aboutsummaryrefslogtreecommitdiff
path: root/src/share/algebra/browse.daase
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2010-06-14 15:46:03 +0000
committerdos-reis <gdr@axiomatics.org>2010-06-14 15:46:03 +0000
commit82929c32be58e92dccd449f8a874dc1419980f50 (patch)
tree727f016cd1ff5a76b30a0e4c2830fabf8224a541 /src/share/algebra/browse.daase
parent5f7a5c1a81c50807bf1315260f94108dd9a5ac2e (diff)
downloadopen-axiom-82929c32be58e92dccd449f8a874dc1419980f50.tar.gz
* algebra/catdef.spad.pamphlet (LinearlyExplicitRingOver): Now
extends LeftModule R. [reducedSystem: Vector % -> Matrix R]: New overload. * algebra/lindep.spad.pamphlet (LinearDependence): Additionally require Ring on the second parameter. (IntegerLinearDependence): Add similar requirement on the parameter.
Diffstat (limited to 'src/share/algebra/browse.daase')
-rw-r--r--src/share/algebra/browse.daase140
1 files changed, 70 insertions, 70 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index 80bc4a2e..21253206 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,5 +1,5 @@
-(2267397 . 3485478046)
+(2267485 . 3485510916)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
@@ -88,7 +88,7 @@ NIL
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-40 -1384 UP UPUP -2189)
+(-40 -1384 UP UPUP -1929)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
((-4447 |has| (-415 |#2|) (-370)) (-4452 |has| (-415 |#2|) (-370)) (-4446 |has| (-415 |#2|) (-370)) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
((|HasCategory| (-415 |#2|) (QUOTE (-146))) (|HasCategory| (-415 |#2|) (QUOTE (-148))) (|HasCategory| (-415 |#2|) (QUOTE (-356))) (-2813 (|HasCategory| (-415 |#2|) (QUOTE (-370))) (|HasCategory| (-415 |#2|) (QUOTE (-356)))) (|HasCategory| (-415 |#2|) (QUOTE (-370))) (|HasCategory| (-415 |#2|) (QUOTE (-375))) (-2813 (-12 (|HasCategory| (-415 |#2|) (QUOTE (-237))) (|HasCategory| (-415 |#2|) (QUOTE (-370)))) (|HasCategory| (-415 |#2|) (QUOTE (-356)))) (-2813 (-12 (|HasCategory| (-415 |#2|) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| (-415 |#2|) (QUOTE (-370)))) (-12 (|HasCategory| (-415 |#2|) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| (-415 |#2|) (QUOTE (-356))))) (|HasCategory| (-415 |#2|) (LIST (QUOTE -647) (QUOTE (-572)))) (-2813 (|HasCategory| (-415 |#2|) (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| (-415 |#2|) (QUOTE (-370)))) (|HasCategory| (-415 |#2|) (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| (-415 |#2|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| (-415 |#2|) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| (-415 |#2|) (QUOTE (-370)))) (-12 (|HasCategory| (-415 |#2|) (QUOTE (-237))) (|HasCategory| (-415 |#2|) (QUOTE (-370)))))
@@ -172,59 +172,59 @@ NIL
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
((-4454 . T) (-4455 . T))
((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
-(-61 -2029)
+(-61 -2030)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-62 -2029)
+(-62 -2030)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-63 -2029)
+(-63 -2030)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -2029)
+(-64 -2030)
((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-65 -2029)
+(-65 -2030)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -2029)
+(-66 -2030)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-67 -2029)
+(-67 -2030)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-68 -2029)
+(-68 -2030)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -2029)
+(-69 -2030)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-70 -2029)
+(-70 -2030)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-71 -2029)
+(-71 -2030)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-72 -2029)
+(-72 -2030)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-73 -2029)
+(-73 -2030)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-74 -2029)
+(-74 -2030)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
@@ -236,55 +236,55 @@ NIL
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-77 -2029)
+(-77 -2030)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-78 -2029)
+(-78 -2030)
((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-79 -2029)
+(-79 -2030)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -2029)
+(-80 -2030)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -2029)
+(-81 -2030)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")))
NIL
NIL
-(-82 -2029)
+(-82 -2030)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -2029)
+(-83 -2030)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -2029)
+(-84 -2030)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -2029)
+(-85 -2030)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -2029)
+(-86 -2030)
((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-87 -2029)
+(-87 -2030)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-88 -2029)
+(-88 -2030)
((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-89 -2029)
+(-89 -2030)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
@@ -472,11 +472,11 @@ NIL
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")))
(((-4456 "*") . T))
NIL
-(-136 |minix| -4131 S T$)
+(-136 |minix| -4127 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-137 |minix| -4131 R)
+(-137 |minix| -4127 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
@@ -892,22 +892,22 @@ NIL
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-241 S -4131 R)
+(-241 S -4127 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
((|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (QUOTE (-856))) (|HasAttribute| |#3| (QUOTE -4451)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (QUOTE (-1111))))
-(-242 -4131 R)
+(-242 -4127 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
((-4448 |has| |#2| (-1060)) (-4449 |has| |#2| (-1060)) (-4451 |has| |#2| (-6 -4451)) ((-4456 "*") |has| |#2| (-174)) (-4454 . T))
NIL
-(-243 -4131 A B)
+(-243 -4127 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-244 -4131 R)
+(-244 -4127 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
((-4448 |has| |#2| (-1060)) (-4449 |has| |#2| (-1060)) (-4451 |has| |#2| (-6 -4451)) ((-4456 "*") |has| |#2| (-174)) (-4454 . T))
