054634 2054639) (-1179 "SYSTEM.spad" 2050655 2050664 2051417 2051422) (-1178 "SYSSOLP.spad" 2048128 2048139 2050645 2050650) (-1177 "SYSNNI.spad" 2047308 2047319 2048118 2048123) (-1176 "SYSINT.spad" 2046712 2046723 2047298 2047303) (-1175 "SYNTAX.spad" 2042906 2042915 2046702 2046707) (-1174 "SYMTAB.spad" 2040962 2040971 2042896 2042901) (-1173 "SYMS.spad" 2036947 2036956 2040952 2040957) (-1172 "SYMPOLY.spad" 2035954 2035965 2036036 2036163) (-1171 "SYMFUNC.spad" 2035429 2035440 2035944 2035949) (-1170 "SYMBOL.spad" 2032856 2032865 2035419 2035424) (-1169 "SWITCH.spad" 2029613 2029622 2032846 2032851) (-1168 "SUTS.spad" 2026512 2026540 2028080 2028177) (-1167 "SUPXS.spad" 2023647 2023675 2024644 2024793) (-1166 "SUP.spad" 2020416 2020427 2021197 2021350) (-1165 "SUPFRACF.spad" 2019521 2019539 2020406 2020411) (-1164 "SUP2.spad" 2018911 2018924 2019511 2019516) (-1163 "SUMRF.spad" 2017877 2017888 2018901 2018906) (-1162 "SUMFS.spad" 2017510 2017527 2017867 2017872) (-1161 "SULS.spad" 2008049 2008077 2009155 2009584) (-1160 "SUCHTAST.spad" 2007818 2007827 2008039 2008044) (-1159 "SUCH.spad" 2007498 2007513 2007808 2007813) (-1158 "SUBSPACE.spad" 1999505 1999520 2007488 2007493) (-1157 "SUBRESP.spad" 1998665 1998679 1999461 1999466) (-1156 "STTF.spad" 1994764 1994780 1998655 1998660) (-1155 "STTFNC.spad" 1991232 1991248 1994754 1994759) (-1154 "STTAYLOR.spad" 1983630 1983641 1991113 1991118) (-1153 "STRTBL.spad" 1982135 1982152 1982284 1982311) (-1152 "STRING.spad" 1981544 1981553 1981558 1981585) (-1151 "STRICAT.spad" 1981332 1981341 1981512 1981539) (-1150 "STREAM.spad" 1978190 1978201 1980857 1980872) (-1149 "STREAM3.spad" 1977735 1977750 1978180 1978185) (-1148 "STREAM2.spad" 1976803 1976816 1977725 1977730) (-1147 "STREAM1.spad" 1976507 1976518 1976793 1976798) (-1146 "STINPROD.spad" 1975413 1975429 1976497 1976502) (-1145 "STEP.spad" 1974614 1974623 1975403 1975408) (-1144 "STBL.spad" 1973140 1973168 1973307 1973322) (-1143 "STAGG.spad" 1972215 1972226 1973130 1973135) (-1142 "STAGG.spad" 1971288 1971301 1972205 1972210) (-1141 "STACK.spad" 1970639 1970650 1970895 1970922) (-1140 "SREGSET.spad" 1968343 1968360 1970285 1970312) (-1139 "SRDCMPK.spad" 1966888 1966908 1968333 1968338) (-1138 "SRAGG.spad" 1961985 1961994 1966856 1966883) (-1137 "SRAGG.spad" 1957102 1957113 1961975 1961980) (-1136 "SQMATRIX.spad" 1954718 1954736 1955634 1955721) (-1135 "SPLTREE.spad" 1949270 1949283 1954154 1954181) (-1134 "SPLNODE.spad" 1945858 1945871 1949260 1949265) (-1133 "SPFCAT.spad" 1944635 1944644 1945848 1945853) (-1132 "SPECOUT.spad" 1943185 1943194 1944625 1944630) (-1131 "SPADXPT.spad" 1935324 1935333 1943175 1943180) (-1130 "spad-parser.spad" 1934789 1934798 1935314 1935319) (-1129 "SPADAST.spad" 1934490 1934499 1934779 1934784) (-1128 "SPACEC.spad" 1918503 1918514 1934480 1934485) (-1127 "SPACE3.spad" 1918279 1918290 1918493 1918498) (-1126 "SORTPAK.spad" 1917824 1917837 1918235 1918240) (-1125 "SOLVETRA.spad" 1915581 1915592 1917814 1917819) (-1124 "SOLVESER.spad" 1914101 1914112 1915571 1915576) (-1123 "SOLVERAD.spad" 1910111 1910122 1914091 1914096) (-1122 "SOLVEFOR.spad" 1908531 1908549 1910101 1910106) (-1121 "SNTSCAT.spad" 1908131 1908148 1908499 1908526) (-1120 "SMTS.spad" 1906391 1906417 1907696 1907793) (-1119 "SMP.spad" 1903830 1903850 1904220 1904347) (-1118 "SMITH.spad" 1902673 1902698 1903820 1903825) (-1117 "SMATCAT.spad" 1900783 1900813 1902617 1902668) (-1116 "SMATCAT.spad" 1898825 1898857 1900661 1900666) (-1115 "SKAGG.spad" 1897786 1897797 1898793 1898820) (-1114 "SINT.spad" 1896612 1896621 1897652 1897781) (-1113 "SIMPAN.spad" 1896340 1896349 1896602 1896607) (-1112 "SIG.spad" 1895668 1895677 1896330 1896335) (-1111 "SIGNRF.spad" 1894776 1894787 1895658 1895663) (-1110 "SIGNEF.spad" 1894045 1894062 1894766 1894771) (-1109 "SIGAST.spad" 1893426 1893435 1894035 1894040) (-1108 "SHP.spad" 1891344 1891359 1893382 1893387) (-1107 "SHDP.spad" 1881055 1881082 1881564 1881695) (-1106 "SGROUP.spad" 1880663 1880672 1881045 1881050) (-1105 "SGROUP.spad" 1880269 1880280 1880653 1880658) (-1104 "SGCF.spad" 1873150 1873159 1880259 1880264) (-1103 "SFRTCAT.spad" 1872078 1872095 1873118 1873145) (-1102 "SFRGCD.spad" 1871141 1871161 1872068 1872073) (-1101 "SFQCMPK.spad" 1865778 1865798 1871131 1871136) (-1100 "SFORT.spad" 1865213 1865227 1865768 1865773) (-1099 "SEXOF.spad" 1865056 1865096 1865203 1865208) (-1098 "SEX.spad" 1864948 1864957 1865046 1865051) (-1097 "SEXCAT.spad" 1862499 1862539 1864938 1864943) (-1096 "SET.spad" 1860799 1860810 1861920 1861959) (-1095 "SETMN.spad" 1859233 1859250 1860789 1860794) (-1094 "SETCAT.spad" 1858718 1858727 1859223 1859228) (-1093 "SETCAT.spad" 1858201 1858212 1858708 1858713) (-1092 "SETAGG.spad" 1854722 1854733 1858181 1858196) (-1091 "SETAGG.spad" 1851251 1851264 1854712 1854717) (-1090 "SEQAST.spad" 1850954 1850963 1851241 1851246) (-1089 "SEGXCAT.spad" 1850076 1850089 1850944 1850949) (-1088 "SEG.spad" 1849889 1849900 1849995 1850000) (-1087 "SEGCAT.spad" 1848796 1848807 1849879 1849884) (-1086 "SEGBIND.spad" 1847868 1847879 1848751 1848756) (-1085 "SEGBIND2.spad" 1847564 1847577 1847858 1847863) (-1084 "SEGAST.spad" 1847278 1847287 1847554 1847559) (-1083 "SEG2.spad" 1846703 1846716 1847234 1847239) (-1082 "SDVAR.spad" 1845979 1845990 1846693 1846698) (-1081 "SDPOL.spad" 1843369 1843380 1843660 1843787) (-1080 "SCPKG.spad" 1841448 1841459 1843359 1843364) (-1079 "SCOPE.spad" 1840601 1840610 1841438 1841443) (-1078 "SCACHE.spad" 1839283 1839294 1840591 1840596) (-1077 "SASTCAT.spad" 1839192 1839201 1839273 1839278) (-1076 "SAOS.spad" 1839064 1839073 1839182 1839187) (-1075 "SAERFFC.spad" 1838777 1838797 1839054 1839059) (-1074 "SAE.spad" 1836952 1836968 1837563 1837698) (-1073 "SAEFACT.spad" 1836653 1836673 1836942 1836947) (-1072 "RURPK.spad" 1834294 1834310 1836643 1836648) (-1071 "RULESET.spad" 1833735 1833759 1834284 1834289) (-1070 "RULE.spad" 1831939 1831963 1833725 1833730) (-1069 "RULECOLD.spad" 1831791 1831804 1831929 1831934) (-1068 "RSTRCAST.spad" 1831508 1831517 1831781 1831786) (-1067 "RSETGCD.spad" 1827886 1827906 1831498 1831503) (-1066 "RSETCAT.spad" 1817670 1817687 1827854 1827881) (-1065 "RSETCAT.spad" 1807474 1807493 1817660 1817665) (-1064 "RSDCMPK.spad" 1805926 1805946 1807464 1807469) (-1063 "RRCC.spad" 1804310 1804340 1805916 1805921) (-1062 "RRCC.spad" 1802692 1802724 1804300 1804305) (-1061 "RPTAST.spad" 1802394 1802403 1802682 1802687) (-1060 "RPOLCAT.spad" 1781754 1781769 1802262 1802389) (-1059 "RPOLCAT.spad" 1760828 1760845 1781338 1781343) (-1058 "ROUTINE.spad" 1756691 1756700 1759475 1759502) (-1057 "ROMAN.spad" 1756019 1756028 1756557 1756686) (-1056 "ROIRC.spad" 1755099 1755131 1756009 1756014) (-1055 "RNS.spad" 1754002 1754011 1755001 1755094) (-1054 "RNS.spad" 1752991 1753002 1753992 1753997) (-1053 "RNG.spad" 1752726 1752735 1752981 1752986) (-1052 "RMODULE.spad" 1752364 1752375 1752716 1752721) (-1051 "RMCAT2.spad" 1751772 1751829 1752354 1752359) (-1050 "RMATRIX.spad" 1750596 1750615 1750939 1750978) (-1049 "RMATCAT.spad" 1746129 1746160 1750552 1750591) (-1048 "RMATCAT.spad" 1741552 1741585 1745977 1745982) (-1047 "RINTERP.spad" 1741440 1741460 1741542 1741547) (-1046 "RING.spad" 1740910 1740919 1741420 1741435) (-1045 "RING.spad" 1740388 1740399 1740900 1740905) (-1044 "RIDIST.spad" 1739772 1739781 1740378 1740383) (-1043 "RGCHAIN.spad" 1738351 1738367 1739257 1739284) (-1042 "RGBCSPC.spad" 1738132 1738144 1738341 1738346) (-1041 "RGBCMDL.spad" 1737662 1737674 1738122 1738127) (-1040 "RF.spad" 1735276 1735287 1737652 1737657) (-1039 "RFFACTOR.spad" 1734738 1734749 1735266 1735271) (-1038 "RFFACT.spad" 1734473 1734485 1734728 1734733) (-1037 "RFDIST.spad" 1733461 1733470 1734463 1734468) (-1036 "RETSOL.spad" 1732878 1732891 1733451 1733456) (-1035 "RETRACT.spad" 1732306 1732317 1732868 1732873) (-1034 "RETRACT.spad" 1731732 1731745 1732296 1732301) (-1033 "RETAST.spad" 1731544 1731553 1731722 1731727) (-1032 "RESULT.spad" 1729604 1729613 1730191 1730218) (-1031 "RESRING.spad" 1728951 1728998 1729542 1729599) (-1030 "RESLATC.spad" 1728275 1728286 1728941 1728946) (-1029 "REPSQ.spad" 1728004 1728015 1728265 1728270) (-1028 "REP.spad" 1725556 1725565 1727994 1727999) (-1027 "REPDB.spad" 1725261 1725272 1725546 1725551) (-1026 "REP2.spad" 1714833 1714844 1725103 1725108) (-1025 "REP1.spad" 1708823 1708834 1714783 1714788) (-1024 "REGSET.spad" 1706620 1706637 1708469 1708496) (-1023 "REF.spad" 1705949 1705960 1706575 1706580) (-1022 "REDORDER.spad" 1705125 1705142 1705939 1705944) (-1021 "RECLOS.spad" 1703908 1703928 1704612 1704705) (-1020 "REALSOLV.spad" 1703040 1703049 1703898 1703903) (-1019 "REAL.spad" 1702912 1702921 1703030 1703035) (-1018 "REAL0Q.spad" 1700194 1700209 1702902 1702907) (-1017 "REAL0.spad" 1697022 1697037 1700184 1700189) (-1016 "RDUCEAST.spad" 1696743 1696752 1697012 1697017) (-1015 "RDIV.spad" 1696394 1696419 1696733 1696738) (-1014 "RDIST.spad" 1695957 1695968 1696384 1696389) (-1013 "RDETRS.spad" 1694753 1694771 1695947 1695952) (-1012 "RDETR.spad" 1692860 1692878 1694743 1694748) (-1011 "RDEEFS.spad" 1691933 1691950 1692850 1692855) (-1010 "RDEEF.spad" 1690929 1690946 1691923 1691928) (-1009 "RCFIELD.spad" 1688115 1688124 1690831 1690924) (-1008 "RCFIELD.spad" 1685387 1685398 1688105 1688110) (-1007 "RCAGG.spad" 1683299 1683310 1685377 1685382) (-1006 "RCAGG.spad" 1681138 1681151 1683218 1683223) (-1005 "RATRET.spad" 1680498 1680509 1681128 1681133) (-1004 "RATFACT.spad" 1680190 1680202 1680488 1680493) (-1003 "RANDSRC.spad" 1679509 1679518 1680180 1680185) (-1002 "RADUTIL.spad" 1679263 1679272 1679499 1679504) (-1001 "RADIX.spad" 1676164 1676178 1677730 1677823) (-1000 "RADFF.spad" 1674577 1674614 1674696 1674852) (-999 "RADCAT.spad" 1674171 1674179 1674567 1674572) (-998 "RADCAT.spad" 1673763 1673773 1674161 1674166) (-997 "QUEUE.spad" 1673106 1673116 1673370 1673397) (-996 "QUAT.spad" 1671688 1671698 1672030 1672095) (-995 "QUATCT2.spad" 1671307 1671325 1671678 1671683) (-994 "QUATCAT.spad" 1669472 1669482 1671237 1671302) (-993 "QUATCAT.spad" 1667388 1667400 1669155 1669160) (-992 "QUAGG.spad" 1666214 1666224 1667356 1667383) (-991 "QQUTAST.spad" 1665983 1665991 1666204 1666209) (-990 "QFORM.spad" 1665446 1665460 1665973 1665978) (-989 "QFCAT.spad" 1664149 1664159 1665348 1665441) (-988 "QFCAT.spad" 1662443 1662455 1663644 1663649) (-987 "QFCAT2.spad" 1662134 1662150 1662433 1662438) (-986 "QEQUAT.spad" 1661691 1661699 1662124 1662129) (-985 "QCMPACK.spad" 1656438 1656457 1661681 1661686) (-984 "QALGSET.spad" 1652513 1652545 1656352 1656357) (-983 "QALGSET2.spad" 1650509 1650527 1652503 1652508) (-982 "PWFFINTB.spad" 1647819 1647840 1650499 1650504) (-981 "PUSHVAR.spad" 1647148 1647167 1647809 1647814) (-980 "PTRANFN.spad" 1643274 1643284 1647138 1647143) (-979 "PTPACK.spad" 1640362 1640372 1643264 1643269) (-978 "PTFUNC2.spad" 1640183 1640197 1640352 1640357) (-977 "PTCAT.spad" 1639432 1639442 1640151 1640178) (-976 "PSQFR.spad" 1638739 1638763 1639422 1639427) (-975 "PSEUDLIN.spad" 1637597 1637607 1638729 1638734) (-974 "PSETPK.spad" 1623030 1623046 1637475 1637480) (-973 "PSETCAT.spad" 1616950 1616973 1623010 1623025) (-972 "PSETCAT.spad" 1610844 1610869 1616906 1616911) (-971 "PSCURVE.spad" 1609827 1609835 1610834 1610839) (-970 "PSCAT.spad" 1608594 1608623 1609725 1609822) (-969 "PSCAT.spad" 1607451 1607482 1608584 1608589) (-968 "PRTITION.spad" 1606396 1606404 1607441 1607446) (-967 "PRTDAST.spad" 1606115 1606123 1606386 1606391) (-966 "PRS.spad" 1595677 1595694 1606071 1606076) (-965 "PRQAGG.spad" 1595108 1595118 1595645 1595672) (-964 "PROPLOG.spad" 1594511 1594519 1595098 1595103) (-963 "PROPFRML.spad" 1592429 1592440 1594501 1594506) (-962 "PROPERTY.spad" 1591923 1591931 1592419 1592424) (-961 "PRODUCT.spad" 1589603 1589615 1589889 1589944) (-960 "PR.spad" 1587989 1588001 1588694 1588821) (-959 "PRINT.spad" 1587741 1587749 1587979 1587984) (-958 "PRIMES.spad" 1585992 1586002 1587731 1587736) (-957 "PRIMELT.spad" 1583973 1583987 1585982 1585987) (-956 "PRIMCAT.spad" 1583596 1583604 1583963 1583968) (-955 "PRIMARR.spad" 1582601 1582611 1582779 1582806) (-954 "PRIMARR2.spad" 1581324 1581336 1582591 1582596) (-953 "PREASSOC.spad" 1580696 1580708 1581314 1581319) (-952 "PPCURVE.spad" 1579833 1579841 1580686 1580691) (-951 "PORTNUM.spad" 1579608 1579616 1579823 1579828) (-950 "POLYROOT.spad" 1578437 1578459 1579564 1579569) (-949 "POLY.spad" 1575734 1575744 1576251 1576378) (-948 "POLYLIFT.spad" 1574995 1575018 1575724 1575729) (-947 "POLYCATQ.spad" 1573097 1573119 1574985 1574990) (-946 "POLYCAT.spad" 1566503 1566524 1572965 1573092) (-945 "POLYCAT.spad" 1559211 1559234 1565675 1565680) (-944 "POLY2UP.spad" 1558659 1558673 1559201 1559206) (-943 "POLY2.spad" 1558254 1558266 1558649 1558654) (-942 "POLUTIL.spad" 1557195 1557224 1558210 1558215) (-941 "POLTOPOL.spad" 1555943 1555958 1557185 1557190) (-940 "POINT.spad" 1554782 1554792 1554869 1554896) (-939 "PNTHEORY.spad" 1551448 1551456 1554772 1554777) (-938 "PMTOOLS.spad" 1550205 1550219 1551438 1551443) (-937 "PMSYM.spad" 1549750 1549760 1550195 1550200) (-936 "PMQFCAT.spad" 1549337 1549351 1549740 1549745) (-935 "PMPRED.spad" 1548806 1548820 1549327 1549332) (-934 "PMPREDFS.spad" 1548250 1548272 1548796 1548801) (-933 "PMPLCAT.spad" 1547320 1547338 1548182 1548187) (-932 "PMLSAGG.spad" 1546901 1546915 1547310 1547315) (-931 "PMKERNEL.spad" 1546468 1546480 1546891 1546896) (-930 "PMINS.spad" 1546044 1546054 1546458 1546463) (-929 "PMFS.spad" 1545617 1545635 1546034 1546039) (-928 "PMDOWN.spad" 1544903 1544917 1545607 1545612) (-927 "PMASS.spad" 1543915 1543923 1544893 1544898) (-926 "PMASSFS.spad" 1542884 1542900 1543905 1543910) (-925 "PLOTTOOL.spad" 1542664 1542672 1542874 1542879) (-924 "PLOT.spad" 1537495 1537503 1542654 1542659) (-923 "PLOT3D.spad" 1533915 1533923 1537485 1537490) (-922 "PLOT1.spad" 1533056 1533066 1533905 1533910) (-921 "PLEQN.spad" 1520272 1520299 1533046 1533051) (-920 "PINTERP.spad" 1519888 1519907 1520262 1520267) (-919 "PINTERPA.spad" 1519670 1519686 1519878 1519883) (-918 "PI.spad" 1519277 1519285 1519644 1519665) (-917 "PID.spad" 1518233 1518241 1519203 1519272) (-916 "PICOERCE.spad" 1517890 1517900 1518223 1518228) (-915 "PGROEB.spad" 1516487 1516501 1517880 1517885) (-914 "PGE.spad" 1507740 1507748 1516477 1516482) (-913 "PGCD.spad" 1506622 1506639 1507730 1507735) (-912 "PFRPAC.spad" 1505765 1505775 1506612 1506617) (-911 "PFR.spad" 1502422 1502432 1505667 1505760) (-910 "PFOTOOLS.spad" 1501680 1501696 1502412 1502417) (-909 "PFOQ.spad" 1501050 1501068 1501670 1501675) (-908 "PFO.spad" 1500469 1500496 1501040 1501045) (-907 "PF.spad" 1500043 1500055 1500274 1500367) (-906 "PFECAT.spad" 1497709 1497717 1499969 1500038) (-905 "PFECAT.spad" 1495403 1495413 1497665 1497670) (-904 "PFBRU.spad" 1493273 1493285 1495393 1495398) (-903 "PFBR.spad" 1490811 1490834 1493263 1493268) (-902 "PERM.spad" 1486492 1486502 1490641 1490656) (-901 "PERMGRP.spad" 1481228 1481238 1486482 1486487) (-900 "PERMCAT.spad" 1479780 1479790 1481208 1481223) (-899 "PERMAN.spad" 1478312 1478326 1479770 1479775) (-898 "PENDTREE.spad" 1477651 1477661 1477941 1477946) (-897 "PDRING.spad" 1476142 1476152 1477631 1477646) (-896 "PDRING.spad" 1474641 1474653 1476132 1476137) (-895 "PDEPROB.spad" 1473656 1473664 1474631 1474636) (-894 "PDEPACK.spad" 1467658 1467666 1473646 1473651) (-893 "PDECOMP.spad" 1467120 1467137 1467648 1467653) (-892 "PDECAT.spad" 1465474 1465482 1467110 1467115) (-891 "PCOMP.spad" 1465325 1465338 1465464 1465469) (-890 "PBWLB.spad" 1463907 1463924 1465315 1465320) (-889 "PATTERN.spad" 1458338 1458348 1463897 1463902) (-888 "PATTERN2.spad" 1458074 1458086 1458328 1458333) (-887 "PATTERN1.spad" 1456376 1456392 1458064 1458069) (-886 "PATRES.spad" 1453923 1453935 1456366 1456371) (-885 "PATRES2.spad" 1453585 1453599 1453913 1453918) (-884 "PATMATCH.spad" 1451742 1451773 1453293 1453298) (-883 "PATMAB.spad" 1451167 1451177 1451732 1451737) (-882 "PATLRES.spad" 1450251 1450265 1451157 1451162) (-881 "PATAB.spad" 1450015 1450025 1450241 1450246) (-880 "PARTPERM.spad" 1447377 1447385 1450005 1450010) (-879 "PARSURF.spad" 1446805 1446833 1447367 1447372) (-878 "PARSU2.spad" 1446600 1446616 1446795 1446800) (-877 "script-parser.spad" 1446120 1446128 1446590 1446595) (-876 "PARSCURV.spad" 1445548 1445576 1446110 1446115) (-875 "PARSC2.spad" 1445337 1445353 1445538 1445543) (-874 "PARPCURV.spad" 1444795 1444823 1445327 1445332) (-873 "PARPC2.spad" 1444584 1444600 1444785 1444790) (-872 "PAN2EXPR.spad" 1443996 1444004 1444574 1444579) (-871 "PALETTE.spad" 1442966 1442974 1443986 1443991) (-870 "PAIR.spad" 1441949 1441962 1442554 1442559) (-869 "PADICRC.spad" 1439279 1439297 1440454 1440547) (-868 "PADICRAT.spad" 1437294 1437306 1437515 1437608) (-867 "PADIC.spad" 1436989 1437001 1437220 1437289) (-866 "PADICCT.spad" 1435530 1435542 1436915 1436984) (-865 "PADEPAC.spad" 1434209 1434228 1435520 1435525) (-864 "PADE.spad" 1432949 1432965 1434199 1434204) (-863 "OWP.spad" 1432189 1432219 1432807 1432874) (-862 "OVERSET.spad" 1431762 1431770 1432179 1432184) (-861 "OVAR.spad" 1431543 1431566 1431752 1431757) (-860 "OUT.spad" 1430627 1430635 1431533 1431538) (-859 "OUTFORM.spad" 1419923 1419931 1430617 1430622) (-858 "OUTBFILE.spad" 1419341 1419349 1419913 1419918) (-857 "OUTBCON.spad" 1418339 1418347 1419331 1419336) (-856 "OUTBCON.spad" 1417335 1417345 1418329 1418334) (-855 "OSI.spad" 1416810 1416818 1417325 1417330) (-854 "OSGROUP.spad" 1416728 1416736 1416800 1416805) (-853 "ORTHPOL.spad" 1415189 1415199 1416645 1416650) (-852 "OREUP.spad" 1414642 1414670 1414869 1414908) (-851 "ORESUP.spad" 1413941 1413965 1414322 1414361) (-850 "OREPCTO.spad" 1411760 1411772 1413861 1413866) (-849 "OREPCAT.spad" 1405817 1405827 1411716 1411755) (-848 "OREPCAT.spad" 1399764 1399776 1405665 1405670) (-847 "ORDSET.spad" 1398930 1398938 1399754 1399759) (-846 "ORDSET.spad" 1398094 1398104 1398920 1398925) (-845 "ORDRING.spad" 1397484 1397492 1398074 1398089) (-844 "ORDRING.spad" 1396882 1396892 1397474 1397479) (-843 "ORDMON.spad" 1396737 1396745 1396872 1396877) (-842 "ORDFUNS.spad" 1395863 1395879 1396727 1396732) (-841 "ORDFIN.spad" 1395683 1395691 1395853 1395858) (-840 "ORDCOMP.spad" 1394148 1394158 1395230 1395259) (-839 "ORDCOMP2.spad" 1393433 1393445 1394138 1394143) (-838 "OPTPROB.spad" 1392071 1392079 1393423 1393428) (-837 "OPTPACK.spad" 1384456 1384464 1392061 1392066) (-836 "OPTCAT.spad" 1382131 1382139 1384446 1384451) (-835 "OPSIG.spad" 1381783 1381791 1382121 1382126) (-834 "OPQUERY.spad" 1381332 1381340 1381773 1381778) (-833 "OP.spad" 1381074 1381084 1381154 1381221) (-832 "OPERCAT.spad" 1380662 1380672 1381064 1381069) (-831 "OPERCAT.spad" 1380248 1380260 1380652 1380657) (-830 "ONECOMP.spad" 1378993 1379003 1379795 1379824) (-829 "ONECOMP2.spad" 1378411 1378423 1378983 1378988) (-828 "OMSERVER.spad" 1377413 1377421 1378401 1378406) (-827 "OMSAGG.spad" 1377201 1377211 1377369 1377408) (-826 "OMPKG.spad" 1375813 1375821 1377191 1377196) (-825 "OM.spad" 1374778 1374786 1375803 1375808) (-824 "OMLO.spad" 1374203 1374215 1374664 1374703) (-823 "OMEXPR.spad" 1374037 1374047 1374193 1374198) (-822 "OMERR.spad" 1373580 1373588 1374027 1374032) (-821 "OMERRK.spad" 1372614 1372622 1373570 1373575) (-820 "OMENC.spad" 1371958 1371966 1372604 1372609) (-819 "OMDEV.spad" 1366247 1366255 1371948 1371953) (-818 "OMCONN.spad" 1365656 1365664 1366237 1366242) (-817 "OINTDOM.spad" 1365419 1365427 1365582 1365651) (-816 "OFMONOID.spad" 1361606 1361616 1365409 1365414) (-815 "ODVAR.spad" 1360867 1360877 1361596 1361601) (-814 "ODR.spad" 1360511 1360537 1360679 1360828) (-813 "ODPOL.spad" 1357857 1357867 1358197 1358324) (-812 "ODP.spad" 1347704 1347724 1348077 1348208) (-811 "ODETOOLS.spad" 1346287 1346306 1347694 1347699) (-810 "ODESYS.spad" 1343937 1343954 1346277 1346282) (-809 "ODERTRIC.spad" 1339878 1339895 1343894 1343899) (-808 "ODERED.spad" 1339265 1339289 1339868 1339873) (-807 "ODERAT.spad" 1336816 1336833 1339255 1339260) (-806 "ODEPRRIC.spad" 1333707 1333729 1336806 1336811) (-805 "ODEPROB.spad" 1332964 1332972 1333697 1333702) (-804 "ODEPRIM.spad" 1330238 1330260 1332954 1332959) (-803 "ODEPAL.spad" 1329614 1329638 1330228 1330233) (-802 "ODEPACK.spad" 1316216 1316224 1329604 1329609) (-801 "ODEINT.spad" 1315647 1315663 1316206 1316211) (-800 "ODEIFTBL.spad" 1313042 1313050 1315637 1315642) (-799 "ODEEF.spad" 1308409 1308425 1313032 1313037) (-798 "ODECONST.spad" 1307928 1307946 1308399 1308404) (-797 "ODECAT.spad" 1306524 1306532 1307918 1307923) (-796 "OCT.spad" 1304662 1304672 1305378 1305417) (-795 "OCTCT2.spad" 1304306 1304327 1304652 1304657) (-794 "OC.spad" 1302080 1302090 1304262 1304301) (-793 "OC.spad" 1299579 1299591 1301763 1301768) (-792 "OCAMON.spad" 1299427 1299435 1299569 1299574) (-791 "OASGP.spad" 1299242 1299250 1299417 1299422) (-790 "OAMONS.spad" 1298762 1298770 1299232 1299237) (-789 "OAMON.spad" 1298623 1298631 1298752 1298757) (-788 "OAGROUP.spad" 1298485 1298493 1298613 1298618) (-787 "NUMTUBE.spad" 1298072 1298088 1298475 1298480) (-786 "NUMQUAD.spad" 1285934 1285942 1298062 1298067) (-785 "NUMODE.spad" 1277070 1277078 1285924 1285929) (-784 "NUMINT.spad" 1274628 1274636 1277060 1277065) (-783 "NUMFMT.spad" 1273468 1273476 1274618 1274623) (-782 "NUMERIC.spad" 1265540 1265550 1273273 1273278) (-781 "NTSCAT.spad" 1264042 1264058 1265508 1265535) (-780 "NTPOLFN.spad" 1263587 1263597 1263959 1263964) (-779 "NSUP.spad" 1256597 1256607 1261137 1261290) (-778 "NSUP2.spad" 1255989 1256001 1256587 1256592) (-777 "NSMP.spad" 1252184 1252203 1252492 1252619) (-776 "NREP.spad" 1250556 1250570 1252174 1252179) (-775 "NPCOEF.spad" 1249802 1249822 1250546 1250551) (-774 "NORMRETR.spad" 1249400 1249439 1249792 1249797) (-773 "NORMPK.spad" 1247302 1247321 1249390 1249395) (-772 "NORMMA.spad" 1246990 1247016 1247292 1247297) (-771 "NONE.spad" 1246731 1246739 1246980 1246985) (-770 "NONE1.spad" 1246407 1246417 1246721 1246726) (-769 "NODE1.spad" 1245876 1245892 1246397 1246402) (-768 "NNI.spad" 1244763 1244771 1245850 1245871) (-767 "NLINSOL.spad" 1243385 1243395 1244753 1244758) (-766 "NIPROB.spad" 1241926 1241934 1243375 1243380) (-765 "NFINTBAS.spad" 1239386 1239403 1241916 1241921) (-764 "NETCLT.spad" 1239360 1239371 1239376 1239381) (-763 "NCODIV.spad" 1237558 1237574 1239350 1239355) (-762 "NCNTFRAC.spad" 1237200 1237214 1237548 1237553) (-761 "NCEP.spad" 1235360 1235374 1237190 1237195) (-760 "NASRING.spad" 1234956 1234964 1235350 1235355) (-759 "NASRING.spad" 1234550 1234560 1234946 1234951) (-758 "NARNG.spad" 1233894 1233902 1234540 1234545) (-757 "NARNG.spad" 1233236 1233246 1233884 1233889) (-756 "NAGSP.spad" 1232309 1232317 1233226 1233231) (-755 "NAGS.spad" 1221834 1221842 1232299 1232304) (-754 "NAGF07.spad" 1220227 1220235 1221824 1221829) (-753 "NAGF04.spad" 1214459 1214467 1220217 1220222) (-752 "NAGF02.spad" 1208268 1208276 1214449 1214454) (-751 "NAGF01.spad" 1203871 1203879 1208258 1208263) (-750 "NAGE04.spad" 1197331 1197339 1203861 1203866) (-749 "NAGE02.spad" 1187673 1187681 1197321 1197326) (-748 "NAGE01.spad" 1183557 1183565 1187663 1187668) (-747 "NAGD03.spad" 1181477 1181485 1183547 1183552) (-746 "NAGD02.spad" 1174008 1174016 1181467 1181472) (-745 "NAGD01.spad" 1168121 1168129 1173998 1174003) (-744 "NAGC06.spad" 1163908 1163916 1168111 1168116) (-743 "NAGC05.spad" 1162377 1162385 1163898 1163903) (-742 "NAGC02.spad" 1161632 1161640 1162367 1162372) (-741 "NAALG.spad" 1161167 1161177 1161600 1161627) (-740 "NAALG.spad" 1160722 1160734 1161157 1161162) (-739 "MULTSQFR.spad" 1157680 1157697 1160712 1160717) (-738 "MULTFACT.spad" 1157063 1157080 1157670 1157675) (-737 "MTSCAT.spad" 1155097 1155118 1156961 1157058) (-736 "MTHING.spad" 1154754 1154764 1155087 1155092) (-735 "MSYSCMD.spad" 1154188 1154196 1154744 1154749) (-734 "MSET.spad" 1152130 1152140 1153894 1153933) (-733 "MSETAGG.spad" 1151975 1151985 1152098 1152125) (-732 "MRING.spad" 1148946 1148958 1151683 1151750) (-731 "MRF2.spad" 1148514 1148528 1148936 1148941) (-730 "MRATFAC.spad" 1148060 1148077 1148504 1148509) (-729 "MPRFF.spad" 1146090 1146109 1148050 1148055) (-728 "MPOLY.spad" 1143525 1143540 1143884 1144011) (-727 "MPCPF.spad" 1142789 1142808 1143515 1143520) (-726 "MPC3.spad" 1142604 1142644 1142779 1142784) (-725 "MPC2.spad" 1142246 1142279 1142594 1142599) (-724 "MONOTOOL.spad" 1140581 1140598 1142236 1142241) (-723 "MONOID.spad" 1139900 1139908 1140571 1140576) (-722 "MONOID.spad" 1139217 1139227 1139890 1139895) (-721 "MONOGEN.spad" 1137963 1137976 1139077 1139212) (-720 "MONOGEN.spad" 1136731 1136746 1137847 1137852) (-719 "MONADWU.spad" 1134745 1134753 1136721 1136726) (-718 "MONADWU.spad" 1132757 1132767 1134735 1134740) (-717 "MONAD.spad" 1131901 1131909 1132747 1132752) (-716 "MONAD.spad" 1131043 1131053 1131891 1131896) (-715 "MOEBIUS.spad" 1129729 1129743 1131023 1131038) (-714 "MODULE.spad" 1129599 1129609 1129697 1129724) (-713 "MODULE.spad" 1129489 1129501 1129589 1129594) (-712 "MODRING.spad" 1128820 1128859 1129469 1129484) (-711 "MODOP.spad" 1127479 1127491 1128642 1128709) (-710 "MODMONOM.spad" 1127208 1127226 1127469 1127474) (-709 "MODMON.spad" 1123967 1123983 1124686 1124839) (-708 "MODFIELD.spad" 1123325 1123364 1123869 1123962) (-707 "MMLFORM.spad" 1122185 1122193 1123315 1123320) (-706 "MMAP.spad" 1121925 1121959 1122175 1122180) (-705 "MLO.spad" 1120352 1120362 1121881 1121920) (-704 "MLIFT.spad" 1118924 1118941 1120342 1120347) (-703 "MKUCFUNC.spad" 1118457 1118475 1118914 1118919) (-702 "MKRECORD.spad" 1118059 1118072 1118447 1118452) (-701 "MKFUNC.spad" 1117440 1117450 1118049 1118054) (-700 "MKFLCFN.spad" 1116396 1116406 1117430 1117435) (-699 "MKCHSET.spad" 1116261 1116271 1116386 1116391) (-698 "MKBCFUNC.spad" 1115746 1115764 1116251 1116256) (-697 "MINT.spad" 1115185 1115193 1115648 1115741) (-696 "MHROWRED.spad" 1113686 1113696 1115175 1115180) (-695 "MFLOAT.spad" 1112202 1112210 1113576 1113681) (-694 "MFINFACT.spad" 1111602 1111624 1112192 1112197) (-693 "MESH.spad" 1109334 1109342 1111592 1111597) (-692 "MDDFACT.spad" 1107527 1107537 1109324 1109329) (-691 "MDAGG.spad" 1106814 1106824 1107507 1107522) (-690 "MCMPLX.spad" 1102788 1102796 1103402 1103603) (-689 "MCDEN.spad" 1101996 1102008 1102778 1102783) (-688 "MCALCFN.spad" 1099098 1099124 1101986 1101991) (-687 "MAYBE.spad" 1098382 1098393 1099088 1099093) (-686 "MATSTOR.spad" 1095658 1095668 1098372 1098377) (-685 "MATRIX.spad" 1094362 1094372 1094846 1094873) (-684 "MATLIN.spad" 1091688 1091712 1094246 1094251) (-683 "MATCAT.spad" 1083273 1083295 1091656 1091683) (-682 "MATCAT.spad" 1074730 1074754 1083115 1083120) (-681 "MATCAT2.spad" 1073998 1074046 1074720 1074725) (-680 "MAPPKG3.spad" 1072897 1072911 1073988 1073993) (-679 "MAPPKG2.spad" 1072231 1072243 1072887 1072892) (-678 "MAPPKG1.spad" 1071049 1071059 1072221 1072226) (-677 "MAPPAST.spad" 1070362 1070370 1071039 1071044) (-676 "MAPHACK3.spad" 1070170 1070184 1070352 1070357) (-675 "MAPHACK2.spad" 1069935 1069947 1070160 1070165) (-674 "MAPHACK1.spad" 1069565 1069575 1069925 1069930) (-673 "MAGMA.spad" 1067355 1067372 1069555 1069560) (-672 "MACROAST.spad" 1066934 1066942 1067345 1067350) (-671 "M3D.spad" 1064630 1064640 1066312 1066317) (-670 "LZSTAGG.spad" 1061858 1061868 1064620 1064625) (-669 "LZSTAGG.spad" 1059084 1059096 1061848 1061853) (-668 "LWORD.spad" 1055789 1055806 1059074 1059079) (-667 "LSTAST.spad" 1055573 1055581 1055779 1055784) (-666 "LSQM.spad" 1053799 1053813 1054197 1054248) (-665 "LSPP.spad" 1053332 1053349 1053789 1053794) (-664 "LSMP.spad" 1052172 1052200 1053322 1053327) (-663 "LSMP1.spad" 1049976 1049990 1052162 1052167) (-662 "LSAGG.spad" 1049645 1049655 1049944 1049971) (-661 "LSAGG.spad" 1049334 1049346 1049635 1049640) (-660 "LPOLY.spad" 1048288 1048307 1049190 1049259) (-659 "LPEFRAC.spad" 1047545 1047555 1048278 1048283) (-658 "LO.spad" 1046946 1046960 1047479 1047506) (-657 "LOGIC.spad" 1046548 1046556 1046936 1046941) (-656 "LOGIC.spad" 1046148 1046158 1046538 1046543) (-655 "LODOOPS.spad" 1045066 1045078 1046138 1046143) (-654 "LODO.spad" 1044450 1044466 1044746 1044785) (-653 "LODOF.spad" 1043494 1043511 1044407 1044412) (-652 "LODOCAT.spad" 1042152 1042162 1043450 1043489) (-651 "LODOCAT.spad" 1040808 1040820 1042108 1042113) (-650 "LODO2.spad" 1040081 1040093 1040488 1040527) (-649 "LODO1.spad" 1039481 1039491 1039761 1039800) (-648 "LODEEF.spad" 1038253 1038271 1039471 1039476) (-647 "LNAGG.spad" 1034055 1034065 1038243 1038248) (-646 "LNAGG.spad" 1029821 1029833 1034011 1034016) (-645 "LMOPS.spad" 1026557 1026574 1029811 1029816) (-644 "LMODULE.spad" 1026199 1026209 1026547 1026552) (-643 "LMDICT.spad" 1025482 1025492 1025750 1025777) (-642 "LITERAL.spad" 1025388 1025399 1025472 1025477) (-641 "LIST.spad" 1023106 1023116 1024535 1024562) (-640 "LIST3.spad" 1022397 1022411 1023096 1023101) (-639 "LIST2.spad" 1021037 1021049 1022387 1022392) (-638 "LIST2MAP.spad" 1017914 1017926 1021027 1021032) (-637 "LINEXP.spad" 1017346 1017356 1017894 1017909) (-636 "LINDEP.spad" 1016123 1016135 1017258 1017263) (-635 "LIMITRF.spad" 1014037 1014047 1016113 1016118) (-634 "LIMITPS.spad" 1012920 1012933 1014027 1014032) (-633 "LIE.spad" 1010934 1010946 1012210 1012355) (-632 "LIECAT.spad" 1010410 1010420 1010860 1010929) (-631 "LIECAT.spad" 1009914 1009926 1010366 1010371) (-630 "LIB.spad" 1007962 1007970 1008573 1008588) (-629 "LGROBP.spad" 1005315 1005334 1007952 1007957) (-628 "LF.spad" 1004234 1004250 1005305 1005310) (-627 "LFCAT.spad" 1003253 1003261 1004224 1004229) (-626 "LEXTRIPK.spad" 998756 998771 1003243 1003248) (-625 "LEXP.spad" 996759 996786 998736 998751) (-624 "LETAST.spad" 996458 996466 996749 996754) (-623 "LEADCDET.spad" 994842 994859 996448 996453) (-622 "LAZM3PK.spad" 993546 993568 994832 994837) (-621 "LAUPOL.spad" 992235 992248 993139 993208) (-620 "LAPLACE.spad" 991808 991824 992225 992230) (-619 "LA.spad" 991248 991262 991730 991769) (-618 "LALG.spad" 991024 991034 991228 991243) (-617 "LALG.spad" 990808 990820 991014 991019) (-616 "KVTFROM.spad" 990543 990553 990798 990803) (-615 "KTVLOGIC.spad" 989966 989974 990533 990538) (-614 "KRCFROM.spad" 989704 989714 989956 989961) (-613 "KOVACIC.spad" 988417 988434 989694 989699) (-612 "KONVERT.spad" 988139 988149 988407 988412) (-611 "KOERCE.spad" 987876 987886 988129 988134) (-610 "KERNEL.spad" 986411 986421 987660 987665) (-609 "KERNEL2.spad" 986114 986126 986401 986406) (-608 "KDAGG.spad" 985217 985239 986094 986109) (-607 "KDAGG.spad" 984328 984352 985207 985212) (-606 "KAFILE.spad" 983291 983307 983526 983553) (-605 "JORDAN.spad" 981118 981130 982581 982726) (-604 "JOINAST.spad" 980812 980820 981108 981113) (-603 "JAVACODE.spad" 980678 980686 980802 980807) (-602 "IXAGG.spad" 978801 978825 980668 980673) (-601 "IXAGG.spad" 976779 976805 978648 978653) (-600 "IVECTOR.spad" 975550 975565 975705 975732) (-599 "ITUPLE.spad" 974695 974705 975540 975545) (-598 "ITRIGMNP.spad" 