diff options
author | dos-reis <gdr@axiomatics.org> | 2009-06-07 16:23:51 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2009-06-07 16:23:51 +0000 |
commit | f8913372cea43183d427cbe3d00c4967a840329b (patch) | |
tree | 0d650b74174ea15413221f1f6448b7870f0ab0c2 /src/share/algebra/browse.daase | |
parent | 03ca123dfb990c5ea8dde05b6f10902e4a4019b9 (diff) | |
download | open-axiom-f8913372cea43183d427cbe3d00c4967a840329b.tar.gz |
* algebra/kl.spad.pamphlet (name$Kernel): Remove.
* algebra/d01weights.spad.pamphlet: Adjust.
* algebra/fs2expxp.spad.pamphlet: Likewise.
* algebra/fs2ups.spad.pamphlet: Likewise.
* algebra/fspace.spad.pamphlet: Likewise.
* algebra/limitps.spad.pamphlet: Likewise.
* algebra/transsolve.spad.pamphlet: Likewise.
Diffstat (limited to 'src/share/algebra/browse.daase')
-rw-r--r-- | src/share/algebra/browse.daase | 48 |
1 files changed, 24 insertions, 24 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index b917abaf..f54c684a 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,5 +1,5 @@ -(2285583 . 3453332749) +(2285499 . 3453377892) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL @@ -88,7 +88,7 @@ NIL ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -2341 UP UPUP -2579) +(-40 -2341 UP UPUP -1726) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) ((-4410 |has| (-409 |#2|) (-365)) (-4415 |has| (-409 |#2|) (-365)) (-4409 |has| (-409 |#2|) (-365)) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) ((|HasCategory| (-409 |#2|) (QUOTE (-145))) (|HasCategory| (-409 |#2|) (QUOTE (-147))) (|HasCategory| (-409 |#2|) (QUOTE (-351))) (-2809 (|HasCategory| (-409 |#2|) (QUOTE (-365))) (|HasCategory| (-409 |#2|) (QUOTE (-351)))) (|HasCategory| (-409 |#2|) (QUOTE (-365))) (|HasCategory| (-409 |#2|) (QUOTE (-370))) (-2809 (-12 (|HasCategory| (-409 |#2|) (QUOTE (-233))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (|HasCategory| (-409 |#2|) (QUOTE (-351)))) (-2809 (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-351))))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -639) (QUOTE (-566)))) (-2809 (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-409 |#2|) (QUOTE (-233))) (|HasCategory| (-409 |#2|) (QUOTE (-365))))) @@ -594,7 +594,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-909))) (|HasCategory| |#2| (QUOTE (-547))) (|HasCategory| |#2| (QUOTE (-1002))) (|HasCategory| |#2| (QUOTE (-1199))) (|HasCategory| |#2| (QUOTE (-1059))) (|HasCategory| |#2| (QUOTE (-1022))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4413)) (|HasAttribute| |#2| (QUOTE -4416)) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-558)))) (-166 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4410 -2809 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4413 |has| |#1| (-6 -4413)) (-4416 |has| |#1| (-6 -4416)) (-3657 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4410 -2809 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4413 |has| |#1| (-6 -4413)) (-4416 |has| |#1| (-6 -4416)) (-3659 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL (-167 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) @@ -606,7 +606,7 @@ NIL NIL (-169 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4410 -2809 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4413 |has| |#1| (-6 -4413)) (-4416 |has| |#1| (-6 -4416)) (-3657 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4410 -2809 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4413 |has| |#1| (-6 -4413)) (-4416 |has| |#1| (-6 -4416)) (-3659 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) ((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-828)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-1022)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-1199)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-909))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-909))))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-1002))) (|HasCategory| |#1| (QUOTE (-1199)))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (QUOTE (-1022))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-1059))) (-12 (|HasCategory| |#1| (QUOTE (-1059))) (|HasCategory| |#1| (QUOTE (-1199)))) (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasAttribute| |#1| (QUOTE -4413)) (|HasAttribute| |#1| (QUOTE -4416)) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175))))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-351))))) (-170 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) @@ -1088,7 +1088,7 @@ NIL ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-290 S R |Mod| -3772 -1330 |exactQuo|) +(-290 S R |Mod| -2754 -2636 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) ((-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL @@ -1211,7 +1211,7 @@ NIL (-320 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) (((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -2479) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2390) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2485) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -2479) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2107) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2484) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|))))))) (-321 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL @@ -1835,7 +1835,7 @@ NIL (-476 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) (((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -2479) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2390) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2485) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -2479) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2107) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2484) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|))))))) (-477 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) ((-4418 . T)) @@ -2377,7 +2377,7 @@ NIL NIL NIL (-612 S) -((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op."))) +((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op."))) NIL ((|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-613 S) @@ -2560,7 +2560,7 @@ NIL ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-658 A -2215) +(-658 A -2370) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) ((-4411 . T) (-4412 . T) (-4414 . T)) ((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-365)))) @@ -2706,7 +2706,7 @@ NIL NIL (-694) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4410 . T) (-4415 |has| (-699) (-365)) (-4409 |has| (-699) (-365)) (-3657 . T) (-4416 |has| (-699) (-6 -4416)) (-4413 |has| (-699) (-6 -4413)) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) +((-4410 . T) (-4415 |has| (-699) (-365)) (-4409 |has| (-699) (-365)) (-3659 . T) (-4416 |has| (-699) (-6 -4416)) (-4413 |has| (-699) (-6 -4413)) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) ((|HasCategory| (-699) (QUOTE (-147))) (|HasCategory| (-699) (QUOTE (-145))) (|HasCategory| (-699) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-699) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| (-699) (QUOTE (-370))) (|HasCategory| (-699) (QUOTE (-365))) (-2809 (|HasCategory| (-699) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-699) (QUOTE (-365)))) (|HasCategory| (-699) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-699) (QUOTE (-233))) (-2809 (|HasCategory| (-699) (QUOTE (-365))) (|HasCategory| (-699) (QUOTE (-351)))) (|HasCategory| (-699) (QUOTE (-351))) (|HasCategory| (-699) (LIST (QUOTE -287) (QUOTE (-699)) (QUOTE (-699)))) (|HasCategory| (-699) (LIST (QUOTE -310) (QUOTE (-699)))) (|HasCategory| (-699) (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE (-699)))) (|HasCategory| (-699) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-699) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-699) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-699) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (-2809 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-365))) (|HasCategory| (-699) (QUOTE (-351)))) (|HasCategory| (-699) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-699) (QUOTE (-1022))) (|HasCategory| (-699) (QUOTE (-1199))) (-12 (|HasCategory| (-699) (QUOTE (-1002))) (|HasCategory| (-699) (QUOTE (-1199)))) (-2809 (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-365))) (-12 (|HasCategory| (-699) (QUOTE (-351))) (|HasCategory| (-699) (QUOTE (-909))))) (-2809 (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (-12 (|HasCategory| (-699) (QUOTE (-365))) (|HasCategory| (-699) (QUOTE (-909)))) (-12 (|HasCategory| (-699) (QUOTE (-351))) (|HasCategory| (-699) (QUOTE (-909))))) (|HasCategory| (-699) (QUOTE (-547))) (-12 (|HasCategory| (-699) (QUOTE (-1059))) (|HasCategory| (-699) (QUOTE (-1199)))) (|HasCategory| (-699) (QUOTE (-1059))) (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909))) (-2809 (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-365)))) (-2809 (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-558)))) (-12 (|HasCategory| (-699) (QUOTE (-233))) (|HasCategory| (-699) (QUOTE (-365)))) (-12 (|HasCategory| (-699) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-699) (QUOTE (-365)))) (|HasCategory| (-699) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-699) (QUOTE (-558))) (|HasAttribute| (-699) (QUOTE -4416)) (|HasAttribute| (-699) (QUOTE -4413)) (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-145)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-351))))) (-695 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) @@ -2772,7 +2772,7 @@ NIL ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-711 R |Mod| -3772 -1330 |exactQuo|) +(-711 R |Mod| -2754 -2636 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) ((-4409 . T) (-4415 . T) (-4410 . T) ((-4419 "*") . T) (-4411 . T) (-4412 . T) (-4414 . T)) NIL @@ -2788,7 +2788,7 @@ NIL ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) ((-4412 |has| |#1| (-172)) (-4411 |has| |#1| (-172)) (-4414 . T)) ((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147)))) -(-715 R |Mod| -3772 -1330 |exactQuo|) +(-715 R |Mod| -2754 -2636 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) ((-4414 . T)) NIL @@ -3344,11 +3344,11 @@ NIL ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL ((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) -(-854 R |sigma| -3454) +(-854 R |sigma| -3453) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) ((-4411 . T) (-4412 . T) (-4414 . T)) ((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-365)))) -(-855 |x| R |sigma| -3454) +(-855 |x| R |sigma| -3453) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) ((-4411 . T) (-4412 . T) (-4414 . T)) ((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-365)))) @@ -4595,7 +4595,7 @@ NIL (-1166 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) (((-4419 "*") -2809 (-2402 (|has| |#1| (-365)) (|has| (-1173 |#1| |#2| |#3|) (-820))) (|has| |#1| (-172)) (-2402 (|has| |#1| (-365)) (|has| (-1173 |#1| |#2| |#3|) (-909)))) (-4410 -2809 (-2402 (|has| |#1| (-365)) (|has| (-1173 |#1| |#2| |#3|) (-820))) (|has| |#1| (-558)) (-2402 (|has| |#1| (-365)) (|has| (-1173 |#1| |#2| |#3|) (-909)))) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4411 . T) (-4412 . T) (-4414 . T)) -((-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|)))))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasCategory| (-566) (QUOTE (-1111))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365))))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2479) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2390) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2485) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145))))) +((-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|)))))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasCategory| (-566) (QUOTE (-1111))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365))))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2479) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2107) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2484) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145))))) (-1167 R -2341) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL @@ -4619,11 +4619,11 @@ NIL (-1172 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) (((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -2479) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2390) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2485) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -2479) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2107) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2484) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|))))))) (-1173 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) (((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|)))) (|HasCategory| (-771) (QUOTE (-1111))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasSignature| |#1| (LIST (QUOTE -2479) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2390) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2485) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|)))) (|HasCategory| (-771) (QUOTE (-1111))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasSignature| |#1| (LIST (QUOTE -2479) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2107) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2484) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|))))))) (-1174) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL @@ -4839,11 +4839,11 @@ NIL (-1227 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) (((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4411 . T) (-4412 . T) (-4414 . T)) -((-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1022)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145))))) (-2809 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-147))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasCategory| (-566) (QUOTE (-1111))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1022)))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850))))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1022)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2479) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2390) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2485) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-909))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-547)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145)))))) +((-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1022)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145))))) (-2809 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-147))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasCategory| (-566) (QUOTE (-1111))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1022)))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850))))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1022)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2479) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2107) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2484) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-909))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-547)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145)))))) (-1228 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) (((-4419 "*") -2809 (-2402 (|has| |#1| (-365)) (|has| (-1256 |#1| |#2| |#3|) (-820))) (|has| |#1| (-172)) (-2402 (|has| |#1| (-365)) (|has| (-1256 |#1| |#2| |#3|) (-909)))) (-4410 -2809 (-2402 (|has| |#1| (-365)) (|has| (-1256 |#1| |#2| |#3|) (-820))) (|has| |#1| (-558)) (-2402 (|has| |#1| (-365)) (|has| (-1256 |#1| |#2| |#3|) (-909)))) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4411 . T) (-4412 . T) (-4414 . T)) -((-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|)))))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasCategory| (-566) (QUOTE (-1111))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365))))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2479) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2390) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2485) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145))))) +((-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|)))))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasCategory| (-566) (QUOTE (-1111))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365))))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2479) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2107) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2484) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145))))) (-1229 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL @@ -4923,11 +4923,11 @@ NIL (-1248 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) (((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -2479) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2390) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2485) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) +((|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -2479) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2107) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2484) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-1249 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) (((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4415 |has| |#1| (-365)) (-4409 |has| |#1| (-365)) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -2479) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2390) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2485) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -2479) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2107) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2484) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|))))))) (-1250 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}."))) (((-4419 "*") |has| (-1249 |#2| |#3| |#4|) (-172)) (-4410 |has| (-1249 |#2| |#3| |#4|) (-558)) (-4411 . T) (-4412 . T) (-4414 . T)) @@ -4947,7 +4947,7 @@ NIL (-1254 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-959))) (|HasCategory| |#2| (QUOTE (-1199))) (|HasSignature| |#2| (LIST (QUOTE -2485) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2390) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1175))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365)))) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-959))) (|HasCategory| |#2| (QUOTE (-1199))) (|HasSignature| |#2| (LIST (QUOTE -2484) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2107) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1175))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365)))) (-1255 