-((-2813 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111)))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#2| (QUOTE (-370))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-370)))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-801))) (-2813 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-856)))) (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-734))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1060)))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (|HasCategory| |#2| (QUOTE (-237))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (QUOTE (-1111)))) (|HasCategory| |#2| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-237)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-375)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-734)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-801)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-856)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111))))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| (-572) (QUOTE (-858))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-2813 (|HasCategory| |#2| (QUOTE (-1060))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111)))) (|HasAttribute| |#2| (QUOTE -4451)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))))
+((-2813 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111)))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#2| (QUOTE (-370))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-370)))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-801))) (-2813 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-856)))) (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-734))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1060)))) (|HasCategory| |#2| (QUOTE (-375))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (QUOTE (-1111)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-237)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-375)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-734)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-801)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-856)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111))))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| (-572) (QUOTE (-858))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-2813 (|HasCategory| |#2| (QUOTE (-1060))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111)))) (|HasAttribute| |#2| (QUOTE -4451)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))))
(-245)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
@@ -950,12 +950,12 @@ NIL
NIL
(-255 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4451 -2813 (-2085 (|has| |#4| (-1060)) (|has| |#4| (-237))) (-2085 (|has| |#4| (-1060)) (|has| |#4| (-909 (-1188)))) (|has| |#4| (-6 -4451)) (-2085 (|has| |#4| (-1060)) (|has| |#4| (-647 (-572))))) (-4448 |has| |#4| (-1060)) (-4449 |has| |#4| (-1060)) ((-4456 "*") |has| |#4| (-174)) (-4454 . T))
-((-2813 (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-734))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-801))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-856))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188)))))) (|HasCategory| |#4| (QUOTE (-370))) (-2813 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (QUOTE (-1060)))) (-2813 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-370)))) (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-801))) (-2813 (|HasCategory| |#4| (QUOTE (-801))) (|HasCategory| |#4| (QUOTE (-856)))) (|HasCategory| |#4| (QUOTE (-856))) (|HasCategory| |#4| (QUOTE (-734))) (-2813 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-1060)))) (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188)))) (-2813 (|HasCategory| |#4| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1060)))) (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-237)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-370)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-375)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-734)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-801)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-856)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-1060)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-1111))))) (-2813 (-12 (|HasCategory| |#4| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-734))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-801))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-856))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-1060))) (-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| |#4| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-734))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-801))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-856))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| (-572) (QUOTE (-858))) (-12 (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1060)))) (-2813 (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1060)))) (|HasCategory| |#4| (QUOTE (-734))) (-12 (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188)))))) (-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-2813 (|HasCategory| |#4| (QUOTE (-1060))) (-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-1111)))) (-2813 (|HasAttribute| |#4| (QUOTE -4451)) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1060)))) (-12 (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188)))))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))))
+((-4451 -2813 (-2085 (|has| |#4| (-1060)) (|has| |#4| (-237))) (|has| |#4| (-6 -4451)) (-2085 (|has| |#4| (-1060)) (|has| |#4| (-909 (-1188))))) (-4448 |has| |#4| (-1060)) (-4449 |has| |#4| (-1060)) ((-4456 "*") |has| |#4| (-174)) (-4454 . T))
+((-2813 (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-734))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-801))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-856))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188)))))) (|HasCategory| |#4| (QUOTE (-370))) (-2813 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (QUOTE (-1060)))) (-2813 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-370)))) (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-801))) (-2813 (|HasCategory| |#4| (QUOTE (-801))) (|HasCategory| |#4| (QUOTE (-856)))) (|HasCategory| |#4| (QUOTE (-856))) (|HasCategory| |#4| (QUOTE (-734))) (-2813 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-1060)))) (|HasCategory| |#4| (QUOTE (-375))) (-2813 (-12 (|HasCategory| |#4| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-856))) (|HasCategory| |#4| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (LIST (QUOTE -647) (QUOTE (-572)))))) (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188)))) (-2813 (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1060)))) (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-237)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-370)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-375)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-734)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-801)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-856)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-1060)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-1111))))) (-2813 (-12 (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-734))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-801))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-856))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-1060))) (-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-734))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-801))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-856))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| (-572) (QUOTE (-858))) (-12 (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1060)))) (-2813 (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1060)))) (|HasCategory| |#4| (QUOTE (-734))) (-12 (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188)))))) (-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-2813 (|HasCategory| |#4| (QUOTE (-1060))) (-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-1111)))) (-2813 (|HasAttribute| |#4| (QUOTE -4451)) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1060)))) (-12 (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188)))))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))))
(-256 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4451 -2813 (-2085 (|has| |#3| (-1060)) (|has| |#3| (-237))) (-2085 (|has| |#3| (-1060)) (|has| |#3| (-909 (-1188)))) (|has| |#3| (-6 -4451)) (-2085 (|has| |#3| (-1060)) (|has| |#3| (-647 (-572))))) (-4448 |has| |#3| (-1060)) (-4449 |has| |#3| (-1060)) ((-4456 "*") |has| |#3| (-174)) (-4454 . T))
-((-2813 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))))) (|HasCategory| |#3| (QUOTE (-370))) (-2813 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-1060)))) (-2813 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-370)))) (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-801))) (-2813 (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (QUOTE (-856)))) (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (QUOTE (-734))) (-2813 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1060)))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (-2813 (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1060)))) (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-237)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-375)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-734)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-801)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-856)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1060)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1111))))) (-2813 (-12 (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1060))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| (-572) (QUOTE (-858))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1060)))) (-2813 (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1060)))) (|HasCategory| |#3| (QUOTE (-734))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-2813 (|HasCategory| |#3| (QUOTE (-1060))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1111)))) (-2813 (|HasAttribute| |#3| (QUOTE -4451)) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1060)))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))))
+((-4451 -2813 (-2085 (|has| |#3| (-1060)) (|has| |#3| (-237))) (|has| |#3| (-6 -4451)) (-2085 (|has| |#3| (-1060)) (|has| |#3| (-909 (-1188))))) (-4448 |has| |#3| (-1060)) (-4449 |has| |#3| (-1060)) ((-4456 "*") |has| |#3| (-174)) (-4454 . T))
+((-2813 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))))) (|HasCategory| |#3| (QUOTE (-370))) (-2813 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-1060)))) (-2813 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-370)))) (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-801))) (-2813 (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (QUOTE (-856)))) (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (QUOTE (-734))) (-2813 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1060)))) (|HasCategory| |#3| (QUOTE (-375))) (-2813 (-12 (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572)))))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (-2813 (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1060)))) (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-237)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-375)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-734)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-801)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-856)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1060)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1111))))) (-2813 (-12 (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1060))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| (-572) (QUOTE (-858))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1060)))) (-2813 (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1060)))) (|HasCategory| |#3| (QUOTE (-734))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-2813 (|HasCategory| |#3| (QUOTE (-1060))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1111)))) (-2813 (|HasAttribute| |#3| (QUOTE -4451)) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1060)))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))))
(-257 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
@@ -1108,7 +1108,7 @@ NIL
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-295 S R |Mod| -3635 -1867 |exactQuo|)
+(-295 S R |Mod| -3104 -1767 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
((-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
@@ -1218,8 +1218,8 @@ NIL
NIL
(-322 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4451 -2813 (-2085 (|has| |#1| (-1060)) (|has| |#1| (-647 (-572)))) (-12 (|has| |#1| (-564)) (-2813 (-2085 (|has| |#1| (-1060)) (|has| |#1| (-647 (-572)))) (|has| |#1| (-1060)) (|has| |#1| (-481)))) (|has| |#1| (-1060)) (|has| |#1| (-481))) (-4449 |has| |#1| (-174)) (-4448 |has| |#1| (-174)) ((-4456 "*") |has| |#1| (-564)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-564)) (-4446 |has| |#1| (-564)))