973506 973525 974685 974690) (-597 "ITFUN3.spad" 973000 973014 973496 973501) (-596 "ITFUN2.spad" 972730 972742 972990 972995) (-595 "ITAYLOR.spad" 970522 970537 972566 972691) (-594 "ISUPS.spad" 962933 962948 969496 969593) (-593 "ISUMP.spad" 962430 962446 962923 962928) (-592 "ISTRING.spad" 961433 961446 961599 961626) (-591 "ISAST.spad" 961152 961160 961423 961428) (-590 "IRURPK.spad" 959865 959884 961142 961147) (-589 "IRSN.spad" 957825 957833 959855 959860) (-588 "IRRF2F.spad" 956300 956310 957781 957786) (-587 "IRREDFFX.spad" 955901 955912 956290 956295) (-586 "IROOT.spad" 954232 954242 955891 955896) (-585 "IR.spad" 952021 952035 954087 954114) (-584 "IR2.spad" 951041 951057 952011 952016) (-583 "IR2F.spad" 950241 950257 951031 951036) (-582 "IPRNTPK.spad" 950001 950009 950231 950236) (-581 "IPF.spad" 949566 949578 949806 949899) (-580 "IPADIC.spad" 949327 949353 949492 949561) (-579 "IP4ADDR.spad" 948884 948892 949317 949322) (-578 "IOMODE.spad" 948505 948513 948874 948879) (-577 "IOBFILE.spad" 947866 947874 948495 948500) (-576 "IOBCON.spad" 947731 947739 947856 947861) (-575 "INVLAPLA.spad" 947376 947392 947721 947726) (-574 "INTTR.spad" 940622 940639 947366 947371) (-573 "INTTOOLS.spad" 938333 938349 940196 940201) (-572 "INTSLPE.spad" 937639 937647 938323 938328) (-571 "INTRVL.spad" 937205 937215 937553 937634) (-570 "INTRF.spad" 935569 935583 937195 937200) (-569 "INTRET.spad" 935001 935011 935559 935564) (-568 "INTRAT.spad" 933676 933693 934991 934996) (-567 "INTPM.spad" 932039 932055 933319 933324) (-566 "INTPAF.spad" 929807 929825 931971 931976) (-565 "INTPACK.spad" 920117 920125 929797 929802) (-564 "INT.spad" 919478 919486 919971 920112) (-563 "INTHERTR.spad" 918744 918761 919468 919473) (-562 "INTHERAL.spad" 918410 918434 918734 918739) (-561 "INTHEORY.spad" 914823 914831 918400 918405) (-560 "INTG0.spad" 908286 908304 914755 914760) (-559 "INTFTBL.spad" 902315 902323 908276 908281) (-558 "INTFACT.spad" 901374 901384 902305 902310) (-557 "INTEF.spad" 899689 899705 901364 901369) (-556 "INTDOM.spad" 898304 898312 899615 899684) (-555 "INTDOM.spad" 896981 896991 898294 898299) (-554 "INTCAT.spad" 895234 895244 896895 896976) (-553 "INTBIT.spad" 894737 894745 895224 895229) (-552 "INTALG.spad" 893919 893946 894727 894732) (-551 "INTAF.spad" 893411 893427 893909 893914) (-550 "INTABL.spad" 891929 891960 892092 892119) (-549 "INT8.spad" 891809 891817 891919 891924) (-548 "INT64.spad" 891688 891696 891799 891804) (-547 "INT32.spad" 891567 891575 891678 891683) (-546 "INT16.spad" 891446 891454 891557 891562) (-545 "INS.spad" 888913 888921 891348 891441) (-544 "INS.spad" 886466 886476 888903 888908) (-543 "INPSIGN.spad" 885900 885913 886456 886461) (-542 "INPRODPF.spad" 884966 884985 885890 885895) (-541 "INPRODFF.spad" 884024 884048 884956 884961) (-540 "INNMFACT.spad" 882995 883012 884014 884019) (-539 "INMODGCD.spad" 882479 882509 882985 882990) (-538 "INFSP.spad" 880764 880786 882469 882474) (-537 "INFPROD0.spad" 879814 879833 880754 880759) (-536 "INFORM.spad" 876975 876983 879804 879809) (-535 "INFORM1.spad" 876600 876610 876965 876970) (-534 "INFINITY.spad" 876152 876160 876590 876595) (-533 "INETCLTS.spad" 876129 876137 876142 876147) (-532 "INEP.spad" 874661 874683 876119 876124) (-531 "INDE.spad" 874390 874407 874651 874656) (-530 "INCRMAPS.spad" 873811 873821 874380 874385) (-529 "INBFILE.spad" 872883 872891 873801 873806) (-528 "INBFF.spad" 868653 868664 872873 872878) (-527 "INBCON.spad" 866941 866949 868643 868648) (-526 "INBCON.spad" 865227 865237 866931 866936) (-525 "INAST.spad" 864888 864896 865217 865222) (-524 "IMPTAST.spad" 864596 864604 864878 864883) (-523 "IMATRIX.spad" 863541 863567 864053 864080) (-522 "IMATQF.spad" 862635 862679 863497 863502) (-521 "IMATLIN.spad" 861240 861264 862591 862596) (-520 "ILIST.spad" 859896 859911 860423 860450) (-519 "IIARRAY2.spad" 859284 859322 859503 859530) (-518 "IFF.spad" 858694 858710 858965 859058) (-517 "IFAST.spad" 858308 858316 858684 858689) (-516 "IFARRAY.spad" 855795 855810 857491 857518) (-515 "IFAMON.spad" 855657 855674 855751 855756) (-514 "IEVALAB.spad" 855046 855058 855647 855652) (-513 "IEVALAB.spad" 854433 854447 855036 855041) (-512 "IDPO.spad" 854231 854243 854423 854428) (-511 "IDPOAMS.spad" 853987 853999 854221 854226) (-510 "IDPOAM.spad" 853707 853719 853977 853982) (-509 "IDPC.spad" 852641 852653 853697 853702) (-508 "IDPAM.spad" 852386 852398 852631 852636) (-507 "IDPAG.spad" 852133 852145 852376 852381) (-506 "IDENT.spad" 851783 851791 852123 852128) (-505 "IDECOMP.spad" 849020 849038 851773 851778) (-504 "IDEAL.spad" 843943 843982 848955 848960) (-503 "ICDEN.spad" 843094 843110 843933 843938) (-502 "ICARD.spad" 842283 842291 843084 843089) (-501 "IBPTOOLS.spad" 840876 840893 842273 842278) (-500 "IBITS.spad" 840075 840088 840512 840539) (-499 "IBATOOL.spad" 836950 836969 840065 840070) (-498 "IBACHIN.spad" 835437 835452 836940 836945) (-497 "IARRAY2.spad" 834425 834451 835044 835071) (-496 "IARRAY1.spad" 833470 833485 833608 833635) (-495 "IAN.spad" 831683 831691 833286 833379) (-494 "IALGFACT.spad" 831284 831317 831673 831678) (-493 "HYPCAT.spad" 830708 830716 831274 831279) (-492 "HYPCAT.spad" 830130 830140 830698 830703) (-491 "HOSTNAME.spad" 829938 829946 830120 830125) (-490 "HOMOTOP.spad" 829681 829691 829928 829933) (-489 "HOAGG.spad" 826949 826959 829671 829676) (-488 "HOAGG.spad" 823992 824004 826716 826721) (-487 "HEXADEC.spad" 822094 822102 822459 822552) (-486 "HEUGCD.spad" 821109 821120 822084 822089) (-485 "HELLFDIV.spad" 820699 820723 821099 821104) (-484 "HEAP.spad" 820091 820101 820306 820333) (-483 "HEADAST.spad" 819622 819630 820081 820086) (-482 "HDP.spad" 809465 809481 809842 809973) (-481 "HDMP.spad" 806641 806656 807259 807386) (-480 "HB.spad" 804878 804886 806631 806636) (-479 "HASHTBL.spad" 803348 803379 803559 803586) (-478 "HASAST.spad" 803064 803072 803338 803343) (-477 "HACKPI.spad" 802547 802555 802966 803059) (-476 "GTSET.spad" 801486 801502 802193 802220) (-475 "GSTBL.spad" 800005 800040 800179 800194) (-474 "GSERIES.spad" 797172 797199 798137 798286) (-473 "GROUP.spad" 796441 796449 797152 797167) (-472 "GROUP.spad" 795718 795728 796431 796436) (-471 "GROEBSOL.spad" 794206 794227 795708 795713) (-470 "GRMOD.spad" 792777 792789 794196 794201) (-469 "GRMOD.spad" 791346 791360 792767 792772) (-468 "GRIMAGE.spad" 783951 783959 791336 791341) (-467 "GRDEF.spad" 782330 782338 783941 783946) (-466 "GRAY.spad" 780789 780797 782320 782325) (-465 "GRALG.spad" 779836 779848 780779 780784) (-464 "GRALG.spad" 778881 778895 779826 779831) (-463 "GPOLSET.spad" 778335 778358 778563 778590) (-462 "GOSPER.spad" 777600 777618 778325 778330) (-461 "GMODPOL.spad" 776738 776765 777568 777595) (-460 "GHENSEL.spad" 775807 775821 776728 776733) (-459 "GENUPS.spad" 771908 771921 775797 775802) (-458 "GENUFACT.spad" 771485 771495 771898 771903) (-457 "GENPGCD.spad" 771069 771086 771475 771480) (-456 "GENMFACT.spad" 770521 770540 771059 771064) (-455 "GENEEZ.spad" 768460 768473 770511 770516) (-454 "GDMP.spad" 765478 765495 766254 766381) (-453 "GCNAALG.spad" 759373 759400 765272 765339) (-452 "GCDDOM.spad" 758545 758553 759299 759368) (-451 "GCDDOM.spad" 757779 757789 758535 758540) (-450 "GB.spad" 755297 755335 757735 757740) (-449 "GBINTERN.spad" 751317 751355 755287 755292) (-448 "GBF.spad" 747074 747112 751307 751312) (-447 "GBEUCLID.spad" 744948 744986 747064 747069) (-446 "GAUSSFAC.spad" 744245 744253 744938 744943) (-445 "GALUTIL.spad" 742567 742577 744201 744206) (-444 "GALPOLYU.spad" 741013 741026 742557 742562) (-443 "GALFACTU.spad" 739178 739197 741003 741008) (-442 "GALFACT.spad" 729311 729322 739168 739173) (-441 "FVFUN.spad" 726334 726342 729301 729306) (-440 "FVC.spad" 725386 725394 726324 726329) (-439 "FUNDESC.spad" 725064 725072 725376 725381) (-438 "FUNCTION.spad" 724913 724925 725054 725059) (-437 "FT.spad" 723206 723214 724903 724908) (-436 "FTEM.spad" 722369 722377 723196 723201) (-435 "FSUPFACT.spad" 721269 721288 722305 722310) (-434 "FST.spad" 719355 719363 721259 721264) (-433 "FSRED.spad" 718833 718849 719345 719350) (-432 "FSPRMELT.spad" 717657 717673 718790 718795) (-431 "FSPECF.spad" 715734 715750 717647 717652) (-430 "FS.spad" 709796 709806 715509 715729) (-429 "FS.spad" 703636 703648 709351 709356) (-428 "FSINT.spad" 703294 703310 703626 703631) (-427 "FSERIES.spad" 702481 702493 703114 703213) (-426 "FSCINT.spad" 701794 701810 702471 702476) (-425 "FSAGG.spad" 700911 700921 701750 701789) (-424 "FSAGG.spad" 699990 700002 700831 700836) (-423 "FSAGG2.spad" 698689 698705 699980 699985) (-422 "FS2UPS.spad" 693172 693206 698679 698684) (-421 "FS2.spad" 692817 692833 693162 693167) (-420 "FS2EXPXP.spad" 691940 691963 692807 692812) (-419 "FRUTIL.spad" 690882 690892 691930 691935) (-418 "FR.spad" 684576 684586 689906 689975) (-417 "FRNAALG.spad" 679663 679673 684518 684571) (-416 "FRNAALG.spad" 674762 674774 679619 679624) (-415 "FRNAAF2.spad" 674216 674234 674752 674757) (-414 "FRMOD.spad" 673610 673640 674147 674152) (-413 "FRIDEAL.spad" 672805 672826 673590 673605) (-412 "FRIDEAL2.spad" 672407 672439 672795 672800) (-411 "FRETRCT.spad" 671918 671928 672397 672402) (-410 "FRETRCT.spad" 671295 671307 671776 671781) (-409 "FRAMALG.spad" 669623 669636 671251 671290) (-408 "FRAMALG.spad" 667983 667998 669613 669618) (-407 "FRAC.spad" 665082 665092 665485 665658) (-406 "FRAC2.spad" 664685 664697 665072 665077) (-405 "FR2.spad" 664019 664031 664675 664680) (-404 "FPS.spad" 660828 660836 663909 664014) (-403 "FPS.spad" 657665 657675 660748 660753) (-402 "FPC.spad" 656707 656715 657567 657660) (-401 "FPC.spad" 655835 655845 656697 656702) (-400 "FPATMAB.spad" 655597 655607 655825 655830) (-399 "FPARFRAC.spad" 654070 654087 655587 655592) (-398 "FORTRAN.spad" 652576 652619 654060 654065) (-397 "FORT.spad" 651505 651513 652566 652571) (-396 "FORTFN.spad" 648675 648683 651495 651500) (-395 "FORTCAT.spad" 648359 648367 648665 648670) (-394 "FORMULA.spad" 645823 645831 648349 648354) (-393 "FORMULA1.spad" 645302 645312 645813 645818) (-392 "FORDER.spad" 644993 645017 645292 645297) (-391 "FOP.spad" 644194 644202 644983 644988) (-390 "FNLA.spad" 643618 643640 644162 644189) (-389 "FNCAT.spad" 642205 642213 643608 643613) (-388 "FNAME.spad" 642097 642105 642195 642200) (-387 "FMTC.spad" 641895 641903 642023 642092) (-386 "FMONOID.spad" 638950 638960 641851 641856) (-385 "FM.spad" 638645 638657 638884 638911) (-384 "FMFUN.spad" 635675 635683 638635 638640) (-383 "FMC.spad" 634727 634735 635665 635670) (-382 "FMCAT.spad" 632381 632399 634695 634722) (-381 "FM1.spad" 631738 631750 632315 632342) (-380 "FLOATRP.spad" 629459 629473 631728 631733) (-379 "FLOAT.spad" 622747 622755 629325 629454) (-378 "FLOATCP.spad" 620164 620178 622737 622742) (-377 "FLINEXP.spad" 619876 619886 620144 620159) (-376 "FLINEXP.spad" 619542 619554 619812 619817) (-375 "FLASORT.spad" 618862 618874 619532 619537) (-374 "FLALG.spad" 616508 616527 618788 618857) (-373 "FLAGG.spad" 613526 613536 616488 616503) (-372 "FLAGG.spad" 610445 610457 613409 613414) (-371 "FLAGG2.spad" 609126 609142 610435 610440) (-370 "FINRALG.spad" 607155 607168 609082 609121) (-369 "FINRALG.spad" 605110 605125 607039 607044) (-368 "FINITE.spad" 604262 604270 605100 605105) (-367 "FINAALG.spad" 593243 593253 604204 604257) (-366 "FINAALG.spad" 582236 582248 593199 593204) (-365 "FILE.spad" 581819 581829 582226 582231) (-364 "FILECAT.spad" 580337 580354 581809 581814) (-363 "FIELD.spad" 579743 579751 580239 580332) (-362 "FIELD.spad" 579235 579245 579733 579738) (-361 "FGROUP.spad" 577844 577854 579215 579230) (-360 "FGLMICPK.spad" 576631 576646 577834 577839) (-359 "FFX.spad" 576006 576021 576347 576440) (-358 "FFSLPE.spad" 575495 575516 575996 576001) (-357 "FFPOLY.spad" 566747 566758 575485 575490) (-356 "FFPOLY2.spad" 565807 565824 566737 566742) (-355 "FFP.spad" 565204 565224 565523 565616) (-354 "FF.spad" 564652 564668 564885 564978) (-353 "FFNBX.spad" 563164 563184 564368 564461) (-352 "FFNBP.spad" 561677 561694 562880 562973) (-351 "FFNB.spad" 560142 560163 561358 561451) (-350 "FFINTBAS.spad" 557556 557575 560132 560137) (-349 "FFIELDC.spad" 555131 555139 557458 557551) (-348 "FFIELDC.spad" 552792 552802 555121 555126) (-347 "FFHOM.spad" 551540 551557 552782 552787) (-346 "FFF.spad" 548975 548986 551530 551535) (-345 "FFCGX.spad" 547822 547842 548691 548784) (-344 "FFCGP.spad" 546711 546731 547538 547631) (-343 "FFCG.spad" 545503 545524 546392 546485) (-342 "FFCAT.spad" 538530 538552 545342 545498) (-341 "FFCAT.spad" 531636 531660 538450 538455) (-340 "FFCAT2.spad" 531381 531421 531626 531631) (-339 "FEXPR.spad" 523090 523136 531137 531176) (-338 "FEVALAB.spad" 522796 522806 523080 523085) (-337 "FEVALAB.spad" 522287 522299 522573 522578) (-336 "FDIV.spad" 521729 521753 522277 522282) (-335 "FDIVCAT.spad" 519771 519795 521719 521724) (-334 "FDIVCAT.spad" 517811 517837 519761 519766) (-333 "FDIV2.spad" 517465 517505 517801 517806) (-332 "FCPAK1.spad" 516018 516026 517455 517460) (-331 "FCOMP.spad" 515397 515407 516008 516013) (-330 "FC.spad" 505312 505320 515387 515392) (-329 "FAXF.spad" 498247 498261 505214 505307) (-328 "FAXF.spad" 491234 491250 498203 498208) (-327 "FARRAY.spad" 489380 489390 490417 490444) (-326 "FAMR.spad" 487500 487512 489278 489375) (-325 "FAMR.spad" 485604 485618 487384 487389) (-324 "FAMONOID.spad" 485254 485264 485558 485563) (-323 "FAMONC.spad" 483476 483488 485244 485249) (-322 "FAGROUP.spad" 483082 483092 483372 483399) (-321 "FACUTIL.spad" 481278 481295 483072 483077) (-320 "FACTFUNC.spad" 480454 480464 481268 481273) (-319 "EXPUPXS.spad" 477287 477310 478586 478735) (-318 "EXPRTUBE.spad" 474515 474523 477277 477282) (-317 "EXPRODE.spad" 471387 471403 474505 474510) (-316 "EXPR.spad" 466662 466672 467376 467783) (-315 "EXPR2UPS.spad" 462754 462767 466652 466657) (-314 "EXPR2.spad" 462457 462469 462744 462749) (-313 "EXPEXPAN.spad" 459395 459420 460029 460122) (-312 "EXIT.spad" 459066 459074 459385 459390) (-311 "EXITAST.spad" 458802 458810 459056 459061) (-310 "EVALCYC.spad" 458260 458274 458792 458797) (-309 "EVALAB.spad" 457824 457834 458250 458255) (-308 "EVALAB.spad" 457386 457398 457814 457819) (-307 "EUCDOM.spad" 454928 454936 457312 457381) (-306 "EUCDOM.spad" 452532 452542 454918 454923) (-305 "ESTOOLS.spad" 444372 444380 452522 452527) (-304 "ESTOOLS2.spad" 443973 443987 444362 444367) (-303 "ESTOOLS1.spad" 443658 443669 443963 443968) (-302 "ES.spad" 436205 436213 443648 443653) (-301 "ES.spad" 428658 428668 436103 436108) (-300 "ESCONT.spad" 425431 425439 428648 428653) (-299 "ESCONT1.spad" 425180 425192 425421 425426) (-298 "ES2.spad" 424675 424691 425170 425175) (-297 "ES1.spad" 424241 424257 424665 424670) (-296 "ERROR.spad" 421562 421570 424231 424236) (-295 "EQTBL.spad" 420034 420056 420243 420270) (-294 "EQ.spad" 414908 414918 417707 417819) (-293 "EQ2.spad" 414624 414636 414898 414903) (-292 "EP.spad" 410938 410948 414614 414619) (-291 "ENV.spad" 409614 409622 410928 410933) (-290 "ENTIRER.spad" 409282 409290 409558 409609) (-289 "EMR.spad" 408483 408524 409208 409277) (-288 "ELTAGG.spad" 406723 406742 408473 408478) (-287 "ELTAGG.spad" 404927 404948 406679 406684) (-286 "ELTAB.spad" 404374 404392 404917 404922) (-285 "ELFUTS.spad" 403753 403772 404364 404369) (-284 "ELEMFUN.spad" 403442 403450 403743 403748) (-283 "ELEMFUN.spad" 403129 403139 403432 403437) (-282 "ELAGG.spad" 401072 401082 403109 403124) (-281 "ELAGG.spad" 398952 