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) (((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4411 . T) (-4412 . T) (-4414 . T)) @@ -4955,7 +4955,7 @@ NIL (-1256 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) (((-4419 "*") |has| |#1| (-172)) (-4410 |has| |#1| (-558)) (-4411 . T) (-4412 . T) (-4414 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|)))) (|HasCategory| (-771) (QUOTE (-1111))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasSignature| |#1| (LIST (QUOTE -2479) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2390) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2485) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|)))) (|HasCategory| (-771) (QUOTE (-1111))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasSignature| |#1| (LIST (QUOTE -2479) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2107) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2484) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|))))))) (-1257 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL @@ -5116,4 +5116,4 @@ NIL NIL NIL NIL -((-3 NIL 2285563 2285568 2285573 2285578) (-2 NIL 2285543 2285548 2285553 2285558) (-1 NIL 2285523 2285528 2285533 2285538) (0 NIL 2285503 2285508 2285513 2285518) (-1292 "ZMOD.spad" 2285312 2285325 2285441 2285498) (-1291 "ZLINDEP.spad" 2284356 2284367 2285302 2285307) (-1290 "ZDSOLVE.spad" 2274205 2274227 2284346 2284351) (-1289 "YSTREAM.spad" 2273698 2273709 2274195 2274200) (-1288 "XRPOLY.spad" 2272918 2272938 2273554 2273623) (-1287 "XPR.spad" 2270709 2270722 2272636 2272735) (-1286 "XPOLY.spad" 2270264 2270275 2270565 2270634) (-1285 "XPOLYC.spad" 2269581 2269597 2270190 2270259) (-1284 "XPBWPOLY.spad" 2268018 2268038 2269361 2269430) (-1283 "XF.spad" 2266479 2266494 2267920 2268013) (-1282 "XF.spad" 2264920 2264937 2266363 2266368) (-1281 "XFALG.spad" 2261944 2261960 2264846 2264915) (-1280 "XEXPPKG.spad" 2261195 2261221 2261934 2261939) (-1279 "XDPOLY.spad" 2260809 2260825 2261051 2261120) (-1278 "XALG.spad" 2260469 2260480 2260765 2260804) (-1277 "WUTSET.spad" 2256308 2256325 2260115 2260142) (-1276 "WP.spad" 2255507 2255551 2256166 2256233) (-1275 "WHILEAST.spad" 2255305 2255314 2255497 2255502) (-1274 "WHEREAST.spad" 2254976 2254985 2255295 2255300) (-1273 "WFFINTBS.spad" 2252539 2252561 2254966 2254971) (-1272 "WEIER.spad" 2250753 2250764 2252529 2252534) (-1271 "VSPACE.spad" 2250426 2250437 2250721 2250748) (-1270 "VSPACE.spad" 2250119 2250132 2250416 2250421) (-1269 "VOID.spad" 2249796 2249805 2250109 2250114) (-1268 "VIEW.spad" 2247418 2247427 2249786 2249791) (-1267 "VIEWDEF.spad" 2242615 2242624 2247408 2247413) (-1266 "VIEW3D.spad" 2226450 2226459 2242605 2242610) (-1265 "VIEW2D.spad" 2214187 2214196 2226440 2226445) (-1264 "VECTOR.spad" 2212861 2212872 2213112 2213139) (-1263 "VECTOR2.spad" 2211488 2211501 2212851 2212856) (-1262 "VECTCAT.spad" 2209388 2209399 2211456 2211483) (-1261 "VECTCAT.spad" 2207095 2207108 2209165 2209170) (-1260 "VARIABLE.spad" 2206875 2206890 2207085 2207090) (-1259 "UTYPE.spad" 2206519 2206528 2206865 2206870) (-1258 "UTSODETL.spad" 2205812 2205836 2206475 2206480) (-1257 "UTSODE.spad" 2204000 2204020 2205802 2205807) (-1256 "UTS.spad" 2198789 2198817 2202467 2202564) (-1255 "UTSCAT.spad" 2196240 2196256 2198687 2198784) (-1254 "UTSCAT.spad" 2193335 2193353 2195784 2195789) (-1253 "UTS2.spad" 2192928 2192963 2193325 2193330) (-1252 "URAGG.spad" 2187560 2187571 2192918 2192923) (-1251 "URAGG.spad" 2182156 2182169 2187516 2187521) (-1250 "UPXSSING.spad" 2179799 2179825 2181237 2181370) (-1249 "UPXS.spad" 2176947 2176975 2177931 2178080) (-1248 "UPXSCONS.spad" 2174704 2174724 2175079 2175228) (-1247 "UPXSCCA.spad" 2173269 2173289 2174550 2174699) (-1246 "UPXSCCA.spad" 2171976 2171998 2173259 2173264) (-1245 "UPXSCAT.spad" 2170557 2170573 2171822 2171971) (-1244 "UPXS2.spad" 2170098 2170151 2170547 2170552) (-1243 "UPSQFREE.spad" 2168510 2168524 2170088 2170093) (-1242 "UPSCAT.spad" 2166103 2166127 2168408 2168505) (-1241 "UPSCAT.spad" 2163402 2163428 2165709 2165714) (-1240 "UPOLYC.spad" 2158380 2158391 2163244 2163397) (-1239 "UPOLYC.spad" 2153250 2153263 2158116 2158121) (-1238 "UPOLYC2.spad" 2152719 2152738 2153240 2153245) (-1237 "UP.spad" 2149912 2149927 2150305 2150458) (-1236 "UPMP.spad" 2148802 2148815 2149902 2149907) (-1235 "UPDIVP.spad" 2148365 2148379 2148792 2148797) (-1234 "UPDECOMP.spad" 2146602 2146616 2148355 2148360) (-1233 "UPCDEN.spad" 2145809 2145825 2146592 2146597) (-1232 "UP2.spad" 2145171 2145192 2145799 2145804) (-1231 "UNISEG.spad" 2144524 2144535 2145090 2145095) (-1230 "UNISEG2.spad" 2144017 2144030 2144480 2144485) (-1229 "UNIFACT.spad" 2143118 2143130 2144007 2144012) (-1228 "ULS.spad" 2133670 2133698 2134763 2135192) (-1227 "ULSCONS.spad" 2126064 2126084 2126436 2126585) (-1226 "ULSCCAT.spad" 2123793 2123813 2125910 2126059) (-1225 "ULSCCAT.spad" 2121630 2121652 2123749 2123754) (-1224 "ULSCAT.spad" 2119846 2119862 2121476 2121625) (-1223 "ULS2.spad" 2119358 2119411 2119836 2119841) (-1222 "UINT8.spad" 2119235 2119244 2119348 2119353) (-1221 "UINT64.spad" 2119111 2119120 2119225 2119230) (-1220 "UINT32.spad" 2118987 2118996 2119101 2119106) (-1219 "UINT16.spad" 2118863 2118872 2118977 2118982) (-1218 "UFD.spad" 2117928 2117937 2118789 2118858) (-1217 "UFD.spad" 2117055 2117066 2117918 2117923) (-1216 "UDVO.spad" 2115902 2115911 2117045 2117050) (-1215 "UDPO.spad" 2113329 2113340 2115858 2115863) (-1214 "TYPE.spad" 2113261 2113270 2113319 2113324) (-1213 "TYPEAST.spad" 2113180 2113189 2113251 2113256) (-1212 "TWOFACT.spad" 2111830 2111845 2113170 2113175) (-1211 "TUPLE.spad" 2111314 2111325 2111729 2111734) (-1210 "TUBETOOL.spad" 2108151 2108160 2111304 2111309) (-1209 "TUBE.spad" 2106792 2106809 2108141 2108146) (-1208 "TS.spad" 2105381 2105397 2106357 2106454) (-1207 "TSETCAT.spad" 2092508 2092525 2105349 2105376) (-1206 "TSETCAT.spad" 2079621 2079640 2092464 2092469) (-1205 "TRMANIP.spad" 2073987 2074004 2079327 2079332) (-1204 "TRIMAT.spad" 2072946 2072971 2073977 2073982) (-1203 "TRIGMNIP.spad" 2071463 2071480 2072936 2072941) (-1202 "TRIGCAT.spad" 2070975 2070984 2071453 2071458) (-1201 "TRIGCAT.spad" 2070485 2070496 2070965 2070970) (-1200 "TREE.spad" 2069056 2069067 2070092 2070119) (-1199 "TRANFUN.spad" 2068887 2068896 2069046 2069051) (-1198 "TRANFUN.spad" 2068716 2068727 2068877 2068882) (-1197 "TOPSP.spad" 2068390 2068399 2068706 2068711) (-1196 "TOOLSIGN.spad" 2068053 2068064 2068380 2068385) (-1195 "TEXTFILE.spad" 2066610 2066619 2068043 2068048) (-1194 "TEX.spad" 2063742 2063751 2066600 2066605) (-1193 "TEX1.spad" 2063298 2063309 2063732 2063737) (-1192 "TEMUTL.spad" 2062853 2062862 2063288 2063293) (-1191 "TBCMPPK.spad" 2060946 2060969 2062843 2062848) (-1190 "TBAGG.spad" 2059982 2060005 2060926 2060941) (-1189 "TBAGG.spad" 2059026 2059051 2059972 2059977) (-1188 "TANEXP.spad" 2058402 2058413 2059016 2059021) (-1187 "TABLE.spad" 2056813 2056836 2057083 2057110) (-1186 "TABLEAU.spad" 2056294 2056305 2056803 2056808) (-1185 "TABLBUMP.spad" 2053077 2053088 2056284 2056289) (-1184 "SYSTEM.spad" 2052305 2052314 2053067 2053072) (-1183 "SYSSOLP.spad" 2049778 2049789 2052295 2052300) (-1182 "SYSNNI.spad" 2048958 2048969 2049768 2049773) (-1181 "SYSINT.spad" 2048362 2048373 2048948 2048953) (-1180 "SYNTAX.spad" 2044556 2044565 2048352 2048357) (-1179 "SYMTAB.spad" 2042612 2042621 2044546 2044551) (-1178 "SYMS.spad" 2038597 2038606 2042602 2042607) (-1177 "SYMPOLY.spad" 2037604 2037615 2037686 2037813) (-1176 "SYMFUNC.spad" 2037079 2037090 2037594 2037599) (-1175 "SYMBOL.spad" 2034506 2034515 2037069 2037074) (-1174 "SWITCH.spad" 2031263 2031272 2034496 2034501) (-1173 "SUTS.spad" 2028162 2028190 2029730 2029827) (-1172 "SUPXS.spad" 2025297 2025325 2026294 2026443) (-1171 "SUP.spad" 2022102 2022113 2022883 2023036) (-1170 "SUPFRACF.spad" 2021207 2021225 2022092 2022097) (-1169 "SUP2.spad" 2020597 2020610 2021197 2021202) (-1168 "SUMRF.spad" 2019563 2019574 2020587 2020592) (-1167 "SUMFS.spad" 2019196 2019213 2019553 2019558) (-1166 "SULS.spad" 2009735 2009763 2010841 2011270) (-1165 "SUCHTAST.spad" 2009504 2009513 2009725 2009730) (-1164 "SUCH.spad" 2009184 2009199 2009494 2009499) (-1163 "SUBSPACE.spad" 2001191 2001206 2009174 2009179) (-1162 "SUBRESP.spad" 2000351 2000365 2001147 2001152) (-1161 "STTF.spad" 1996450 1996466 2000341 2000346) (-1160 "STTFNC.spad" 1992918 1992934 1996440 1996445) (-1159 "STTAYLOR.spad" 1985316 1985327 1992799 1992804) (-1158 "STRTBL.spad" 1983821 1983838 1983970 1983997) (-1157 "STRING.spad" 1983230 1983239 1983244 1983271) (-1156 "STRICAT.spad" 1983018 1983027 1983198 1983225) (-1155 "STREAM.spad" 1979876 1979887 1982543 1982558) (-1154 "STREAM3.spad" 1979421 1979436 1979866 1979871) (-1153 "STREAM2.spad" 1978489 1978502 1979411 1979416) (-1152 "STREAM1.spad" 1978193 1978204 1978479 1978484) (-1151 "STINPROD.spad" 1977099 1977115 1978183 1978188) (-1150 "STEP.spad" 1976300 1976309 1977089 1977094) (-1149 "STBL.spad" 1974826 1974854 1974993 1975008) (-1148 "STAGG.spad" 1973901 1973912 1974816 1974821) (-1147 "STAGG.spad" 1972974 1972987 1973891 1973896) (-1146 "STACK.spad" 1972325 1972336 1972581 1972608) (-1145 "SREGSET.spad" 1970029 1970046 1971971 1971998) (-1144 "SRDCMPK.spad" 1968574 1968594 1970019 1970024) (-1143 "SRAGG.spad" 1963671 1963680 1968542 1968569) (-1142 "SRAGG.spad" 1958788 1958799 1963661 1963666) (-1141 "SQMATRIX.spad" 1956404 1956422 1957320 1957407) (-1140 "SPLTREE.spad" 1950956 1950969 1955840 1955867) (-1139 "SPLNODE.spad" 1947544 1947557 1950946 1950951) (-1138 "SPFCAT.spad" 1946321 1946330 1947534 1947539) (-1137 "SPECOUT.spad" 1944871 1944880 1946311 1946316) (-1136 "SPADXPT.spad" 1937010 1937019 1944861 1944866) (-1135 "spad-parser.spad" 1936475 1936484 1937000 1937005) (-1134 "SPADAST.spad" 1936176 1936185 1936465 1936470) (-1133 "SPACEC.spad" 1920189 1920200 1936166 1936171) (-1132 "SPACE3.spad" 1919965 1919976 1920179 1920184) (-1131 "SORTPAK.spad" 1919510 1919523 1919921 1919926) (-1130 "SOLVETRA.spad" 1917267 1917278 1919500 1919505) (-1129 "SOLVESER.spad" 1915787 1915798 1917257 1917262) (-1128 "SOLVERAD.spad" 1911797 1911808 1915777 1915782) (-1127 "SOLVEFOR.spad" 1910217 1910235 1911787 1911792) (-1126 "SNTSCAT.spad" 1909817 1909834 1910185 1910212) (-1125 "SMTS.spad" 1908077 1908103 1909382 1909479) (-1124 "SMP.spad" 1905552 1905572 1905942 1906069) (-1123 "SMITH.spad" 1904395 1904420 1905542 1905547) (-1122 "SMATCAT.spad" 1902505 1902535 1904339 1904390) (-1121 "SMATCAT.spad" 1900547 1900579 1902383 1902388) (-1120 "SKAGG.spad" 1899508 1899519 1900515 1900542) (-1119 "SINT.spad" 1898334 1898343 1899374 1899503) (-1118 "SIMPAN.spad" 1898062 1898071 1898324 1898329) (-1117 "SIG.spad" 1897390 1897399 1898052 1898057) (-1116 "SIGNRF.spad" 1896498 1896509 1897380 1897385) (-1115 "SIGNEF.spad" 1895767 1895784 1896488 1896493) (-1114 "SIGAST.spad" 1895148 1895157 1895757 1895762) (-1113 "SHP.spad" 1893066 1893081 1895104 1895109) (-1112 "SHDP.spad" 1882777 1882804 1883286 1883417) (-1111 "SGROUP.spad" 1882385 1882394 1882767 1882772) (-1110 "SGROUP.spad" 1881991 1882002 1882375 1882380) (-1109 "SGCF.spad" 1874872 1874881 1881981 1881986) (-1108 "SFRTCAT.spad" 1873800 1873817 1874840 1874867) (-1107 "SFRGCD.spad" 1872863 1872883 1873790 1873795) (-1106 "SFQCMPK.spad" 1867500 1867520 1872853 1872858) (-1105 "SFORT.spad" 1866935 1866949 1867490 1867495) (-1104 "SEXOF.spad" 1866778 1866818 1866925 1866930) (-1103 "SEX.spad" 1866670 1866679 1866768 1866773) (-1102 "SEXCAT.spad" 1864221 1864261 1866660 1866665) (-1101 "SET.spad" 1862521 1862532 1863642 1863681) (-1100 "SETMN.spad" 1860955 1860972 1862511 1862516) (-1099 "SETCAT.spad" 1860277 1860286 1860945 1860950) (-1098 "SETCAT.spad" 1859597 1859608 1860267 1860272) (-1097 "SETAGG.spad" 1856118 1856129 1859577 1859592) (-1096 "SETAGG.spad" 1852647 1852660 1856108 1856113) (-1095 "SEQAST.spad" 1852350 1852359 1852637 1852642) (-1094 "SEGXCAT.spad" 1851472 1851485 1852340 1852345) (-1093 "SEG.spad" 1851285 1851296 1851391 1851396) (-1092 "SEGCAT.spad" 1850192 1850203 1851275 1851280) (-1091 "SEGBIND.spad" 1849264 1849275 1850147 1850152) (-1090 "SEGBIND2.spad" 1848960 1848973 1849254 1849259) (-1089 "SEGAST.spad" 1848674 1848683 1848950 1848955) (-1088 "SEG2.spad" 1848099 1848112 1848630 1848635) (-1087 "SDVAR.spad" 1847375 1847386 1848089 1848094) (-1086 "SDPOL.spad" 1844801 1844812 1845092 1845219) (-1085 "SCPKG.spad" 1842880 1842891 1844791 1844796) (-1084 "SCOPE.spad" 1842029 1842038 1842870 1842875) (-1083 "SCACHE.spad" 1840711 1840722 1842019 1842024) (-1082 "SASTCAT.spad" 1840620 1840629 1840701 1840706) (-1081 "SAOS.spad" 1840492 1840501 1840610 1840615) (-1080 "SAERFFC.spad" 1840205 1840225 1840482 1840487) (-1079 "SAE.spad" 1838380 1838396 1838991 1839126) (-1078 "SAEFACT.spad" 1838081 1838101 1838370 1838375) (-1077 "RURPK.spad" 1835722 1835738 1838071 1838076) (-1076 "RULESET.spad" 1835163 1835187 1835712 1835717) (-1075 "RULE.spad" 1833367 1833391 1835153 1835158) (-1074 "RULECOLD.spad" 1833219 1833232 1833357 1833362) (-1073 "RTVALUE.spad" 1832952 1832961 1833209 1833214) (-1072 "RSTRCAST.spad" 1832669 1832678 1832942 1832947) (-1071 "RSETGCD.spad" 1829047 1829067 1832659 1832664) (-1070 "RSETCAT.spad" 1818831 1818848 1829015 1829042) (-1069 "RSETCAT.spad" 1808635 1808654 1818821 1818826) (-1068 "RSDCMPK.spad" 1807087 1807107 1808625 1808630) (-1067 "RRCC.spad" 1805471 1805501 1807077 1807082) (-1066 "RRCC.spad" 1803853 1803885 1805461 1805466) (-1065 "RPTAST.spad" 1803555 1803564 1803843 1803848) (-1064 "RPOLCAT.spad" 1782915 1782930 1803423 1803550) (-1063 "RPOLCAT.spad" 1761989 1762006 1782499 1782504) (-1062 "ROUTINE.spad" 1757852 1757861 1760636 1760663) (-1061 "ROMAN.spad" 1757180 1757189 1757718 1757847) (-1060 "ROIRC.spad" 1756260 1756292 1757170 1757175) (-1059 "RNS.spad" 1755163 1755172 1756162 1756255) (-1058 "RNS.spad" 1754152 1754163 1755153 1755158) (-1057 "RNG.spad" 1753887 1753896 1754142 1754147) (-1056 "RMODULE.spad" 1753652 1753663 1753877 1753882) (-1055 "RMCAT2.spad" 1753060 1753117 1753642 1753647) (-1054 "RMATRIX.spad" 1751884 1751903 1752227 1752266) (-1053 "RMATCAT.spad" 1747417 1747448 1751840 1751879) (-1052 "RMATCAT.spad" 1742840 1742873 1747265 1747270) (-1051 "RLINSET.spad" 1742234 1742245 1742830 1742835) (-1050 "RINTERP.spad" 1742122 1742142 1742224 1742229) (-1049 "RING.spad" 1741592 1741601 1742102 1742117) (-1048 "RING.spad" 1741070 1741081 1741582 1741587) (-1047 "RIDIST.spad" 1740454 1740463 1741060 1741065) (-1046 "RGCHAIN.spad" 1739033 1739049 1739939 1739966) (-1045 "RGBCSPC.spad" 1738814 1738826 1739023 1739028) (-1044 "RGBCMDL.spad" 1738344 1738356 1738804 1738809) (-1043 "RF.spad" 1735958 1735969 1738334 1738339) (-1042 "RFFACTOR.spad" 1735420 1735431 1735948 1735953) (-1041 "RFFACT.spad" 1735155 1735167 1735410 1735415) (-1040 "RFDIST.spad" 1734143 1734152 1735145 1735150) (-1039 "RETSOL.spad" 1733560 1733573 1734133 1734138) (-1038 "RETRACT.spad" 1732988 1732999 1733550 1733555) (-1037 "RETRACT.spad" 1732414 1732427 1732978 1732983) (-1036 "RETAST.spad" 1732226 1732235 1732404 1732409) (-1035 "RESULT.spad" 1730286 1730295 1730873 1730900) (-1034 "RESRING.spad" 1729633 1729680 1730224 1730281) (-1033 "RESLATC.spad" 1728957 1728968 1729623 1729628) (-1032 "REPSQ.spad" 1728686 1728697 1728947 1728952) (-1031 "REP.spad" 1726238 1726247 1728676 1728681) (-1030 "REPDB.spad" 1725943 1725954 1726228 1726233) (-1029 "REP2.spad" 1715515 1715526 1725785 1725790) (-1028 "REP1.spad" 1709505 1709516 1715465 1715470) (-1027 "REGSET.spad" 1707302 1707319 1709151 1709178) (-1026 "REF.spad" 1706631 1706642 1707257 1707262) (-1025 "REDORDER.spad" 1705807 1705824 1706621 1706626) (-1024 "RECLOS.spad" 1704590 1704610 1705294 1705387) (-1023 "REALSOLV.spad" 1703722 1703731 1704580 1704585) (-1022 "REAL.spad" 1703594 1703603 1703712 1703717) (-1021 "REAL0Q.spad" 1700876 1700891 1703584 1703589) (-1020 "REAL0.spad" 1697704 1697719 1700866 1700871) (-1019 "RDUCEAST.spad" 1697425 1697434 1697694 1697699) (-1018 "RDIV.spad" 1697076 1697101 1697415 1697420) (-1017 "RDIST.spad" 1696639 1696650 1697066 1697071) (-1016 "RDETRS.spad" 1695435 1695453 1696629 1696634) (-1015 "RDETR.spad" 1693542 1693560 1695425 1695430) (-1014 "RDEEFS.spad" 1692615 1692632 1693532 1693537) (-1013 "RDEEF.spad" 1691611 1691628 1692605 1692610) (-1012 "RCFIELD.spad" 1688797 1688806 1691513 1691606) (-1011 "RCFIELD.spad" 1686069 1686080 1688787 1688792) (-1010 "RCAGG.spad" 1683981 1683992 1686059 1686064) (-1009 "RCAGG.spad" 1681820 1681833 1683900 1683905) (-1008 "RATRET.spad" 1681180 1681191 1681810 1681815) (-1007 "RATFACT.spad" 1680872 1680884 1681170 1681175) (-1006 "RANDSRC.spad" 1680191 1680200 1680862 1680867) (-1005 "RADUTIL.spad" 1679945 1679954 1680181 1680186) (-1004 "RADIX.spad" 1676846 1676860 1678412 1678505) (-1003 "RADFF.spad" 1675259 1675296 1675378 1675534) (-1002 "RADCAT.spad" 1674852 1674861 1675249 1675254) (-1001 "RADCAT.spad" 1674443 1674454 1674842 1674847) (-1000 "QUEUE.spad" 1673785 1673796 1674050 1674077) (-999 "QUAT.spad" 1672367 1672377 1672709 1672774) (-998 "QUATCT2.spad" 1671986 1672004 1672357 1672362) (-997 "QUATCAT.spad" 1670151 1670161 1671916 1671981) (-996 "QUATCAT.spad" 1668067 1668079 1669834 1669839) (-995 "QUAGG.spad" 1666893 1666903 1668035 1668062) (-994 "QQUTAST.spad" 1666662 1666670 1666883 1666888) (-993 "QFORM.spad" 1666125 1666139 1666652 1666657) (-992 "QFCAT.spad" 1664828 1664838 1666027 1666120) (-991 "QFCAT.spad" 1663122 1663134 1664323 1664328) (-990 "QFCAT2.spad" 1662813 1662829 1663112 1663117) (-989 "QEQUAT.spad" 1662370 1662378 1662803 1662808) (-988 "QCMPACK.spad" 1657117 1657136 1662360 1662365) (-987 "QALGSET.spad" 1653192 1653224 1657031 1657036) (-986 "QALGSET2.spad" 1651188 1651206 1653182 1653187) (-985 "PWFFINTB.spad" 1648498 1648519 1651178 1651183) (-984 "PUSHVAR.spad" 1647827 1647846 1648488 1648493) (-983 "PTRANFN.spad" 1643953 1643963 1647817 1647822) (-982 "PTPACK.spad" 1641041 1641051 1643943 1643948) (-981 "PTFUNC2.spad" 1640862 1640876 1641031 1641036) (-980 "PTCAT.spad" 1640111 1640121 1640830 1640857) (-979 "PSQFR.spad" 1639418 1639442 1640101 1640106) (-978 "PSEUDLIN.spad" 1638276 1638286 1639408 1639413) (-977 "PSETPK.spad" 1623709 1623725 1638154 1638159) (-976 "PSETCAT.spad" 1617629 1617652 1623689 1623704) (-975 "PSETCAT.spad" 1611523 1611548 1617585 1617590) (-974 "PSCURVE.spad" 1610506 1610514 1611513 1611518) (-973 "PSCAT.spad" 1609273 1609302 1610404 1610501) (-972 "PSCAT.spad" 1608130 1608161 1609263 1609268) (-971 "PRTITION.spad" 1607075 1607083 1608120 1608125) (-970 "PRTDAST.spad" 1606794 1606802 1607065 1607070) (-969 "PRS.spad" 1596356 1596373 1606750 1606755) (-968 "PRQAGG.spad" 1595787 1595797 1596324 1596351) (-967 "PROPLOG.spad" 1595082 1595090 1595777 1595782) (-966 "PROPFRML.spad" 1593890 1593901 1595072 1595077) (-965 "PROPERTY.spad" 1593376 1593384 1593880 1593885) (-964 "PRODUCT.spad" 1591056 1591068 1591342 1591397) (-963 "PR.spad" 1589442 1589454 1590147 1590274) (-962 "PRINT.spad" 1589194 1589202 1589432 1589437) (-961 "PRIMES.spad" 1587445 1587455 1589184 1589189) (-960 "PRIMELT.spad" 1585426 1585440 1587435 1587440) (-959 "PRIMCAT.spad" 1585049 1585057 1585416 1585421) (-958 "PRIMARR.spad" 1584054 1584064 1584232 1584259) (-957 "PRIMARR2.spad" 1582777 1582789 1584044 1584049) (-956 "PREASSOC.spad" 1582149 1582161 1582767 1582772) (-955 "PPCURVE.spad" 1581286 1581294 1582139 1582144) (-954 "PORTNUM.spad" 1581061 1581069 1581276 1581281) (-953 "POLYROOT.spad" 1579890 1579912 1581017 1581022) (-952 "POLY.spad" 1577223 1577233 1577740 1577867) (-951 "POLYLIFT.spad" 1576484 1576507 1577213 1577218) (-950 "POLYCATQ.spad" 1574586 1574608 1576474 1576479) (-949 "POLYCAT.spad" 1567992 1568013 1574454 1574581) (-948 "POLYCAT.spad" 1560736 1560759 1567200 1567205) (-947 "POLY2UP.spad" 1560184 1560198 1560726 1560731) (-946 "POLY2.spad" 1559779 1559791 1560174 1560179) (-945 "POLUTIL.spad" 1558720 1558749 1559735 1559740) (-944 "POLTOPOL.spad" 1557468 1557483 1558710 1558715) (-943 "POINT.spad" 1556306 1556316 1556393 1556420) (-942 "PNTHEORY.spad" 1552972 1552980 1556296 1556301) (-941 "PMTOOLS.spad" 1551729 1551743 1552962 1552967) (-940 "PMSYM.spad" 1551274 1551284 1551719 1551724) (-939 "PMQFCAT.spad" 1550861 1550875 1551264 1551269) (-938 "PMPRED.spad" 1550330 1550344 1550851 1550856) (-937 "PMPREDFS.spad" 1549774 1549796 1550320 1550325) (-936 "PMPLCAT.spad" 1548844 1548862 1549706 1549711) (-935 "PMLSAGG.spad" 1548425 1548439 1548834 1548839) (-934 "PMKERNEL.spad" 1547992 1548004 1548415 1548420) (-933 "PMINS.spad" 1547568 1547578 1547982 1547987) (-932 "PMFS.spad" 1547141 1547159 1547558 1547563) (-931 "PMDOWN.spad" 1546427 1546441 1547131 1547136) (-930 "PMASS.spad" 1545435 1545443 1546417 1546422) (-929 "PMASSFS.spad" 1544400 1544416 1545425 1545430) (-928 "PLOTTOOL.spad" 1544180 1544188 1544390 1544395) (-927 "PLOT.spad" 1539011 1539019 1544170 1544175) (-926 "PLOT3D.spad" 1535431 1535439 1539001 1539006) (-925 "PLOT1.spad" 1534572 1534582 1535421 1535426) (-924 "PLEQN.spad" 1521788 1521815 1534562 1534567) (-923 "PINTERP.spad" 1521404 1521423 1521778 1521783) (-922 "PINTERPA.spad" 1521186 1521202 1521394 1521399) (-921 "PI.spad" 1520793 1520801 1521160 1521181) (-920 "PID.spad" 1519749 1519757 1520719 1520788) (-919 "PICOERCE.spad" 1519406 1519416 1519739 1519744) (-918 "PGROEB.spad" 1518003 1518017 1519396 1519401) (-917 "PGE.spad" 1509256 1509264 1517993 1517998) (-916 "PGCD.spad" 1508138 1508155 1509246 1509251) (-915 "PFRPAC.spad" 1507281 1507291 1508128 1508133) (-914 "PFR.spad" 1503938 1503948 1507183 1507276) (-913 "PFOTOOLS.spad" 1503196 1503212 1503928 1503933) (-912 "PFOQ.spad" 1502566 1502584 1503186 1503191) (-911 "PFO.spad" 1501985 1502012 1502556 1502561) (-910 "PF.spad" 1501559 1501571 1501790 1501883) (-909 "PFECAT.spad" 1499225 1499233 1501485 1501554) (-908 "PFECAT.spad" 1496919 1496929 1499181 1499186) (-907 "PFBRU.spad" 1494789 1494801 1496909 1496914) (-906 "PFBR.spad" 1492327 1492350 1494779 1494784) (-905 "PERM.spad" 1488008 1488018 1492157 1492172) (-904 "PERMGRP.spad" 1482744 1482754 1487998 1488003) (-903 "PERMCAT.spad" 1481296 1481306 1482724 1482739) (-902 "PERMAN.spad" 1479828 1479842 1481286 1481291) (-901 "PENDTREE.spad" 1479167 1479177 1479457 1479462) (-900 "PDRING.spad" 1477658 1477668 1479147 1479162) (-899 "PDRING.spad" 1476157 1476169 1477648 1477653) (-898 "PDEPROB.spad" 1475172 1475180 1476147 1476152) (-897 "PDEPACK.spad" 1469174 1469182 1475162 1475167) (-896 "PDECOMP.spad" 1468636 1468653 1469164 1469169) (-895 "PDECAT.spad" 1466990 1466998 1468626 1468631) (-894 "PCOMP.spad" 1466841 1466854 1466980 1466985) (-893 "PBWLB.spad" 1465423 1465440 1466831 1466836) (-892 "PATTERN.spad" 1459854 1459864 1465413 1465418) (-891 "PATTERN2.spad" 1459590 1459602 1459844 1459849) (-890 "PATTERN1.spad" 1457892 1457908 1459580 1459585) (-889 "PATRES.spad" 1455439 1455451 1457882 1457887) (-888 "PATRES2.spad" 1455101 1455115 1455429 1455434) (-887 "PATMATCH.spad" 1453258 1453289 1454809 1454814) (-886 "PATMAB.spad" 1452683 1452693 1453248 1453253) (-885 "PATLRES.spad" 1451767 1451781 1452673 1452678) (-884 "PATAB.spad" 1451531 1451541 1451757 1451762) (-883 "PARTPERM.spad" 1448893 1448901 1451521 1451526) (-882 "PARSURF.spad" 1448321 1448349 1448883 1448888) (-881 "PARSU2.spad" 1448116 1448132 1448311 1448316) (-880 "script-parser.spad" 1447636 1447644 1448106 1448111) (-879 "PARSCURV.spad" 1447064 1447092 1447626 1447631) (-878 "PARSC2.spad" 1446853 1446869 1447054 1447059) (-877 "PARPCURV.spad" 1446311 1446339 1446843 1446848) (-876 "PARPC2.spad" 1446100 1446116 1446301 1446306) (-875 "PAN2EXPR.spad" 1445512 1445520 1446090 1446095) (-874 "PALETTE.spad" 1444482 1444490 1445502 1445507) (-873 "PAIR.spad" 1443465 1443478 1444070 1444075) (-872 "PADICRC.spad" 1440795 1440813 1441970 1442063) (-871 "PADICRAT.spad" 1438810 1438822 1439031 1439124) (-870 "PADIC.spad" 1438505 1438517 1438736 1438805) (-869 "PADICCT.spad" 1437046 1437058 1438431 1438500) (-868 "PADEPAC.spad" 1435725 1435744 1437036 1437041) (-867 "PADE.spad" 1434465 1434481 1435715 1435720) (-866 "OWP.spad" 1433705 1433735 1434323 1434390) (-865 "OVERSET.spad" 1433278 1433286 1433695 1433700) (-864 "OVAR.spad" 1433059 1433082 1433268 1433273) (-863 "OUT.spad" 1432143 1432151 1433049 1433054) (-862 "OUTFORM.spad" 1421439 1421447 1432133 1432138) (-861 "OUTBFILE.spad" 1420857 1420865 1421429 1421434) (-860 "OUTBCON.spad" 1419855 1419863 1420847 1420852) (-859 "OUTBCON.spad" 1418851 1418861 1419845 1419850) (-858 "OSI.spad" 1418326 1418334 1418841 1418846) (-857 "OSGROUP.spad" 1418244 1418252 1418316 1418321) (-856 "ORTHPOL.spad" 1416705 1416715 1418161 1418166) (-855 "OREUP.spad" 1416158 1416186 1416385 1416424) (-854 "ORESUP.spad" 1415457 1415481 1415838 1415877) (-853 "OREPCTO.spad" 1413276 1413288 1415377 1415382) (-852 "OREPCAT.spad" 1407333 1407343 1413232 1413271) (-851 "OREPCAT.spad" 1401280 1401292 1407181 1407186) (-850 "ORDSET.spad" 1400446 1400454 1401270 1401275) (-849 "ORDSET.spad" 1399610 1399620 1400436 1400441) (-848 "ORDRING.spad" 1399000 1399008 1399590 1399605) (-847 "ORDRING.spad" 1398398 1398408 1398990 1398995) (-846 "ORDMON.spad" 1398253 1398261 1398388 1398393) (-845 "ORDFUNS.spad" 1397379 1397395 1398243 1398248) (-844 "ORDFIN.spad" 1397199 1397207 1397369 1397374) (-843 "ORDCOMP.spad" 1395664 1395674 1396746 1396775) (-842 "ORDCOMP2.spad" 1394949 1394961 1395654 1395659) (-841 "OPTPROB.spad" 1393587 1393595 1394939 1394944) (-840 "OPTPACK.spad" 1385972 1385980 1393577 1393582) (-839 "OPTCAT.spad" 1383647 1383655 1385962 1385967) (-838 "OPSIG.spad" 1383299 1383307 1383637 1383642) (-837 "OPQUERY.spad" 1382848 1382856 1383289 1383294) (-836 "OP.spad" 1382590 1382600 1382670 1382737) (-835 "OPERCAT.spad" 1382054 1382064 1382580 1382585) (-834 "OPERCAT.spad" 1381516 1381528 1382044 1382049) (-833 "ONECOMP.spad" 1380261 1380271 1381063 1381092) (-832 "ONECOMP2.spad" 1379679 1379691 1380251 1380256) (-831 "OMSERVER.spad" 1378681 1378689 1379669 1379674) (-830 "OMSAGG.spad" 1378469 1378479 1378637 1378676) (-829 "OMPKG.spad" 1377081 1377089 1378459 1378464) (-828 "OM.spad" 1376046 1376054 1377071 1377076) (-827 "OMLO.spad" 1375471 1375483 1375932 1375971) (-826 "OMEXPR.spad" 1375305 1375315 1375461 1375466) (-825 "OMERR.spad" 1374848 1374856 1375295 1375300) (-824 "OMERRK.spad" 1373882 1373890 1374838 1374843) (-823 "OMENC.spad" 1373226 1373234 1373872 1373877) (-822 "OMDEV.spad" 1367515 1367523 1373216 1373221) (-821 "OMCONN.spad" 1366924 1366932 1367505 1367510) (-820 "OINTDOM.spad" 1366687 1366695 1366850 1366919) (-819 "OFMONOID.spad" 1362874 1362884 1366677 1366682) (-818 "ODVAR.spad" 1362135 1362145 1362864 1362869) (-817 "ODR.spad" 1361779 1361805 1361947 1362096) (-816 "ODPOL.spad" 1359161 1359171 1359501 1359628) (-815 "ODP.spad" 1349008 1349028 1349381 1349512) (-814 "ODETOOLS.spad" 1347591 1347610 1348998 1349003) (-813 "ODESYS.spad" 1345241 1345258 1347581 1347586) (-812 "ODERTRIC.spad" 1341182 1341199 1345198 1345203) (-811 "ODERED.spad" 1340569 1340593 1341172 1341177) (-810 "ODERAT.spad" 1338120 1338137 1340559 1340564) (-809 "ODEPRRIC.spad" 1335011 1335033 1338110 1338115) (-808 "ODEPROB.spad" 1334268 1334276 1335001 1335006) (-807 "ODEPRIM.spad" 1331542 1331564 1334258 1334263) (-806 "ODEPAL.spad" 1330918 1330942 1331532 1331537) (-805 "ODEPACK.spad" 1317520 1317528 1330908 1330913) (-804 "ODEINT.spad" 1316951 1316967 1317510 1317515) (-803 "ODEIFTBL.spad" 1314346 1314354 1316941 1316946) (-802 "ODEEF.spad" 1309713 1309729 1314336 1314341) (-801 "ODECONST.spad" 1309232 1309250 1309703 1309708) (-800 "ODECAT.spad" 1307828 1307836 1309222 1309227) (-799 "OCT.spad" 1305966 1305976 1306682 1306721) (-798 "OCTCT2.spad" 1305610 1305631 1305956 1305961) (-797 "OC.spad" 1303384 1303394 1305566 1305605) (-796 "OC.spad" 1300883 1300895 1303067 1303072) (-795 "OCAMON.spad" 1300731 1300739 1300873 1300878) (-794 "OASGP.spad" 1300546 1300554 1300721 1300726) (-793 "OAMONS.spad" 1300066 1300074 1300536 1300541) (-792 "OAMON.spad" 1299927 1299935 1300056 1300061) (-791 "OAGROUP.spad" 1299789 1299797 1299917 1299922) (-790 "NUMTUBE.spad" 1299376 1299392 1299779 1299784) (-789 "NUMQUAD.spad" 1287238 1287246 1299366 1299371) (-788 "NUMODE.spad" 1278374 1278382 1287228 1287233) (-787 "NUMINT.spad" 1275932 1275940 1278364 1278369) (-786 "NUMFMT.spad" 1274772 1274780 1275922 1275927) (-785 "NUMERIC.spad" 1266844 1266854 1274577 1274582) (-784 "NTSCAT.spad" 1265346 1265362 1266812 1266839) (-783 "NTPOLFN.spad" 1264891 1264901 1265263 1265268) (-782 "NSUP.spad" 1257937 1257947 1262477 1262630) (-781 "NSUP2.spad" 1257329 1257341 1257927 1257932) (-780 "NSMP.spad" 1253560 1253579 1253868 1253995) (-779 "NREP.spad" 1251932 1251946 1253550 1253555) (-778 "NPCOEF.spad" 1251178 1251198 1251922 1251927) (-777 "NORMRETR.spad" 1250776 1250815 1251168 1251173) (-776 "NORMPK.spad" 1248678 1248697 1250766 1250771) (-775 "NORMMA.spad" 1248366 1248392 1248668 1248673) (-774 "NONE.spad" 1248107 1248115 1248356 1248361) (-773 "NONE1.spad" 1247783 1247793 1248097 1248102) (-772 "NODE1.spad" 1247252 1247268 1247773 1247778) (-771 "NNI.spad" 1246139 1246147 1247226 1247247) (-770 "NLINSOL.spad" 1244761 1244771 1246129 1246134) (-769 "NIPROB.spad" 1243302 1243310 1244751 1244756) (-768 "NFINTBAS.spad" 1240762 1240779 1243292 1243297) (-767 "NETCLT.spad" 1240736 1240747 1240752 1240757) (-766 "NCODIV.spad" 1238934 1238950 1240726 1240731) (-765 "NCNTFRAC.spad" 1238576 1238590 1238924 1238929) (-764 "NCEP.spad" 1236736 1236750 1238566 1238571) (-763 "NASRING.spad" 1236332 1236340 1236726 1236731) (-762 "NASRING.spad" 1235926 1235936 1236322 1236327) (-761 "NARNG.spad" 1235270 1235278 1235916 1235921) (-760 "NARNG.spad" 1234612 1234622 1235260 1235265) (-759 "NAGSP.spad" 1233685 1233693 1234602 1234607) (-758 "NAGS.spad" 1223210 1223218 1233675 1233680) (-757 "NAGF07.spad" 1221603 1221611 1223200 1223205) (-756 "NAGF04.spad" 1215835 1215843 1221593 1221598) (-755 "NAGF02.spad" 1209644 1209652 1215825 1215830) (-754 "NAGF01.spad" 1205247 1205255 1209634 1209639) (-753 "NAGE04.spad" 1198707 1198715 1205237 1205242) (-752 "NAGE02.spad" 1189049 1189057 1198697 1198702) (-751 "NAGE01.spad" 1184933 1184941 1189039 1189044) (-750 "NAGD03.spad" 1182853 1182861 1184923 1184928) (-749 "NAGD02.spad" 1175384 1175392 1182843 1182848) (-748 "NAGD01.spad" 1169497 1169505 1175374 1175379) (-747 "NAGC06.spad" 1165284 1165292 1169487 1169492) (-746 "NAGC05.spad" 1163753 1163761 1165274 1165279) (-745 "NAGC02.spad" 1163008 1163016 1163743 1163748) (-744 "NAALG.spad" 1162543 1162553 1162976 1163003) (-743 "NAALG.spad" 1162098 1162110 1162533 1162538) (-742 "MULTSQFR.spad" 1159056 1159073 1162088 1162093) (-741 "MULTFACT.spad" 1158439 1158456 1159046 1159051) (-740 "MTSCAT.spad" 1156473 1156494 1158337 1158434) (-739 "MTHING.spad" 1156130 1156140 1156463 1156468) (-738 "MSYSCMD.spad" 1155564 1155572 1156120 1156125) (-737 "MSET.spad" 1153506 1153516 1155270 1155309) (-736 "MSETAGG.spad" 1153351 1153361 1153474 1153501) (-735 "MRING.spad" 1150322 1150334 1153059 1153126) (-734 "MRF2.spad" 1149890 1149904 1150312 1150317) (-733 "MRATFAC.spad" 1149436 1149453 1149880 1149885) (-732 "MPRFF.spad" 1147466 1147485 1149426 1149431) (-731 "MPOLY.spad" 1144937 1144952 1145296 1145423) (-730 "MPCPF.spad" 1144201 1144220 1144927 1144932) (-729 "MPC3.spad" 1144016 1144056 1144191 1144196) (-728 "MPC2.spad" 1143658 1143691 1144006 1144011) (-727 "MONOTOOL.spad" 1141993 1142010 1143648 1143653) (-726 "MONOID.spad" 1141312 1141320 1141983 1141988) (-725 "MONOID.spad" 1140629 1140639 1141302 1141307) (-724 "MONOGEN.spad" 1139375 1139388 1140489 1140624) (-723 "MONOGEN.spad" 1138143 1138158 1139259 1139264) (-722 "MONADWU.spad" 1136157 1136165 1138133 1138138) (-721 "MONADWU.spad" 1134169 1134179 1136147 1136152) (-720 "MONAD.spad" 1133313 1133321 1134159 1134164) (-719 "MONAD.spad" 1132455 1132465 1133303 1133308) (-718 "MOEBIUS.spad" 1131141 1131155 1132435 1132450) (-717 "MODULE.spad" 1131011 1131021 1131109 1131136) (-716 "MODULE.spad" 1130901 1130913 1131001 1131006) (-715 "MODRING.spad" 1130232 1130271 1130881 1130896) (-714 "MODOP.spad" 1128891 1128903 1130054 1130121) (-713 "MODMONOM.spad" 1128620 1128638 1128881 1128886) (-712 "MODMON.spad" 1125415 1125431 1126134 1126287) (-711 "MODFIELD.spad" 1124773 1124812 1125317 1125410) (-710 "MMLFORM.spad" 1123633 1123641 1124763 1124768) (-709 "MMAP.spad" 1123373 1123407 1123623 1123628) (-708 "MLO.spad" 1121800 1121810 1123329 1123368) (-707 "MLIFT.spad" 1120372 1120389 1121790 1121795) (-706 "MKUCFUNC.spad" 1119905 1119923 1120362 1120367) (-705 "MKRECORD.spad" 1119507 1119520 1119895 1119900) (-704 "MKFUNC.spad" 1118888 1118898 1119497 1119502) (-703 "MKFLCFN.spad" 1117844 1117854 1118878 1118883) (-702 "MKBCFUNC.spad" 1117329 1117347 1117834 1117839) (-701 "MINT.spad" 1116768 1116776 1117231 1117324) (-700 "MHROWRED.spad" 1115269 1115279 1116758 1116763) (-699 "MFLOAT.spad" 1113785 1113793 1115159 1115264) (-698 "MFINFACT.spad" 1113185 1113207 1113775 1113780) (-697 "MESH.spad" 1110917 1110925 1113175 1113180) (-696 "MDDFACT.spad" 1109110 1109120 1110907 1110912) (-695 "MDAGG.spad" 1108397 1108407 1109090 1109105) (-694 "MCMPLX.spad" 1104408 1104416 1105022 1105223) (-693 "MCDEN.spad" 1103616 1103628 1104398 1104403) (-692 "MCALCFN.spad" 1100718 1100744 1103606 1103611) (-691 "MAYBE.spad" 1100002 1100013 1100708 1100713) (-690 "MATSTOR.spad" 1097278 1097288 1099992 1099997) (-689 "MATRIX.spad" 1095982 1095992 1096466 1096493) (-688 "MATLIN.spad" 1093308 1093332 1095866 1095871) (-687 "MATCAT.spad" 1084893 1084915 1093276 1093303) (-686 "MATCAT.spad" 1076350 1076374 1084735 1084740) (-685 "MATCAT2.spad" 1075618 1075666 1076340 1076345) (-684 "MAPPKG3.spad" 1074517 1074531 1075608 1075613) (-683 "MAPPKG2.spad" 1073851 1073863 1074507 1074512) (-682 "MAPPKG1.spad" 1072669 1072679 1073841 1073846) (-681 "MAPPAST.spad" 1071982 1071990 1072659 1072664) (-680 "MAPHACK3.spad" 1071790 1071804 1071972 1071977) (-679 "MAPHACK2.spad" 1071555 1071567 1071780 1071785) (-678 "MAPHACK1.spad" 1071185 1071195 1071545 1071550) (-677 "MAGMA.spad" 1068975 1068992 1071175 1071180) (-676 "MACROAST.spad" 1068554 1068562 1068965 1068970) (-675 "M3D.spad" 1066250 1066260 1067932 1067937) (-674 "LZSTAGG.spad" 1063478 1063488 1066240 1066245) (-673 "LZSTAGG.spad" 1060704 1060716 1063468 1063473) (-672 "LWORD.spad" 1057409 1057426 1060694 1060699) (-671 "LSTAST.spad" 1057193 1057201 1057399 1057404) (-670 "LSQM.spad" 1055419 1055433 1055817 1055868) (-669 "LSPP.spad" 1054952 1054969 1055409 1055414) (-668 "LSMP.spad" 1053792 1053820 1054942 1054947) (-667 "LSMP1.spad" 1051596 1051610 1053782 1053787) (-666 "LSAGG.spad" 1051265 1051275 1051564 1051591) (-665 "LSAGG.spad" 1050954 1050966 1051255 1051260) (-664 "LPOLY.spad" 1049908 1049927 1050810 1050879) (-663 "LPEFRAC.spad" 1049165 1049175 1049898 1049903) (-662 "LO.spad" 1048566 1048580 1049099 1049126) (-661 "LOGIC.spad" 1048168 1048176 1048556 1048561) (-660 "LOGIC.spad" 1047768 1047778 1048158 1048163) (-659 "LODOOPS.spad" 1046686 1046698 1047758 1047763) (-658 "LODO.spad" 1046070 1046086 1046366 1046405) (-657 "LODOF.spad" 1045114 1045131 1046027 1046032) (-656 "LODOCAT.spad" 1043772 1043782 1045070 1045109) (-655 "LODOCAT.spad" 1042428 1042440 1043728 1043733) (-654 "LODO2.spad" 1041701 1041713 1042108 1042147) (-653 "LODO1.spad" 1041101 1041111 1041381 1041420) (-652 "LODEEF.spad" 1039873 1039891 1041091 1041096) (-651 "LNAGG.spad" 1035675 1035685 1039863 1039868) (-650 "LNAGG.spad" 1031441 1031453 1035631 1035636) (-649 "LMOPS.spad" 1028177 1028194 1031431 1031436) (-648 "LMODULE.spad" 1027945 1027955 1028167 1028172) (-647 "LMDICT.spad" 1027228 1027238 1027496 1027523) (-646 "LLINSET.spad" 1026625 1026635 1027218 1027223) (-645 "LITERAL.spad" 1026531 1026542 1026615 1026620) (-644 "LIST.spad" 1024249 1024259 1025678 1025705) (-643 "LIST3.spad" 1023540 1023554 1024239 1024244) (-642 "LIST2.spad" 1022180 1022192 1023530 1023535) (-641 "LIST2MAP.spad" 1019057 1019069 1022170 1022175) (-640 "LINSET.spad" 1018679 1018689 1019047 1019052) (-639 "LINEXP.spad" 1018111 1018121 1018659 1018674) (-638 "LINDEP.spad" 1016888 1016900 1018023 1018028) (-637 "LIMITRF.spad" 1014802 1014812 1016878 1016883) (-636 "LIMITPS.spad" 1013685 1013698 1014792 1014797) (-635 "LIE.spad" 1011699 1011711 1012975 1013120) (-634 "LIECAT.spad" 1011175 1011185 1011625 1011694) (-633 "LIECAT.spad" 1010679 1010691 1011131 1011136) (-632 "LIB.spad" 1008727 1008735 1009338 1009353) (-631 "LGROBP.spad" 1006080 1006099 1008717 1008722) (-630 "LF.spad" 1004999 1005015 1006070 1006075) (-629 "LFCAT.spad" 1004018 1004026 1004989 1004994) (-628 "LEXTRIPK.spad" 999521 999536 1004008 1004013) (-627 "LEXP.spad" 997524 997551 999501 999516) (-626 "LETAST.spad" 997223 997231 997514 997519) (-625 "LEADCDET.spad" 995607 995624 997213 997218) (-624 "LAZM3PK.spad" 994311 994333 995597 995602) (-623 "LAUPOL.spad" 993000 993013 993904 993973) (-622 "LAPLACE.spad" 992573 992589 992990 992995) (-621 "LA.spad" 992013 992027 992495 992534) (-620 "LALG.spad" 991789 991799 991993 992008) (-619 "LALG.spad" 991573 991585 991779 991784) (-618 "KVTFROM.spad" 991308 991318 991563 991568) (-617 "KTVLOGIC.spad" 990820 990828 991298 