398964 400991 400996) (-280 "ELABEXPR.spad" 397875 397883 398942 398947) (-279 "EFUPXS.spad" 394651 394681 397831 397836) (-278 "EFULS.spad" 391487 391510 394607 394612) (-277 "EFSTRUC.spad" 389442 389458 391477 391482) (-276 "EF.spad" 384208 384224 389432 389437) (-275 "EAB.spad" 382484 382492 384198 384203) (-274 "E04UCFA.spad" 382020 382028 382474 382479) (-273 "E04NAFA.spad" 381597 381605 382010 382015) (-272 "E04MBFA.spad" 381177 381185 381587 381592) (-271 "E04JAFA.spad" 380713 380721 381167 381172) (-270 "E04GCFA.spad" 380249 380257 380703 380708) (-269 "E04FDFA.spad" 379785 379793 380239 380244) (-268 "E04DGFA.spad" 379321 379329 379775 379780) (-267 "E04AGNT.spad" 375163 375171 379311 379316) (-266 "DVARCAT.spad" 371848 371858 375153 375158) (-265 "DVARCAT.spad" 368531 368543 371838 371843) (-264 "DSMP.spad" 365962 365976 366267 366394) (-263 "DROPT.spad" 359907 359915 365952 365957) (-262 "DROPT1.spad" 359570 359580 359897 359902) (-261 "DROPT0.spad" 354397 354405 359560 359565) (-260 "DRAWPT.spad" 352552 352560 354387 354392) (-259 "DRAW.spad" 345152 345165 352542 352547) (-258 "DRAWHACK.spad" 344460 344470 345142 345147) (-257 "DRAWCX.spad" 341902 341910 344450 344455) (-256 "DRAWCURV.spad" 341439 341454 341892 341897) (-255 "DRAWCFUN.spad" 330611 330619 341429 341434) (-254 "DQAGG.spad" 328779 328789 330579 330606) (-253 "DPOLCAT.spad" 324120 324136 328647 328774) (-252 "DPOLCAT.spad" 319547 319565 324076 324081) (-251 "DPMO.spad" 311773 311789 311911 312212) (-250 "DPMM.spad" 304012 304030 304137 304438) (-249 "DOMCTOR.spad" 303904 303912 304002 304007) (-248 "DOMAIN.spad" 303035 303043 303894 303899) (-247 "DMP.spad" 300257 300272 300829 300956) (-246 "DLP.spad" 299605 299615 300247 300252) (-245 "DLIST.spad" 298184 298194 298788 298815) (-244 "DLAGG.spad" 296595 296605 298174 298179) (-243 "DIVRING.spad" 296137 296145 296539 296590) (-242 "DIVRING.spad" 295723 295733 296127 296132) (-241 "DISPLAY.spad" 293903 293911 295713 295718) (-240 "DIRPROD.spad" 283483 283499 284123 284254) (-239 "DIRPROD2.spad" 282291 282309 283473 283478) (-238 "DIRPCAT.spad" 281233 281249 282155 282286) (-237 "DIRPCAT.spad" 279904 279922 280828 280833) (-236 "DIOSP.spad" 278729 278737 279894 279899) (-235 "DIOPS.spad" 277713 277723 278709 278724) (-234 "DIOPS.spad" 276671 276683 277669 277674) (-233 "DIFRING.spad" 275963 275971 276651 276666) (-232 "DIFRING.spad" 275263 275273 275953 275958) (-231 "DIFEXT.spad" 274422 274432 275243 275258) (-230 "DIFEXT.spad" 273498 273510 274321 274326) (-229 "DIAGG.spad" 273128 273138 273478 273493) (-228 "DIAGG.spad" 272766 272778 273118 273123) (-227 "DHMATRIX.spad" 271070 271080 272223 272250) (-226 "DFSFUN.spad" 264478 264486 271060 271065) (-225 "DFLOAT.spad" 261199 261207 264368 264473) (-224 "DFINTTLS.spad" 259408 259424 261189 261194) (-223 "DERHAM.spad" 257318 257350 259388 259403) (-222 "DEQUEUE.spad" 256636 256646 256925 256952) (-221 "DEGRED.spad" 256251 256265 256626 256631) (-220 "DEFINTRF.spad" 253776 253786 256241 256246) (-219 "DEFINTEF.spad" 252272 252288 253766 253771) (-218 "DEFAST.spad" 251640 251648 252262 252267) (-217 "DECIMAL.spad" 249746 249754 250107 250200) (-216 "DDFACT.spad" 247545 247562 249736 249741) (-215 "DBLRESP.spad" 247143 247167 247535 247540) (-214 "DBASE.spad" 245797 245807 247133 247138) (-213 "DATAARY.spad" 245259 245272 245787 245792) (-212 "D03FAFA.spad" 245087 245095 245249 245254) (-211 "D03EEFA.spad" 244907 244915 245077 245082) (-210 "D03AGNT.spad" 243987 243995 244897 244902) (-209 "D02EJFA.spad" 243449 243457 243977 243982) (-208 "D02CJFA.spad" 242927 242935 243439 243444) (-207 "D02BHFA.spad" 242417 242425 242917 242922) (-206 "D02BBFA.spad" 241907 241915 242407 242412) (-205 "D02AGNT.spad" 236711 236719 241897 241902) (-204 "D01WGTS.spad" 235030 235038 236701 236706) (-203 "D01TRNS.spad" 235007 235015 235020 235025) (-202 "D01GBFA.spad" 234529 234537 234997 235002) (-201 "D01FCFA.spad" 234051 234059 234519 234524) (-200 "D01ASFA.spad" 233519 233527 234041 234046) (-199 "D01AQFA.spad" 232965 232973 233509 233514) (-198 "D01APFA.spad" 232389 232397 232955 232960) (-197 "D01ANFA.spad" 231883 231891 232379 232384) (-196 "D01AMFA.spad" 231393 231401 231873 231878) (-195 "D01ALFA.spad" 230933 230941 231383 231388) (-194 "D01AKFA.spad" 230459 230467 230923 230928) (-193 "D01AJFA.spad" 229982 229990 230449 230454) (-192 "D01AGNT.spad" 226041 226049 229972 229977) (-191 "CYCLOTOM.spad" 225547 225555 226031 226036) (-190 "CYCLES.spad" 222379 222387 225537 225542) (-189 "CVMP.spad" 221796 221806 222369 222374) (-188 "CTRIGMNP.spad" 220286 220302 221786 221791) (-187 "CTOR.spad" 219977 219985 220276 220281) (-186 "CTORKIND.spad" 219580 219588 219967 219972) (-185 "CTORCAT.spad" 218829 218837 219570 219575) (-184 "CTORCAT.spad" 218076 218086 218819 218824) (-183 "CTORCALL.spad" 217656 217664 218066 218071) (-182 "CSTTOOLS.spad" 216899 216912 217646 217651) (-181 "CRFP.spad" 210603 210616 216889 216894) (-180 "CRCEAST.spad" 210323 210331 210593 210598) (-179 "CRAPACK.spad" 209366 209376 210313 210318) (-178 "CPMATCH.spad" 208866 208881 209291 209296) (-177 "CPIMA.spad" 208571 208590 208856 208861) (-176 "COORDSYS.spad" 203464 203474 208561 208566) (-175 "CONTOUR.spad" 202875 202883 203454 203459) (-174 "CONTFRAC.spad" 198487 198497 202777 202870) (-173 "CONDUIT.spad" 198245 198253 198477 198482) (-172 "COMRING.spad" 197919 197927 198183 198240) (-171 "COMPPROP.spad" 197433 197441 197909 197914) (-170 "COMPLPAT.spad" 197200 197215 197423 197428) (-169 "COMPLEX.spad" 191224 191234 191468 191729) (-168 "COMPLEX2.spad" 190937 190949 191214 191219) (-167 "COMPFACT.spad" 190539 190553 190927 190932) (-166 "COMPCAT.spad" 188607 188617 190273 190534) (-165 "COMPCAT.spad" 186368 186380 188036 188041) (-164 "COMMUPC.spad" 186114 186132 186358 186363) (-163 "COMMONOP.spad" 185647 185655 186104 186109) (-162 "COMM.spad" 185456 185464 185637 185642) (-161 "COMMAAST.spad" 185219 185227 185446 185451) (-160 "COMBOPC.spad" 184124 184132 185209 185214) (-159 "COMBINAT.spad" 182869 182879 184114 184119) (-158 "COMBF.spad" 180237 180253 182859 182864) (-157 "COLOR.spad" 179074 179082 180227 180232) (-156 "COLONAST.spad" 178740 178748 179064 179069) (-155 "CMPLXRT.spad" 178449 178466 178730 178735) (-154 "CLLCTAST.spad" 178111 178119 178439 178444) (-153 "CLIP.spad" 174203 174211 178101 178106) (-152 "CLIF.spad" 172842 172858 174159 174198) (-151 "CLAGG.spad" 169327 169337 172832 172837) (-150 "CLAGG.spad" 165683 165695 169190 169195) (-149 "CINTSLPE.spad" 165008 165021 165673 165678) (-148 "CHVAR.spad" 163086 163108 164998 165003) (-147 "CHARZ.spad" 163001 163009 163066 163081) (-146 "CHARPOL.spad" 162509 162519 162991 162996) (-145 "CHARNZ.spad" 162262 162270 162489 162504) (-144 "CHAR.spad" 160130 160138 162252 162257) (-143 "CFCAT.spad" 159446 159454 160120 160125) (-142 "CDEN.spad" 158604 158618 159436 159441) (-141 "CCLASS.spad" 156753 156761 158015 158054) (-140 "CATEGORY.spad" 155843 155851 156743 156748) (-139 "CATCTOR.spad" 155734 155742 155833 155838) (-138 "CATAST.spad" 155352 155360 155724 155729) (-137 "CASEAST.spad" 155066 155074 155342 155347) (-136 "CARTEN.spad" 150169 150193 155056 155061) (-135 "CARTEN2.spad" 149555 149582 150159 150164) (-134 "CARD.spad" 146844 146852 149529 149550) (-133 "CAPSLAST.spad" 146618 146626 146834 146839) (-132 "CACHSET.spad" 146240 146248 146608 146613) (-131 "CABMON.spad" 145793 145801 146230 146235) (-130 "BYTEORD.spad" 145468 145476 145783 145788) (-129 "BYTE.spad" 144893 144901 145458 145463) (-128 "BYTEBUF.spad" 142750 142758 144062 144089) (-127 "BTREE.spad" 141819 141829 142357 142384) (-126 "BTOURN.spad" 140822 140832 141426 141453) (-125 "BTCAT.spad" 140210 140220 140790 140817) (-124 "BTCAT.spad" 139618 139630 140200 140205) (-123 "BTAGG.spad" 138740 138748 139586 139613) (-122 "BTAGG.spad" 137882 137892 138730 138735) (-121 "BSTREE.spad" 136617 136627 137489 137516) (-120 "BRILL.spad" 134812 134823 136607 136612) (-119 "BRAGG.spad" 133736 133746 134802 134807) (-118 "BRAGG.spad" 132624 132636 133692 133697) (-117 "BPADICRT.spad" 130605 130617 130860 130953) (-116 "BPADIC.spad" 130269 130281 130531 130600) (-115 "BOUNDZRO.spad" 129925 129942 130259 130264) (-114 "BOP.spad" 124800 124808 129915 129920) (-113 "BOP1.spad" 122186 122196 124756 124761) (-112 "BOOLEAN.spad" 121510 121518 122176 122181) (-111 "BMODULE.spad" 121222 121234 121478 121505) (-110 "BITS.spad" 120641 120649 120858 120885) (-109 "BINDING.spad" 120060 120068 120631 120636) (-108 "BINARY.spad" 118171 118179 118527 118620) (-107 "BGAGG.spad" 117368 117378 118151 118166) (-106 "BGAGG.spad" 116573 116585 117358 117363) (-105 "BFUNCT.spad" 116137 116145 116553 116568) (-104 "BEZOUT.spad" 115271 115298 116087 116092) (-103 "BBTREE.spad" 112090 112100 114878 114905) (-102 "BASTYPE.spad" 111762 111770 112080 112085) (-101 "BASTYPE.spad" 111432 111442 111752 111757) (-100 "BALFACT.spad" 110871 110884 111422 111427) (-99 "AUTOMOR.spad" 110318 110327 110851 110866) (-98 "ATTREG.spad" 107037 107044 110070 110313) (-97 "ATTRBUT.spad" 103060 103067 107017 107032) (-96 "ATTRAST.spad" 102777 102784 103050 103055) (-95 "ATRIG.spad" 102247 102254 102767 102772) (-94 "ATRIG.spad" 101715 101724 102237 102242) (-93 "ASTCAT.spad" 101619 101626 101705 101710) (-92 "ASTCAT.spad" 101521 101530 101609 101614) (-91 "ASTACK.spad" 100854 100863 101128 101155) (-90 "ASSOCEQ.spad" 99654 99665 100810 100815) (-89 "ASP9.spad" 98735 98748 99644 99649) (-88 "ASP8.spad" 97778 97791 98725 98730) (-87 "ASP80.spad" 97100 97113 97768 97773) (-86 "ASP7.spad" 96260 96273 97090 97095) (-85 "ASP78.spad" 95711 95724 96250 96255) (-84 "ASP77.spad" 95080 95093 95701 95706) (-83 "ASP74.spad" 94172 94185 95070 95075) (-82 "ASP73.spad" 93443 93456 94162 94167) (-81 "ASP6.spad" 92310 92323 93433 93438) (-80 "ASP55.spad" 90819 90832 92300 92305) (-79 "ASP50.spad" 88636 88649 90809 90814) (-78 "ASP4.spad" 87931 87944 88626 88631) (-77 "ASP49.spad" 86930 86943 87921 87926) (-76 "ASP42.spad" 85337 85376 86920 86925) (-75 "ASP41.spad" 83916 83955 85327 85332) (-74 "ASP35.spad" 82904 82917 83906 83911) (-73 "ASP34.spad" 82205 82218 82894 82899) (-72 "ASP33.spad" 81765 81778 82195 82200) (-71 "ASP31.spad" 80905 80918 81755 81760) (-70 "ASP30.spad" 79797 79810 80895 80900) (-69 "ASP29.spad" 79263 79276 79787 79792) (-68 "ASP28.spad" 70536 70549 79253 79258) (-67 "ASP27.spad" 69433 69446 70526 70531) (-66 "ASP24.spad" 68520 68533 69423 69428) (-65 "ASP20.spad" 67984 67997 68510 68515) (-64 "ASP1.spad" 67365 67378 67974 67979) (-63 "ASP19.spad" 62051 62064 67355 67360) (-62 "ASP12.spad" 61465 61478 62041 62046) (-61 "ASP10.spad" 60736 60749 61455 61460) (-60 "ARRAY2.spad" 60096 60105 60343 60370) (-59 "ARRAY1.spad" 58931 58940 59279 59306) (-58 "ARRAY12.spad" 57600 57611 58921 58926) (-57 "ARR2CAT.spad" 53262 53283 57568 57595) (-56 "ARR2CAT.spad" 48944 48967 53252 53257) (-55 "ARITY.spad" 48512 48519 48934 48939) (-54 "APPRULE.spad" 47756 47778 48502 48507) (-53 "APPLYORE.spad" 47371 47384 47746 47751) (-52 "ANY.spad" 45713 45720 47361 47366) (-51 "ANY1.spad" 44784 44793 45703 45708) (-50 "ANTISYM.spad" 43223 43239 44764 44779) (-49 "ANON.spad" 42916 42923 43213 43218) (-48 "AN.spad" 41217 41224 42732 42825) (-47 "AMR.spad" 39396 39407 41115 41212) (-46 "AMR.spad" 37412 37425 39133 39138) (-45 "ALIST.spad" 34824 34845 35174 35201) (-44 "ALGSC.spad" 33947 33973 34696 34749) (-43 "ALGPKG.spad" 29656 29667 33903 33908) (-42 "ALGMFACT.spad" 28845 28859 29646 29651) (-41 "ALGMANIP.spad" 26265 26280 28642 28647) (-40 "ALGFF.spad" 24580 24607 24797 24953) (-39 "ALGFACT.spad" 23701 23711 24570 24575) (-38 "ALGEBRA.spad" 23534 23543 23657 23696) (-37 "ALGEBRA.spad" 23399 23410 23524 23529) (-36 "ALAGG.spad" 22909 22930 23367 23394) (-35 "AHYP.spad" 22290 22297 22899 22904) (-34 "AGG.spad" 20599 20606 22280 22285) (-33 "AGG.spad" 18872 18881 20555 20560) (-32 "AF.spad" 17297 17312 18807 18812) (-31 "ADDAST.spad" 16975 16982 17287 17292) (-30 "ACPLOT.spad" 15546 15553 16965 16970) (-29 "ACFS.spad" 13297 13306 15448 15541) (-28 "ACFS.spad" 11134 11145 13287 13292) (-27 "ACF.spad" 7736 7743 11036 11129) (-26 "ACF.spad" 4424 4433 7726 7731) (-25 "ABELSG.spad" 3965 3972 4414 4419) (-24 "ABELSG.spad" 3504 3513 3955 3960) (-23 "ABELMON.spad" 3047 3054 3494 3499) (-22 "ABELMON.spad" 2588 2597 3037 3042) (-21 "ABELGRP.spad" 2160 2167 2578 2583) (-20 "ABELGRP.spad" 1730 1739 2150 2155) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2283993 2283998 2284003 2284008) (-2 NIL 2283973 2283978 2283983 2283988) (-1 NIL 2283953 2283958 2283963 2283968) (0 NIL 2283933 2283938 2283943 2283948) (-1287 "ZMOD.spad" 2283742 2283755 2283871 2283928) (-1286 "ZLINDEP.spad" 2282786 2282797 2283732 2283737) (-1285 "ZDSOLVE.spad" 2272635 2272657 2282776 2282781) (-1284 "YSTREAM.spad" 2272128 2272139 2272625 2272630) (-1283 "XRPOLY.spad" 2271348 2271368 2271984 2272053) (-1282 "XPR.spad" 2269139 2269152 2271066 2271165) (-1281 "XPOLY.spad" 2268694 2268705 2268995 2269064) (-1280 "XPOLYC.spad" 2268011 2268027 2268620 2268689) (-1279 "XPBWPOLY.spad" 2266448 2266468 2267791 2267860) (-1278 "XF.spad" 2264909 2264924 2266350 2266443) (-1277 "XF.spad" 2263350 2263367 2264793 2264798) (-1276 "XFALG.spad" 2260374 2260390 2263276 2263345) (-1275 "XEXPPKG.spad" 2259625 2259651 2260364 2260369) (-1274 "XDPOLY.spad" 2259239 2259255 2259481 2259550) (-1273 "XALG.spad" 2258899 2258910 2259195 2259234) (-1272 "WUTSET.spad" 2254738 2254755 2258545 2258572) (-1271 "WP.spad" 2253937 2253981 2254596 2254663) (-1270 "WHILEAST.spad" 2253735 2253744 2253927 2253932) (-1269 "WHEREAST.spad" 2253406 2253415 2253725 2253730) (-1268 "WFFINTBS.spad" 2250969 2250991 2253396 2253401) (-1267 "WEIER.spad" 2249183 2249194 2250959 2250964) (-1266 "VSPACE.spad" 2248856 2248867 2249151 2249178) (-1265 "VSPACE.spad" 2248549 2248562 2248846 2248851) (-1264 "VOID.spad" 2248226 2248235 2248539 2248544) (-1263 "VIEW.spad" 2245848 2245857 2248216 2248221) (-1262 "VIEWDEF.spad" 2241045 2241054 2245838 2245843) (-1261 "VIEW3D.spad" 2224880 2224889 2241035 2241040) (-1260 "VIEW2D.spad" 2212617 2212626 2224870 2224875) (-1259 "VECTOR.spad" 2211292 2211303 2211543 2211570) (-1258 "VECTOR2.spad" 2209919 2209932 2211282 2211287) (-1257 "VECTCAT.spad" 2207819 2207830 2209887 2209914) (-1256 "VECTCAT.spad" 2205527 2205540 2207597 2207602) (-1255 "VARIABLE.spad" 2205307 2205322 2205517 2205522) (-1254 "UTYPE.spad" 2204951 2204960 2205297 2205302) (-1253 "UTSODETL.spad" 2204244 2204268 2204907 2204912) (-1252 "UTSODE.spad" 2202432 2202452 2204234 2204239) (-1251 "UTS.spad" 2197221 2197249 2200899 2200996) (-1250 "UTSCAT.spad" 2194672 2194688 2197119 2197216) (-1249 "UTSCAT.spad" 2191767 2191785 2194216 2194221) (-1248 "UTS2.spad" 2191360 2191395 2191757 2191762) (-1247 "URAGG.spad" 2185992 2186003 2191350 2191355) (-1246 "URAGG.spad" 2180588 2180601 2185948 2185953) (-1245 "UPXSSING.spad" 2178231 2178257 2179669 2179802) (-1244 "UPXS.spad" 2175379 2175407 2176363 2176512) (-1243 "UPXSCONS.spad" 2173136 2173156 2173511 2173660) (-1242 "UPXSCCA.spad" 2171701 2171721 2172982 2173131) (-1241 "UPXSCCA.spad" 2170408 2170430 2171691 2171696) (-1240 "UPXSCAT.spad" 2168989 2169005 2170254 2170403) (-1239 "UPXS2.spad" 2168530 2168583 2168979 2168984) (-1238 "UPSQFREE.spad" 2166942 2166956 2168520 2168525) (-1237 "UPSCAT.spad" 2164535 2164559 2166840 2166937) (-1236 "UPSCAT.spad" 2161834 2161860 2164141 2164146) (-1235 "UPOLYC.spad" 2156812 2156823 2161676 2161829) (-1234 "UPOLYC.spad" 2151682 2151695 2156548 2156553) (-1233 "UPOLYC2.spad" 2151151 2151170 2151672 2151677) (-1232 "UP.spad" 2148308 2148323 2148701 2148854) (-1231 "UPMP.spad" 2147198 2147211 2148298 2148303) (-1230 "UPDIVP.spad" 2146761 2146775 2147188 2147193) (-1229 "UPDECOMP.spad" 2144998 2145012 2146751 2146756) (-1228 "UPCDEN.spad" 2144205 2144221 2144988 2144993) (-1227 "UP2.spad" 2143567 2143588 2144195 2144200) (-1226 "UNISEG.spad" 2142920 2142931 2143486 2143491) (-1225 "UNISEG2.spad" 2142413 2142426 2142876 2142881) (-1224 "UNIFACT.spad" 2141514 2141526 2142403 2142408) (-1223 "ULS.spad" 2132066 2132094 2133159 2133588) (-1222 "ULSCONS.spad" 2124460 2124480 2124832 2124981) (-1221 "ULSCCAT.spad" 2122189 2122209 2124306 2124455) (-1220 "ULSCCAT.spad" 2120026 2120048 2122145 2122150) (-1219 "ULSCAT.spad" 2118242 2118258 2119872 2120021) (-1218 "ULS2.spad" 2117754 2117807 2118232 2118237) (-1217 "UINT8.spad" 2117631 2117640 2117744 2117749) (-1216 "UINT64.spad" 2117507 2117516 2117621 2117626) (-1215 "UINT32.spad" 2117383 2117392 2117497 2117502) (-1214 "UINT16.spad" 2117259 2117268 2117373 2117378) (-1213 "UFD.spad" 2116324 2116333 2117185 2117254) (-1212 "UFD.spad" 2115451 2115462 2116314 2116319) (-1211 "UDVO.spad" 2114298 2114307 2115441 2115446) (-1210 "UDPO.spad" 2111725 2111736 2114254 2114259) (-1209 "TYPE.spad" 2111657 2111666 2111715 2111720) (-1208 "TYPEAST.spad" 2111576 2111585 2111647 2111652) (-1207 "TWOFACT.spad" 2110226 2110241 2111566 2111571) (-1206 "TUPLE.spad" 2109710 2109721 2110125 2110130) (-1205 "TUBETOOL.spad" 2106547 2106556 2109700 2109705) (-1204 "TUBE.spad" 2105188 2105205 2106537 2106542) (-1203 "TS.spad" 2103777 2103793 2104753 2104850) (-1202 "TSETCAT.spad" 2090904 2090921 2103745 2103772) (-1201 "TSETCAT.spad" 2078017 2078036 2090860 2090865) (-1200 "TRMANIP.spad" 2072383 2072400 2077723 2077728) (-1199 "TRIMAT.spad" 2071342 2071367 2072373 2072378) (-1198 "TRIGMNIP.spad" 2069859 2069876 2071332 2071337) (-1197 "TRIGCAT.spad" 2069371 2069380 2069849 2069854) (-1196 "TRIGCAT.spad" 2068881 2068892 2069361 2069366) (-1195 "TREE.spad" 2067452 2067463 2068488 2068515) (-1194 "TRANFUN.spad" 2067283 2067292 2067442 2067447) (-1193 "TRANFUN.spad" 2067112 2067123 2067273 2067278) (-1192 "TOPSP.spad" 2066786 2066795 2067102 2067107) (-1191 "TOOLSIGN.spad" 2066449 2066460 2066776 2066781) (-1190 "TEXTFILE.spad" 2065006 2065015 2066439 2066444) (-1189 "TEX.spad" 2062138 2062147 2064996 2065001) (-1188 "TEX1.spad" 2061694 2061705 2062128 2062133) (-1187 "TEMUTL.spad" 2061249 2061258 2061684 2061689) (-1186 "TBCMPPK.spad" 2059342 2059365 2061239 2061244) (-1185 "TBAGG.spad" 2058378 2058401 2059322 2059337) (-1184 "TBAGG.spad" 2057422 2057447 2058368 2058373) (-1183 "TANEXP.spad" 2056798 2056809 2057412 2057417) (-1182 "TABLE.spad" 2055209 2055232 2055479 2055506) (-1181 "TABLEAU.spad" 2054690 2054701 2055199 2055204) (-1180 "TABLBUMP.spad" 2051473 2051484 2054680 2054685) (-1179 "SYSTEM.spad" 2050701 2050710 2051463 2051468) (-1178 "SYSSOLP.spad" 2048174 2048185 2050691 2050696) (-1177 "SYSNNI.spad" 2047354 2047365 2048164 2048169) (-1176 "SYSINT.spad" 2046758 2046769 2047344 2047349) (-1175 "SYNTAX.spad" 2042952 2042961 2046748 2046753) (-1174 "SYMTAB.spad" 2041008 2041017 2042942 2042947) (-1173 "SYMS.spad" 2036993 2037002 2040998 2041003) (-1172 "SYMPOLY.spad" 2036000 2036011 2036082 2036209) (-1171 "SYMFUNC.spad" 2035475 2035486 2035990 2035995) (-1170 "SYMBOL.spad" 2032902 2032911 2035465 2035470) (-1169 "SWITCH.spad" 2029659 2029668 2032892 2032897) (-1168 "SUTS.spad" 2026558 2026586 2028126 2028223) (-1167 "SUPXS.spad" 2023693 2023721 2024690 2024839) (-1166 "SUP.spad" 2020462 2020473 2021243 2021396) (-1165 "SUPFRACF.spad" 2019567 2019585 2020452 2020457) (-1164 "SUP2.spad" 2018957 2018970 2019557 2019562) (-1163 "SUMRF.spad" 2017923 2017934 2018947 2018952) (-1162 "SUMFS.spad" 2017556 2017573 2017913 2017918) (-1161 "SULS.spad" 2008095 2008123 2009201 2009630) (-1160 "SUCHTAST.spad" 2007864 2007873 2008085 2008090) (-1159 "SUCH.spad" 2007544 2007559 2007854 2007859) (-1158 "SUBSPACE.spad" 1999551 1999566 2007534 2007539) (-1157 "SUBRESP.spad" 1998711 1998725 1999507 1999512) (-1156 "STTF.spad" 1994810 1994826 1998701 1998706) (-1155 "STTFNC.spad" 1991278 1991294 1994800 1994805) (-1154 "STTAYLOR.spad" 1983676 1983687 1991159 1991164) (-1153 "STRTBL.spad" 1982181 1982198 1982330 1982357) (-1152 "STRING.spad" 1981590 1981599 1981604 1981631) (-1151 "STRICAT.spad" 1981378 1981387 1981558 1981585) (-1150 "STREAM.spad" 1978236 1978247 1980903 1980918) (-1149 "STREAM3.spad" 1977781 1977796 1978226 1978231) (-1148 "STREAM2.spad" 1976849 1976862 1977771 1977776) (-1147 "STREAM1.spad" 1976553 1976564 1976839 1976844) (-1146 "STINPROD.spad" 1975459 1975475 1976543 1976548) (-1145 "STEP.spad" 1974660 1974669 1975449 1975454) (-1144 "STBL.spad" 1973186 1973214 1973353 1973368) (-1143 "STAGG.spad" 1972261 1972272 1973176 1973181) (-1142 "STAGG.spad" 1971334 1971347 1972251 1972256) (-1141 "STACK.spad" 1970685 1970696 1970941 1970968) (-1140 "SREGSET.spad" 1968389 1968406 1970331 1970358) (-1139 "SRDCMPK.spad" 1966934 1966954 1968379 1968384) (-1138 "SRAGG.spad" 1962031 1962040 1966902 1966929) (-1137 "SRAGG.spad" 1957148 1957159 1962021 1962026) (-1136 "SQMATRIX.spad" 1954764 1954782 1955680 1955767) (-1135 "SPLTREE.spad" 1949316 1949329 1954200 1954227) (-1134 "SPLNODE.spad" 1945904 1945917 1949306 1949311) (-1133 "SPFCAT.spad" 1944681 1944690 1945894 1945899) (-1132 "SPECOUT.spad" 1943231 1943240 1944671 1944676) (-1131 "SPADXPT.spad" 1935370 1935379 1943221 1943226) (-1130 "spad-parser.spad" 1934835 1934844 1935360 1935365) (-1129 "SPADAST.spad" 1934536 1934545 1934825 1934830) (-1128 "SPACEC.spad" 1918549 1918560 1934526 1934531) (-1127 "SPACE3.spad" 1918325 1918336 1918539 1918544) (-1126 "SORTPAK.spad" 1917870 1917883 1918281 1918286) (-1125 "SOLVETRA.spad" 1915627 1915638 1917860 1917865) (-1124 "SOLVESER.spad" 1914147 1914158 1915617 1915622) (-1123 "SOLVERAD.spad" 1910157 1910168 1914137 1914142) (-1122 "SOLVEFOR.spad" 1908577 1908595 1910147 1910152) (-1121 "SNTSCAT.spad" 1908177 1908194 1908545 1908572) (-1120 "SMTS.spad" 1906437 1906463 1907742 1907839) (-1119 "SMP.spad" 1903876 1903896 1904266 1904393) (-1118 "SMITH.spad" 1902719 1902744 1903866 1903871) (-1117 "SMATCAT.spad" 1900829 1900859 1902663 1902714) (-1116 "SMATCAT.spad" 1898871 1898903 1900707 1900712) (-1115 "SKAGG.spad" 1897832 1897843 1898839 1898866) (-1114 "SINT.spad" 1896658 1896667 1897698 1897827) (-1113 "SIMPAN.spad" 1896386 1896395 1896648 1896653) (-1112 "SIG.spad" 1895714 1895723 1896376 1896381) (-1111 "SIGNRF.spad" 1894822 1894833 1895704 1895709) (-1110 "SIGNEF.spad" 1894091 1894108 1894812 1894817) (-1109 "SIGAST.spad" 1893472 1893481 1894081 1894086) (-1108 "SHP.spad" 1891390 1891405 1893428 1893433) (-1107 "SHDP.spad" 1881101 1881128 1881610 1881741) (-1106 "SGROUP.spad" 1880709 1880718 1881091 1881096) (-1105 "SGROUP.spad" 1880315 1880326 1880699 1880704) (-1104 "SGCF.spad" 1873196 1873205 1880305 1880310) (-1103 "SFRTCAT.spad" 1872124 1872141 1873164 1873191) (-1102 "SFRGCD.spad" 1871187 1871207 1872114 1872119) (-1101 "SFQCMPK.spad" 1865824 1865844 1871177 1871182) (-1100 "SFORT.spad" 1865259 1865273 1865814 1865819) (-1099 "SEXOF.spad" 1865102 1865142 1865249 1865254) (-1098 "SEX.spad" 1864994 1865003 1865092 1865097) (-1097 "SEXCAT.spad" 1862545 1862585 1864984 1864989) (-1096 "SET.spad" 1860845 1860856 1861966 1862005) (-1095 "SETMN.spad" 1859279 1859296 1860835 1860840) (-1094 "SETCAT.spad" 1858764 1858773 1859269 1859274) (-1093 "SETCAT.spad" 1858247 1858258 1858754 1858759) (-1092 "SETAGG.spad" 1854768 1854779 1858227 1858242) (-1091 "SETAGG.spad" 1851297 1851310 1854758 1854763) (-1090 "SEQAST.spad" 1851000 1851009 1851287 1851292) (-1089 "SEGXCAT.spad" 1850122 1850135 1850990 1850995) (-1088 "SEG.spad" 1849935 1849946 1850041 1850046) (-1087 "SEGCAT.spad" 1848842 1848853 1849925 1849930) (-1086 "SEGBIND.spad" 1847914 1847925 1848797 1848802) (-1085 "SEGBIND2.spad" 1847610 1847623 1847904 1847909) (-1084 "SEGAST.spad" 1847324 1847333 1847600 1847605) (-1083 "SEG2.spad" 1846749 1846762 1847280 1847285) (-1082 "SDVAR.spad" 1846025 1846036 1846739 1846744) (-1081 "SDPOL.spad" 1843415 1843426 1843706 1843833) (-1080 "SCPKG.spad" 1841494 1841505 1843405 1843410) (-1079 "SCOPE.spad" 1840647 1840656 1841484 1841489) (-1078 "SCACHE.spad" 1839329 1839340 1840637 1840642) (-1077 "SASTCAT.spad" 1839238 1839247 1839319 1839324) (-1076 "SAOS.spad" 1839110 1839119 1839228 1839233) (-1075 "SAERFFC.spad" 1838823 1838843 1839100 1839105) (-1074 "SAE.spad" 1836998 1837014 1837609 1837744) (-1073 "SAEFACT.spad" 1836699 1836719 1836988 1836993) (-1072 "RURPK.spad" 1834340 1834356 1836689 1836694) (-1071 "RULESET.spad" 1833781 1833805 1834330 1834335) (-1070 "RULE.spad" 1831985 1832009 1833771 1833776) (-1069 "RULECOLD.spad" 1831837 1831850 1831975 1831980) (-1068 "RSTRCAST.spad" 1831554 1831563 1831827 1831832) (-1067 "RSETGCD.spad" 1827932 1827952 1831544 1831549) (-1066 "RSETCAT.spad" 1817716 1817733 1827900 1827927) (-1065 "RSETCAT.spad" 1807520 1807539 1817706 1817711) (-1064 "RSDCMPK.spad" 1805972 1805992 1807510 1807515) (-1063 "RRCC.spad" 1804356 1804386 1805962 1805967) (-1062 "RRCC.spad" 1802738 1802770 1804346 1804351) (-1061 "RPTAST.spad" 1802440 1802449 1802728 1802733) (-1060 "RPOLCAT.spad" 1781800 1781815 1802308 1802435) (-1059 "RPOLCAT.spad" 1760874 1760891 1781384 1781389) (-1058 "ROUTINE.spad" 1756737 1756746 1759521 1759548) (-1057 "ROMAN.spad" 1756065 1756074 1756603 1756732) (-1056 "ROIRC.spad" 1755145 1755177 1756055 1756060) (-1055 "RNS.spad" 1754048 1754057 1755047 1755140) (-1054 "RNS.spad" 1753037 1753048 1754038 1754043) (-1053 "RNG.spad" 1752772 1752781 1753027 1753032) (-1052 "RMODULE.spad" 1752410 1752421 1752762 1752767) (-1051 "RMCAT2.spad" 1751818 1751875 1752400 1752405) (-1050 "RMATRIX.spad" 1750642 1750661 1750985 1751024) (-1049 "RMATCAT.spad" 1746175 1746206 1750598 1750637) (-1048 "RMATCAT.spad" 1741598 1741631 1746023 1746028) (-1047 "RINTERP.spad" 1741486 1741506 1741588 1741593) (-1046 "RING.spad" 1740956 1740965 1741466 1741481) (-1045 "RING.spad" 1740434 1740445 1740946 1740951) (-1044 "RIDIST.spad" 1739818 1739827 1740424 1740429) (-1043 "RGCHAIN.spad" 1738397 1738413 1739303 1739330) (-1042 "RGBCSPC.spad" 1738178 1738190 1738387 1738392) (-1041 "RGBCMDL.spad" 1737708 1737720 1738168 1738173) (-1040 "RF.spad" 1735322 1735333 1737698 1737703) (-1039 "RFFACTOR.spad" 1734784 1734795 1735312 1735317) (-1038 "RFFACT.spad" 1734519 1734531 1734774 1734779) (-1037 "RFDIST.spad" 1733507 1733516 1734509 1734514) (-1036 "RETSOL.spad" 1732924 1732937 1733497 1733502) (-1035 "RETRACT.spad" 1732352 1732363 1732914 1732919) (-1034 "RETRACT.spad" 1731778 1731791 1732342 1732347) (-1033 "RETAST.spad" 1731590 1731599 1731768 1731773) (-1032 "RESULT.spad" 1729650 1729659 1730237 1730264) (-1031 "RESRING.spad" 1728997 1729044 1729588 1729645) (-1030 "RESLATC.spad" 1728321 1728332 1728987 1728992) (-1029 "REPSQ.spad" 1728050 1728061 1728311 1728316) (-1028 "REP.spad" 1725602 1725611 1728040 1728045) (-1027 "REPDB.spad" 1725307 1725318 1725592 1725597) (-1026 "REP2.spad" 1714879 1714890 1725149 1725154) (-1025 "REP1.spad" 1708869 1708880 1714829 1714834) (-1024 "REGSET.spad" 1706666 1706683 1708515 1708542) (-1023 "REF.spad" 1705995 1706006 1706621 1706626) (-1022 "REDORDER.spad" 1705171 1705188 1705985 1705990) (-1021 "RECLOS.spad" 1703954 1703974 1704658 1704751) (-1020 "REALSOLV.spad" 1703086 1703095 1703944 1703949) (-1019 "REAL.spad" 1702958 1702967 1703076 1703081) (-1018 "REAL0Q.spad" 1700240 1700255 1702948 1702953) (-1017 "REAL0.spad" 1697068 1697083 1700230 1700235) (-1016 "RDUCEAST.spad" 1696789 1696798 1697058 1697063) (-1015 "RDIV.spad" 1696440 1696465 1696779 1696784) (-1014 "RDIST.spad" 1696003 1696014 1696430 1696435) (-1013 "RDETRS.spad" 1694799 1694817 1695993 1695998) (-1012 "RDETR.spad" 1692906 1692924 1694789 1694794) (-1011 "RDEEFS.spad" 1691979 1691996 1692896 1692901) (-1010 "RDEEF.spad" 1690975 1690992 1691969 1691974) (-1009 "RCFIELD.spad" 1688161 1688170 1690877 1690970) (-1008 "RCFIELD.spad" 1685433 1685444 1688151 1688156) (-1007 "RCAGG.spad" 1683345 1683356 1685423 1685428) (-1006 "RCAGG.spad" 1681184 1681197 1683264 1683269) (-1005 "RATRET.spad" 1680544 1680555 1681174 1681179) (-1004 "RATFACT.spad" 1680236 1680248 1680534 1680539) (-1003 "RANDSRC.spad" 1679555 1679564 1680226 1680231) (-1002 "RADUTIL.spad" 1679309 1679318 1679545 1679550) (-1001 "RADIX.spad" 1676210 1676224 1677776 1677869) (-1000 "RADFF.spad" 1674623 1674660 1674742 1674898) (-999 "RADCAT.spad" 1674217 1674225 1674613 1674618) (-998 "RADCAT.spad" 1673809 1673819 1674207 1674212) (-997 "QUEUE.spad" 1673152 1673162 1673416 1673443) (-996 "QUAT.spad" 1671734 1671744 1672076 1672141) (-995 "QUATCT2.spad" 1671353 1671371 1671724 1671729) (-994 "QUATCAT.spad" 1669518 1669528 1671283 1671348) (-993 "QUATCAT.spad" 1667434 1667446 1669201 1669206) (-992 "QUAGG.spad" 1666260 1666270 1667402 1667429) (-991 "QQUTAST.spad" 1666029 1666037 1666250 1666255) (-990 "QFORM.spad" 1665492 1665506 1666019 1666024) (-989 "QFCAT.spad" 1664195 1664205 1665394 1665487) (-988 "QFCAT.spad" 1662489 1662501 1663690 1663695) (-987 "QFCAT2.spad" 1662180 1662196 1662479 1662484) (-986 "QEQUAT.spad" 1661737 1661745 1662170 1662175) (-985 "QCMPACK.spad" 1656484 1656503 1661727 1661732) (-984 "QALGSET.spad" 1652559 1652591 1656398 1656403) (-983 "QALGSET2.spad" 1650555 1650573 1652549 1652554) (-982 "PWFFINTB.spad" 1647865 1647886 1650545 1650550) (-981 "PUSHVAR.spad" 1647194 1647213 1647855 1647860) (-980 "PTRANFN.spad" 1643320 1643330 1647184 1647189) (-979 "PTPACK.spad" 1640408 1640418 1643310 1643315) (-978 "PTFUNC2.spad" 1640229 1640243 1640398 1640403) (-977 "PTCAT.spad" 1639478 1639488 1640197 1640224) (-976 "PSQFR.spad" 1638785 1638809 1639468 1639473) (-975 "PSEUDLIN.spad" 1637643 1637653 1638775 1638780) (-974 "PSETPK.spad" 1623076 1623092 1637521 1637526) (-973 "PSETCAT.spad" 1616996 1617019 1623056 1623071) (-972 "PSETCAT.spad" 1610890 1610915 1616952 1616957) (-971 "PSCURVE.spad" 1609873 1609881 1610880 1610885) (-970 "PSCAT.spad" 1608640 1608669 1609771 1609868) (-969 "PSCAT.spad" 1607497 1607528 1608630 1608635) (-968 "PRTITION.spad" 1606442 1606450 1607487 1607492) (-967 "PRTDAST.spad" 1606161 1606169 1606432 1606437) (-966 "PRS.spad" 1595723 1595740 1606117 1606122) (-965 "PRQAGG.spad" 1595154 1595164 1595691 1595718) (-964 "PROPLOG.spad" 1594557 1594565 1595144 1595149) (-963 "PROPFRML.spad" 1592475 1592486 1594547 1594552) (-962 "PROPERTY.spad" 1591969 1591977 1592465 1592470) (-961 "PRODUCT.spad" 1589649 1589661 1589935 1589990) (-960 "PR.spad" 1588035 1588047 1588740 1588867) (-959 "PRINT.spad" 1587787 1587795 1588025 1588030) (-958 "PRIMES.spad" 1586038 1586048 1587777 1587782) (-957 "PRIMELT.spad" 1584019 1584033 1586028 1586033) (-956 "PRIMCAT.spad" 1583642 1583650 1584009 1584014) (-955 "PRIMARR.spad" 1582647 1582657 1582825 1582852) (-954 "PRIMARR2.spad" 1581370 1581382 1582637 1582642) (-953 "PREASSOC.spad" 1580742 1580754 1581360 1581365) (-952 "PPCURVE.spad" 1579879 1579887 1580732 1580737) (-951 "PORTNUM.spad" 1579654 1579662 1579869 1579874) (-950 "POLYROOT.spad" 1578483 1578505 1579610 1579615) (-949 "POLY.spad" 1575780 1575790 1576297 1576424) (-948 "POLYLIFT.spad" 1575041 1575064 1575770 