991303) (-616 "KRCFROM.spad" 990558 990568 990810 990815) (-615 "KOVACIC.spad" 989271 989288 990548 990553) (-614 "KONVERT.spad" 988993 989003 989261 989266) (-613 "KOERCE.spad" 988730 988740 988983 988988) (-612 "KERNEL.spad" 987265 987275 988514 988519) (-611 "KERNEL2.spad" 986968 986980 987255 987260) (-610 "KDAGG.spad" 986071 986093 986948 986963) (-609 "KDAGG.spad" 985182 985206 986061 986066) (-608 "KAFILE.spad" 984145 984161 984380 984407) (-607 "JORDAN.spad" 981972 981984 983435 983580) (-606 "JOINAST.spad" 981666 981674 981962 981967) (-605 "JAVACODE.spad" 981532 981540 981656 981661) (-604 "IXAGG.spad" 979655 979679 981522 981527) (-603 "IXAGG.spad" 977633 977659 979502 979507) (-602 "IVECTOR.spad" 976403 976418 976558 976585) (-601 "ITUPLE.spad" 975548 975558 976393 976398) (-600 "ITRIGMNP.spad" 974359 974378 975538 975543) (-599 "ITFUN3.spad" 973853 973867 974349 974354) (-598 "ITFUN2.spad" 973583 973595 973843 973848) (-597 "ITAYLOR.spad" 971375 971390 973419 973544) (-596 "ISUPS.spad" 963786 963801 970349 970446) (-595 "ISUMP.spad" 963283 963299 963776 963781) (-594 "ISTRING.spad" 962286 962299 962452 962479) (-593 "ISAST.spad" 962005 962013 962276 962281) (-592 "IRURPK.spad" 960718 960737 961995 962000) (-591 "IRSN.spad" 958678 958686 960708 960713) (-590 "IRRF2F.spad" 957153 957163 958634 958639) (-589 "IRREDFFX.spad" 956754 956765 957143 957148) (-588 "IROOT.spad" 955085 955095 956744 956749) (-587 "IR.spad" 952874 952888 954940 954967) (-586 "IR2.spad" 951894 951910 952864 952869) (-585 "IR2F.spad" 951094 951110 951884 951889) (-584 "IPRNTPK.spad" 950854 950862 951084 951089) (-583 "IPF.spad" 950419 950431 950659 950752) (-582 "IPADIC.spad" 950180 950206 950345 950414) (-581 "IP4ADDR.spad" 949737 949745 950170 950175) (-580 "IOMODE.spad" 949358 949366 949727 949732) (-579 "IOBFILE.spad" 948719 948727 949348 949353) (-578 "IOBCON.spad" 948584 948592 948709 948714) (-577 "INVLAPLA.spad" 948229 948245 948574 948579) (-576 "INTTR.spad" 941475 941492 948219 948224) (-575 "INTTOOLS.spad" 939186 939202 941049 941054) (-574 "INTSLPE.spad" 938492 938500 939176 939181) (-573 "INTRVL.spad" 938058 938068 938406 938487) (-572 "INTRF.spad" 936422 936436 938048 938053) (-571 "INTRET.spad" 935854 935864 936412 936417) (-570 "INTRAT.spad" 934529 934546 935844 935849) (-569 "INTPM.spad" 932892 932908 934172 934177) (-568 "INTPAF.spad" 930660 930678 932824 932829) (-567 "INTPACK.spad" 920970 920978 930650 930655) (-566 "INT.spad" 920331 920339 920824 920965) (-565 "INTHERTR.spad" 919597 919614 920321 920326) (-564 "INTHERAL.spad" 919263 919287 919587 919592) (-563 "INTHEORY.spad" 915676 915684 919253 919258) (-562 "INTG0.spad" 909139 909157 915608 915613) (-561 "INTFTBL.spad" 903168 903176 909129 909134) (-560 "INTFACT.spad" 902227 902237 903158 903163) (-559 "INTEF.spad" 900542 900558 902217 902222) (-558 "INTDOM.spad" 899157 899165 900468 900537) (-557 "INTDOM.spad" 897834 897844 899147 899152) (-556 "INTCAT.spad" 896087 896097 897748 897829) (-555 "INTBIT.spad" 895590 895598 896077 896082) (-554 "INTALG.spad" 894772 894799 895580 895585) (-553 "INTAF.spad" 894264 894280 894762 894767) (-552 "INTABL.spad" 892782 892813 892945 892972) (-551 "INT8.spad" 892662 892670 892772 892777) (-550 "INT64.spad" 892541 892549 892652 892657) (-549 "INT32.spad" 892420 892428 892531 892536) (-548 "INT16.spad" 892299 892307 892410 892415) (-547 "INS.spad" 889766 889774 892201 892294) (-546 "INS.spad" 887319 887329 889756 889761) (-545 "INPSIGN.spad" 886753 886766 887309 887314) (-544 "INPRODPF.spad" 885819 885838 886743 886748) (-543 "INPRODFF.spad" 884877 884901 885809 885814) (-542 "INNMFACT.spad" 883848 883865 884867 884872) (-541 "INMODGCD.spad" 883332 883362 883838 883843) (-540 "INFSP.spad" 881617 881639 883322 883327) (-539 "INFPROD0.spad" 880667 880686 881607 881612) (-538 "INFORM.spad" 877828 877836 880657 880662) (-537 "INFORM1.spad" 877453 877463 877818 877823) (-536 "INFINITY.spad" 877005 877013 877443 877448) (-535 "INETCLTS.spad" 876982 876990 876995 877000) (-534 "INEP.spad" 875514 875536 876972 876977) (-533 "INDE.spad" 875243 875260 875504 875509) (-532 "INCRMAPS.spad" 874664 874674 875233 875238) (-531 "INBFILE.spad" 873736 873744 874654 874659) (-530 "INBFF.spad" 869506 869517 873726 873731) (-529 "INBCON.spad" 867794 867802 869496 869501) (-528 "INBCON.spad" 866080 866090 867784 867789) (-527 "INAST.spad" 865741 865749 866070 866075) (-526 "IMPTAST.spad" 865449 865457 865731 865736) (-525 "IMATRIX.spad" 864394 864420 864906 864933) (-524 "IMATQF.spad" 863488 863532 864350 864355) (-523 "IMATLIN.spad" 862093 862117 863444 863449) (-522 "ILIST.spad" 860749 860764 861276 861303) (-521 "IIARRAY2.spad" 860137 860175 860356 860383) (-520 "IFF.spad" 859547 859563 859818 859911) (-519 "IFAST.spad" 859161 859169 859537 859542) (-518 "IFARRAY.spad" 856648 856663 858344 858371) (-517 "IFAMON.spad" 856510 856527 856604 856609) (-516 "IEVALAB.spad" 855899 855911 856500 856505) (-515 "IEVALAB.spad" 855286 855300 855889 855894) (-514 "IDPO.spad" 855084 855096 855276 855281) (-513 "IDPOAMS.spad" 854840 854852 855074 855079) (-512 "IDPOAM.spad" 854560 854572 854830 854835) (-511 "IDPC.spad" 853494 853506 854550 854555) (-510 "IDPAM.spad" 853239 853251 853484 853489) (-509 "IDPAG.spad" 852986 852998 853229 853234) (-508 "IDENT.spad" 852636 852644 852976 852981) (-507 "IDECOMP.spad" 849873 849891 852626 852631) (-506 "IDEAL.spad" 844796 844835 849808 849813) (-505 "ICDEN.spad" 843947 843963 844786 844791) (-504 "ICARD.spad" 843136 843144 843937 843942) (-503 "IBPTOOLS.spad" 841729 841746 843126 843131) (-502 "IBITS.spad" 840928 840941 841365 841392) (-501 "IBATOOL.spad" 837803 837822 840918 840923) (-500 "IBACHIN.spad" 836290 836305 837793 837798) (-499 "IARRAY2.spad" 835278 835304 835897 835924) (-498 "IARRAY1.spad" 834323 834338 834461 834488) (-497 "IAN.spad" 832536 832544 834139 834232) (-496 "IALGFACT.spad" 832137 832170 832526 832531) (-495 "HYPCAT.spad" 831561 831569 832127 832132) (-494 "HYPCAT.spad" 830983 830993 831551 831556) (-493 "HOSTNAME.spad" 830791 830799 830973 830978) (-492 "HOMOTOP.spad" 830534 830544 830781 830786) (-491 "HOAGG.spad" 827802 827812 830524 830529) (-490 "HOAGG.spad" 824845 824857 827569 827574) (-489 "HEXADEC.spad" 822947 822955 823312 823405) (-488 "HEUGCD.spad" 821962 821973 822937 822942) (-487 "HELLFDIV.spad" 821552 821576 821952 821957) (-486 "HEAP.spad" 820944 820954 821159 821186) (-485 "HEADAST.spad" 820475 820483 820934 820939) (-484 "HDP.spad" 810318 810334 810695 810826) (-483 "HDMP.spad" 807530 807545 808148 808275) (-482 "HB.spad" 805767 805775 807520 807525) (-481 "HASHTBL.spad" 804237 804268 804448 804475) (-480 "HASAST.spad" 803953 803961 804227 804232) (-479 "HACKPI.spad" 803436 803444 803855 803948) (-478 "GTSET.spad" 802375 802391 803082 803109) (-477 "GSTBL.spad" 800894 800929 801068 801083) (-476 "GSERIES.spad" 798061 798088 799026 799175) (-475 "GROUP.spad" 797330 797338 798041 798056) (-474 "GROUP.spad" 796607 796617 797320 797325) (-473 "GROEBSOL.spad" 795095 795116 796597 796602) (-472 "GRMOD.spad" 793666 793678 795085 795090) (-471 "GRMOD.spad" 792235 792249 793656 793661) (-470 "GRIMAGE.spad" 784840 784848 792225 792230) (-469 "GRDEF.spad" 783219 783227 784830 784835) (-468 "GRAY.spad" 781678 781686 783209 783214) (-467 "GRALG.spad" 780725 780737 781668 781673) (-466 "GRALG.spad" 779770 779784 780715 780720) (-465 "GPOLSET.spad" 779224 779247 779452 779479) (-464 "GOSPER.spad" 778489 778507 779214 779219) (-463 "GMODPOL.spad" 777627 777654 778457 778484) (-462 "GHENSEL.spad" 776696 776710 777617 777622) (-461 "GENUPS.spad" 772797 772810 776686 776691) (-460 "GENUFACT.spad" 772374 772384 772787 772792) (-459 "GENPGCD.spad" 771958 771975 772364 772369) (-458 "GENMFACT.spad" 771410 771429 771948 771953) (-457 "GENEEZ.spad" 769349 769362 771400 771405) (-456 "GDMP.spad" 766403 766420 767179 767306) (-455 "GCNAALG.spad" 760298 760325 766197 766264) (-454 "GCDDOM.spad" 759470 759478 760224 760293) (-453 "GCDDOM.spad" 758704 758714 759460 759465) (-452 "GB.spad" 756222 756260 758660 758665) (-451 "GBINTERN.spad" 752242 752280 756212 756217) (-450 "GBF.spad" 747999 748037 752232 752237) (-449 "GBEUCLID.spad" 745873 745911 747989 747994) (-448 "GAUSSFAC.spad" 745170 745178 745863 745868) (-447 "GALUTIL.spad" 743492 743502 745126 745131) (-446 "GALPOLYU.spad" 741938 741951 743482 743487) (-445 "GALFACTU.spad" 740103 740122 741928 741933) (-444 "GALFACT.spad" 730236 730247 740093 740098) (-443 "FVFUN.spad" 727259 727267 730226 730231) (-442 "FVC.spad" 726311 726319 727249 727254) (-441 "FUNDESC.spad" 725989 725997 726301 726306) (-440 "FUNCTION.spad" 725838 725850 725979 725984) (-439 "FT.spad" 724131 724139 725828 725833) (-438 "FTEM.spad" 723294 723302 724121 724126) (-437 "FSUPFACT.spad" 722194 722213 723230 723235) (-436 "FST.spad" 720280 720288 722184 722189) (-435 "FSRED.spad" 719758 719774 720270 720275) (-434 "FSPRMELT.spad" 718582 718598 719715 719720) (-433 "FSPECF.spad" 716659 716675 718572 718577) (-432 "FS.spad" 710721 710731 716434 716654) (-431 "FS.spad" 704561 704573 710276 710281) (-430 "FSINT.spad" 704219 704235 704551 704556) (-429 "FSERIES.spad" 703406 703418 704039 704138) (-428 "FSCINT.spad" 702719 702735 703396 703401) (-427 "FSAGG.spad" 701836 701846 702675 702714) (-426 "FSAGG.spad" 700915 700927 701756 701761) (-425 "FSAGG2.spad" 699614 699630 700905 700910) (-424 "FS2UPS.spad" 694097 694131 699604 699609) (-423 "FS2.spad" 693742 693758 694087 694092) (-422 "FS2EXPXP.spad" 692865 692888 693732 693737) (-421 "FRUTIL.spad" 691807 691817 692855 692860) (-420 "FR.spad" 685501 685511 690831 690900) (-419 "FRNAALG.spad" 680588 680598 685443 685496) (-418 "FRNAALG.spad" 675687 675699 680544 680549) (-417 "FRNAAF2.spad" 675141 675159 675677 675682) (-416 "FRMOD.spad" 674535 674565 675072 675077) (-415 "FRIDEAL.spad" 673730 673751 674515 674530) (-414 "FRIDEAL2.spad" 673332 673364 673720 673725) (-413 "FRETRCT.spad" 672843 672853 673322 673327) (-412 "FRETRCT.spad" 672220 672232 672701 672706) (-411 "FRAMALG.spad" 670548 670561 672176 672215) (-410 "FRAMALG.spad" 668908 668923 670538 670543) (-409 "FRAC.spad" 666007 666017 666410 666583) (-408 "FRAC2.spad" 665610 665622 665997 666002) (-407 "FR2.spad" 664944 664956 665600 665605) (-406 "FPS.spad" 661753 661761 664834 664939) (-405 "FPS.spad" 658590 658600 661673 661678) (-404 "FPC.spad" 657632 657640 658492 658585) (-403 "FPC.spad" 656760 656770 657622 657627) (-402 "FPATMAB.spad" 656522 656532 656750 656755) (-401 "FPARFRAC.spad" 654995 655012 656512 656517) (-400 "FORTRAN.spad" 653501 653544 654985 654990) (-399 "FORT.spad" 652430 652438 653491 653496) (-398 "FORTFN.spad" 649600 649608 652420 652425) (-397 "FORTCAT.spad" 649284 649292 649590 649595) (-396 "FORMULA.spad" 646748 646756 649274 649279) (-395 "FORMULA1.spad" 646227 646237 646738 646743) (-394 "FORDER.spad" 645918 645942 646217 646222) (-393 "FOP.spad" 645119 645127 645908 645913) (-392 "FNLA.spad" 644543 644565 645087 645114) (-391 "FNCAT.spad" 643130 643138 644533 644538) (-390 "FNAME.spad" 643022 643030 643120 643125) (-389 "FMTC.spad" 642820 642828 642948 643017) (-388 "FMONOID.spad" 639875 639885 642776 642781) (-387 "FM.spad" 639570 639582 639809 639836) (-386 "FMFUN.spad" 636600 636608 639560 639565) (-385 "FMC.spad" 635652 635660 636590 636595) (-384 "FMCAT.spad" 633306 633324 635620 635647) (-383 "FM1.spad" 632663 632675 633240 633267) (-382 "FLOATRP.spad" 630384 630398 632653 632658) (-381 "FLOAT.spad" 623672 623680 630250 630379) (-380 "FLOATCP.spad" 621089 621103 623662 623667) (-379 "FLINEXP.spad" 620801 620811 621069 621084) (-378 "FLINEXP.spad" 620467 620479 620737 620742) (-377 "FLASORT.spad" 619787 619799 620457 620462) (-376 "FLALG.spad" 617433 617452 619713 619782) (-375 "FLAGG.spad" 614451 614461 617413 617428) (-374 "FLAGG.spad" 611370 611382 614334 614339) (-373 "FLAGG2.spad" 610051 610067 611360 611365) (-372 "FINRALG.spad" 608080 608093 610007 610046) (-371 "FINRALG.spad" 606035 606050 607964 607969) (-370 "FINITE.spad" 605187 605195 606025 606030) (-369 "FINAALG.spad" 594168 594178 605129 605182) (-368 "FINAALG.spad" 583161 583173 594124 594129) (-367 "FILE.spad" 582744 582754 583151 583156) (-366 "FILECAT.spad" 581262 581279 582734 582739) (-365 "FIELD.spad" 580668 580676 581164 581257) (-364 "FIELD.spad" 580160 580170 580658 580663) (-363 "FGROUP.spad" 578769 578779 580140 580155) (-362 "FGLMICPK.spad" 577556 577571 578759 578764) (-361 "FFX.spad" 576931 576946 577272 577365) (-360 "FFSLPE.spad" 576420 576441 576921 576926) (-359 "FFPOLY.spad" 567672 567683 576410 576415) (-358 "FFPOLY2.spad" 566732 566749 567662 567667) (-357 "FFP.spad" 566129 566149 566448 566541) (-356 "FF.spad" 565577 565593 565810 565903) (-355 "FFNBX.spad" 564089 564109 565293 565386) (-354 "FFNBP.spad" 562602 562619 563805 563898) (-353 "FFNB.spad" 561067 561088 562283 562376) (-352 "FFINTBAS.spad" 558481 558500 561057 561062) (-351 "FFIELDC.spad" 556056 556064 558383 558476) (-350 "FFIELDC.spad" 553717 553727 556046 556051) (-349 "FFHOM.spad" 552465 552482 553707 553712) (-348 "FFF.spad" 549900 549911 552455 552460) (-347 "FFCGX.spad" 548747 548767 549616 549709) (-346 "FFCGP.spad" 547636 547656 548463 548556) (-345 "FFCG.spad" 546428 546449 547317 547410) (-344 "FFCAT.spad" 539455 539477 546267 546423) (-343 "FFCAT.spad" 532561 532585 539375 539380) (-342 "FFCAT2.spad" 532306 532346 532551 532556) (-341 "FEXPR.spad" 524015 524061 532062 532101) (-340 "FEVALAB.spad" 523721 523731 524005 524010) (-339 "FEVALAB.spad" 523212 523224 523498 523503) (-338 "FDIV.spad" 522654 522678 523202 523207) (-337 "FDIVCAT.spad" 520696 520720 522644 522649) (-336 "FDIVCAT.spad" 518736 518762 520686 520691) (-335 "FDIV2.spad" 518390 518430 518726 518731) (-334 "FCTRDATA.spad" 517422 517430 518380 518385) (-333 "FCPAK1.spad" 515975 515983 517412 517417) (-332 "FCOMP.spad" 515354 515364 515965 515970) (-331 "FC.spad" 505269 505277 515344 515349) (-330 "FAXF.spad" 498204 498218 505171 505264) (-329 "FAXF.spad" 491191 491207 498160 498165) (-328 "FARRAY.spad" 489337 489347 490374 490401) (-327 "FAMR.spad" 487457 487469 489235 489332) (-326 "FAMR.spad" 485561 485575 487341 487346) (-325 "FAMONOID.spad" 485211 485221 485515 485520) (-324 "FAMONC.spad" 483433 483445 485201 485206) (-323 "FAGROUP.spad" 483039 483049 483329 483356) (-322 "FACUTIL.spad" 481235 481252 483029 483034) (-321 "FACTFUNC.spad" 480411 480421 481225 481230) (-320 "EXPUPXS.spad" 477244 477267 478543 478692) (-319 "EXPRTUBE.spad" 474472 474480 477234 477239) (-318 "EXPRODE.spad" 471344 471360 474462 474467) (-317 "EXPR.spad" 466619 466629 467333 467740) (-316 "EXPR2UPS.spad" 462711 462724 466609 466614) (-315 "EXPR2.spad" 462414 462426 462701 462706) (-314 "EXPEXPAN.spad" 459352 459377 459986 460079) (-313 "EXIT.spad" 459023 459031 459342 459347) (-312 "EXITAST.spad" 458759 458767 459013 459018) (-311 "EVALCYC.spad" 458217 458231 458749 458754) (-310 "EVALAB.spad" 457781 457791 458207 458212) (-309 "EVALAB.spad" 457343 457355 457771 457776) (-308 "EUCDOM.spad" 454885 454893 457269 457338) (-307 "EUCDOM.spad" 452489 452499 454875 454880) (-306 "ESTOOLS.spad" 444329 444337 452479 452484) (-305 "ESTOOLS2.spad" 443930 443944 444319 444324) (-304 "ESTOOLS1.spad" 443615 443626 443920 443925) (-303 "ES.spad" 436162 436170 443605 443610) (-302 "ES.spad" 428615 428625 436060 436065) (-301 "ESCONT.spad" 425388 425396 428605 428610) (-300 "ESCONT1.spad" 425137 425149 425378 425383) (-299 "ES2.spad" 424632 424648 425127 425132) (-298 "ES1.spad" 424198 424214 424622 424627) (-297 "ERROR.spad" 421519 421527 424188 424193) (-296 "EQTBL.spad" 419991 420013 420200 420227) (-295 "EQ.spad" 414784 414794 417583 417695) (-294 "EQ2.spad" 414500 414512 414774 414779) (-293 "EP.spad" 410814 410824 414490 414495) (-292 "ENV.spad" 409466 409474 410804 410809) (-291 "ENTIRER.spad" 409134 409142 409410 409461) (-290 "EMR.spad" 408335 408376 409060 409129) (-289 "ELTAGG.spad" 406575 406594 408325 408330) (-288 "ELTAGG.spad" 404779 404800 406531 406536) (-287 "ELTAB.spad" 404226 404244 404769 404774) (-286 "ELFUTS.spad" 403605 403624 404216 404221) (-285 "ELEMFUN.spad" 403294 403302 403595 403600) (-284 "ELEMFUN.spad" 402981 402991 403284 403289) (-283 "ELAGG.spad" 400924 400934 402961 402976) (-282 "ELAGG.spad" 398804 398816 400843 400848) (-281 "ELABEXPR.spad" 397727 397735 398794 398799) (-280 "EFUPXS.spad" 394503 394533 397683 397688) (-279 "EFULS.spad" 391339 391362 394459 394464) (-278 "EFSTRUC.spad" 389294 389310 391329 391334) (-277 "EF.spad" 384060 384076 389284 389289) (-276 "EAB.spad" 382336 382344 384050 384055) (-275 "E04UCFA.spad" 381872 381880 382326 382331) (-274 "E04NAFA.spad" 381449 381457 381862 381867) (-273 "E04MBFA.spad" 381029 381037 381439 381444) (-272 "E04JAFA.spad" 380565 380573 381019 381024) (-271 "E04GCFA.spad" 380101 380109 380555 380560) (-270 "E04FDFA.spad" 379637 379645 380091 380096) (-269 "E04DGFA.spad" 379173 379181 379627 379632) (-268 "E04AGNT.spad" 375015 375023 379163 379168) (-267 "DVARCAT.spad" 371700 371710 375005 375010) (-266 "DVARCAT.spad" 368383 368395 371690 371695) (-265 "DSMP.spad" 365850 365864 366155 366282) (-264 "DROPT.spad" 359795 359803 365840 365845) (-263 "DROPT1.spad" 359458 359468 359785 359790) (-262 "DROPT0.spad" 354285 354293 359448 359453) (-261 "DRAWPT.spad" 352440 352448 354275 354280) (-260 "DRAW.spad" 345040 345053 352430 352435) (-259 "DRAWHACK.spad" 344348 344358 345030 345035) (-258 "DRAWCX.spad" 341790 341798 344338 344343) (-257 "DRAWCURV.spad" 341327 341342 341780 341785) (-256 "DRAWCFUN.spad" 330499 330507 341317 341322) (-255 "DQAGG.spad" 328667 328677 330467 330494) (-254 "DPOLCAT.spad" 324008 324024 328535 328662) (-253 "DPOLCAT.spad" 319435 319453 323964 323969) (-252 "DPMO.spad" 311661 311677 311799 312100) (-251 "DPMM.spad" 303900 303918 304025 304326) (-250 "DOMTMPLT.spad" 303560 303568 303890 303895) (-249 "DOMCTOR.spad" 303315 303323 303550 303555) (-248 "DOMAIN.spad" 302446 302454 303305 303310) (-247 "DMP.spad" 299704 299719 300276 300403) (-246 "DLP.spad" 299052 299062 299694 299699) (-245 "DLIST.spad" 297631 297641 298235 298262) (-244 "DLAGG.spad" 296042 296052 297621 297626) (-243 "DIVRING.spad" 295584 295592 295986 296037) (-242 "DIVRING.spad" 295170 295180 295574 295579) (-241 "DISPLAY.spad" 293350 293358 295160 295165) (-240 "DIRPROD.spad" 282930 282946 283570 283701) (-239 "DIRPROD2.spad" 281738 281756 282920 282925) (-238 "DIRPCAT.spad" 280680 280696 281602 281733) (-237 "DIRPCAT.spad" 279351 279369 280275 280280) (-236 "DIOSP.spad" 278176 278184 279341 279346) (-235 "DIOPS.spad" 277160 277170 278156 278171) (-234 "DIOPS.spad" 276118 276130 