1575775) (-947 "POLYCATQ.spad" 1573143 1573165 1575031 1575036) (-946 "POLYCAT.spad" 1566549 1566570 1573011 1573138) (-945 "POLYCAT.spad" 1559257 1559280 1565721 1565726) (-944 "POLY2UP.spad" 1558705 1558719 1559247 1559252) (-943 "POLY2.spad" 1558300 1558312 1558695 1558700) (-942 "POLUTIL.spad" 1557241 1557270 1558256 1558261) (-941 "POLTOPOL.spad" 1555989 1556004 1557231 1557236) (-940 "POINT.spad" 1554828 1554838 1554915 1554942) (-939 "PNTHEORY.spad" 1551494 1551502 1554818 1554823) (-938 "PMTOOLS.spad" 1550251 1550265 1551484 1551489) (-937 "PMSYM.spad" 1549796 1549806 1550241 1550246) (-936 "PMQFCAT.spad" 1549383 1549397 1549786 1549791) (-935 "PMPRED.spad" 1548852 1548866 1549373 1549378) (-934 "PMPREDFS.spad" 1548296 1548318 1548842 1548847) (-933 "PMPLCAT.spad" 1547366 1547384 1548228 1548233) (-932 "PMLSAGG.spad" 1546947 1546961 1547356 1547361) (-931 "PMKERNEL.spad" 1546514 1546526 1546937 1546942) (-930 "PMINS.spad" 1546090 1546100 1546504 1546509) (-929 "PMFS.spad" 1545663 1545681 1546080 1546085) (-928 "PMDOWN.spad" 1544949 1544963 1545653 1545658) (-927 "PMASS.spad" 1543961 1543969 1544939 1544944) (-926 "PMASSFS.spad" 1542930 1542946 1543951 1543956) (-925 "PLOTTOOL.spad" 1542710 1542718 1542920 1542925) (-924 "PLOT.spad" 1537541 1537549 1542700 1542705) (-923 "PLOT3D.spad" 1533961 1533969 1537531 1537536) (-922 "PLOT1.spad" 1533102 1533112 1533951 1533956) (-921 "PLEQN.spad" 1520318 1520345 1533092 1533097) (-920 "PINTERP.spad" 1519934 1519953 1520308 1520313) (-919 "PINTERPA.spad" 1519716 1519732 1519924 1519929) (-918 "PI.spad" 1519323 1519331 1519690 1519711) (-917 "PID.spad" 1518279 1518287 1519249 1519318) (-916 "PICOERCE.spad" 1517936 1517946 1518269 1518274) (-915 "PGROEB.spad" 1516533 1516547 1517926 1517931) (-914 "PGE.spad" 1507786 1507794 1516523 1516528) (-913 "PGCD.spad" 1506668 1506685 1507776 1507781) (-912 "PFRPAC.spad" 1505811 1505821 1506658 1506663) (-911 "PFR.spad" 1502468 1502478 1505713 1505806) (-910 "PFOTOOLS.spad" 1501726 1501742 1502458 1502463) (-909 "PFOQ.spad" 1501096 1501114 1501716 1501721) (-908 "PFO.spad" 1500515 1500542 1501086 1501091) (-907 "PF.spad" 1500089 1500101 1500320 1500413) (-906 "PFECAT.spad" 1497755 1497763 1500015 1500084) (-905 "PFECAT.spad" 1495449 1495459 1497711 1497716) (-904 "PFBRU.spad" 1493319 1493331 1495439 1495444) (-903 "PFBR.spad" 1490857 1490880 1493309 1493314) (-902 "PERM.spad" 1486538 1486548 1490687 1490702) (-901 "PERMGRP.spad" 1481274 1481284 1486528 1486533) (-900 "PERMCAT.spad" 1479826 1479836 1481254 1481269) (-899 "PERMAN.spad" 1478358 1478372 1479816 1479821) (-898 "PENDTREE.spad" 1477697 1477707 1477987 1477992) (-897 "PDRING.spad" 1476188 1476198 1477677 1477692) (-896 "PDRING.spad" 1474687 1474699 1476178 1476183) (-895 "PDEPROB.spad" 1473702 1473710 1474677 1474682) (-894 "PDEPACK.spad" 1467704 1467712 1473692 1473697) (-893 "PDECOMP.spad" 1467166 1467183 1467694 1467699) (-892 "PDECAT.spad" 1465520 1465528 1467156 1467161) (-891 "PCOMP.spad" 1465371 1465384 1465510 1465515) (-890 "PBWLB.spad" 1463953 1463970 1465361 1465366) (-889 "PATTERN.spad" 1458384 1458394 1463943 1463948) (-888 "PATTERN2.spad" 1458120 1458132 1458374 1458379) (-887 "PATTERN1.spad" 1456422 1456438 1458110 1458115) (-886 "PATRES.spad" 1453969 1453981 1456412 1456417) (-885 "PATRES2.spad" 1453631 1453645 1453959 1453964) (-884 "PATMATCH.spad" 1451788 1451819 1453339 1453344) (-883 "PATMAB.spad" 1451213 1451223 1451778 1451783) (-882 "PATLRES.spad" 1450297 1450311 1451203 1451208) (-881 "PATAB.spad" 1450061 1450071 1450287 1450292) (-880 "PARTPERM.spad" 1447423 1447431 1450051 1450056) (-879 "PARSURF.spad" 1446851 1446879 1447413 1447418) (-878 "PARSU2.spad" 1446646 1446662 1446841 1446846) (-877 "script-parser.spad" 1446166 1446174 1446636 1446641) (-876 "PARSCURV.spad" 1445594 1445622 1446156 1446161) (-875 "PARSC2.spad" 1445383 1445399 1445584 1445589) (-874 "PARPCURV.spad" 1444841 1444869 1445373 1445378) (-873 "PARPC2.spad" 1444630 1444646 1444831 1444836) (-872 "PAN2EXPR.spad" 1444042 1444050 1444620 1444625) (-871 "PALETTE.spad" 1443012 1443020 1444032 1444037) (-870 "PAIR.spad" 1441995 1442008 1442600 1442605) (-869 "PADICRC.spad" 1439325 1439343 1440500 1440593) (-868 "PADICRAT.spad" 1437340 1437352 1437561 1437654) (-867 "PADIC.spad" 1437035 1437047 1437266 1437335) (-866 "PADICCT.spad" 1435576 1435588 1436961 1437030) (-865 "PADEPAC.spad" 1434255 1434274 1435566 1435571) (-864 "PADE.spad" 1432995 1433011 1434245 1434250) (-863 "OWP.spad" 1432235 1432265 1432853 1432920) (-862 "OVERSET.spad" 1431808 1431816 1432225 1432230) (-861 "OVAR.spad" 1431589 1431612 1431798 1431803) (-860 "OUT.spad" 1430673 1430681 1431579 1431584) (-859 "OUTFORM.spad" 1419969 1419977 1430663 1430668) (-858 "OUTBFILE.spad" 1419387 1419395 1419959 1419964) (-857 "OUTBCON.spad" 1418385 1418393 1419377 1419382) (-856 "OUTBCON.spad" 1417381 1417391 1418375 1418380) (-855 "OSI.spad" 1416856 1416864 1417371 1417376) (-854 "OSGROUP.spad" 1416774 1416782 1416846 1416851) (-853 "ORTHPOL.spad" 1415235 1415245 1416691 1416696) (-852 "OREUP.spad" 1414688 1414716 1414915 1414954) (-851 "ORESUP.spad" 1413987 1414011 1414368 1414407) (-850 "OREPCTO.spad" 1411806 1411818 1413907 1413912) (-849 "OREPCAT.spad" 1405863 1405873 1411762 1411801) (-848 "OREPCAT.spad" 1399810 1399822 1405711 1405716) (-847 "ORDSET.spad" 1398976 1398984 1399800 1399805) (-846 "ORDSET.spad" 1398140 1398150 1398966 1398971) (-845 "ORDRING.spad" 1397530 1397538 1398120 1398135) (-844 "ORDRING.spad" 1396928 1396938 1397520 1397525) (-843 "ORDMON.spad" 1396783 1396791 1396918 1396923) (-842 "ORDFUNS.spad" 1395909 1395925 1396773 1396778) (-841 "ORDFIN.spad" 1395729 1395737 1395899 1395904) (-840 "ORDCOMP.spad" 1394194 1394204 1395276 1395305) (-839 "ORDCOMP2.spad" 1393479 1393491 1394184 1394189) (-838 "OPTPROB.spad" 1392117 1392125 1393469 1393474) (-837 "OPTPACK.spad" 1384502 1384510 1392107 1392112) (-836 "OPTCAT.spad" 1382177 1382185 1384492 1384497) (-835 "OPSIG.spad" 1381829 1381837 1382167 1382172) (-834 "OPQUERY.spad" 1381378 1381386 1381819 1381824) (-833 "OP.spad" 1381120 1381130 1381200 1381267) (-832 "OPERCAT.spad" 1380708 1380718 1381110 1381115) (-831 "OPERCAT.spad" 1380294 1380306 1380698 1380703) (-830 "ONECOMP.spad" 1379039 1379049 1379841 1379870) (-829 "ONECOMP2.spad" 1378457 1378469 1379029 1379034) (-828 "OMSERVER.spad" 1377459 1377467 1378447 1378452) (-827 "OMSAGG.spad" 1377247 1377257 1377415 1377454) (-826 "OMPKG.spad" 1375859 1375867 1377237 1377242) (-825 "OM.spad" 1374824 1374832 1375849 1375854) (-824 "OMLO.spad" 1374249 1374261 1374710 1374749) (-823 "OMEXPR.spad" 1374083 1374093 1374239 1374244) (-822 "OMERR.spad" 1373626 1373634 1374073 1374078) (-821 "OMERRK.spad" 1372660 1372668 1373616 1373621) (-820 "OMENC.spad" 1372004 1372012 1372650 1372655) (-819 "OMDEV.spad" 1366293 1366301 1371994 1371999) (-818 "OMCONN.spad" 1365702 1365710 1366283 1366288) (-817 "OINTDOM.spad" 1365465 1365473 1365628 1365697) (-816 "OFMONOID.spad" 1361652 1361662 1365455 1365460) (-815 "ODVAR.spad" 1360913 1360923 1361642 1361647) (-814 "ODR.spad" 1360557 1360583 1360725 1360874) (-813 "ODPOL.spad" 1357903 1357913 1358243 1358370) (-812 "ODP.spad" 1347750 1347770 1348123 1348254) (-811 "ODETOOLS.spad" 1346333 1346352 1347740 1347745) (-810 "ODESYS.spad" 1343983 1344000 1346323 1346328) (-809 "ODERTRIC.spad" 1339924 1339941 1343940 1343945) (-808 "ODERED.spad" 1339311 1339335 1339914 1339919) (-807 "ODERAT.spad" 1336862 1336879 1339301 1339306) (-806 "ODEPRRIC.spad" 1333753 1333775 1336852 1336857) (-805 "ODEPROB.spad" 1333010 1333018 1333743 1333748) (-804 "ODEPRIM.spad" 1330284 1330306 1333000 1333005) (-803 "ODEPAL.spad" 1329660 1329684 1330274 1330279) (-802 "ODEPACK.spad" 1316262 1316270 1329650 1329655) (-801 "ODEINT.spad" 1315693 1315709 1316252 1316257) (-800 "ODEIFTBL.spad" 1313088 1313096 1315683 1315688) (-799 "ODEEF.spad" 1308455 1308471 1313078 1313083) (-798 "ODECONST.spad" 1307974 1307992 1308445 1308450) (-797 "ODECAT.spad" 1306570 1306578 1307964 1307969) (-796 "OCT.spad" 1304708 1304718 1305424 1305463) (-795 "OCTCT2.spad" 1304352 1304373 1304698 1304703) (-794 "OC.spad" 1302126 1302136 1304308 1304347) (-793 "OC.spad" 1299625 1299637 1301809 1301814) (-792 "OCAMON.spad" 1299473 1299481 1299615 1299620) (-791 "OASGP.spad" 1299288 1299296 1299463 1299468) (-790 "OAMONS.spad" 1298808 1298816 1299278 1299283) (-789 "OAMON.spad" 1298669 1298677 1298798 1298803) (-788 "OAGROUP.spad" 1298531 1298539 1298659 1298664) (-787 "NUMTUBE.spad" 1298118 1298134 1298521 1298526) (-786 "NUMQUAD.spad" 1285980 1285988 1298108 1298113) (-785 "NUMODE.spad" 1277116 1277124 1285970 1285975) (-784 "NUMINT.spad" 1274674 1274682 1277106 1277111) (-783 "NUMFMT.spad" 1273514 1273522 1274664 1274669) (-782 "NUMERIC.spad" 1265586 1265596 1273319 1273324) (-781 "NTSCAT.spad" 1264088 1264104 1265554 1265581) (-780 "NTPOLFN.spad" 1263633 1263643 1264005 1264010) (-779 "NSUP.spad" 1256643 1256653 1261183 1261336) (-778 "NSUP2.spad" 1256035 1256047 1256633 1256638) (-777 "NSMP.spad" 1252230 1252249 1252538 1252665) (-776 "NREP.spad" 1250602 1250616 1252220 1252225) (-775 "NPCOEF.spad" 1249848 1249868 1250592 1250597) (-774 "NORMRETR.spad" 1249446 1249485 1249838 1249843) (-773 "NORMPK.spad" 1247348 1247367 1249436 1249441) (-772 "NORMMA.spad" 1247036 1247062 1247338 1247343) (-771 "NONE.spad" 1246777 1246785 1247026 1247031) (-770 "NONE1.spad" 1246453 1246463 1246767 1246772) (-769 "NODE1.spad" 1245922 1245938 1246443 1246448) (-768 "NNI.spad" 1244809 1244817 1245896 1245917) (-767 "NLINSOL.spad" 1243431 1243441 1244799 1244804) (-766 "NIPROB.spad" 1241972 1241980 1243421 1243426) (-765 "NFINTBAS.spad" 1239432 1239449 1241962 1241967) (-764 "NETCLT.spad" 1239406 1239417 1239422 1239427) (-763 "NCODIV.spad" 1237604 1237620 1239396 1239401) (-762 "NCNTFRAC.spad" 1237246 1237260 1237594 1237599) (-761 "NCEP.spad" 1235406 1235420 1237236 1237241) (-760 "NASRING.spad" 1235002 1235010 1235396 1235401) (-759 "NASRING.spad" 1234596 1234606 1234992 1234997) (-758 "NARNG.spad" 1233940 1233948 1234586 1234591) (-757 "NARNG.spad" 1233282 1233292 1233930 1233935) (-756 "NAGSP.spad" 1232355 1232363 1233272 1233277) (-755 "NAGS.spad" 1221880 1221888 1232345 1232350) (-754 "NAGF07.spad" 1220273 1220281 1221870 1221875) (-753 "NAGF04.spad" 1214505 1214513 1220263 1220268) (-752 "NAGF02.spad" 1208314 1208322 1214495 1214500) (-751 "NAGF01.spad" 1203917 1203925 1208304 1208309) (-750 "NAGE04.spad" 1197377 1197385 1203907 1203912) (-749 "NAGE02.spad" 1187719 1187727 1197367 1197372) (-748 "NAGE01.spad" 1183603 1183611 1187709 1187714) (-747 "NAGD03.spad" 1181523 1181531 1183593 1183598) (-746 "NAGD02.spad" 1174054 1174062 1181513 1181518) (-745 "NAGD01.spad" 1168167 1168175 1174044 1174049) (-744 "NAGC06.spad" 1163954 1163962 1168157 1168162) (-743 "NAGC05.spad" 1162423 1162431 1163944 1163949) (-742 "NAGC02.spad" 1161678 1161686 1162413 1162418) (-741 "NAALG.spad" 1161213 1161223 1161646 1161673) (-740 "NAALG.spad" 1160768 1160780 1161203 1161208) (-739 "MULTSQFR.spad" 1157726 1157743 1160758 1160763) (-738 "MULTFACT.spad" 1157109 1157126 1157716 1157721) (-737 "MTSCAT.spad" 1155143 1155164 1157007 1157104) (-736 "MTHING.spad" 1154800 1154810 1155133 1155138) (-735 "MSYSCMD.spad" 1154234 1154242 1154790 1154795) (-734 "MSET.spad" 1152176 1152186 1153940 1153979) (-733 "MSETAGG.spad" 1152021 1152031 1152144 1152171) (-732 "MRING.spad" 1148992 1149004 1151729 1151796) (-731 "MRF2.spad" 1148560 1148574 1148982 1148987) (-730 "MRATFAC.spad" 1148106 1148123 1148550 1148555) (-729 "MPRFF.spad" 1146136 1146155 1148096 1148101) (-728 "MPOLY.spad" 1143571 1143586 1143930 1144057) (-727 "MPCPF.spad" 1142835 1142854 1143561 1143566) (-726 "MPC3.spad" 1142650 1142690 1142825 1142830) (-725 "MPC2.spad" 1142292 1142325 1142640 1142645) (-724 "MONOTOOL.spad" 1140627 1140644 1142282 1142287) (-723 "MONOID.spad" 1139946 1139954 1140617 1140622) (-722 "MONOID.spad" 1139263 1139273 1139936 1139941) (-721 "MONOGEN.spad" 1138009 1138022 1139123 1139258) (-720 "MONOGEN.spad" 1136777 1136792 1137893 1137898) (-719 "MONADWU.spad" 1134791 1134799 1136767 1136772) (-718 "MONADWU.spad" 1132803 1132813 1134781 1134786) (-717 "MONAD.spad" 1131947 1131955 1132793 1132798) (-716 "MONAD.spad" 1131089 1131099 1131937 1131942) (-715 "MOEBIUS.spad" 1129775 1129789 1131069 1131084) (-714 "MODULE.spad" 1129645 1129655 1129743 1129770) (-713 "MODULE.spad" 1129535 1129547 1129635 1129640) (-712 "MODRING.spad" 1128866 1128905 1129515 1129530) (-711 "MODOP.spad" 1127525 1127537 1128688 1128755) (-710 "MODMONOM.spad" 1127254 1127272 1127515 1127520) (-709 "MODMON.spad" 1124013 1124029 1124732 1124885) (-708 "MODFIELD.spad" 1123371 1123410 1123915 1124008) (-707 "MMLFORM.spad" 1122231 1122239 1123361 1123366) (-706 "MMAP.spad" 1121971 1122005 1122221 1122226) (-705 "MLO.spad" 1120398 1120408 1121927 1121966) (-704 "MLIFT.spad" 1118970 1118987 1120388 1120393) (-703 "MKUCFUNC.spad" 1118503 1118521 1118960 1118965) (-702 "MKRECORD.spad" 1118105 1118118 1118493 1118498) (-701 "MKFUNC.spad" 1117486 1117496 1118095 1118100) (-700 "MKFLCFN.spad" 1116442 1116452 1117476 1117481) (-699 "MKCHSET.spad" 1116307 1116317 1116432 1116437) (-698 "MKBCFUNC.spad" 1115792 1115810 1116297 1116302) (-697 "MINT.spad" 1115231 1115239 1115694 1115787) (-696 "MHROWRED.spad" 1113732 1113742 1115221 1115226) (-695 "MFLOAT.spad" 1112248 1112256 1113622 1113727) (-694 "MFINFACT.spad" 1111648 1111670 1112238 1112243) (-693 "MESH.spad" 1109380 1109388 1111638 1111643) (-692 "MDDFACT.spad" 1107573 1107583 1109370 1109375) (-691 "MDAGG.spad" 1106860 1106870 1107553 1107568) (-690 "MCMPLX.spad" 1102834 1102842 1103448 1103649) (-689 "MCDEN.spad" 1102042 1102054 1102824 1102829) (-688 "MCALCFN.spad" 1099144 1099170 1102032 1102037) (-687 "MAYBE.spad" 1098428 1098439 1099134 1099139) (-686 "MATSTOR.spad" 1095704 1095714 1098418 1098423) (-685 "MATRIX.spad" 1094408 1094418 1094892 1094919) (-684 "MATLIN.spad" 1091734 1091758 1094292 1094297) (-683 "MATCAT.spad" 1083319 1083341 1091702 1091729) (-682 "MATCAT.spad" 1074776 1074800 1083161 1083166) (-681 "MATCAT2.spad" 1074044 1074092 1074766 1074771) (-680 "MAPPKG3.spad" 1072943 1072957 1074034 1074039) (-679 "MAPPKG2.spad" 1072277 1072289 1072933 1072938) (-678 "MAPPKG1.spad" 1071095 1071105 1072267 1072272) (-677 "MAPPAST.spad" 1070408 1070416 1071085 1071090) (-676 "MAPHACK3.spad" 1070216 1070230 1070398 1070403) (-675 "MAPHACK2.spad" 1069981 1069993 1070206 1070211) (-674 "MAPHACK1.spad" 1069611 1069621 1069971 1069976) (-673 "MAGMA.spad" 1067401 1067418 1069601 1069606) (-672 "MACROAST.spad" 1066980 1066988 1067391 1067396) (-671 "M3D.spad" 1064676 1064686 1066358 1066363) (-670 "LZSTAGG.spad" 1061904 1061914 1064666 1064671) (-669 "LZSTAGG.spad" 1059130 1059142 1061894 1061899) (-668 "LWORD.spad" 1055835 1055852 1059120 1059125) (-667 "LSTAST.spad" 1055619 1055627 1055825 1055830) (-666 "LSQM.spad" 1053845 1053859 1054243 1054294) (-665 "LSPP.spad" 1053378 1053395 1053835 1053840) (-664 "LSMP.spad" 1052218 1052246 1053368 1053373) (-663 "LSMP1.spad" 1050022 1050036 1052208 1052213) (-662 "LSAGG.spad" 1049691 1049701 1049990 1050017) (-661 "LSAGG.spad" 1049380 1049392 1049681 1049686) (-660 "LPOLY.spad" 1048334 1048353 1049236 1049305) (-659 "LPEFRAC.spad" 1047591 1047601 1048324 1048329) (-658 "LO.spad" 1046992 1047006 1047525 1047552) (-657 "LOGIC.spad" 1046594 1046602 1046982 1046987) (-656 "LOGIC.spad" 1046194 1046204 1046584 1046589) (-655 "LODOOPS.spad" 1045112 1045124 1046184 1046189) (-654 "LODO.spad" 1044496 1044512 1044792 1044831) (-653 "LODOF.spad" 1043540 1043557 1044453 1044458) (-652 "LODOCAT.spad" 1042198 1042208 1043496 1043535) (-651 "LODOCAT.spad" 1040854 1040866 1042154 1042159) (-650 "LODO2.spad" 1040127 1040139 1040534 1040573) (-649 "LODO1.spad" 1039527 1039537 1039807 1039846) (-648 "LODEEF.spad" 1038299 1038317 1039517 1039522) (-647 "LNAGG.spad" 1034101 1034111 1038289 1038294) (-646 "LNAGG.spad" 1029867 1029879 1034057 1034062) (-645 "LMOPS.spad" 1026603 1026620 1029857 1029862) (-644 "LMODULE.spad" 1026245 1026255 1026593 1026598) (-643 "LMDICT.spad" 1025528 1025538 1025796 1025823) (-642 "LITERAL.spad" 1025434 1025445 1025518 1025523) (-641 "LIST.spad" 1023152 1023162 1024581 1024608) (-640 "LIST3.spad" 1022443 1022457 1023142 1023147) (-639 "LIST2.spad" 1021083 1021095 1022433 1022438) (-638 "LIST2MAP.spad" 1017960 1017972 1021073 1021078) (-637 "LINEXP.spad" 1017392 1017402 1017940 1017955) (-636 "LINDEP.spad" 1016169 1016181 1017304 1017309) (-635 "LIMITRF.spad" 1014083 1014093 1016159 1016164) (-634 "LIMITPS.spad" 1012966 1012979 1014073 1014078) (-633 "LIE.spad" 1010980 1010992 1012256 1012401) (-632 "LIECAT.spad" 1010456 1010466 1010906 1010975) (-631 "LIECAT.spad" 1009960 1009972 1010412 1010417) (-630 "LIB.spad" 1008008 1008016 1008619 1008634) (-629 "LGROBP.spad" 1005361 1005380 1007998 1008003) (-628 "LF.spad" 1004280 1004296 1005351 1005356) (-627 "LFCAT.spad" 1003299 1003307 1004270 1004275) (-626 "LEXTRIPK.spad" 998802 998817 1003289 1003294) (-625 "LEXP.spad" 996805 996832 998782 998797) (-624 "LETAST.spad" 996504 996512 996795 996800) (-623 "LEADCDET.spad" 994888 994905 996494 996499) (-622 "LAZM3PK.spad" 993592 993614 994878 994883) (-621 "LAUPOL.spad" 992281 992294 993185 993254) (-620 "LAPLACE.spad" 991854 991870 992271 992276) (-619 "LA.spad" 991294 991308 991776 991815) (-618 "LALG.spad" 991070 991080 991274 991289) (-617 "LALG.spad" 990854 990866 991060 991065) (-616 "KVTFROM.spad" 990589 990599 990844 990849) (-615 "KTVLOGIC.spad" 990012 990020 990579 990584) (-614 "KRCFROM.spad" 989750 989760 990002 990007) (-613 "KOVACIC.spad" 988463 988480 989740 989745) (-612 "KONVERT.spad" 988185 988195 988453 988458) (-611 "KOERCE.spad" 987922 987932 988175 988180) (-610 "KERNEL.spad" 986457 986467 987706 987711) (-609 "KERNEL2.spad" 986160 986172 986447 986452) (-608 "KDAGG.spad" 985263 985285 986140 986155) (-607 "KDAGG.spad" 984374 984398 985253 985258) (-606 "KAFILE.spad" 983337 983353 983572 983599) (-605 "JORDAN.spad" 981164 981176 982627 982772) (-604 "JOINAST.spad" 980858 980866 981154 981159) (-603 "JAVACODE.spad" 980724 980732 980848 980853) (-602 "IXAGG.spad" 978847 978871 980714 980719) (-601 "IXAGG.spad" 976825 976851 978694 978699) (-600 "IVECTOR.spad" 975596 975611 975751 975778) (-599 "ITUPLE.spad" 974741 974751 975586 975591) (-598 "ITRIGMNP.spad" 973552 973571 974731 974736) (-597 "ITFUN3.spad" 973046 973060 973542 973547) (-596 "ITFUN2.spad" 972776 972788 973036 973041) (-595 "ITAYLOR.spad" 970568 970583 972612 972737) (-594 "ISUPS.spad" 962979 962994 969542 969639) (-593 "ISUMP.spad" 962476 962492 962969 962974) (-592 "ISTRING.spad" 961479 961492 961645 961672) (-591 "ISAST.spad" 961198 961206 961469 961474) (-590 "IRURPK.spad" 959911 959930 961188 961193) (-589 "IRSN.spad" 957871 957879 959901 959906) (-588 "IRRF2F.spad" 956346 956356 957827 957832) (-587 "IRREDFFX.spad" 955947 955958 956336 956341) (-586 "IROOT.spad" 954278 954288 955937 955942) (-585 "IR.spad" 952067 952081 954133 954160) (-584 "IR2.spad" 951087 951103 952057 952062) (-583 "IR2F.spad" 950287 950303 951077 951082) (-582 "IPRNTPK.spad" 950047 950055 950277 950282) (-581 "IPF.spad" 949612 949624 949852 949945) (-580 "IPADIC.spad" 949373 949399 949538 949607) (-579 "IP4ADDR.spad" 948930 948938 949363 949368) (-578 "IOMODE.spad" 948551 948559 948920 948925) (-577 "IOBFILE.spad" 947912 947920 948541 948546) (-576 "IOBCON.spad" 947777 947785 947902 947907) (-575 "INVLAPLA.spad" 947422 947438 947767 947772) (-574 "INTTR.spad" 940668 940685 947412 947417) (-573 "INTTOOLS.spad" 938379 938395 940242 940247) (-572 "INTSLPE.spad" 937685 937693 938369 938374) (-571 "INTRVL.spad" 937251 937261 937599 937680) (-570 "INTRF.spad" 935615 935629 937241 937246) (-569 "INTRET.spad" 935047 935057 935605 935610) (-568 "INTRAT.spad" 933722 933739 935037 935042) (-567 "INTPM.spad" 932085 932101 933365 933370) (-566 "INTPAF.spad" 929853 929871 932017 932022) (-565 "INTPACK.spad" 920163 920171 929843 929848) (-564 "INT.spad" 919524 919532 920017 920158) (-563 "INTHERTR.spad" 918790 918807 919514 919519) (-562 "INTHERAL.spad" 918456 918480 918780 918785) (-561 "INTHEORY.spad" 914869 914877 918446 918451) (-560 "INTG0.spad" 908332 908350 914801 914806) (-559 "INTFTBL.spad" 902361 902369 908322 908327) (-558 "INTFACT.spad" 901420 901430 902351 902356) (-557 "INTEF.spad" 899735 899751 901410 901415) (-556 "INTDOM.spad" 898350 898358 899661 899730) (-555 "INTDOM.spad" 897027 897037 898340 898345) (-554 "INTCAT.spad" 895280 895290 896941 897022) (-553 "INTBIT.spad" 894783 894791 895270 895275) (-552 "INTALG.spad" 893965 893992 894773 894778) (-551 "INTAF.spad" 893457 893473 893955 893960) (-550 "INTABL.spad" 891975 892006 892138 892165) (-549 "INT8.spad" 891855 891863 891965 891970) (-548 "INT64.spad" 891734 891742 891845 891850) (-547 "INT32.spad" 891613 891621 891724 891729) (-546 "INT16.spad" 891492 891500 891603 891608) (-545 "INS.spad" 888959 888967 891394 891487) (-544 "INS.spad" 886512 886522 888949 888954) (-543 "INPSIGN.spad" 885946 885959 886502 886507) (-542 "INPRODPF.spad" 885012 885031 885936 885941) (-541 "INPRODFF.spad" 884070 884094 885002 885007) (-540 "INNMFACT.spad" 883041 883058 884060 884065) (-539 "INMODGCD.spad" 882525 882555 883031 883036) (-538 "INFSP.spad" 880810 880832 882515 882520) (-537 "INFPROD0.spad" 879860 879879 880800 880805) (-536 "INFORM.spad" 877021 877029 879850 879855) (-535 "INFORM1.spad" 876646 876656 877011 877016) (-534 "INFINITY.spad" 876198 876206 876636 876641) (-533 "INETCLTS.spad" 876175 876183 876188 876193) (-532 "INEP.spad" 874707 874729 876165 876170) (-531 "INDE.spad" 874436 874453 874697 874702) (-530 "INCRMAPS.spad" 873857 873867 874426 874431) (-529 "INBFILE.spad" 872929 872937 873847 873852) (-528 "INBFF.spad" 868699 868710 872919 872924) (-527 "INBCON.spad" 866987 866995 868689 868694) (-526 "INBCON.spad" 865273 865283 866977 866982) (-525 "INAST.spad" 864934 864942 865263 865268) (-524 "IMPTAST.spad" 864642 864650 864924 864929) (-523 "IMATRIX.spad" 863587 863613 864099 864126) (-522 "IMATQF.spad" 862681 862725 863543 863548) (-521 "IMATLIN.spad" 861286 861310 862637 862642) (-520 "ILIST.spad" 859942 859957 860469 860496) (-519 "IIARRAY2.spad" 859330 859368 859549 859576) (-518 "IFF.spad" 858740 858756 859011 859104) (-517 "IFAST.spad" 858354 858362 858730 858735) (-516 "IFARRAY.spad" 855841 855856 857537 857564) (-515 "IFAMON.spad" 855703 855720 855797 855802) (-514 "IEVALAB.spad" 855092 855104 855693 855698) (-513 "IEVALAB.spad" 854479 854493 855082 855087) (-512 "IDPO.spad" 854277 854289 854469 854474) (-511 "IDPOAMS.spad" 854033 854045 854267 854272) (-510 "IDPOAM.spad" 853753 853765 854023 854028) (-509 "IDPC.spad" 852687 852699 853743 853748) (-508 "IDPAM.spad" 852432 852444 852677 852682) (-507 "IDPAG.spad" 852179 852191 852422 852427) (-506 "IDENT.spad" 851829 851837 852169 852174) (-505 "IDECOMP.spad" 849066 849084 851819 851824) (-504 "IDEAL.spad" 843989 844028 849001 849006) (-503 "ICDEN.spad" 843140 843156 843979 843984) (-502 "ICARD.spad" 842329 842337 843130 843135) (-501 "IBPTOOLS.spad" 840922 840939 842319 842324) (-500 "IBITS.spad" 840121 840134 840558 840585) (-499 "IBATOOL.spad" 836996 837015 840111 840116) (-498 "IBACHIN.spad" 835483 835498 836986 836991) (-497 "IARRAY2.spad" 834471 834497 835090 835117) (-496 "IARRAY1.spad" 833516 833531 833654 833681) (-495 "IAN.spad" 831729 831737 833332 833425) (-494 "IALGFACT.spad" 831330 831363 831719 831724) (-493 "HYPCAT.spad" 830754 830762 831320 831325) (-492 "HYPCAT.spad" 830176 830186 830744 830749) (-491 "HOSTNAME.spad" 829984 829992 830166 830171) (-490 "HOMOTOP.spad" 829727 829737 829974 829979) (-489 "HOAGG.spad" 826995 827005 829717 829722) (-488 "HOAGG.spad" 824038 824050 826762 826767) (-487 "HEXADEC.spad" 822140 822148 822505 822598) (-486 "HEUGCD.spad" 821155 821166 822130 822135) (-485 "HELLFDIV.spad" 820745 820769 821145 821150) (-484 "HEAP.spad" 820137 820147 820352 820379) (-483 "HEADAST.spad" 819668 819676 820127 820132) (-482 "HDP.spad" 809511 809527 809888 810019) (-481 "HDMP.spad" 806687 806702 807305 807432) (-480 "HB.spad" 804924 804932 806677 806682) (-479 "HASHTBL.spad" 803394 803425 803605 803632) (-478 "HASAST.spad" 803110 803118 803384 803389) (-477 "HACKPI.spad" 802593 802601 803012 803105) (-476 "GTSET.spad" 801532 801548 802239 802266) (-475 "GSTBL.spad" 800051 800086 800225 800240) (-474 "GSERIES.spad" 797218 797245 798183 798332) (-473 "GROUP.spad" 796487 796495 797198 797213) (-472 "GROUP.spad" 795764 795774 796477 796482) (-471 "GROEBSOL.spad" 794252 794273 795754 795759) (-470 "GRMOD.spad" 792823 792835 794242 794247) (-469 "GRMOD.spad" 791392 791406 792813 792818) (-468 "GRIMAGE.spad" 783997 784005 791382 791387) (-467 "GRDEF.spad" 782376 782384 783987 783992) (-466 "GRAY.spad" 780835 780843 782366 782371) (-465 "GRALG.spad" 779882 779894 780825 780830) (-464 "GRALG.spad" 778927 778941 779872 779877) (-463 "GPOLSET.spad" 778381 778404 778609 778636) (-462 "GOSPER.spad" 777646 777664 778371 778376) (-461 "GMODPOL.spad" 776784 776811 777614 777641) (-460 "GHENSEL.spad" 775853 775867 776774 776779) (-459 "GENUPS.spad" 771954 771967 775843 775848) (-458 "GENUFACT.spad" 771531 771541 771944 771949) (-457 "GENPGCD.spad" 771115 771132 771521 771526) (-456 "GENMFACT.spad" 770567 770586 771105 771110) (-455 "GENEEZ.spad" 768506 768519 770557 770562) (-454 "GDMP.spad" 765524 765541 766300 766427) (-453 "GCNAALG.spad" 759419 759446 765318 765385) (-452 "GCDDOM.spad" 758591 758599 759345 759414) (-451 "GCDDOM.spad" 757825 757835 758581 758586) (-450 "GB.spad" 755343 755381 757781 757786) (-449 "GBINTERN.spad" 751363 751401 755333 755338) (-448 "GBF.spad" 747120 747158 751353 751358) (-447 "GBEUCLID.spad" 744994 745032 747110 747115) (-446 "GAUSSFAC.spad" 744291 744299 744984 744989) (-445 "GALUTIL.spad" 742613 742623 744247 744252) (-444 "GALPOLYU.spad" 741059 741072 742603 742608) (-443 "GALFACTU.spad" 739224 739243 741049 741054) (-442 "GALFACT.spad" 729357 729368 739214 739219) (-441 "FVFUN.spad" 726380 726388 729347 729352) (-440 "FVC.spad" 725432 725440 726370 726375) (-439 "FUNDESC.spad" 725110 725118 725422 725427) (-438 "FUNCTION.spad" 724959 724971 725100 725105) (-437 "FT.spad" 723252 723260 724949 724954) (-436 "FTEM.spad" 722415 722423 723242 723247) (-435 "FSUPFACT.spad" 721315 721334 722351 722356) (-434 "FST.spad" 719401 719409 721305 721310) (-433 "FSRED.spad" 718879 718895 719391 719396) (-432 "FSPRMELT.spad" 717703 717719 718836 718841) (-431 "FSPECF.spad" 715780 715796 717693 717698) (-430 "FS.spad" 709842 709852 715555 715775) (-429 "FS.spad" 703682 703694 709397 709402) (-428 "FSINT.spad" 703340 703356 703672 703677) (-427 "FSERIES.spad" 702527 702539 703160 703259) (-426 "FSCINT.spad" 701840 701856 702517 702522) (-425 "FSAGG.spad" 700957 700967 701796 701835) (-424 "FSAGG.spad" 700036 700048 700877 700882) (-423 "FSAGG2.spad" 698735 698751 700026 700031) (-422 "FS2UPS.spad" 693218 693252 698725 698730) (-421 "FS2.spad" 692863 692879 693208 693213) (-420 "FS2EXPXP.spad" 691986 692009 692853 692858) (-419 "FRUTIL.spad" 690928 690938 691976 691981) (-418 "FR.spad" 684622 684632 689952 690021) (-417 "FRNAALG.spad" 679709 679719 684564 684617) (-416 "FRNAALG.spad" 674808 674820 679665 679670) (-415 "FRNAAF2.spad" 674262 674280 674798 674803) (-414 "FRMOD.spad" 673656 673686 674193 674198) (-413 "FRIDEAL.spad" 672851 672872 673636 673651) (-412 "FRIDEAL2.spad" 672453 672485 672841 672846) (-411 "FRETRCT.spad" 671964 671974 672443 672448) (-410 "FRETRCT.spad" 671341 671353 671822 671827) (-409 "FRAMALG.spad" 669669 669682 671297 671336) (-408 "FRAMALG.spad" 668029 668044 669659 669664) (-407 "FRAC.spad" 665128 665138 665531 665704) (-406 "FRAC2.spad" 664731 664743 665118 665123) (-405 "FR2.spad" 664065 664077 664721 664726) (-404 "FPS.spad" 660874 660882 663955 664060) (-403 "FPS.spad" 657711 657721 660794 660799) (-402 "FPC.spad" 656753 656761 657613 657706) (-401 "FPC.spad" 655881 655891 656743 656748) (-400 "FPATMAB.spad" 655643 655653 655871 655876) (-399 "FPARFRAC.spad" 654116 654133 655633 655638) (-398 "FORTRAN.spad" 652622 652665 654106 654111) (-397 "FORT.spad" 651551 651559 652612 652617) (-396 "FORTFN.spad" 648721 648729 651541 651546) (-395 "FORTCAT.spad" 648405 648413 648711 648716) (-394 "FORMULA.spad" 645869 645877 648395 648400) (-393 "FORMULA1.spad" 645348 645358 645859 645864) (-392 "FORDER.spad" 645039 645063 645338 645343) (-391 "FOP.spad" 644240 644248 645029 645034) (-390 "FNLA.spad" 643664 643686 644208 644235) (-389 "FNCAT.spad" 642251 642259 643654 643659) (-388 "FNAME.spad" 642143 642151 642241 642246) (-387 "FMTC.spad" 641941 641949 642069 642138) (-386 "FMONOID.spad" 638996 639006 641897 641902) (-385 "FM.spad" 638691 638703 638930 638957) (-384 "FMFUN.spad" 635721 635729 638681 638686) (-383 "FMC.spad" 634773 634781 635711 635716) (-382 "FMCAT.spad" 632427 632445 634741 634768) (-381 "FM1.spad" 631784 631796 632361 632388) (-380 "FLOATRP.spad" 629505 629519 631774 631779) (-379 "FLOAT.spad" 622793 622801 629371 629500) (-378 "FLOATCP.spad" 620210 620224 622783 622788) (-377 "FLINEXP.spad" 619922 619932 620190 620205) (-376 "FLINEXP.spad" 619588 619600 619858 619863) (-375 "FLASORT.spad" 618908 618920 619578 619583) (-374 "FLALG.spad" 616554 616573 618834 618903) (-373 "FLAGG.spad" 613572 613582 616534 616549) (-372 "FLAGG.spad" 610491 610503 613455 613460) (-371 "FLAGG2.spad" 609172 609188 610481 610486) (-370 "FINRALG.spad" 607201 607214 609128 609167) (-369 "FINRALG.spad" 605156 605171 607085 607090) (-368 "FINITE.spad" 604308 604316 605146 605151) (-367 "FINAALG.spad" 593289 593299 604250 604303) (-366 "FINAALG.spad" 582282 582294 593245 593250) (-365 "FILE.spad" 581865 581875 582272 582277) (-364 "FILECAT.spad" 580383 580400 581855 581860) (-363 "FIELD.spad" 579789 579797 580285 580378) (-362 "FIELD.spad" 579281 579291 579779 579784) (-361 "FGROUP.spad" 577890 577900 579261 579276) (-360 "FGLMICPK.spad" 576677 576692 577880 577885) (-359 "FFX.spad" 576052 576067 576393 576486) (-358 "FFSLPE.spad" 575541 575562 576042 576047) (-357 "FFPOLY.spad" 566793 566804 575531 575536) (-356 "FFPOLY2.spad" 565853 565870 566783 566788) (-355 "FFP.spad" 565250 565270 565569 565662) (-354 "FF.spad" 564698 564714 564931 565024) (-353 "FFNBX.spad" 563210 563230 564414 564507) (-352 "FFNBP.spad" 561723 561740 562926 563019) (-351 "FFNB.spad" 560188 560209 561404 561497) (-350 "FFINTBAS.spad" 557602 557621 560178 560183) (-349 "FFIELDC.spad" 555177 555185 557504 557597) (-348 "FFIELDC.spad" 552838 552848 555167 555172) (-347 "FFHOM.spad" 551586 551603 552828 552833) (-346 "FFF.spad" 549021 549032 551576 551581) (-345 "FFCGX.spad" 547868 547888 548737 548830) (-344 "FFCGP.spad" 546757 546777 547584 547677) (-343 "FFCG.spad" 545549 545570 546438 546531) (-342 "FFCAT.spad" 