277116 277121) (-233 "DIFRING.spad" 275410 275418 276098 276113) (-232 "DIFRING.spad" 274710 274720 275400 275405) (-231 "DIFEXT.spad" 273869 273879 274690 274705) (-230 "DIFEXT.spad" 272945 272957 273768 273773) (-229 "DIAGG.spad" 272575 272585 272925 272940) (-228 "DIAGG.spad" 272213 272225 272565 272570) (-227 "DHMATRIX.spad" 270517 270527 271670 271697) (-226 "DFSFUN.spad" 263925 263933 270507 270512) (-225 "DFLOAT.spad" 260646 260654 263815 263920) (-224 "DFINTTLS.spad" 258855 258871 260636 260641) (-223 "DERHAM.spad" 256765 256797 258835 258850) (-222 "DEQUEUE.spad" 256083 256093 256372 256399) (-221 "DEGRED.spad" 255698 255712 256073 256078) (-220 "DEFINTRF.spad" 253223 253233 255688 255693) (-219 "DEFINTEF.spad" 251719 251735 253213 253218) (-218 "DEFAST.spad" 251087 251095 251709 251714) (-217 "DECIMAL.spad" 249193 249201 249554 249647) (-216 "DDFACT.spad" 246992 247009 249183 249188) (-215 "DBLRESP.spad" 246590 246614 246982 246987) (-214 "DBASE.spad" 245244 245254 246580 246585) (-213 "DATAARY.spad" 244706 244719 245234 245239) (-212 "D03FAFA.spad" 244534 244542 244696 244701) (-211 "D03EEFA.spad" 244354 244362 244524 244529) (-210 "D03AGNT.spad" 243434 243442 244344 244349) (-209 "D02EJFA.spad" 242896 242904 243424 243429) (-208 "D02CJFA.spad" 242374 242382 242886 242891) (-207 "D02BHFA.spad" 241864 241872 242364 242369) (-206 "D02BBFA.spad" 241354 241362 241854 241859) (-205 "D02AGNT.spad" 236158 236166 241344 241349) (-204 "D01WGTS.spad" 234477 234485 236148 236153) (-203 "D01TRNS.spad" 234454 234462 234467 234472) (-202 "D01GBFA.spad" 233976 233984 234444 234449) (-201 "D01FCFA.spad" 233498 233506 233966 233971) (-200 "D01ASFA.spad" 232966 232974 233488 233493) (-199 "D01AQFA.spad" 232412 232420 232956 232961) (-198 "D01APFA.spad" 231836 231844 232402 232407) (-197 "D01ANFA.spad" 231330 231338 231826 231831) (-196 "D01AMFA.spad" 230840 230848 231320 231325) (-195 "D01ALFA.spad" 230380 230388 230830 230835) (-194 "D01AKFA.spad" 229906 229914 230370 230375) (-193 "D01AJFA.spad" 229429 229437 229896 229901) (-192 "D01AGNT.spad" 225488 225496 229419 229424) (-191 "CYCLOTOM.spad" 224994 225002 225478 225483) (-190 "CYCLES.spad" 221826 221834 224984 224989) (-189 "CVMP.spad" 221243 221253 221816 221821) (-188 "CTRIGMNP.spad" 219733 219749 221233 221238) (-187 "CTOR.spad" 219424 219432 219723 219728) (-186 "CTORKIND.spad" 219027 219035 219414 219419) (-185 "CTORCAT.spad" 218276 218284 219017 219022) (-184 "CTORCAT.spad" 217523 217533 218266 218271) (-183 "CTORCALL.spad" 217103 217111 217513 217518) (-182 "CSTTOOLS.spad" 216346 216359 217093 217098) (-181 "CRFP.spad" 210050 210063 216336 216341) (-180 "CRCEAST.spad" 209770 209778 210040 210045) (-179 "CRAPACK.spad" 208813 208823 209760 209765) (-178 "CPMATCH.spad" 208313 208328 208738 208743) (-177 "CPIMA.spad" 208018 208037 208303 208308) (-176 "COORDSYS.spad" 202911 202921 208008 208013) (-175 "CONTOUR.spad" 202318 202326 202901 202906) (-174 "CONTFRAC.spad" 197930 197940 202220 202313) (-173 "CONDUIT.spad" 197688 197696 197920 197925) (-172 "COMRING.spad" 197362 197370 197626 197683) (-171 "COMPPROP.spad" 196876 196884 197352 197357) (-170 "COMPLPAT.spad" 196643 196658 196866 196871) (-169 "COMPLEX.spad" 190780 190790 191024 191285) (-168 "COMPLEX2.spad" 190493 190505 190770 190775) (-167 "COMPFACT.spad" 190095 190109 190483 190488) (-166 "COMPCAT.spad" 188163 188173 189829 190090) (-165 "COMPCAT.spad" 185959 185971 187627 187632) (-164 "COMMUPC.spad" 185705 185723 185949 185954) (-163 "COMMONOP.spad" 185238 185246 185695 185700) (-162 "COMM.spad" 185047 185055 185228 185233) (-161 "COMMAAST.spad" 184810 184818 185037 185042) (-160 "COMBOPC.spad" 183715 183723 184800 184805) (-159 "COMBINAT.spad" 182460 182470 183705 183710) (-158 "COMBF.spad" 179828 179844 182450 182455) (-157 "COLOR.spad" 178665 178673 179818 179823) (-156 "COLONAST.spad" 178331 178339 178655 178660) (-155 "CMPLXRT.spad" 178040 178057 178321 178326) (-154 "CLLCTAST.spad" 177702 177710 178030 178035) (-153 "CLIP.spad" 173794 173802 177692 177697) (-152 "CLIF.spad" 172433 172449 173750 173789) (-151 "CLAGG.spad" 168918 168928 172423 172428) (-150 "CLAGG.spad" 165274 165286 168781 168786) (-149 "CINTSLPE.spad" 164599 164612 165264 165269) (-148 "CHVAR.spad" 162677 162699 164589 164594) (-147 "CHARZ.spad" 162592 162600 162657 162672) (-146 "CHARPOL.spad" 162100 162110 162582 162587) (-145 "CHARNZ.spad" 161853 161861 162080 162095) (-144 "CHAR.spad" 159721 159729 161843 161848) (-143 "CFCAT.spad" 159037 159045 159711 159716) (-142 "CDEN.spad" 158195 158209 159027 159032) (-141 "CCLASS.spad" 156344 156352 157606 157645) (-140 "CATEGORY.spad" 155434 155442 156334 156339) (-139 "CATCTOR.spad" 155325 155333 155424 155429) (-138 "CATAST.spad" 154943 154951 155315 155320) (-137 "CASEAST.spad" 154657 154665 154933 154938) (-136 "CARTEN.spad" 149760 149784 154647 154652) (-135 "CARTEN2.spad" 149146 149173 149750 149755) (-134 "CARD.spad" 146435 146443 149120 149141) (-133 "CAPSLAST.spad" 146209 146217 146425 146430) (-132 "CACHSET.spad" 145831 145839 146199 146204) (-131 "CABMON.spad" 145384 145392 145821 145826) (-130 "BYTEORD.spad" 145059 145067 145374 145379) (-129 "BYTE.spad" 144484 144492 145049 145054) (-128 "BYTEBUF.spad" 142341 142349 143653 143680) (-127 "BTREE.spad" 141410 141420 141948 141975) (-126 "BTOURN.spad" 140413 140423 141017 141044) (-125 "BTCAT.spad" 139801 139811 140381 140408) (-124 "BTCAT.spad" 139209 139221 139791 139796) (-123 "BTAGG.spad" 138331 138339 139177 139204) (-122 "BTAGG.spad" 137473 137483 138321 138326) (-121 "BSTREE.spad" 136208 136218 137080 137107) (-120 "BRILL.spad" 134403 134414 136198 136203) (-119 "BRAGG.spad" 133327 133337 134393 134398) (-118 "BRAGG.spad" 132215 132227 133283 133288) (-117 "BPADICRT.spad" 130196 130208 130451 130544) (-116 "BPADIC.spad" 129860 129872 130122 130191) (-115 "BOUNDZRO.spad" 129516 129533 129850 129855) (-114 "BOP.spad" 124640 124648 129506 129511) (-113 "BOP1.spad" 122060 122070 124630 124635) (-112 "BOOLEAN.spad" 121492 121500 122050 122055) (-111 "BMODULE.spad" 121204 121216 121460 121487) (-110 "BITS.spad" 120623 120631 120840 120867) (-109 "BINDING.spad" 120034 120042 120613 120618) (-108 "BINARY.spad" 118145 118153 118501 118594) (-107 "BGAGG.spad" 117342 117352 118125 118140) (-106 "BGAGG.spad" 116547 116559 117332 117337) (-105 "BFUNCT.spad" 116111 116119 116527 116542) (-104 "BEZOUT.spad" 115245 115272 116061 116066) (-103 "BBTREE.spad" 112064 112074 114852 114879) (-102 "BASTYPE.spad" 111736 111744 112054 112059) (-101 "BASTYPE.spad" 111406 111416 111726 111731) (-100 "BALFACT.spad" 110845 110858 111396 111401) (-99 "AUTOMOR.spad" 110292 110301 110825 110840) (-98 "ATTREG.spad" 107011 107018 110044 110287) (-97 "ATTRBUT.spad" 103034 103041 106991 107006) (-96 "ATTRAST.spad" 102751 102758 103024 103029) (-95 "ATRIG.spad" 102221 102228 102741 102746) (-94 "ATRIG.spad" 101689 101698 102211 102216) (-93 "ASTCAT.spad" 101593 101600 101679 101684) (-92 "ASTCAT.spad" 101495 101504 101583 101588) (-91 "ASTACK.spad" 100828 100837 101102 101129) (-90 "ASSOCEQ.spad" 99628 99639 100784 100789) (-89 "ASP9.spad" 98709 98722 99618 99623) (-88 "ASP8.spad" 97752 97765 98699 98704) (-87 "ASP80.spad" 97074 97087 97742 97747) (-86 "ASP7.spad" 96234 96247 97064 97069) (-85 "ASP78.spad" 95685 95698 96224 96229) (-84 "ASP77.spad" 95054 95067 95675 95680) (-83 "ASP74.spad" 94146 94159 95044 95049) (-82 "ASP73.spad" 93417 93430 94136 94141) (-81 "ASP6.spad" 92284 92297 93407 93412) (-80 "ASP55.spad" 90793 90806 92274 92279) (-79 "ASP50.spad" 88610 88623 90783 90788) (-78 "ASP4.spad" 87905 87918 88600 88605) (-77 "ASP49.spad" 86904 86917 87895 87900) (-76 "ASP42.spad" 85311 85350 86894 86899) (-75 "ASP41.spad" 83890 83929 85301 85306) (-74 "ASP35.spad" 82878 82891 83880 83885) (-73 "ASP34.spad" 82179 82192 82868 82873) (-72 "ASP33.spad" 81739 81752 82169 82174) (-71 "ASP31.spad" 80879 80892 81729 81734) (-70 "ASP30.spad" 79771 79784 80869 80874) (-69 "ASP29.spad" 79237 79250 79761 79766) (-68 "ASP28.spad" 70510 70523 79227 79232) (-67 "ASP27.spad" 69407 69420 70500 70505) (-66 "ASP24.spad" 68494 68507 69397 69402) (-65 "ASP20.spad" 67958 67971 68484 68489) (-64 "ASP1.spad" 67339 67352 67948 67953) (-63 "ASP19.spad" 62025 62038 67329 67334) (-62 "ASP12.spad" 61439 61452 62015 62020) (-61 "ASP10.spad" 60710 60723 61429 61434) (-60 "ARRAY2.spad" 60070 60079 60317 60344) (-59 "ARRAY1.spad" 58905 58914 59253 59280) (-58 "ARRAY12.spad" 57574 57585 58895 58900) (-57 "ARR2CAT.spad" 53236 53257 57542 57569) (-56 "ARR2CAT.spad" 48918 48941 53226 53231) (-55 "ARITY.spad" 48290 48297 48908 48913) (-54 "APPRULE.spad" 47534 47556 48280 48285) (-53 "APPLYORE.spad" 47149 47162 47524 47529) (-52 "ANY.spad" 45491 45498 47139 47144) (-51 "ANY1.spad" 44562 44571 45481 45486) (-50 "ANTISYM.spad" 43001 43017 44542 44557) (-49 "ANON.spad" 42694 42701 42991 42996) (-48 "AN.spad" 40995 41002 42510 42603) (-47 "AMR.spad" 39174 39185 40893 40990) (-46 "AMR.spad" 37190 37203 38911 38916) (-45 "ALIST.spad" 34602 34623 34952 34979) (-44 "ALGSC.spad" 33725 33751 34474 34527) (-43 "ALGPKG.spad" 29434 29445 33681 33686) (-42 "ALGMFACT.spad" 28623 28637 29424 29429) (-41 "ALGMANIP.spad" 26079 26094 28456 28461) (-40 "ALGFF.spad" 24394 24421 24611 24767) (-39 "ALGFACT.spad" 23515 23525 24384 24389) (-38 "ALGEBRA.spad" 23348 23357 23471 23510) (-37 "ALGEBRA.spad" 23213 23224 23338 23343) (-36 "ALAGG.spad" 22723 22744 23181 23208) (-35 "AHYP.spad" 22104 22111 22713 22718) (-34 "AGG.spad" 20413 20420 22094 22099) (-33 "AGG.spad" 18686 18695 20369 20374) (-32 "AF.spad" 17111 17126 18621 18626) (-31 "ADDAST.spad" 16789 16796 17101 17106) (-30 "ACPLOT.spad" 15360 15367 16779 16784) (-29 "ACFS.spad" 13111 13120 15262 15355) (-28 "ACFS.spad" 10948 10959 13101 13106) (-27 "ACF.spad" 7550 7557 10850 10943) (-26 "ACF.spad" 4238 4247 7540 7545) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2285479 2285484 2285489 2285494) (-2 NIL 2285459 2285464 2285469 2285474) (-1 NIL 2285439 2285444 2285449 2285454) (0 NIL 2285419 2285424 2285429 2285434) (-1292 "ZMOD.spad" 2285228 2285241 2285357 2285414) (-1291 "ZLINDEP.spad" 2284272 2284283 2285218 2285223) (-1290 "ZDSOLVE.spad" 2274121 2274143 2284262 2284267) (-1289 "YSTREAM.spad" 2273614 2273625 2274111 2274116) (-1288 "XRPOLY.spad" 2272834 2272854 2273470 2273539) (-1287 "XPR.spad" 2270625 2270638 2272552 2272651) (-1286 "XPOLY.spad" 2270180 2270191 2270481 2270550) (-1285 "XPOLYC.spad" 2269497 2269513 2270106 2270175) (-1284 "XPBWPOLY.spad" 2267934 2267954 2269277 2269346) (-1283 "XF.spad" 2266395 2266410 2267836 2267929) (-1282 "XF.spad" 2264836 2264853 2266279 2266284) (-1281 "XFALG.spad" 2261860 2261876 2264762 2264831) (-1280 "XEXPPKG.spad" 2261111 2261137 2261850 2261855) (-1279 "XDPOLY.spad" 2260725 2260741 2260967 2261036) (-1278 "XALG.spad" 2260385 2260396 2260681 2260720) (-1277 "WUTSET.spad" 2256224 2256241 2260031 2260058) (-1276 "WP.spad" 2255423 2255467 2256082 2256149) (-1275 "WHILEAST.spad" 2255221 2255230 2255413 2255418) (-1274 "WHEREAST.spad" 2254892 2254901 2255211 2255216) (-1273 "WFFINTBS.spad" 2252455 2252477 2254882 2254887) (-1272 "WEIER.spad" 2250669 2250680 2252445 2252450) (-1271 "VSPACE.spad" 2250342 2250353 2250637 2250664) (-1270 "VSPACE.spad" 2250035 2250048 2250332 2250337) (-1269 "VOID.spad" 2249712 2249721 2250025 2250030) (-1268 "VIEW.spad" 2247334 2247343 2249702 2249707) (-1267 "VIEWDEF.spad" 2242531 2242540 2247324 2247329) (-1266 "VIEW3D.spad" 2226366 2226375 2242521 2242526) (-1265 "VIEW2D.spad" 2214103 2214112 2226356 2226361) (-1264 "VECTOR.spad" 2212777 2212788 2213028 2213055) (-1263 "VECTOR2.spad" 2211404 2211417 2212767 2212772) (-1262 "VECTCAT.spad" 2209304 2209315 2211372 2211399) (-1261 "VECTCAT.spad" 2207011 2207024 2209081 2209086) (-1260 "VARIABLE.spad" 2206791 2206806 2207001 2207006) (-1259 "UTYPE.spad" 2206435 2206444 2206781 2206786) (-1258 "UTSODETL.spad" 2205728 2205752 2206391 2206396) (-1257 "UTSODE.spad" 2203916 2203936 2205718 2205723) (-1256 "UTS.spad" 2198705 2198733 2202383 2202480) (-1255 "UTSCAT.spad" 2196156 2196172 2198603 2198700) (-1254 "UTSCAT.spad" 2193251 2193269 2195700 2195705) (-1253 "UTS2.spad" 2192844 2192879 2193241 2193246) (-1252 "URAGG.spad" 2187476 2187487 2192834 2192839) (-1251 "URAGG.spad" 2182072 2182085 2187432 2187437) (-1250 "UPXSSING.spad" 2179715 2179741 2181153 2181286) (-1249 "UPXS.spad" 2176863 2176891 2177847 2177996) (-1248 "UPXSCONS.spad" 2174620 2174640 2174995 2175144) (-1247 "UPXSCCA.spad" 2173185 2173205 2174466 2174615) (-1246 "UPXSCCA.spad" 2171892 2171914 2173175 2173180) (-1245 "UPXSCAT.spad" 2170473 2170489 2171738 2171887) (-1244 "UPXS2.spad" 2170014 2170067 2170463 2170468) (-1243 "UPSQFREE.spad" 2168426 2168440 2170004 2170009) (-1242 "UPSCAT.spad" 2166019 2166043 2168324 2168421) (-1241 "UPSCAT.spad" 2163318 2163344 2165625 2165630) (-1240 "UPOLYC.spad" 2158296 2158307 2163160 2163313) (-1239 "UPOLYC.spad" 2153166 2153179 2158032 2158037) (-1238 "UPOLYC2.spad" 2152635 2152654 2153156 2153161) (-1237 "UP.spad" 2149828 2149843 2150221 2150374) (-1236 "UPMP.spad" 2148718 2148731 2149818 2149823) (-1235 "UPDIVP.spad" 2148281 2148295 2148708 2148713) (-1234 "UPDECOMP.spad" 2146518 2146532 2148271 2148276) (-1233 "UPCDEN.spad" 2145725 2145741 2146508 2146513) (-1232 "UP2.spad" 2145087 2145108 2145715 2145720) (-1231 "UNISEG.spad" 2144440 2144451 2145006 2145011) (-1230 "UNISEG2.spad" 2143933 2143946 2144396 2144401) (-1229 "UNIFACT.spad" 2143034 2143046 2143923 2143928) (-1228 "ULS.spad" 2133586 2133614 2134679 2135108) (-1227 "ULSCONS.spad" 2125980 2126000 2126352 2126501) (-1226 "ULSCCAT.spad" 2123709 2123729 2125826 2125975) (-1225 "ULSCCAT.spad" 2121546 2121568 2123665 2123670) (-1224 "ULSCAT.spad" 2119762 2119778 2121392 2121541) (-1223 "ULS2.spad" 2119274 2119327 2119752 2119757) (-1222 "UINT8.spad" 2119151 2119160 2119264 2119269) (-1221 "UINT64.spad" 2119027 2119036 2119141 2119146) (-1220 "UINT32.spad" 2118903 2118912 2119017 2119022) (-1219 "UINT16.spad" 2118779 2118788 2118893 2118898) (-1218 "UFD.spad" 2117844 2117853 2118705 2118774) (-1217 "UFD.spad" 2116971 2116982 2117834 2117839) (-1216 "UDVO.spad" 2115818 2115827 2116961 2116966) (-1215 "UDPO.spad" 2113245 2113256 2115774 2115779) (-1214 "TYPE.spad" 2113177 2113186 2113235 2113240) (-1213 "TYPEAST.spad" 2113096 2113105 2113167 2113172) (-1212 "TWOFACT.spad" 2111746 2111761 2113086 2113091) (-1211 "TUPLE.spad" 2111230 2111241 2111645 2111650) (-1210 "TUBETOOL.spad" 2108067 2108076 2111220 2111225) (-1209 "TUBE.spad" 2106708 2106725 2108057 2108062) (-1208 "TS.spad" 2105297 2105313 2106273 2106370) (-1207 "TSETCAT.spad" 2092424 2092441 2105265 2105292) (-1206 "TSETCAT.spad" 2079537 2079556 2092380 2092385) (-1205 "TRMANIP.spad" 2073903 2073920 2079243 2079248) (-1204 "TRIMAT.spad" 2072862 2072887 2073893 2073898) (-1203 "TRIGMNIP.spad" 2071379 2071396 2072852 2072857) (-1202 "TRIGCAT.spad" 2070891 2070900 2071369 2071374) (-1201 "TRIGCAT.spad" 2070401 2070412 2070881 2070886) (-1200 "TREE.spad" 2068972 2068983 2070008 2070035) (-1199 "TRANFUN.spad" 2068803 2068812 2068962 2068967) (-1198 "TRANFUN.spad" 2068632 2068643 2068793 2068798) (-1197 "TOPSP.spad" 2068306 2068315 2068622 2068627) (-1196 "TOOLSIGN.spad" 2067969 2067980 2068296 2068301) (-1195 "TEXTFILE.spad" 2066526 2066535 2067959 2067964) (-1194 "TEX.spad" 2063658 2063667 2066516 2066521) (-1193 "TEX1.spad" 2063214 2063225 2063648 2063653) (-1192 "TEMUTL.spad" 2062769 2062778 2063204 2063209) (-1191 "TBCMPPK.spad" 2060862 2060885 2062759 2062764) (-1190 "TBAGG.spad" 2059898 2059921 2060842 2060857) (-1189 "TBAGG.spad" 2058942 2058967 2059888 2059893) (-1188 "TANEXP.spad" 2058318 2058329 2058932 2058937) (-1187 "TABLE.spad" 2056729 2056752 2056999 2057026) (-1186 "TABLEAU.spad" 2056210 2056221 2056719 2056724) (-1185 "TABLBUMP.spad" 2052993 2053004 2056200 2056205) (-1184 "SYSTEM.spad" 2052221 2052230 2052983 2052988) (-1183 "SYSSOLP.spad" 2049694 2049705 2052211 2052216) (-1182 "SYSNNI.spad" 2048874 2048885 2049684 2049689) (-1181 "SYSINT.spad" 2048278 2048289 2048864 2048869) (-1180 "SYNTAX.spad" 2044472 2044481 2048268 2048273) (-1179 "SYMTAB.spad" 2042528 2042537 2044462 2044467) (-1178 "SYMS.spad" 2038513 2038522 2042518 2042523) (-1177 "SYMPOLY.spad" 2037520 2037531 2037602 2037729) (-1176 "SYMFUNC.spad" 2036995 2037006 2037510 2037515) (-1175 "SYMBOL.spad" 2034422 2034431 2036985 2036990) (-1174 "SWITCH.spad" 2031179 2031188 2034412 2034417) (-1173 "SUTS.spad" 2028078 2028106 2029646 2029743) (-1172 "SUPXS.spad" 2025213 2025241 2026210 2026359) (-1171 "SUP.spad" 2022018 2022029 2022799 2022952) (-1170 "SUPFRACF.spad" 2021123 2021141 2022008 2022013) (-1169 "SUP2.spad" 2020513 2020526 2021113 2021118) (-1168 "SUMRF.spad" 2019479 2019490 2020503 2020508) (-1167 "SUMFS.spad" 2019112 2019129 2019469 2019474) (-1166 "SULS.spad" 2009651 2009679 2010757 2011186) (-1165 "SUCHTAST.spad" 2009420 2009429 2009641 2009646) (-1164 "SUCH.spad" 2009100 2009115 2009410 2009415) (-1163 "SUBSPACE.spad" 2001107 2001122 2009090 2009095) (-1162 "SUBRESP.spad" 2000267 2000281 2001063 2001068) (-1161 "STTF.spad" 1996366 1996382 2000257 2000262) (-1160 "STTFNC.spad" 1992834 1992850 1996356 1996361) (-1159 "STTAYLOR.spad" 1985232 1985243 1992715 1992720) (-1158 "STRTBL.spad" 1983737 1983754 1983886 1983913) (-1157 "STRING.spad" 1983146 1983155 1983160 1983187) (-1156 "STRICAT.spad" 1982934 1982943 1983114 1983141) (-1155 "STREAM.spad" 1979792 1979803 1982459 1982474) (-1154 "STREAM3.spad" 1979337 1979352 1979782 1979787) (-1153 "STREAM2.spad" 1978405 1978418 1979327 1979332) (-1152 "STREAM1.spad" 1978109 1978120 1978395 1978400) (-1151 "STINPROD.spad" 1977015 1977031 1978099 1978104) (-1150 "STEP.spad" 1976216 1976225 1977005 1977010) (-1149 "STBL.spad" 1974742 1974770 1974909 1974924) (-1148 "STAGG.spad" 1973817 1973828 1974732 1974737) (-1147 "STAGG.spad" 1972890 1972903 1973807 1973812) (-1146 "STACK.spad" 1972241 1972252 1972497 1972524) (-1145 "SREGSET.spad" 1969945 1969962 1971887 1971914) (-1144 "SRDCMPK.spad" 1968490 1968510 1969935 1969940) (-1143 "SRAGG.spad" 1963587 1963596 1968458 1968485) (-1142 "SRAGG.spad" 1958704 1958715 1963577 1963582) (-1141 "SQMATRIX.spad" 1956320 1956338 1957236 1957323) (-1140 "SPLTREE.spad" 1950872 1950885 1955756 1955783) (-1139 "SPLNODE.spad" 1947460 1947473 1950862 1950867) (-1138 "SPFCAT.spad" 1946237 1946246 1947450 1947455) (-1137 "SPECOUT.spad" 1944787 1944796 1946227 1946232) (-1136 "SPADXPT.spad" 1936926 1936935 1944777 1944782) (-1135 "spad-parser.spad" 1936391 1936400 1936916 1936921) (-1134 "SPADAST.spad" 1936092 1936101 1936381 1936386) (-1133 "SPACEC.spad" 1920105 1920116 1936082 1936087) (-1132 "SPACE3.spad" 1919881 1919892 1920095 1920100) (-1131 "SORTPAK.spad" 1919426 1919439 1919837 1919842) (-1130 "SOLVETRA.spad" 1917183 1917194 1919416 1919421) (-1129 "SOLVESER.spad" 1915703 1915714 1917173 1917178) (-1128 "SOLVERAD.spad" 1911713 1911724 1915693 1915698) (-1127 "SOLVEFOR.spad" 1910133 1910151 1911703 1911708) (-1126 "SNTSCAT.spad" 1909733 1909750 1910101 1910128) (-1125 "SMTS.spad" 1907993 1908019 1909298 1909395) (-1124 "SMP.spad" 1905468 1905488 1905858 1905985) (-1123 "SMITH.spad" 1904311 1904336 1905458 1905463) (-1122 "SMATCAT.spad" 1902421 1902451 1904255 1904306) (-1121 "SMATCAT.spad" 1900463 1900495 1902299 1902304) (-1120 "SKAGG.spad" 1899424 1899435 1900431 1900458) (-1119 "SINT.spad" 1898250 1898259 1899290 1899419) (-1118 "SIMPAN.spad" 1897978 1897987 1898240 1898245) (-1117 "SIG.spad" 1897306 1897315 1897968 1897973) (-1116 "SIGNRF.spad" 1896414 1896425 1897296 1897301) (-1115 "SIGNEF.spad" 1895683 1895700 1896404 1896409) (-1114 "SIGAST.spad" 1895064 1895073 1895673 1895678) (-1113 "SHP.spad" 1892982 1892997 1895020 1895025) (-1112 "SHDP.spad" 1882693 1882720 1883202 1883333) (-1111 "SGROUP.spad" 1882301 1882310 1882683 1882688) (-1110 "SGROUP.spad" 1881907 1881918 1882291 1882296) (-1109 "SGCF.spad" 1874788 1874797 1881897 1881902) (-1108 "SFRTCAT.spad" 1873716 1873733 1874756 1874783) (-1107 "SFRGCD.spad" 1872779 1872799 1873706 1873711) (-1106 "SFQCMPK.spad" 1867416 1867436 1872769 1872774) (-1105 "SFORT.spad" 1866851 1866865 1867406 1867411) (-1104 "SEXOF.spad" 1866694 1866734 1866841 1866846) (-1103 "SEX.spad" 1866586 1866595 1866684 1866689) (-1102 "SEXCAT.spad" 1864137 1864177 1866576 1866581) (-1101 "SET.spad" 1862437 1862448 1863558 1863597) (-1100 "SETMN.spad" 1860871 1860888 1862427 1862432) (-1099 "SETCAT.spad" 1860193 1860202 1860861 1860866) (-1098 "SETCAT.spad" 1859513 1859524 1860183 1860188) (-1097 "SETAGG.spad" 1856034 1856045 1859493 1859508) (-1096 "SETAGG.spad" 1852563 1852576 1856024 1856029) (-1095 "SEQAST.spad" 1852266 1852275 1852553 1852558) (-1094 "SEGXCAT.spad" 1851388 1851401 1852256 1852261) (-1093 "SEG.spad" 1851201 1851212 1851307 1851312) (-1092 "SEGCAT.spad" 1850108 1850119 1851191 1851196) (-1091 "SEGBIND.spad" 1849180 1849191 1850063 1850068) (-1090 "SEGBIND2.spad" 1848876 1848889 1849170 1849175) (-1089 "SEGAST.spad" 1848590 1848599 1848866 1848871) (-1088 "SEG2.spad" 1848015 1848028 1848546 1848551) (-1087 "SDVAR.spad" 1847291 1847302 1848005 1848010) (-1086 "SDPOL.spad" 1844717 1844728 1845008 1845135) (-1085 "SCPKG.spad" 1842796 1842807 1844707 1844712) (-1084 "SCOPE.spad" 1841945 1841954 1842786 1842791) (-1083 "SCACHE.spad" 1840627 1840638 1841935 1841940) (-1082 "SASTCAT.spad" 1840536 1840545 1840617 1840622) (-1081 "SAOS.spad" 1840408 1840417 1840526 1840531) (-1080 "SAERFFC.spad" 1840121 1840141 1840398 1840403) (-1079 "SAE.spad" 1838296 1838312 1838907 1839042) (-1078 "SAEFACT.spad" 1837997 1838017 1838286 1838291) (-1077 "RURPK.spad" 1835638 1835654 1837987 1837992) (-1076 "RULESET.spad" 1835079 1835103 1835628 1835633) (-1075 "RULE.spad" 1833283 1833307 1835069 1835074) (-1074 "RULECOLD.spad" 1833135 1833148 1833273 1833278) (-1073 "RTVALUE.spad" 1832868 1832877 1833125 1833130) (-1072 "RSTRCAST.spad" 1832585 1832594 1832858 1832863) (-1071 "RSETGCD.spad" 1828963 1828983 1832575 1832580) (-1070 "RSETCAT.spad" 1818747 1818764 1828931 1828958) (-1069 "RSETCAT.spad" 1808551 1808570 1818737 1818742) (-1068 "RSDCMPK.spad" 1807003 1807023 1808541 1808546) (-1067 "RRCC.spad" 1805387 1805417 1806993 1806998) (-1066 "RRCC.spad" 1803769 1803801 1805377 1805382) (-1065 "RPTAST.spad" 1803471 1803480 1803759 1803764) (-1064 "RPOLCAT.spad" 1782831 1782846 1803339 1803466) (-1063 "RPOLCAT.spad" 1761905 1761922 1782415 1782420) (-1062 "ROUTINE.spad" 1757768 1757777 1760552 1760579) (-1061 "ROMAN.spad" 1757096 1757105 1757634 1757763) (-1060 "ROIRC.spad" 1756176 1756208 1757086 1757091) (-1059 "RNS.spad" 1755079 1755088 1756078 1756171) (-1058 "RNS.spad" 1754068 1754079 1755069 1755074) (-1057 "RNG.spad" 1753803 1753812 1754058 1754063) (-1056 "RMODULE.spad" 1753568 1753579 1753793 1753798) (-1055 "RMCAT2.spad" 1752976 1753033 1753558 1753563) (-1054 "RMATRIX.spad" 1751800 1751819 1752143 1752182) (-1053 "RMATCAT.spad" 1747333 1747364 1751756 1751795) (-1052 "RMATCAT.spad" 1742756 1742789 1747181 1747186) (-1051 "RLINSET.spad" 1742150 1742161 1742746 1742751) (-1050 "RINTERP.spad" 1742038 1742058 1742140 1742145) (-1049 "RING.spad" 1741508 1741517 1742018 1742033) (-1048 "RING.spad" 1740986 1740997 1741498 1741503) (-1047 "RIDIST.spad" 1740370 1740379 1740976 1740981) (-1046 "RGCHAIN.spad" 1738949 1738965 1739855 1739882) (-1045 "RGBCSPC.spad" 1738730 1738742 1738939 1738944) (-1044 "RGBCMDL.spad" 1738260 1738272 1738720 1738725) (-1043 "RF.spad" 1735874 1735885 1738250 1738255) (-1042 "RFFACTOR.spad" 1735336 1735347 1735864 1735869) (-1041 "RFFACT.spad" 1735071 1735083 1735326 1735331) (-1040 "RFDIST.spad" 1734059 1734068 1735061 1735066) (-1039 "RETSOL.spad" 1733476 1733489 1734049 1734054) (-1038 "RETRACT.spad" 1732904 1732915 1733466 1733471) (-1037 "RETRACT.spad" 1732330 1732343 1732894 1732899) (-1036 "RETAST.spad" 1732142 1732151 1732320 1732325) (-1035 "RESULT.spad" 1730202 1730211 1730789 1730816) (-1034 "RESRING.spad" 1729549 1729596 1730140 1730197) (-1033 "RESLATC.spad" 1728873 1728884 1729539 1729544) (-1032 "REPSQ.spad" 1728602 1728613 1728863 1728868) (-1031 "REP.spad" 1726154 1726163 1728592 1728597) (-1030 "REPDB.spad" 1725859 1725870 1726144 1726149) (-1029 "REP2.spad" 1715431 1715442 1725701 1725706) (-1028 "REP1.spad" 1709421 1709432 1715381 1715386) (-1027 "REGSET.spad" 1707218 1707235 1709067 1709094) (-1026 "REF.spad" 1706547 1706558 1707173 1707178) (-1025 "REDORDER.spad" 1705723 1705740 1706537 1706542) (-1024 "RECLOS.spad" 1704506 1704526 1705210 1705303) (-1023 "REALSOLV.spad" 1703638 1703647 1704496 1704501) (-1022 "REAL.spad" 1703510 1703519 1703628 1703633) (-1021 "REAL0Q.spad" 1700792 1700807 1703500 1703505) (-1020 "REAL0.spad" 1697620 1697635 1700782 1700787) (-1019 "RDUCEAST.spad" 1697341 1697350 1697610 1697615) (-1018 "RDIV.spad" 1696992 1697017 1697331 1697336) (-1017 "RDIST.spad" 1696555 1696566 1696982 1696987) (-1016 "RDETRS.spad" 1695351 1695369 1696545 1696550) (-1015 "RDETR.spad" 1693458 1693476 1695341 1695346) (-1014 "RDEEFS.spad" 1692531 1692548 1693448 1693453) (-1013 "RDEEF.spad" 1691527 1691544 1692521 1692526) (-1012 "RCFIELD.spad" 1688713 1688722 1691429 1691522) (-1011 "RCFIELD.spad" 1685985 1685996 1688703 1688708) (-1010 "RCAGG.spad" 1683897 1683908 1685975 1685980) (-1009 "RCAGG.spad" 1681736 1681749 1683816 1683821) (-1008 "RATRET.spad" 1681096 1681107 1681726 1681731) (-1007 "RATFACT.spad" 1680788 1680800 1681086 1681091) (-1006 "RANDSRC.spad" 1680107 1680116 1680778 1680783) (-1005 "RADUTIL.spad" 1679861 1679870 1680097 1680102) (-1004 "RADIX.spad" 1676762 1676776 1678328 1678421) (-1003 "RADFF.spad" 1675175 1675212 1675294 1675450) (-1002 "RADCAT.spad" 1674768 1674777 1675165 1675170) (-1001 "RADCAT.spad" 1674359 1674370 1674758 1674763) (-1000 "QUEUE.spad" 1673701 1673712 1673966 1673993) (-999 "QUAT.spad" 1672283 1672293 1672625 1672690) (-998 "QUATCT2.spad" 1671902 1671920 1672273 1672278) (-997 "QUATCAT.spad" 1670067 1670077 1671832 1671897) (-996 "QUATCAT.spad" 1667983 1667995 1669750 1669755) (-995 "QUAGG.spad" 1666809 1666819 1667951 1667978) (-994 "QQUTAST.spad" 1666578 1666586 1666799 1666804) (-993 "QFORM.spad" 1666041 1666055 1666568 1666573) (-992 "QFCAT.spad" 1664744 1664754 1665943 1666036) (-991 "QFCAT.spad" 1663038 1663050 1664239 1664244) (-990 "QFCAT2.spad" 1662729 1662745 1663028 1663033) (-989 "QEQUAT.spad" 1662286 1662294 1662719 1662724) (-988 "QCMPACK.spad" 1657033 1657052 1662276 1662281) (-987 "QALGSET.spad" 1653108 1653140 1656947 1656952) (-986 "QALGSET2.spad" 1651104 1651122 1653098 1653103) (-985 "PWFFINTB.spad" 1648414 1648435 1651094 1651099) (-984 "PUSHVAR.spad" 1647743 1647762 1648404 1648409) (-983 "PTRANFN.spad" 1643869 1643879 1647733 1647738) (-982 "PTPACK.spad" 1640957 1640967 1643859 1643864) (-981 "PTFUNC2.spad" 1640778 1640792 1640947 1640952) (-980 "PTCAT.spad" 1640027 1640037 1640746 1640773) (-979 "PSQFR.spad" 1639334 1639358 1640017 1640022) (-978 "PSEUDLIN.spad" 1638192 1638202 1639324 1639329) (-977 "PSETPK.spad" 1623625 1623641 1638070 1638075) (-976 "PSETCAT.spad" 1617545 1617568 1623605 1623620) (-975 "PSETCAT.spad" 1611439 1611464 1617501 1617506) (-974 "PSCURVE.spad" 1610422 1610430 1611429 1611434) (-973 "PSCAT.spad" 1609189 1609218 1610320 1610417) (-972 "PSCAT.spad" 1608046 1608077 1609179 1609184) (-971 "PRTITION.spad" 1606991 1606999 1608036 1608041) (-970 "PRTDAST.spad" 1606710 1606718 1606981 1606986) (-969 "PRS.spad" 1596272 1596289 1606666 1606671) (-968 "PRQAGG.spad" 1595703 1595713 1596240 1596267) (-967 "PROPLOG.spad" 1594998 1595006 1595693 1595698) (-966 "PROPFRML.spad" 1593806 1593817 1594988 1594993) (-965 "PROPERTY.spad" 1593292 1593300 1593796 1593801) (-964 "PRODUCT.spad" 1590972 1590984 1591258 1591313) (-963 "PR.spad" 1589358 1589370 1590063 1590190) (-962 "PRINT.spad" 1589110 1589118 1589348 1589353) (-961 "PRIMES.spad" 1587361 1587371 1589100 1589105) (-960 "PRIMELT.spad" 1585342 1585356 1587351 1587356) (-959 "PRIMCAT.spad" 1584965 1584973 1585332 1585337) (-958 "PRIMARR.spad" 1583970 1583980 1584148 1584175) (-957 "PRIMARR2.spad" 1582693 1582705 1583960 1583965) (-956 "PREASSOC.spad" 1582065 1582077 1582683 1582688) (-955 "PPCURVE.spad" 1581202 1581210 1582055 1582060) (-954 "PORTNUM.spad" 1580977 1580985 1581192 1581197) (-953 "POLYROOT.spad" 1579806 1579828 1580933 1580938) (-952 "POLY.spad" 1577139 1577149 1577656 1577783) (-951 "POLYLIFT.spad" 1576400 1576423 1577129 1577134) (-950 "POLYCATQ.spad" 1574502 1574524 1576390 1576395) (-949 "POLYCAT.spad" 1567908 1567929 1574370 1574497) (-948 "POLYCAT.spad" 1560652 1560675 1567116 1567121) (-947 "POLY2UP.spad" 1560100 1560114 1560642 1560647) (-946 "POLY2.spad" 1559695 1559707 1560090 1560095) (-945 "POLUTIL.spad" 1558636 1558665 1559651 1559656) (-944 "POLTOPOL.spad" 1557384 1557399 1558626 1558631) (-943 "POINT.spad" 1556222 1556232 1556309 1556336) (-942 "PNTHEORY.spad" 1552888 1552896 1556212 1556217) (-941 "PMTOOLS.spad" 1551645 1551659 1552878 1552883) (-940 "PMSYM.spad" 1551190 1551200 1551635 1551640) (-939 "PMQFCAT.spad" 1550777 1550791 1551180 1551185) (-938 "PMPRED.spad" 1550246 1550260 1550767 1550772) (-937 "PMPREDFS.spad" 1549690 1549712 1550236 1550241) (-936 "PMPLCAT.spad" 1548760 1548778 1549622 1549627) (-935 "PMLSAGG.spad" 1548341 1548355 1548750 1548755) (-934 "PMKERNEL.spad" 1547908 1547920 1548331 1548336) (-933 "PMINS.spad" 1547484 1547494 1547898 1547903) (-932 "PMFS.spad" 1547057 1547075 1547474 1547479) (-931 "PMDOWN.spad" 1546343 1546357 1547047 1547052) (-930 "PMASS.spad" 1545351 1545359 1546333 1546338) (-929 "PMASSFS.spad" 1544316 1544332 1545341 1545346) (-928 "PLOTTOOL.spad" 1544096 1544104 1544306 1544311) (-927 "PLOT.spad" 1538927 1538935 1544086 1544091) (-926 "PLOT3D.spad" 1535347 1535355 1538917 1538922) (-925 "PLOT1.spad" 1534488 1534498 1535337 1535342) (-924 "PLEQN.spad" 1521704 1521731 1534478 1534483) (-923 "PINTERP.spad" 1521320 1521339 1521694 1521699) (-922 "PINTERPA.spad" 1521102 1521118 1521310 1521315) (-921 "PI.spad" 1520709 1520717 1521076 1521097) (-920 "PID.spad" 1519665 1519673 1520635 1520704) (-919 "PICOERCE.spad" 1519322 1519332 1519655 1519660) (-918 "PGROEB.spad" 1517919 1517933 1519312 1519317) (-917 "PGE.spad" 1509172 1509180 1517909 1517914) (-916 "PGCD.spad" 1508054 1508071 1509162 1509167) (-915 "PFRPAC.spad" 1507197 1507207 1508044 1508049) (-914 "PFR.spad" 1503854 1503864 1507099 1507192) (-913 "PFOTOOLS.spad" 1503112 1503128 1503844 1503849) (-912 "PFOQ.spad" 1502482 1502500 1503102 1503107) (-911 "PFO.spad" 1501901 1501928 1502472 1502477) (-910 "PF.spad" 1501475 1501487 1501706 1501799) (-909 "PFECAT.spad" 1499141 1499149 1501401 1501470) (-908 "PFECAT.spad" 1496835 1496845 1499097 1499102) (-907 "PFBRU.spad" 1494705 1494717 1496825 1496830) (-906 "PFBR.spad" 1492243 1492266 1494695 1494700) (-905 "PERM.spad" 1487924 1487934 1492073 1492088) (-904 "PERMGRP.spad" 1482660 1482670 1487914 1487919) (-903 "PERMCAT.spad" 1481212 1481222 1482640 1482655) (-902 "PERMAN.spad" 1479744 1479758 1481202 1481207) (-901 "PENDTREE.spad" 1479083 1479093 1479373 1479378) (-900 "PDRING.spad" 1477574 1477584 1479063 1479078) (-899 "PDRING.spad" 1476073 1476085 1477564 1477569) (-898 "PDEPROB.spad" 1475088 1475096 1476063 1476068) (-897 "PDEPACK.spad" 1469090 1469098 1475078 1475083) (-896 "PDECOMP.spad" 1468552 1468569 1469080 1469085) (-895 "PDECAT.spad" 1466906 1466914 1468542 1468547) (-894 "PCOMP.spad" 1466757 1466770 1466896 1466901) (-893 "PBWLB.spad" 1465339 1465356 1466747 1466752) (-892 "PATTERN.spad" 1459770 1459780 1465329 1465334) (-891 "PATTERN2.spad" 1459506 1459518 1459760 1459765) (-890 "PATTERN1.spad" 1457808 1457824 1459496 1459501) (-889 "PATRES.spad" 1455355 1455367 1457798 1457803) (-888 "PATRES2.spad" 1455017 1455031 1455345 1455350) (-887 "PATMATCH.spad" 1453174 1453205 1454725 1454730) (-886 "PATMAB.spad" 1452599 1452609 1453164 1453169) (-885 "PATLRES.spad" 1451683 1451697 1452589 1452594) (-884 "PATAB.spad" 1451447 1451457 1451673 1451678) (-883 "PARTPERM.spad" 1448809 1448817 1451437 1451442) (-882 "PARSURF.spad" 1448237 1448265 1448799 1448804) (-881 "PARSU2.spad" 1448032 1448048 1448227 1448232) (-880 "script-parser.spad" 1447552 1447560 1448022 1448027) (-879 "PARSCURV.spad" 1446980 1447008 1447542 1447547) (-878 "PARSC2.spad" 1446769 1446785 1446970 1446975) (-877 "PARPCURV.spad" 1446227 1446255 1446759 1446764) (-876 "PARPC2.spad" 1446016 1446032 1446217 1446222) (-875 "PAN2EXPR.spad" 1445428 1445436 1446006 1446011) (-874 "PALETTE.spad" 1444398 1444406 1445418 1445423) (-873 "PAIR.spad" 1443381 1443394 1443986 1443991) (-872 "PADICRC.spad" 1440711 1440729 1441886 1441979) (-871 "PADICRAT.spad" 1438726 1438738 1438947 1439040) (-870 "PADIC.spad" 1438421 1438433 1438652 1438721) (-869 "PADICCT.spad" 1436962 1436974 1438347 1438416) (-868 "PADEPAC.spad" 1435641 1435660 1436952 1436957) (-867 "PADE.spad" 1434381 1434397 1435631 1435636) (-866 "OWP.spad" 1433621 1433651 1434239 1434306) (-865 "OVERSET.spad" 1433194 1433202 1433611 1433616) (-864 "OVAR.spad" 1432975 1432998 1433184 1433189) (-863 "OUT.spad" 1432059 1432067 1432965 1432970) (-862 "OUTFORM.spad" 1421355 1421363 1432049 1432054) (-861 "OUTBFILE.spad" 1420773 1420781 1421345 1421350) (-860 "OUTBCON.spad" 1419771 1419779 1420763 1420768) (-859 "OUTBCON.spad" 1418767 1418777 1419761 1419766) (-858 "OSI.spad" 1418242 1418250 1418757 1418762) (-857 "OSGROUP.spad" 1418160 1418168 1418232 1418237) (-856 "ORTHPOL.spad" 1416621 1416631 1418077 1418082) (-855 "OREUP.spad" 1416074 1416102 1416301 1416340) (-854 "ORESUP.spad" 1415373 1415397 1415754 1415793) (-853 "OREPCTO.spad" 1413192 1413204 1415293 1415298) (-852 "OREPCAT.spad" 1407249 1407259 1413148 1413187) (-851 "OREPCAT.spad" 1401196 1401208 1407097 1407102) (-850 "ORDSET.spad" 1400362 1400370 1401186 1401191) (-849 "ORDSET.spad" 1399526 1399536 1400352 1400357) (-848 "ORDRING.spad" 1398916 1398924 1399506 1399521) (-847 "ORDRING.spad" 1398314 1398324 1398906 1398911) (-846 "ORDMON.spad" 1398169 1398177 1398304 1398309) (-845 "ORDFUNS.spad" 1397295 1397311 1398159 1398164) (-844 "ORDFIN.spad" 1397115 1397123 1397285 1397290) (-843 "ORDCOMP.spad" 1395580 1395590 1396662 1396691) (-842 "ORDCOMP2.spad" 1394865 1394877 1395570 1395575) (-841 "OPTPROB.spad" 1393503 1393511 1394855 1394860) (-840 "OPTPACK.spad" 1385888 1385896 1393493 1393498) (-839 "OPTCAT.spad" 1383563 1383571 1385878 1385883) (-838 "OPSIG.spad" 1383215 1383223 1383553 1383558) (-837 "OPQUERY.spad" 1382764 1382772 1383205 1383210) (-836 "OP.spad" 1382506 1382516 1382586 1382653) (-835 "OPERCAT.spad" 1381970 1381980 1382496 1382501) (-834 "OPERCAT.spad" 1381432 1381444 1381960 1381965) (-833 "ONECOMP.spad" 1380177 1380187 1380979 1381008) (-832 "ONECOMP2.spad" 1379595 1379607 1380167 1380172) (-831 "OMSERVER.spad" 1378597 1378605 1379585 1379590) (-830 "OMSAGG.spad" 1378385 1378395 1378553 1378592) (-829 "OMPKG.spad" 1376997 1377005 1378375 1378380) (-828 "OM.spad" 1375962 1375970 1376987 1376992) (-827 "OMLO.spad" 1375387 1375399 1375848 1375887) (-826 "OMEXPR.spad" 1375221 1375231 1375377 1375382) (-825 "OMERR.spad" 1374764 1374772 1375211 1375216) (-824 "OMERRK.spad" 1373798 1373806 1374754 1374759) (-823 "OMENC.spad" 1373142 1373150 1373788 1373793) (-822 "OMDEV.spad" 1367431 1367439 1373132 1373137) (-821 "OMCONN.spad" 1366840 1366848 1367421 1367426) (-820 "OINTDOM.spad" 1366603 1366611 1366766 1366835) (-819 "OFMONOID.spad" 1362790 1362800 1366593 1366598) (-818 "ODVAR.spad" 1362051 1362061 1362780 1362785) (-817 "ODR.spad" 1361695 1361721 1361863 1362012) (-816 "ODPOL.spad" 1359077 1359087 1359417 1359544) (-815 "ODP.spad" 1348924 1348944 1349297 1349428) (-814 "ODETOOLS.spad" 1347507 1347526 1348914 1348919) (-813 "ODESYS.spad" 1345157 1345174 1347497 1347502) (-812 "ODERTRIC.spad" 1341098 1341115 1345114 1345119) (-811 "ODERED.spad" 1340485 1340509 1341088 1341093) (-810 "ODERAT.spad" 1338036 1338053 1340475 1340480) (-809 "ODEPRRIC.spad" 1334927 1334949 1338026 1338031) (-808 "ODEPROB.spad" 1334184 1334192 1334917 1334922) (-807 "ODEPRIM.spad" 1331458 1331480 1334174 1334179) (-806 "ODEPAL.spad" 1330834 1330858 1331448 1331453) (-805 "ODEPACK.spad" 1317436 1317444 1330824 1330829) (-804 "ODEINT.spad" 1316867 1316883 1317426 1317431) (-803 "ODEIFTBL.spad" 1314262 1314270 1316857 1316862) (-802 "ODEEF.spad" 1309629 1309645 1314252 1314257) (-801 "ODECONST.spad" 1309148 1309166 1309619 1309624) (-800 "ODECAT.spad" 1307744 1307752 1309138 1309143) (-799 "OCT.spad" 1305882 1305892 1306598 1306637) (-798 "OCTCT2.spad" 1305526 1305547 1305872 1305877) (-797 "OC.spad" 1303300 1303310 1305482 1305521) (-796 "OC.spad" 1300799 1300811 1302983 1302988) (-795 "OCAMON.spad" 1300647 1300655 1300789 1300794) (-794 "OASGP.spad" 1300462 1300470 1300637 1300642) (-793 "OAMONS.spad" 1299982 1299990 1300452 1300457) (-792 "OAMON.spad" 1299843 1299851 1299972 1299977) (-791 "OAGROUP.spad" 1299705 1299713 1299833 1299838) (-790 "NUMTUBE.spad" 1299292 1299308 1299695 1299700) (-789 "NUMQUAD.spad" 1287154 1287162 1299282 1299287) (-788 "NUMODE.spad" 1278290 1278298 1287144 1287149) (-787 "NUMINT.spad" 1275848 1275856 1278280 1278285) (-786 "NUMFMT.spad" 1274688 1274696 1275838 1275843) (-785 "NUMERIC.spad" 1266760 1266770 1274493 1274498) (-784 "NTSCAT.spad" 1265262 1265278 1266728 1266755) (-783 "NTPOLFN.spad" 