538576 538598 545388 545544) (-341 "FFCAT.spad" 531682 531706 538496 538501) (-340 "FFCAT2.spad" 531427 531467 531672 531677) (-339 "FEXPR.spad" 523136 523182 531183 531222) (-338 "FEVALAB.spad" 522842 522852 523126 523131) (-337 "FEVALAB.spad" 522333 522345 522619 522624) (-336 "FDIV.spad" 521775 521799 522323 522328) (-335 "FDIVCAT.spad" 519817 519841 521765 521770) (-334 "FDIVCAT.spad" 517857 517883 519807 519812) (-333 "FDIV2.spad" 517511 517551 517847 517852) (-332 "FCPAK1.spad" 516064 516072 517501 517506) (-331 "FCOMP.spad" 515443 515453 516054 516059) (-330 "FC.spad" 505358 505366 515433 515438) (-329 "FAXF.spad" 498293 498307 505260 505353) (-328 "FAXF.spad" 491280 491296 498249 498254) (-327 "FARRAY.spad" 489426 489436 490463 490490) (-326 "FAMR.spad" 487546 487558 489324 489421) (-325 "FAMR.spad" 485650 485664 487430 487435) (-324 "FAMONOID.spad" 485300 485310 485604 485609) (-323 "FAMONC.spad" 483522 483534 485290 485295) (-322 "FAGROUP.spad" 483128 483138 483418 483445) (-321 "FACUTIL.spad" 481324 481341 483118 483123) (-320 "FACTFUNC.spad" 480500 480510 481314 481319) (-319 "EXPUPXS.spad" 477333 477356 478632 478781) (-318 "EXPRTUBE.spad" 474561 474569 477323 477328) (-317 "EXPRODE.spad" 471433 471449 474551 474556) (-316 "EXPR.spad" 466708 466718 467422 467829) (-315 "EXPR2UPS.spad" 462800 462813 466698 466703) (-314 "EXPR2.spad" 462503 462515 462790 462795) (-313 "EXPEXPAN.spad" 459441 459466 460075 460168) (-312 "EXIT.spad" 459112 459120 459431 459436) (-311 "EXITAST.spad" 458848 458856 459102 459107) (-310 "EVALCYC.spad" 458306 458320 458838 458843) (-309 "EVALAB.spad" 457870 457880 458296 458301) (-308 "EVALAB.spad" 457432 457444 457860 457865) (-307 "EUCDOM.spad" 454974 454982 457358 457427) (-306 "EUCDOM.spad" 452578 452588 454964 454969) (-305 "ESTOOLS.spad" 444418 444426 452568 452573) (-304 "ESTOOLS2.spad" 444019 444033 444408 444413) (-303 "ESTOOLS1.spad" 443704 443715 444009 444014) (-302 "ES.spad" 436251 436259 443694 443699) (-301 "ES.spad" 428704 428714 436149 436154) (-300 "ESCONT.spad" 425477 425485 428694 428699) (-299 "ESCONT1.spad" 425226 425238 425467 425472) (-298 "ES2.spad" 424721 424737 425216 425221) (-297 "ES1.spad" 424287 424303 424711 424716) (-296 "ERROR.spad" 421608 421616 424277 424282) (-295 "EQTBL.spad" 420080 420102 420289 420316) (-294 "EQ.spad" 414954 414964 417753 417865) (-293 "EQ2.spad" 414670 414682 414944 414949) (-292 "EP.spad" 410984 410994 414660 414665) (-291 "ENV.spad" 409660 409668 410974 410979) (-290 "ENTIRER.spad" 409328 409336 409604 409655) (-289 "EMR.spad" 408529 408570 409254 409323) (-288 "ELTAGG.spad" 406769 406788 408519 408524) (-287 "ELTAGG.spad" 404973 404994 406725 406730) (-286 "ELTAB.spad" 404420 404438 404963 404968) (-285 "ELFUTS.spad" 403799 403818 404410 404415) (-284 "ELEMFUN.spad" 403488 403496 403789 403794) (-283 "ELEMFUN.spad" 403175 403185 403478 403483) (-282 "ELAGG.spad" 401118 401128 403155 403170) (-281 "ELAGG.spad" 398998 399010 401037 401042) (-280 "ELABEXPR.spad" 397921 397929 398988 398993) (-279 "EFUPXS.spad" 394697 394727 397877 397882) (-278 "EFULS.spad" 391533 391556 394653 394658) (-277 "EFSTRUC.spad" 389488 389504 391523 391528) (-276 "EF.spad" 384254 384270 389478 389483) (-275 "EAB.spad" 382530 382538 384244 384249) (-274 "E04UCFA.spad" 382066 382074 382520 382525) (-273 "E04NAFA.spad" 381643 381651 382056 382061) (-272 "E04MBFA.spad" 381223 381231 381633 381638) (-271 "E04JAFA.spad" 380759 380767 381213 381218) (-270 "E04GCFA.spad" 380295 380303 380749 380754) (-269 "E04FDFA.spad" 379831 379839 380285 380290) (-268 "E04DGFA.spad" 379367 379375 379821 379826) (-267 "E04AGNT.spad" 375209 375217 379357 379362) (-266 "DVARCAT.spad" 371894 371904 375199 375204) (-265 "DVARCAT.spad" 368577 368589 371884 371889) (-264 "DSMP.spad" 366008 366022 366313 366440) (-263 "DROPT.spad" 359953 359961 365998 366003) (-262 "DROPT1.spad" 359616 359626 359943 359948) (-261 "DROPT0.spad" 354443 354451 359606 359611) (-260 "DRAWPT.spad" 352598 352606 354433 354438) (-259 "DRAW.spad" 345198 345211 352588 352593) (-258 "DRAWHACK.spad" 344506 344516 345188 345193) (-257 "DRAWCX.spad" 341948 341956 344496 344501) (-256 "DRAWCURV.spad" 341485 341500 341938 341943) (-255 "DRAWCFUN.spad" 330657 330665 341475 341480) (-254 "DQAGG.spad" 328825 328835 330625 330652) (-253 "DPOLCAT.spad" 324166 324182 328693 328820) (-252 "DPOLCAT.spad" 319593 319611 324122 324127) (-251 "DPMO.spad" 311819 311835 311957 312258) (-250 "DPMM.spad" 304058 304076 304183 304484) (-249 "DOMCTOR.spad" 303950 303958 304048 304053) (-248 "DOMAIN.spad" 303081 303089 303940 303945) (-247 "DMP.spad" 300303 300318 300875 301002) (-246 "DLP.spad" 299651 299661 300293 300298) (-245 "DLIST.spad" 298230 298240 298834 298861) (-244 "DLAGG.spad" 296641 296651 298220 298225) (-243 "DIVRING.spad" 296183 296191 296585 296636) (-242 "DIVRING.spad" 295769 295779 296173 296178) (-241 "DISPLAY.spad" 293949 293957 295759 295764) (-240 "DIRPROD.spad" 283529 283545 284169 284300) (-239 "DIRPROD2.spad" 282337 282355 283519 283524) (-238 "DIRPCAT.spad" 281279 281295 282201 282332) (-237 "DIRPCAT.spad" 279950 279968 280874 280879) (-236 "DIOSP.spad" 278775 278783 279940 279945) (-235 "DIOPS.spad" 277759 277769 278755 278770) (-234 "DIOPS.spad" 276717 276729 277715 277720) (-233 "DIFRING.spad" 276009 276017 276697 276712) (-232 "DIFRING.spad" 275309 275319 275999 276004) (-231 "DIFEXT.spad" 274468 274478 275289 275304) (-230 "DIFEXT.spad" 273544 273556 274367 274372) (-229 "DIAGG.spad" 273174 273184 273524 273539) (-228 "DIAGG.spad" 272812 272824 273164 273169) (-227 "DHMATRIX.spad" 271116 271126 272269 272296) (-226 "DFSFUN.spad" 264524 264532 271106 271111) (-225 "DFLOAT.spad" 261245 261253 264414 264519) (-224 "DFINTTLS.spad" 259454 259470 261235 261240) (-223 "DERHAM.spad" 257364 257396 259434 259449) (-222 "DEQUEUE.spad" 256682 256692 256971 256998) (-221 "DEGRED.spad" 256297 256311 256672 256677) (-220 "DEFINTRF.spad" 253822 253832 256287 256292) (-219 "DEFINTEF.spad" 252318 252334 253812 253817) (-218 "DEFAST.spad" 251686 251694 252308 252313) (-217 "DECIMAL.spad" 249792 249800 250153 250246) (-216 "DDFACT.spad" 247591 247608 249782 249787) (-215 "DBLRESP.spad" 247189 247213 247581 247586) (-214 "DBASE.spad" 245843 245853 247179 247184) (-213 "DATAARY.spad" 245305 245318 245833 245838) (-212 "D03FAFA.spad" 245133 245141 245295 245300) (-211 "D03EEFA.spad" 244953 244961 245123 245128) (-210 "D03AGNT.spad" 244033 244041 244943 244948) (-209 "D02EJFA.spad" 243495 243503 244023 244028) (-208 "D02CJFA.spad" 242973 242981 243485 243490) (-207 "D02BHFA.spad" 242463 242471 242963 242968) (-206 "D02BBFA.spad" 241953 241961 242453 242458) (-205 "D02AGNT.spad" 236757 236765 241943 241948) (-204 "D01WGTS.spad" 235076 235084 236747 236752) (-203 "D01TRNS.spad" 235053 235061 235066 235071) (-202 "D01GBFA.spad" 234575 234583 235043 235048) (-201 "D01FCFA.spad" 234097 234105 234565 234570) (-200 "D01ASFA.spad" 233565 233573 234087 234092) (-199 "D01AQFA.spad" 233011 233019 233555 233560) (-198 "D01APFA.spad" 232435 232443 233001 233006) (-197 "D01ANFA.spad" 231929 231937 232425 232430) (-196 "D01AMFA.spad" 231439 231447 231919 231924) (-195 "D01ALFA.spad" 230979 230987 231429 231434) (-194 "D01AKFA.spad" 230505 230513 230969 230974) (-193 "D01AJFA.spad" 230028 230036 230495 230500) (-192 "D01AGNT.spad" 226087 226095 230018 230023) (-191 "CYCLOTOM.spad" 225593 225601 226077 226082) (-190 "CYCLES.spad" 222425 222433 225583 225588) (-189 "CVMP.spad" 221842 221852 222415 222420) (-188 "CTRIGMNP.spad" 220332 220348 221832 221837) (-187 "CTOR.spad" 220023 220031 220322 220327) (-186 "CTORKIND.spad" 219626 219634 220013 220018) (-185 "CTORCAT.spad" 218875 218883 219616 219621) (-184 "CTORCAT.spad" 218122 218132 218865 218870) (-183 "CTORCALL.spad" 217702 217710 218112 218117) (-182 "CSTTOOLS.spad" 216945 216958 217692 217697) (-181 "CRFP.spad" 210649 210662 216935 216940) (-180 "CRCEAST.spad" 210369 210377 210639 210644) (-179 "CRAPACK.spad" 209412 209422 210359 210364) (-178 "CPMATCH.spad" 208912 208927 209337 209342) (-177 "CPIMA.spad" 208617 208636 208902 208907) (-176 "COORDSYS.spad" 203510 203520 208607 208612) (-175 "CONTOUR.spad" 202921 202929 203500 203505) (-174 "CONTFRAC.spad" 198533 198543 202823 202916) (-173 "CONDUIT.spad" 198291 198299 198523 198528) (-172 "COMRING.spad" 197965 197973 198229 198286) (-171 "COMPPROP.spad" 197479 197487 197955 197960) (-170 "COMPLPAT.spad" 197246 197261 197469 197474) (-169 "COMPLEX.spad" 191270 191280 191514 191775) (-168 "COMPLEX2.spad" 190983 190995 191260 191265) (-167 "COMPFACT.spad" 190585 190599 190973 190978) (-166 "COMPCAT.spad" 188653 188663 190319 190580) (-165 "COMPCAT.spad" 186414 186426 188082 188087) (-164 "COMMUPC.spad" 186160 186178 186404 186409) (-163 "COMMONOP.spad" 185693 185701 186150 186155) (-162 "COMM.spad" 185502 185510 185683 185688) (-161 "COMMAAST.spad" 185265 185273 185492 185497) (-160 "COMBOPC.spad" 184170 184178 185255 185260) (-159 "COMBINAT.spad" 182915 182925 184160 184165) (-158 "COMBF.spad" 180283 180299 182905 182910) (-157 "COLOR.spad" 179120 179128 180273 180278) (-156 "COLONAST.spad" 178786 178794 179110 179115) (-155 "CMPLXRT.spad" 178495 178512 178776 178781) (-154 "CLLCTAST.spad" 178157 178165 178485 178490) (-153 "CLIP.spad" 174249 174257 178147 178152) (-152 "CLIF.spad" 172888 172904 174205 174244) (-151 "CLAGG.spad" 169373 169383 172878 172883) (-150 "CLAGG.spad" 165729 165741 169236 169241) (-149 "CINTSLPE.spad" 165054 165067 165719 165724) (-148 "CHVAR.spad" 163132 163154 165044 165049) (-147 "CHARZ.spad" 163047 163055 163112 163127) (-146 "CHARPOL.spad" 162555 162565 163037 163042) (-145 "CHARNZ.spad" 162308 162316 162535 162550) (-144 "CHAR.spad" 160176 160184 162298 162303) (-143 "CFCAT.spad" 159492 159500 160166 160171) (-142 "CDEN.spad" 158650 158664 159482 159487) (-141 "CCLASS.spad" 156799 156807 158061 158100) (-140 "CATEGORY.spad" 155889 155897 156789 156794) (-139 "CATCTOR.spad" 155780 155788 155879 155884) (-138 "CATAST.spad" 155398 155406 155770 155775) (-137 "CASEAST.spad" 155112 155120 155388 155393) (-136 "CARTEN.spad" 150215 150239 155102 155107) (-135 "CARTEN2.spad" 149601 149628 150205 150210) (-134 "CARD.spad" 146890 146898 149575 149596) (-133 "CAPSLAST.spad" 146664 146672 146880 146885) (-132 "CACHSET.spad" 146286 146294 146654 146659) (-131 "CABMON.spad" 145839 145847 146276 146281) (-130 "BYTEORD.spad" 145514 145522 145829 145834) (-129 "BYTE.spad" 144939 144947 145504 145509) (-128 "BYTEBUF.spad" 142796 142804 144108 144135) (-127 "BTREE.spad" 141865 141875 142403 142430) (-126 "BTOURN.spad" 140868 140878 141472 141499) (-125 "BTCAT.spad" 140256 140266 140836 140863) (-124 "BTCAT.spad" 139664 139676 140246 140251) (-123 "BTAGG.spad" 138786 138794 139632 139659) (-122 "BTAGG.spad" 137928 137938 138776 138781) (-121 "BSTREE.spad" 136663 136673 137535 137562) (-120 "BRILL.spad" 134858 134869 136653 136658) (-119 "BRAGG.spad" 133782 133792 134848 134853) (-118 "BRAGG.spad" 132670 132682 133738 133743) (-117 "BPADICRT.spad" 130651 130663 130906 130999) (-116 "BPADIC.spad" 130315 130327 130577 130646) (-115 "BOUNDZRO.spad" 129971 129988 130305 130310) (-114 "BOP.spad" 124996 125004 129961 129966) (-113 "BOP1.spad" 122382 122392 124952 124957) (-112 "BOOLEAN.spad" 121706 121714 122372 122377) (-111 "BMODULE.spad" 121418 121430 121674 121701) (-110 "BITS.spad" 120837 120845 121054 121081) (-109 "BINDING.spad" 120256 120264 120827 120832) (-108 "BINARY.spad" 118367 118375 118723 118816) (-107 "BGAGG.spad" 117564 117574 118347 118362) (-106 "BGAGG.spad" 116769 116781 117554 117559) (-105 "BFUNCT.spad" 116333 116341 116749 116764) (-104 "BEZOUT.spad" 115467 115494 116283 116288) (-103 "BBTREE.spad" 112286 112296 115074 115101) (-102 "BASTYPE.spad" 111958 111966 112276 112281) (-101 "BASTYPE.spad" 111628 111638 111948 111953) (-100 "BALFACT.spad" 111067 111080 111618 111623) (-99 "AUTOMOR.spad" 110514 110523 111047 111062) (-98 "ATTREG.spad" 107233 107240 110266 110509) (-97 "ATTRBUT.spad" 103256 103263 107213 107228) (-96 "ATTRAST.spad" 102973 102980 103246 103251) (-95 "ATRIG.spad" 102443 102450 102963 102968) (-94 "ATRIG.spad" 101911 101920 102433 102438) (-93 "ASTCAT.spad" 101815 101822 101901 101906) (-92 "ASTCAT.spad" 101717 101726 101805 101810) (-91 "ASTACK.spad" 101050 101059 101324 101351) (-90 "ASSOCEQ.spad" 99850 99861 101006 101011) (-89 "ASP9.spad" 98931 98944 99840 99845) (-88 "ASP8.spad" 97974 97987 98921 98926) (-87 "ASP80.spad" 97296 97309 97964 97969) (-86 "ASP7.spad" 96456 96469 97286 97291) (-85 "ASP78.spad" 95907 95920 96446 96451) (-84 "ASP77.spad" 95276 95289 95897 95902) (-83 "ASP74.spad" 94368 94381 95266 95271) (-82 "ASP73.spad" 93639 93652 94358 94363) (-81 "ASP6.spad" 92506 92519 93629 93634) (-80 "ASP55.spad" 91015 91028 92496 92501) (-79 "ASP50.spad" 88832 88845 91005 91010) (-78 "ASP4.spad" 88127 88140 88822 88827) (-77 "ASP49.spad" 87126 87139 88117 88122) (-76 "ASP42.spad" 85533 85572 87116 87121) (-75 "ASP41.spad" 84112 84151 85523 85528) (-74 "ASP35.spad" 83100 83113 84102 84107) (-73 "ASP34.spad" 82401 82414 83090 83095) (-72 "ASP33.spad" 81961 81974 82391 82396) (-71 "ASP31.spad" 81101 81114 81951 81956) (-70 "ASP30.spad" 79993 80006 81091 81096) (-69 "ASP29.spad" 79459 79472 79983 79988) (-68 "ASP28.spad" 70732 70745 79449 79454) (-67 "ASP27.spad" 69629 69642 70722 70727) (-66 "ASP24.spad" 68716 68729 69619 69624) (-65 "ASP20.spad" 68180 68193 68706 68711) (-64 "ASP1.spad" 67561 67574 68170 68175) (-63 "ASP19.spad" 62247 62260 67551 67556) (-62 "ASP12.spad" 61661 61674 62237 62242) (-61 "ASP10.spad" 60932 60945 61651 61656) (-60 "ARRAY2.spad" 60292 60301 60539 60566) (-59 "ARRAY1.spad" 59127 59136 59475 59502) (-58 "ARRAY12.spad" 57796 57807 59117 59122) (-57 "ARR2CAT.spad" 53458 53479 57764 57791) (-56 "ARR2CAT.spad" 49140 49163 53448 53453) (-55 "ARITY.spad" 48512 48519 49130 49135) (-54 "APPRULE.spad" 47756 47778 48502 48507) (-53 "APPLYORE.spad" 47371 47384 47746 47751) (-52 "ANY.spad" 45713 45720 47361 47366) (-51 "ANY1.spad" 44784 44793 45703 45708) (-50 "ANTISYM.spad" 43223 43239 44764 44779) (-49 "ANON.spad" 42916 42923 43213 43218) (-48 "AN.spad" 41217 41224 42732 42825) (-47 "AMR.spad" 39396 39407 41115 41212) (-46 "AMR.spad" 37412 37425 39133 39138) (-45 "ALIST.spad" 34824 34845 35174 35201) (-44 "ALGSC.spad" 33947 33973 34696 34749) (-43 "ALGPKG.spad" 29656 29667 33903 33908) (-42 "ALGMFACT.spad" 28845 28859 29646 29651) (-41 "ALGMANIP.spad" 26265 26280 28642 28647) (-40 "ALGFF.spad" 24580 24607 24797 24953) (-39 "ALGFACT.spad" 23701 23711 24570 24575) (-38 "ALGEBRA.spad" 23534 23543 23657 23696) (-37 "ALGEBRA.spad" 23399 23410 23524 23529) (-36 "ALAGG.spad" 22909 22930 23367 23394) (-35 "AHYP.spad" 22290 22297 22899 22904) (-34 "AGG.spad" 20599 20606 22280 22285) (-33 "AGG.spad" 18872 18881 20555 20560) (-32 "AF.spad" 17297 17312 18807 18812) (-31 "ADDAST.spad" 16975 16982 17287 17292) (-30 "ACPLOT.spad" 15546 15553 16965 16970) (-29 "ACFS.spad" 13297 13306 15448 15541) (-28 "ACFS.spad" 11134 11145 13287 13292) (-27 "ACF.spad" 7736 7743 11036 11129) (-26 "ACF.spad" 4424 4433 7726 7731) (-25 "ABELSG.spad" 3965 3972 4414 4419) (-24 "ABELSG.spad" 3504 3513 3955 3960) (-23 "ABELMON.spad" 3047 3054 3494 3499) (-22 "ABELMON.spad" 2588 2597 3037 3042) (-21 "ABELGRP.spad" 2160 2167 2578 2583) (-20 "ABELGRP.spad" 1730 1739 2150 2155) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file |