1264807 1264817 1265179 1265184) (-782 "NSUP.spad" 1257853 1257863 1262393 1262546) (-781 "NSUP2.spad" 1257245 1257257 1257843 1257848) (-780 "NSMP.spad" 1253476 1253495 1253784 1253911) (-779 "NREP.spad" 1251848 1251862 1253466 1253471) (-778 "NPCOEF.spad" 1251094 1251114 1251838 1251843) (-777 "NORMRETR.spad" 1250692 1250731 1251084 1251089) (-776 "NORMPK.spad" 1248594 1248613 1250682 1250687) (-775 "NORMMA.spad" 1248282 1248308 1248584 1248589) (-774 "NONE.spad" 1248023 1248031 1248272 1248277) (-773 "NONE1.spad" 1247699 1247709 1248013 1248018) (-772 "NODE1.spad" 1247168 1247184 1247689 1247694) (-771 "NNI.spad" 1246055 1246063 1247142 1247163) (-770 "NLINSOL.spad" 1244677 1244687 1246045 1246050) (-769 "NIPROB.spad" 1243218 1243226 1244667 1244672) (-768 "NFINTBAS.spad" 1240678 1240695 1243208 1243213) (-767 "NETCLT.spad" 1240652 1240663 1240668 1240673) (-766 "NCODIV.spad" 1238850 1238866 1240642 1240647) (-765 "NCNTFRAC.spad" 1238492 1238506 1238840 1238845) (-764 "NCEP.spad" 1236652 1236666 1238482 1238487) (-763 "NASRING.spad" 1236248 1236256 1236642 1236647) (-762 "NASRING.spad" 1235842 1235852 1236238 1236243) (-761 "NARNG.spad" 1235186 1235194 1235832 1235837) (-760 "NARNG.spad" 1234528 1234538 1235176 1235181) (-759 "NAGSP.spad" 1233601 1233609 1234518 1234523) (-758 "NAGS.spad" 1223126 1223134 1233591 1233596) (-757 "NAGF07.spad" 1221519 1221527 1223116 1223121) (-756 "NAGF04.spad" 1215751 1215759 1221509 1221514) (-755 "NAGF02.spad" 1209560 1209568 1215741 1215746) (-754 "NAGF01.spad" 1205163 1205171 1209550 1209555) (-753 "NAGE04.spad" 1198623 1198631 1205153 1205158) (-752 "NAGE02.spad" 1188965 1188973 1198613 1198618) (-751 "NAGE01.spad" 1184849 1184857 1188955 1188960) (-750 "NAGD03.spad" 1182769 1182777 1184839 1184844) (-749 "NAGD02.spad" 1175300 1175308 1182759 1182764) (-748 "NAGD01.spad" 1169413 1169421 1175290 1175295) (-747 "NAGC06.spad" 1165200 1165208 1169403 1169408) (-746 "NAGC05.spad" 1163669 1163677 1165190 1165195) (-745 "NAGC02.spad" 1162924 1162932 1163659 1163664) (-744 "NAALG.spad" 1162459 1162469 1162892 1162919) (-743 "NAALG.spad" 1162014 1162026 1162449 1162454) (-742 "MULTSQFR.spad" 1158972 1158989 1162004 1162009) (-741 "MULTFACT.spad" 1158355 1158372 1158962 1158967) (-740 "MTSCAT.spad" 1156389 1156410 1158253 1158350) (-739 "MTHING.spad" 1156046 1156056 1156379 1156384) (-738 "MSYSCMD.spad" 1155480 1155488 1156036 1156041) (-737 "MSET.spad" 1153422 1153432 1155186 1155225) (-736 "MSETAGG.spad" 1153267 1153277 1153390 1153417) (-735 "MRING.spad" 1150238 1150250 1152975 1153042) (-734 "MRF2.spad" 1149806 1149820 1150228 1150233) (-733 "MRATFAC.spad" 1149352 1149369 1149796 1149801) (-732 "MPRFF.spad" 1147382 1147401 1149342 1149347) (-731 "MPOLY.spad" 1144853 1144868 1145212 1145339) (-730 "MPCPF.spad" 1144117 1144136 1144843 1144848) (-729 "MPC3.spad" 1143932 1143972 1144107 1144112) (-728 "MPC2.spad" 1143574 1143607 1143922 1143927) (-727 "MONOTOOL.spad" 1141909 1141926 1143564 1143569) (-726 "MONOID.spad" 1141228 1141236 1141899 1141904) (-725 "MONOID.spad" 1140545 1140555 1141218 1141223) (-724 "MONOGEN.spad" 1139291 1139304 1140405 1140540) (-723 "MONOGEN.spad" 1138059 1138074 1139175 1139180) (-722 "MONADWU.spad" 1136073 1136081 1138049 1138054) (-721 "MONADWU.spad" 1134085 1134095 1136063 1136068) (-720 "MONAD.spad" 1133229 1133237 1134075 1134080) (-719 "MONAD.spad" 1132371 1132381 1133219 1133224) (-718 "MOEBIUS.spad" 1131057 1131071 1132351 1132366) (-717 "MODULE.spad" 1130927 1130937 1131025 1131052) (-716 "MODULE.spad" 1130817 1130829 1130917 1130922) (-715 "MODRING.spad" 1130148 1130187 1130797 1130812) (-714 "MODOP.spad" 1128807 1128819 1129970 1130037) (-713 "MODMONOM.spad" 1128536 1128554 1128797 1128802) (-712 "MODMON.spad" 1125331 1125347 1126050 1126203) (-711 "MODFIELD.spad" 1124689 1124728 1125233 1125326) (-710 "MMLFORM.spad" 1123549 1123557 1124679 1124684) (-709 "MMAP.spad" 1123289 1123323 1123539 1123544) (-708 "MLO.spad" 1121716 1121726 1123245 1123284) (-707 "MLIFT.spad" 1120288 1120305 1121706 1121711) (-706 "MKUCFUNC.spad" 1119821 1119839 1120278 1120283) (-705 "MKRECORD.spad" 1119423 1119436 1119811 1119816) (-704 "MKFUNC.spad" 1118804 1118814 1119413 1119418) (-703 "MKFLCFN.spad" 1117760 1117770 1118794 1118799) (-702 "MKBCFUNC.spad" 1117245 1117263 1117750 1117755) (-701 "MINT.spad" 1116684 1116692 1117147 1117240) (-700 "MHROWRED.spad" 1115185 1115195 1116674 1116679) (-699 "MFLOAT.spad" 1113701 1113709 1115075 1115180) (-698 "MFINFACT.spad" 1113101 1113123 1113691 1113696) (-697 "MESH.spad" 1110833 1110841 1113091 1113096) (-696 "MDDFACT.spad" 1109026 1109036 1110823 1110828) (-695 "MDAGG.spad" 1108313 1108323 1109006 1109021) (-694 "MCMPLX.spad" 1104324 1104332 1104938 1105139) (-693 "MCDEN.spad" 1103532 1103544 1104314 1104319) (-692 "MCALCFN.spad" 1100634 1100660 1103522 1103527) (-691 "MAYBE.spad" 1099918 1099929 1100624 1100629) (-690 "MATSTOR.spad" 1097194 1097204 1099908 1099913) (-689 "MATRIX.spad" 1095898 1095908 1096382 1096409) (-688 "MATLIN.spad" 1093224 1093248 1095782 1095787) (-687 "MATCAT.spad" 1084809 1084831 1093192 1093219) (-686 "MATCAT.spad" 1076266 1076290 1084651 1084656) (-685 "MATCAT2.spad" 1075534 1075582 1076256 1076261) (-684 "MAPPKG3.spad" 1074433 1074447 1075524 1075529) (-683 "MAPPKG2.spad" 1073767 1073779 1074423 1074428) (-682 "MAPPKG1.spad" 1072585 1072595 1073757 1073762) (-681 "MAPPAST.spad" 1071898 1071906 1072575 1072580) (-680 "MAPHACK3.spad" 1071706 1071720 1071888 1071893) (-679 "MAPHACK2.spad" 1071471 1071483 1071696 1071701) (-678 "MAPHACK1.spad" 1071101 1071111 1071461 1071466) (-677 "MAGMA.spad" 1068891 1068908 1071091 1071096) (-676 "MACROAST.spad" 1068470 1068478 1068881 1068886) (-675 "M3D.spad" 1066166 1066176 1067848 1067853) (-674 "LZSTAGG.spad" 1063394 1063404 1066156 1066161) (-673 "LZSTAGG.spad" 1060620 1060632 1063384 1063389) (-672 "LWORD.spad" 1057325 1057342 1060610 1060615) (-671 "LSTAST.spad" 1057109 1057117 1057315 1057320) (-670 "LSQM.spad" 1055335 1055349 1055733 1055784) (-669 "LSPP.spad" 1054868 1054885 1055325 1055330) (-668 "LSMP.spad" 1053708 1053736 1054858 1054863) (-667 "LSMP1.spad" 1051512 1051526 1053698 1053703) (-666 "LSAGG.spad" 1051181 1051191 1051480 1051507) (-665 "LSAGG.spad" 1050870 1050882 1051171 1051176) (-664 "LPOLY.spad" 1049824 1049843 1050726 1050795) (-663 "LPEFRAC.spad" 1049081 1049091 1049814 1049819) (-662 "LO.spad" 1048482 1048496 1049015 1049042) (-661 "LOGIC.spad" 1048084 1048092 1048472 1048477) (-660 "LOGIC.spad" 1047684 1047694 1048074 1048079) (-659 "LODOOPS.spad" 1046602 1046614 1047674 1047679) (-658 "LODO.spad" 1045986 1046002 1046282 1046321) (-657 "LODOF.spad" 1045030 1045047 1045943 1045948) (-656 "LODOCAT.spad" 1043688 1043698 1044986 1045025) (-655 "LODOCAT.spad" 1042344 1042356 1043644 1043649) (-654 "LODO2.spad" 1041617 1041629 1042024 1042063) (-653 "LODO1.spad" 1041017 1041027 1041297 1041336) (-652 "LODEEF.spad" 1039789 1039807 1041007 1041012) (-651 "LNAGG.spad" 1035591 1035601 1039779 1039784) (-650 "LNAGG.spad" 1031357 1031369 1035547 1035552) (-649 "LMOPS.spad" 1028093 1028110 1031347 1031352) (-648 "LMODULE.spad" 1027861 1027871 1028083 1028088) (-647 "LMDICT.spad" 1027144 1027154 1027412 1027439) (-646 "LLINSET.spad" 1026541 1026551 1027134 1027139) (-645 "LITERAL.spad" 1026447 1026458 1026531 1026536) (-644 "LIST.spad" 1024165 1024175 1025594 1025621) (-643 "LIST3.spad" 1023456 1023470 1024155 1024160) (-642 "LIST2.spad" 1022096 1022108 1023446 1023451) (-641 "LIST2MAP.spad" 1018973 1018985 1022086 1022091) (-640 "LINSET.spad" 1018595 1018605 1018963 1018968) (-639 "LINEXP.spad" 1018027 1018037 1018575 1018590) (-638 "LINDEP.spad" 1016804 1016816 1017939 1017944) (-637 "LIMITRF.spad" 1014718 1014728 1016794 1016799) (-636 "LIMITPS.spad" 1013601 1013614 1014708 1014713) (-635 "LIE.spad" 1011615 1011627 1012891 1013036) (-634 "LIECAT.spad" 1011091 1011101 1011541 1011610) (-633 "LIECAT.spad" 1010595 1010607 1011047 1011052) (-632 "LIB.spad" 1008643 1008651 1009254 1009269) (-631 "LGROBP.spad" 1005996 1006015 1008633 1008638) (-630 "LF.spad" 1004915 1004931 1005986 1005991) (-629 "LFCAT.spad" 1003934 1003942 1004905 1004910) (-628 "LEXTRIPK.spad" 999437 999452 1003924 1003929) (-627 "LEXP.spad" 997440 997467 999417 999432) (-626 "LETAST.spad" 997139 997147 997430 997435) (-625 "LEADCDET.spad" 995523 995540 997129 997134) (-624 "LAZM3PK.spad" 994227 994249 995513 995518) (-623 "LAUPOL.spad" 992916 992929 993820 993889) (-622 "LAPLACE.spad" 992489 992505 992906 992911) (-621 "LA.spad" 991929 991943 992411 992450) (-620 "LALG.spad" 991705 991715 991909 991924) (-619 "LALG.spad" 991489 991501 991695 991700) (-618 "KVTFROM.spad" 991224 991234 991479 991484) (-617 "KTVLOGIC.spad" 990736 990744 991214 991219) (-616 "KRCFROM.spad" 990474 990484 990726 990731) (-615 "KOVACIC.spad" 989187 989204 990464 990469) (-614 "KONVERT.spad" 988909 988919 989177 989182) (-613 "KOERCE.spad" 988646 988656 988899 988904) (-612 "KERNEL.spad" 987265 987275 988430 988435) (-611 "KERNEL2.spad" 986968 986980 987255 987260) (-610 "KDAGG.spad" 986071 986093 986948 986963) (-609 "KDAGG.spad" 985182 985206 986061 986066) (-608 "KAFILE.spad" 984145 984161 984380 984407) (-607 "JORDAN.spad" 981972 981984 983435 983580) (-606 "JOINAST.spad" 981666 981674 981962 981967) (-605 "JAVACODE.spad" 981532 981540 981656 981661) (-604 "IXAGG.spad" 979655 979679 981522 981527) (-603 "IXAGG.spad" 977633 977659 979502 979507) (-602 "IVECTOR.spad" 976403 976418 976558 976585) (-601 "ITUPLE.spad" 975548 975558 976393 976398) (-600 "ITRIGMNP.spad" 974359 974378 975538 975543) (-599 "ITFUN3.spad" 973853 973867 974349 974354) (-598 "ITFUN2.spad" 973583 973595 973843 973848) (-597 "ITAYLOR.spad" 971375 971390 973419 973544) (-596 "ISUPS.spad" 963786 963801 970349 970446) (-595 "ISUMP.spad" 963283 963299 963776 963781) (-594 "ISTRING.spad" 962286 962299 962452 962479) (-593 "ISAST.spad" 962005 962013 962276 962281) (-592 "IRURPK.spad" 960718 960737 961995 962000) (-591 "IRSN.spad" 958678 958686 960708 960713) (-590 "IRRF2F.spad" 957153 957163 958634 958639) (-589 "IRREDFFX.spad" 956754 956765 957143 957148) (-588 "IROOT.spad" 955085 955095 956744 956749) (-587 "IR.spad" 952874 952888 954940 954967) (-586 "IR2.spad" 951894 951910 952864 952869) (-585 "IR2F.spad" 951094 951110 951884 951889) (-584 "IPRNTPK.spad" 950854 950862 951084 951089) (-583 "IPF.spad" 950419 950431 950659 950752) (-582 "IPADIC.spad" 950180 950206 950345 950414) (-581 "IP4ADDR.spad" 949737 949745 950170 950175) (-580 "IOMODE.spad" 949358 949366 949727 949732) (-579 "IOBFILE.spad" 948719 948727 949348 949353) (-578 "IOBCON.spad" 948584 948592 948709 948714) (-577 "INVLAPLA.spad" 948229 948245 948574 948579) (-576 "INTTR.spad" 941475 941492 948219 948224) (-575 "INTTOOLS.spad" 939186 939202 941049 941054) (-574 "INTSLPE.spad" 938492 938500 939176 939181) (-573 "INTRVL.spad" 938058 938068 938406 938487) (-572 "INTRF.spad" 936422 936436 938048 938053) (-571 "INTRET.spad" 935854 935864 936412 936417) (-570 "INTRAT.spad" 934529 934546 935844 935849) (-569 "INTPM.spad" 932892 932908 934172 934177) (-568 "INTPAF.spad" 930660 930678 932824 932829) (-567 "INTPACK.spad" 920970 920978 930650 930655) (-566 "INT.spad" 920331 920339 920824 920965) (-565 "INTHERTR.spad" 919597 919614 920321 920326) (-564 "INTHERAL.spad" 919263 919287 919587 919592) (-563 "INTHEORY.spad" 915676 915684 919253 919258) (-562 "INTG0.spad" 909139 909157 915608 915613) (-561 "INTFTBL.spad" 903168 903176 909129 909134) (-560 "INTFACT.spad" 902227 902237 903158 903163) (-559 "INTEF.spad" 900542 900558 902217 902222) (-558 "INTDOM.spad" 899157 899165 900468 900537) (-557 "INTDOM.spad" 897834 897844 899147 899152) (-556 "INTCAT.spad" 896087 896097 897748 897829) (-555 "INTBIT.spad" 895590 895598 896077 896082) (-554 "INTALG.spad" 894772 894799 895580 895585) (-553 "INTAF.spad" 894264 894280 894762 894767) (-552 "INTABL.spad" 892782 892813 892945 892972) (-551 "INT8.spad" 892662 892670 892772 892777) (-550 "INT64.spad" 892541 892549 892652 892657) (-549 "INT32.spad" 892420 892428 892531 892536) (-548 "INT16.spad" 892299 892307 892410 892415) (-547 "INS.spad" 889766 889774 892201 892294) (-546 "INS.spad" 887319 887329 889756 889761) (-545 "INPSIGN.spad" 886753 886766 887309 887314) (-544 "INPRODPF.spad" 885819 885838 886743 886748) (-543 "INPRODFF.spad" 884877 884901 885809 885814) (-542 "INNMFACT.spad" 883848 883865 884867 884872) (-541 "INMODGCD.spad" 883332 883362 883838 883843) (-540 "INFSP.spad" 881617 881639 883322 883327) (-539 "INFPROD0.spad" 880667 880686 881607 881612) (-538 "INFORM.spad" 877828 877836 880657 880662) (-537 "INFORM1.spad" 877453 877463 877818 877823) (-536 "INFINITY.spad" 877005 877013 877443 877448) (-535 "INETCLTS.spad" 876982 876990 876995 877000) (-534 "INEP.spad" 875514 875536 876972 876977) (-533 "INDE.spad" 875243 875260 875504 875509) (-532 "INCRMAPS.spad" 874664 874674 875233 875238) (-531 "INBFILE.spad" 873736 873744 874654 874659) (-530 "INBFF.spad" 869506 869517 873726 873731) (-529 "INBCON.spad" 867794 867802 869496 869501) (-528 "INBCON.spad" 866080 866090 867784 867789) (-527 "INAST.spad" 865741 865749 866070 866075) (-526 "IMPTAST.spad" 865449 865457 865731 865736) (-525 "IMATRIX.spad" 864394 864420 864906 864933) (-524 "IMATQF.spad" 863488 863532 864350 864355) (-523 "IMATLIN.spad" 862093 862117 863444 863449) (-522 "ILIST.spad" 860749 860764 861276 861303) (-521 "IIARRAY2.spad" 860137 860175 860356 860383) (-520 "IFF.spad" 859547 859563 859818 859911) (-519 "IFAST.spad" 859161 859169 859537 859542) (-518 "IFARRAY.spad" 856648 856663 858344 858371) (-517 "IFAMON.spad" 856510 856527 856604 856609) (-516 "IEVALAB.spad" 855899 855911 856500 856505) (-515 "IEVALAB.spad" 855286 855300 855889 855894) (-514 "IDPO.spad" 855084 855096 855276 855281) (-513 "IDPOAMS.spad" 854840 854852 855074 855079) (-512 "IDPOAM.spad" 854560 854572 854830 854835) (-511 "IDPC.spad" 853494 853506 854550 854555) (-510 "IDPAM.spad" 853239 853251 853484 853489) (-509 "IDPAG.spad" 852986 852998 853229 853234) (-508 "IDENT.spad" 852636 852644 852976 852981) (-507 "IDECOMP.spad" 849873 849891 852626 852631) (-506 "IDEAL.spad" 844796 844835 849808 849813) (-505 "ICDEN.spad" 843947 843963 844786 844791) (-504 "ICARD.spad" 843136 843144 843937 843942) (-503 "IBPTOOLS.spad" 841729 841746 843126 843131) (-502 "IBITS.spad" 840928 840941 841365 841392) (-501 "IBATOOL.spad" 837803 837822 840918 840923) (-500 "IBACHIN.spad" 836290 836305 837793 837798) (-499 "IARRAY2.spad" 835278 835304 835897 835924) (-498 "IARRAY1.spad" 834323 834338 834461 834488) (-497 "IAN.spad" 832536 832544 834139 834232) (-496 "IALGFACT.spad" 832137 832170 832526 832531) (-495 "HYPCAT.spad" 831561 831569 832127 832132) (-494 "HYPCAT.spad" 830983 830993 831551 831556) (-493 "HOSTNAME.spad" 830791 830799 830973 830978) (-492 "HOMOTOP.spad" 830534 830544 830781 830786) (-491 "HOAGG.spad" 827802 827812 830524 830529) (-490 "HOAGG.spad" 824845 824857 827569 827574) (-489 "HEXADEC.spad" 822947 822955 823312 823405) (-488 "HEUGCD.spad" 821962 821973 822937 822942) (-487 "HELLFDIV.spad" 821552 821576 821952 821957) (-486 "HEAP.spad" 820944 820954 821159 821186) (-485 "HEADAST.spad" 820475 820483 820934 820939) (-484 "HDP.spad" 810318 810334 810695 810826) (-483 "HDMP.spad" 807530 807545 808148 808275) (-482 "HB.spad" 805767 805775 807520 807525) (-481 "HASHTBL.spad" 804237 804268 804448 804475) (-480 "HASAST.spad" 803953 803961 804227 804232) (-479 "HACKPI.spad" 803436 803444 803855 803948) (-478 "GTSET.spad" 802375 802391 803082 803109) (-477 "GSTBL.spad" 800894 800929 801068 801083) (-476 "GSERIES.spad" 798061 798088 799026 799175) (-475 "GROUP.spad" 797330 797338 798041 798056) (-474 "GROUP.spad" 796607 796617 797320 797325) (-473 "GROEBSOL.spad" 795095 795116 796597 796602) (-472 "GRMOD.spad" 793666 793678 795085 795090) (-471 "GRMOD.spad" 792235 792249 793656 793661) (-470 "GRIMAGE.spad" 784840 784848 792225 792230) (-469 "GRDEF.spad" 783219 783227 784830 784835) (-468 "GRAY.spad" 781678 781686 783209 783214) (-467 "GRALG.spad" 780725 780737 781668 781673) (-466 "GRALG.spad" 779770 779784 780715 780720) (-465 "GPOLSET.spad" 779224 779247 779452 779479) (-464 "GOSPER.spad" 778489 778507 779214 779219) (-463 "GMODPOL.spad" 777627 777654 778457 778484) (-462 "GHENSEL.spad" 776696 776710 777617 777622) (-461 "GENUPS.spad" 772797 772810 776686 776691) (-460 "GENUFACT.spad" 772374 772384 772787 772792) (-459 "GENPGCD.spad" 771958 771975 772364 772369) (-458 "GENMFACT.spad" 771410 771429 771948 771953) (-457 "GENEEZ.spad" 769349 769362 771400 771405) (-456 "GDMP.spad" 766403 766420 767179 767306) (-455 "GCNAALG.spad" 760298 760325 766197 766264) (-454 "GCDDOM.spad" 759470 759478 760224 760293) (-453 "GCDDOM.spad" 758704 758714 759460 759465) (-452 "GB.spad" 756222 756260 758660 758665) (-451 "GBINTERN.spad" 752242 752280 756212 756217) (-450 "GBF.spad" 747999 748037 752232 752237) (-449 "GBEUCLID.spad" 745873 745911 747989 747994) (-448 "GAUSSFAC.spad" 745170 745178 745863 745868) (-447 "GALUTIL.spad" 743492 743502 745126 745131) (-446 "GALPOLYU.spad" 741938 741951 743482 743487) (-445 "GALFACTU.spad" 740103 740122 741928 741933) (-444 "GALFACT.spad" 730236 730247 740093 740098) (-443 "FVFUN.spad" 727259 727267 730226 730231) (-442 "FVC.spad" 726311 726319 727249 727254) (-441 "FUNDESC.spad" 725989 725997 726301 726306) (-440 "FUNCTION.spad" 725838 725850 725979 725984) (-439 "FT.spad" 724131 724139 725828 725833) (-438 "FTEM.spad" 723294 723302 724121 724126) (-437 "FSUPFACT.spad" 722194 722213 723230 723235) (-436 "FST.spad" 720280 720288 722184 722189) (-435 "FSRED.spad" 719758 719774 720270 720275) (-434 "FSPRMELT.spad" 718582 718598 719715 719720) (-433 "FSPECF.spad" 716659 716675 718572 718577) (-432 "FS.spad" 710721 710731 716434 716654) (-431 "FS.spad" 704561 704573 710276 710281) (-430 "FSINT.spad" 704219 704235 704551 704556) (-429 "FSERIES.spad" 703406 703418 704039 704138) (-428 "FSCINT.spad" 702719 702735 703396 703401) (-427 "FSAGG.spad" 701836 701846 702675 702714) (-426 "FSAGG.spad" 700915 700927 701756 701761) (-425 "FSAGG2.spad" 699614 699630 700905 700910) (-424 "FS2UPS.spad" 694097 694131 699604 699609) (-423 "FS2.spad" 693742 693758 694087 694092) (-422 "FS2EXPXP.spad" 692865 692888 693732 693737) (-421 "FRUTIL.spad" 691807 691817 692855 692860) (-420 "FR.spad" 685501 685511 690831 690900) (-419 "FRNAALG.spad" 680588 680598 685443 685496) (-418 "FRNAALG.spad" 675687 675699 680544 680549) (-417 "FRNAAF2.spad" 675141 675159 675677 675682) (-416 "FRMOD.spad" 674535 674565 675072 675077) (-415 "FRIDEAL.spad" 673730 673751 674515 674530) (-414 "FRIDEAL2.spad" 673332 673364 673720 673725) (-413 "FRETRCT.spad" 672843 672853 673322 673327) (-412 "FRETRCT.spad" 672220 672232 672701 672706) (-411 "FRAMALG.spad" 670548 670561 672176 672215) (-410 "FRAMALG.spad" 668908 668923 670538 670543) (-409 "FRAC.spad" 666007 666017 666410 666583) (-408 "FRAC2.spad" 665610 665622 665997 666002) (-407 "FR2.spad" 664944 664956 665600 665605) (-406 "FPS.spad" 661753 661761 664834 664939) (-405 "FPS.spad" 658590 658600 661673 661678) (-404 "FPC.spad" 657632 657640 658492 658585) (-403 "FPC.spad" 656760 656770 657622 657627) (-402 "FPATMAB.spad" 656522 656532 656750 656755) (-401 "FPARFRAC.spad" 654995 655012 656512 656517) (-400 "FORTRAN.spad" 653501 653544 654985 654990) (-399 "FORT.spad" 652430 652438 653491 653496) (-398 "FORTFN.spad" 649600 649608 652420 652425) (-397 "FORTCAT.spad" 649284 649292 649590 649595) (-396 "FORMULA.spad" 646748 646756 649274 649279) (-395 "FORMULA1.spad" 646227 646237 646738 646743) (-394 "FORDER.spad" 645918 645942 646217 646222) (-393 "FOP.spad" 645119 645127 645908 645913) (-392 "FNLA.spad" 644543 644565 645087 645114) (-391 "FNCAT.spad" 643130 643138 644533 644538) (-390 "FNAME.spad" 643022 643030 643120 643125) (-389 "FMTC.spad" 642820 642828 642948 643017) (-388 "FMONOID.spad" 639875 639885 642776 642781) (-387 "FM.spad" 639570 639582 639809 639836) (-386 "FMFUN.spad" 636600 636608 639560 639565) (-385 "FMC.spad" 635652 635660 636590 636595) (-384 "FMCAT.spad" 633306 633324 635620 635647) (-383 "FM1.spad" 632663 632675 633240 633267) (-382 "FLOATRP.spad" 630384 630398 632653 632658) (-381 "FLOAT.spad" 623672 623680 630250 630379) (-380 "FLOATCP.spad" 621089 621103 623662 623667) (-379 "FLINEXP.spad" 620801 620811 621069 621084) (-378 "FLINEXP.spad" 620467 620479 620737 620742) (-377 "FLASORT.spad" 619787 619799 620457 620462) (-376 "FLALG.spad" 617433 617452 619713 619782) (-375 "FLAGG.spad" 614451 614461 617413 617428) (-374 "FLAGG.spad" 611370 611382 614334 614339) (-373 "FLAGG2.spad" 610051 610067 611360 611365) (-372 "FINRALG.spad" 608080 608093 610007 610046) (-371 "FINRALG.spad" 606035 606050 607964 607969) (-370 "FINITE.spad" 605187 605195 606025 606030) (-369 "FINAALG.spad" 594168 594178 605129 605182) (-368 "FINAALG.spad" 583161 583173 594124 594129) (-367 "FILE.spad" 582744 582754 583151 583156) (-366 "FILECAT.spad" 581262 581279 582734 582739) (-365 "FIELD.spad" 580668 580676 581164 581257) (-364 "FIELD.spad" 580160 580170 580658 580663) (-363 "FGROUP.spad" 578769 578779 580140 580155) (-362 "FGLMICPK.spad" 577556 577571 578759 578764) (-361 "FFX.spad" 576931 576946 577272 577365) (-360 "FFSLPE.spad" 576420 576441 576921 576926) (-359 "FFPOLY.spad" 567672 567683 576410 576415) (-358 "FFPOLY2.spad" 566732 566749 567662 567667) (-357 "FFP.spad" 566129 566149 566448 566541) (-356 "FF.spad" 565577 565593 565810 565903) (-355 "FFNBX.spad" 564089 564109 565293 565386) (-354 "FFNBP.spad" 562602 562619 563805 563898) (-353 "FFNB.spad" 561067 561088 562283 562376) (-352 "FFINTBAS.spad" 558481 558500 561057 561062) (-351 "FFIELDC.spad" 556056 556064 558383 558476) (-350 "FFIELDC.spad" 553717 553727 556046 556051) (-349 "FFHOM.spad" 552465 552482 553707 553712) (-348 "FFF.spad" 549900 549911 552455 552460) (-347 "FFCGX.spad" 548747 548767 549616 549709) (-346 "FFCGP.spad" 547636 547656 548463 548556) (-345 "FFCG.spad" 546428 546449 547317 547410) (-344 "FFCAT.spad" 539455 539477 546267 546423) (-343 "FFCAT.spad" 532561 532585 539375 539380) (-342 "FFCAT2.spad" 532306 532346 532551 532556) (-341 "FEXPR.spad" 524015 524061 532062 532101) (-340 "FEVALAB.spad" 523721 523731 524005 524010) (-339 "FEVALAB.spad" 523212 523224 523498 523503) (-338 "FDIV.spad" 522654 522678 523202 523207) (-337 "FDIVCAT.spad" 520696 520720 522644 522649) (-336 "FDIVCAT.spad" 518736 518762 520686 520691) (-335 "FDIV2.spad" 518390 518430 518726 518731) (-334 "FCTRDATA.spad" 517422 517430 518380 518385) (-333 "FCPAK1.spad" 515975 515983 517412 517417) (-332 "FCOMP.spad" 515354 515364 515965 515970) (-331 "FC.spad" 505269 505277 515344 515349) (-330 "FAXF.spad" 498204 498218 505171 505264) (-329 "FAXF.spad" 491191 491207 498160 498165) (-328 "FARRAY.spad" 489337 489347 490374 490401) (-327 "FAMR.spad" 487457 487469 489235 489332) (-326 "FAMR.spad" 485561 485575 487341 487346) (-325 "FAMONOID.spad" 485211 485221 485515 485520) (-324 "FAMONC.spad" 483433 483445 485201 485206) (-323 "FAGROUP.spad" 483039 483049 483329 483356) (-322 "FACUTIL.spad" 481235 481252 483029 483034) (-321 "FACTFUNC.spad" 480411 480421 481225 481230) (-320 "EXPUPXS.spad" 477244 477267 478543 478692) (-319 "EXPRTUBE.spad" 474472 474480 477234 477239) (-318 "EXPRODE.spad" 471344 471360 474462 474467) (-317 "EXPR.spad" 466619 466629 467333 467740) (-316 "EXPR2UPS.spad" 462711 462724 466609 466614) (-315 "EXPR2.spad" 462414 462426 462701 462706) (-314 "EXPEXPAN.spad" 459352 459377 459986 460079) (-313 "EXIT.spad" 459023 459031 459342 459347) (-312 "EXITAST.spad" 458759 458767 459013 459018) (-311 "EVALCYC.spad" 458217 458231 458749 458754) (-310 "EVALAB.spad" 457781 457791 458207 458212) (-309 "EVALAB.spad" 457343 457355 457771 457776) (-308 "EUCDOM.spad" 454885 454893 457269 457338) (-307 "EUCDOM.spad" 452489 452499 454875 454880) (-306 "ESTOOLS.spad" 444329 444337 452479 452484) (-305 "ESTOOLS2.spad" 443930 443944 444319 444324) (-304 "ESTOOLS1.spad" 443615 443626 443920 443925) (-303 "ES.spad" 436162 436170 443605 443610) (-302 "ES.spad" 428615 428625 436060 436065) (-301 "ESCONT.spad" 425388 425396 428605 428610) (-300 "ESCONT1.spad" 425137 425149 425378 425383) (-299 "ES2.spad" 424632 424648 425127 425132) (-298 "ES1.spad" 424198 424214 424622 424627) (-297 "ERROR.spad" 421519 421527 424188 424193) (-296 "EQTBL.spad" 419991 420013 420200 420227) (-295 "EQ.spad" 414784 414794 417583 417695) (-294 "EQ2.spad" 414500 414512 414774 414779) (-293 "EP.spad" 410814 410824 414490 414495) (-292 "ENV.spad" 409466 409474 410804 410809) (-291 "ENTIRER.spad" 409134 409142 409410 409461) (-290 "EMR.spad" 408335 408376 409060 409129) (-289 "ELTAGG.spad" 406575 406594 408325 408330) (-288 "ELTAGG.spad" 404779 404800 406531 406536) (-287 "ELTAB.spad" 404226 404244 404769 404774) (-286 "ELFUTS.spad" 403605 403624 404216 404221) (-285 "ELEMFUN.spad" 403294 403302 403595 403600) (-284 "ELEMFUN.spad" 402981 402991 403284 403289) (-283 "ELAGG.spad" 400924 400934 402961 402976) (-282 "ELAGG.spad" 398804 398816 400843 400848) (-281 "ELABEXPR.spad" 397727 397735 398794 398799) (-280 "EFUPXS.spad" 394503 394533 397683 397688) (-279 "EFULS.spad" 391339 391362 394459 394464) (-278 "EFSTRUC.spad" 389294 389310 391329 391334) (-277 "EF.spad" 384060 384076 389284 389289) (-276 "EAB.spad" 382336 382344 384050 384055) (-275 "E04UCFA.spad" 381872 381880 382326 382331) (-274 "E04NAFA.spad" 381449 381457 381862 381867) (-273 "E04MBFA.spad" 381029 381037 381439 381444) (-272 "E04JAFA.spad" 380565 380573 381019 381024) (-271 "E04GCFA.spad" 380101 380109 380555 380560) (-270 "E04FDFA.spad" 379637 379645 380091 380096) (-269 "E04DGFA.spad" 379173 379181 379627 379632) (-268 "E04AGNT.spad" 375015 375023 379163 379168) (-267 "DVARCAT.spad" 371700 371710 375005 375010) (-266 "DVARCAT.spad" 368383 368395 371690 371695) (-265 "DSMP.spad" 365850 365864 366155 366282) (-264 "DROPT.spad" 359795 359803 365840 365845) (-263 "DROPT1.spad" 359458 359468 359785 359790) (-262 "DROPT0.spad" 354285 354293 359448 359453) (-261 "DRAWPT.spad" 352440 352448 354275 354280) (-260 "DRAW.spad" 345040 345053 352430 352435) (-259 "DRAWHACK.spad" 344348 344358 345030 345035) (-258 "DRAWCX.spad" 341790 341798 344338 344343) (-257 "DRAWCURV.spad" 341327 341342 341780 341785) (-256 "DRAWCFUN.spad" 330499 330507 341317 341322) (-255 "DQAGG.spad" 328667 328677 330467 330494) (-254 "DPOLCAT.spad" 324008 324024 328535 328662) (-253 "DPOLCAT.spad" 319435 319453 323964 323969) (-252 "DPMO.spad" 311661 311677 311799 312100) (-251 "DPMM.spad" 303900 303918 304025 304326) (-250 "DOMTMPLT.spad" 303560 303568 303890 303895) (-249 "DOMCTOR.spad" 303315 303323 303550 303555) (-248 "DOMAIN.spad" 302446 302454 303305 303310) (-247 "DMP.spad" 299704 299719 300276 300403) (-246 "DLP.spad" 299052 299062 299694 299699) (-245 "DLIST.spad" 297631 297641 298235 298262) (-244 "DLAGG.spad" 296042 296052 297621 297626) (-243 "DIVRING.spad" 295584 295592 295986 296037) (-242 "DIVRING.spad" 295170 295180 295574 295579) (-241 "DISPLAY.spad" 293350 293358 295160 295165) (-240 "DIRPROD.spad" 282930 282946 283570 283701) (-239 "DIRPROD2.spad" 281738 281756 282920 282925) (-238 "DIRPCAT.spad" 280680 280696 281602 281733) (-237 "DIRPCAT.spad" 279351 279369 280275 280280) (-236 "DIOSP.spad" 278176 278184 279341 279346) (-235 "DIOPS.spad" 277160 277170 278156 278171) (-234 "DIOPS.spad" 276118 276130 277116 277121) (-233 "DIFRING.spad" 275410 275418 276098 276113) (-232 "DIFRING.spad" 274710 274720 275400 275405) (-231 "DIFEXT.spad" 273869 273879 274690 274705) (-230 "DIFEXT.spad" 272945 272957 273768 273773) (-229 "DIAGG.spad" 272575 272585 272925 272940) (-228 "DIAGG.spad" 272213 272225 272565 272570) (-227 "DHMATRIX.spad" 270517 270527 271670 271697) (-226 "DFSFUN.spad" 263925 263933 270507 270512) (-225 "DFLOAT.spad" 260646 260654 263815 263920) (-224 "DFINTTLS.spad" 258855 258871 260636 260641) (-223 "DERHAM.spad" 256765 256797 258835 258850) (-222 "DEQUEUE.spad" 256083 256093 256372 256399) (-221 "DEGRED.spad" 255698 255712 256073 256078) (-220 "DEFINTRF.spad" 253223 253233 255688 255693) (-219 "DEFINTEF.spad" 251719 251735 253213 253218) (-218 "DEFAST.spad" 251087 251095 251709 251714) (-217 "DECIMAL.spad" 249193 249201 249554 249647) (-216 "DDFACT.spad" 246992 247009 249183 249188) (-215 "DBLRESP.spad" 246590 246614 246982 246987) (-214 "DBASE.spad" 245244 245254 246580 246585) (-213 "DATAARY.spad" 244706 244719 245234 245239) (-212 "D03FAFA.spad" 244534 244542 244696 244701) (-211 "D03EEFA.spad" 244354 244362 244524 244529) (-210 "D03AGNT.spad" 243434 243442 244344 244349) (-209 "D02EJFA.spad" 242896 242904 243424 243429) (-208 "D02CJFA.spad" 242374 242382 242886 242891) (-207 "D02BHFA.spad" 241864 241872 242364 242369) (-206 "D02BBFA.spad" 241354 241362 241854 241859) (-205 "D02AGNT.spad" 236158 236166 241344 241349) (-204 "D01WGTS.spad" 234477 234485 236148 236153) (-203 "D01TRNS.spad" 234454 234462 234467 234472) (-202 "D01GBFA.spad" 233976 233984 234444 234449) (-201 "D01FCFA.spad" 233498 233506 233966 233971) (-200 "D01ASFA.spad" 232966 232974 233488 233493) (-199 "D01AQFA.spad" 232412 232420 232956 232961) (-198 "D01APFA.spad" 231836 231844 232402 232407) (-197 "D01ANFA.spad" 231330 231338 231826 231831) (-196 "D01AMFA.spad" 230840 230848 231320 231325) (-195 "D01ALFA.spad" 230380 230388 230830 230835) (-194 "D01AKFA.spad" 229906 229914 230370 230375) (-193 "D01AJFA.spad" 229429 229437 229896 229901) (-192 "D01AGNT.spad" 225488 225496 229419 229424) (-191 "CYCLOTOM.spad" 224994 225002 225478 225483) (-190 "CYCLES.spad" 221826 221834 224984 224989) (-189 "CVMP.spad" 221243 221253 221816 221821) (-188 "CTRIGMNP.spad" 219733 219749 221233 221238) (-187 "CTOR.spad" 219424 219432 219723 219728) (-186 "CTORKIND.spad" 219027 219035 219414 219419) (-185 "CTORCAT.spad" 218276 218284 219017 219022) (-184 "CTORCAT.spad" 217523 217533 218266 218271) (-183 "CTORCALL.spad" 217103 217111 217513 217518) (-182 "CSTTOOLS.spad" 216346 216359 217093 217098) (-181 "CRFP.spad" 210050 210063 216336 216341) (-180 "CRCEAST.spad" 209770 209778 210040 210045) (-179 "CRAPACK.spad" 208813 208823 209760 209765) (-178 "CPMATCH.spad" 208313 208328 208738 208743) (-177 "CPIMA.spad" 208018 208037 208303 208308) (-176 "COORDSYS.spad" 202911 202921 208008 208013) (-175 "CONTOUR.spad" 202318 202326 202901 202906) (-174 "CONTFRAC.spad" 197930 197940 202220 202313) (-173 "CONDUIT.spad" 197688 197696 197920 197925) (-172 "COMRING.spad" 197362 197370 197626 197683) (-171 "COMPPROP.spad" 196876 196884 197352 197357) (-170 "COMPLPAT.spad" 196643 196658 196866 196871) (-169 "COMPLEX.spad" 190780 190790 191024 191285) (-168 "COMPLEX2.spad" 190493 190505 190770 190775) (-167 "COMPFACT.spad" 190095 190109 190483 190488) (-166 "COMPCAT.spad" 188163 188173 189829 190090) (-165 "COMPCAT.spad" 185959 185971 187627 187632) (-164 "COMMUPC.spad" 185705 185723 185949 185954) (-163 "COMMONOP.spad" 185238 185246 185695 185700) (-162 "COMM.spad" 185047 185055 185228 185233) (-161 "COMMAAST.spad" 184810 184818 185037 185042) (-160 "COMBOPC.spad" 183715 183723 184800 184805) (-159 "COMBINAT.spad" 182460 182470 183705 183710) (-158 "COMBF.spad" 179828 179844 182450 182455) (-157 "COLOR.spad" 178665 178673 179818 179823) (-156 "COLONAST.spad" 178331 178339 178655 178660) (-155 "CMPLXRT.spad" 178040 178057 178321 178326) (-154 "CLLCTAST.spad" 177702 177710 178030 178035) (-153 "CLIP.spad" 173794 173802 177692 177697) (-152 "CLIF.spad" 172433 172449 173750 173789) (-151 "CLAGG.spad" 168918 168928 172423 172428) (-150 "CLAGG.spad" 165274 165286 168781 168786) (-149 "CINTSLPE.spad" 164599 164612 165264 165269) (-148 "CHVAR.spad" 162677 162699 164589 164594) (-147 "CHARZ.spad" 162592 162600 162657 162672) (-146 "CHARPOL.spad" 162100 162110 162582 162587) (-145 "CHARNZ.spad" 161853 161861 162080 162095) (-144 "CHAR.spad" 159721 159729 161843 161848) (-143 "CFCAT.spad" 159037 159045 159711 159716) (-142 "CDEN.spad" 158195 158209 159027 159032) (-141 "CCLASS.spad" 156344 156352 157606 157645) (-140 "CATEGORY.spad" 155434 155442 156334 156339) (-139 "CATCTOR.spad" 155325 155333 155424 155429) (-138 "CATAST.spad" 154943 154951 155315 155320) (-137 "CASEAST.spad" 154657 154665 154933 154938) (-136 "CARTEN.spad" 149760 149784 154647 154652) (-135 "CARTEN2.spad" 149146 149173 149750 149755) (-134 "CARD.spad" 146435 146443 149120 149141) (-133 "CAPSLAST.spad" 146209 146217 146425 146430) (-132 "CACHSET.spad" 145831 145839 146199 146204) (-131 "CABMON.spad" 145384 145392 145821 145826) (-130 "BYTEORD.spad" 145059 145067 145374 145379) (-129 "BYTE.spad" 144484 144492 145049 145054) (-128 "BYTEBUF.spad" 142341 142349 143653 143680) (-127 "BTREE.spad" 141410 141420 141948 141975) (-126 "BTOURN.spad" 140413 140423 141017 141044) (-125 "BTCAT.spad" 139801 139811 140381 140408) (-124 "BTCAT.spad" 139209 139221 139791 139796) (-123 "BTAGG.spad" 138331 138339 139177 139204) (-122 "BTAGG.spad" 137473 137483 138321 138326) (-121 "BSTREE.spad" 136208 136218 137080 137107) (-120 "BRILL.spad" 134403 134414 136198 136203) (-119 "BRAGG.spad" 133327 133337 134393 134398) (-118 "BRAGG.spad" 132215 132227 133283 133288) (-117 "BPADICRT.spad" 130196 130208 130451 130544) (-116 "BPADIC.spad" 129860 129872 130122 130191) (-115 "BOUNDZRO.spad" 129516 129533 129850 129855) (-114 "BOP.spad" 124640 124648 129506 129511) (-113 "BOP1.spad" 122060 122070 124630 124635) (-112 "BOOLEAN.spad" 121492 121500 122050 122055) (-111 "BMODULE.spad" 121204 121216 121460 121487) (-110 "BITS.spad" 120623 120631 120840 120867) (-109 "BINDING.spad" 120034 120042 120613 120618) (-108 "BINARY.spad" 118145 118153 118501 118594) (-107 "BGAGG.spad" 117342 117352 118125 118140) (-106 "BGAGG.spad" 116547 116559 117332 117337) (-105 "BFUNCT.spad" 116111 116119 116527 116542) (-104 "BEZOUT.spad" 115245 115272 116061 116066) (-103 "BBTREE.spad" 112064 112074 114852 114879) (-102 "BASTYPE.spad" 111736 111744 112054 112059) (-101 "BASTYPE.spad" 111406 111416 111726 111731) (-100 "BALFACT.spad" 110845 110858 111396 111401) (-99 "AUTOMOR.spad" 110292 110301 110825 110840) (-98 "ATTREG.spad" 107011 107018 110044 110287) (-97 "ATTRBUT.spad" 103034 103041 106991 107006) (-96 "ATTRAST.spad" 102751 102758 103024 103029) (-95 "ATRIG.spad" 102221 102228 102741 102746) (-94 "ATRIG.spad" 101689 101698 102211 102216) (-93 "ASTCAT.spad" 101593 101600 101679 101684) (-92 "ASTCAT.spad" 101495 101504 101583 101588) (-91 "ASTACK.spad" 100828 100837 101102 101129) (-90 "ASSOCEQ.spad" 99628 99639 100784 100789) (-89 "ASP9.spad" 98709 98722 99618 99623) (-88 "ASP8.spad" 97752 97765 98699 98704) (-87 "ASP80.spad" 97074 97087 97742 97747) (-86 "ASP7.spad" 96234 96247 97064 97069) (-85 "ASP78.spad" 95685 95698 96224 96229) (-84 "ASP77.spad" 95054 95067 95675 95680) (-83 "ASP74.spad" 94146 94159 95044 95049) (-82 "ASP73.spad" 93417 93430 94136 94141) (-81 "ASP6.spad" 92284 92297 93407 93412) (-80 "ASP55.spad" 90793 90806 92274 92279) (-79 "ASP50.spad" 88610 88623 90783 90788) (-78 "ASP4.spad" 87905 87918 88600 88605) (-77 "ASP49.spad" 86904 86917 87895 87900) (-76 "ASP42.spad" 85311 85350 86894 86899) (-75 "ASP41.spad" 83890 83929 85301 85306) (-74 "ASP35.spad" 82878 82891 83880 83885) (-73 "ASP34.spad" 82179 82192 82868 82873) (-72 "ASP33.spad" 81739 81752 82169 82174) (-71 "ASP31.spad" 80879 80892 81729 81734) (-70 "ASP30.spad" 79771 79784 80869 80874) (-69 "ASP29.spad" 79237 79250 79761 79766) (-68 "ASP28.spad" 70510 70523 79227 79232) (-67 "ASP27.spad" 69407 69420 70500 70505) (-66 "ASP24.spad" 68494 68507 69397 69402) (-65 "ASP20.spad" 67958 67971 68484 68489) (-64 "ASP1.spad" 67339 67352 67948 67953) (-63 "ASP19.spad" 62025 62038 67329 67334) (-62 "ASP12.spad" 61439 61452 62015 62020) (-61 "ASP10.spad" 60710 60723 61429 61434) (-60 "ARRAY2.spad" 60070 60079 60317 60344) (-59 "ARRAY1.spad" 58905 58914 59253 59280) (-58 "ARRAY12.spad" 57574 57585 58895 58900) (-57 "ARR2CAT.spad" 53236 53257 57542 57569) (-56 "ARR2CAT.spad" 48918 48941 53226 53231) (-55 "ARITY.spad" 48290 48297 48908 48913) (-54 "APPRULE.spad" 47534 47556 48280 48285) (-53 "APPLYORE.spad" 47149 47162 47524 47529) (-52 "ANY.spad" 45491 45498 47139 47144) (-51 "ANY1.spad" 44562 44571 45481 45486) (-50 "ANTISYM.spad" 43001 43017 44542 44557) (-49 "ANON.spad" 42694 42701 42991 42996) (-48 "AN.spad" 40995 41002 42510 42603) (-47 "AMR.spad" 39174 39185 40893 40990) (-46 "AMR.spad" 37190 37203 38911 38916) (-45 "ALIST.spad" 34602 34623 34952 34979) (-44 "ALGSC.spad" 33725 33751 34474 34527) (-43 "ALGPKG.spad" 29434 29445 33681 33686) (-42 "ALGMFACT.spad" 28623 28637 29424 29429) (-41 "ALGMANIP.spad" 26079 26094 28456 28461) (-40 "ALGFF.spad" 24394 24421 24611 24767) (-39 "ALGFACT.spad" 23515 23525 24384 24389) (-38 "ALGEBRA.spad" 23348 23357 23471 23510) (-37 "ALGEBRA.spad" 23213 23224 23338 23343) (-36 "ALAGG.spad" 22723 22744 23181 23208) (-35 "AHYP.spad" 22104 22111 22713 22718) (-34 "AGG.spad" 20413 20420 22094 22099) (-33 "AGG.spad" 18686 18695 20369 20374) (-32 "AF.spad" 17111 17126 18621 18626) (-31 "ADDAST.spad" 16789 16796 17101 17106) (-30 "ACPLOT.spad" 15360 15367 16779 16784) (-29 "ACFS.spad" 13111 13120 15262 15355) (-28 "ACFS.spad" 10948 10959 13101 13106) (-27 "ACF.spad" 7550 7557 10850 10943) (-26 "ACF.spad" 4238 4247 7540 7545) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file |