-((-2813 (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| |#1| (QUOTE (-564))) (-2813 (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-1060)))) (|HasCategory| |#1| (QUOTE (-21))) (-2813 (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (-2813 (|HasCategory| |#1| (QUOTE (-481))) (|HasCategory| |#1| (QUOTE (-1123)))) (|HasCategory| |#1| (QUOTE (-481))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (-2813 (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572))))) (-2813 (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-1060)))) (-2813 (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-1060)))) (-2813 (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-1060)))) (-12 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (|HasCategory| |#1| (QUOTE (-481))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572))))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-1123)))) (-2813 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))))) (-2813 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-1123)))) (-2813 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))))) (-2813 (|HasCategory| |#1| (QUOTE (-481))) (|HasCategory| |#1| (QUOTE (-1060)))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1123))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| $ (QUOTE (-1060))) (|HasCategory| $ (LIST (QUOTE -1049) (QUOTE (-572)))))
+((-4451 -2813 (-12 (|has| |#1| (-564)) (-2813 (|has| |#1| (-1060)) (|has| |#1| (-481)))) (|has| |#1| (-1060)) (|has| |#1| (-481))) (-4449 |has| |#1| (-174)) (-4448 |has| |#1| (-174)) ((-4456 "*") |has| |#1| (-564)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-564)) (-4446 |has| |#1| (-564)))
+((-2813 (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| |#1| (QUOTE (-564))) (-2813 (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-1060)))) (|HasCategory| |#1| (QUOTE (-21))) (-2813 (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1060)))) (|HasCategory| |#1| (QUOTE (-1060))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))))) (-2813 (|HasCategory| |#1| (QUOTE (-481))) (|HasCategory| |#1| (QUOTE (-1123)))) (|HasCategory| |#1| (QUOTE (-481))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (-2813 (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572))))) (-2813 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-1060)))) (-2813 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-1060)))) (-2813 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-1060)))) (-12 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (|HasCategory| |#1| (QUOTE (-481))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572))))) (-2813 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))))) (-2813 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-1123)))) (-2813 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))))) (-2813 (|HasCategory| |#1| (QUOTE (-481))) (|HasCategory| |#1| (QUOTE (-1060)))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1123))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| $ (QUOTE (-1060))) (|HasCategory| $ (LIST (QUOTE -1049) (QUOTE (-572)))))
(-323 R -1384)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}.")))
NIL
@@ -1231,7 +1231,7 @@ NIL
(-325 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|)))) (|HasCategory| (-415 (-572)) (QUOTE (-1123))) (|HasCategory| |#1| (QUOTE (-370))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3921) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|)))) (|HasCategory| (-415 (-572)) (QUOTE (-1123))) (|HasCategory| |#1| (QUOTE (-370))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3034) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))))
(-326 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1466,7 +1466,7 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))))
(-384 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
-((-4451 . T))
+NIL
NIL
(-385 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
@@ -1552,7 +1552,7 @@ NIL
((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}")))
NIL
NIL
-(-406 -2029 |returnType| -1563 |symbols|)
+(-406 -2030 |returnType| -1563 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
@@ -1859,7 +1859,7 @@ NIL
(-482 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|)))) (|HasCategory| (-415 (-572)) (QUOTE (-1123))) (|HasCategory| |#1| (QUOTE (-370))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3921) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|)))) (|HasCategory| (-415 (-572)) (QUOTE (-1123))) (|HasCategory| |#1| (QUOTE (-370))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3034) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))))
(-483 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
((-4455 . T))
@@ -1888,10 +1888,10 @@ NIL
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
(((-4456 "*") |has| |#2| (-174)) (-4447 |has| |#2| (-564)) (-4452 |has| |#2| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
((|HasCategory| |#2| (QUOTE (-918))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-918)))) (-2813 (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-918)))) (-2813 (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-918)))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-174))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-564)))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-370))) (|HasAttribute| |#2| (QUOTE -4452)) (|HasCategory| |#2| (QUOTE (-460))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-918)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-918)))) (|HasCategory| |#2| (QUOTE (-146)))))
-(-490 -4131 S)
+(-490 -4127 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
((-4448 |has| |#2| (-1060)) (-4449 |has| |#2| (-1060)) (-4451 |has| |#2| (-6 -4451)) ((-4456 "*") |has| |#2| (-174)) (-4454 . T))
-((-2813 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111)))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#2| (QUOTE (-370))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-370)))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-801))) (-2813 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-856)))) (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-734))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1060)))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (|HasCategory| |#2| (QUOTE (-237))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (QUOTE (-1111)))) (|HasCategory| |#2| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-237)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-375)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-734)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-801)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-856)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111))))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| (-572) (QUOTE (-858))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-2813 (|HasCategory| |#2| (QUOTE (-1060))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111)))) (|HasAttribute| |#2| (QUOTE -4451)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))))
+((-2813 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111)))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#2| (QUOTE (-370))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-370)))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-801))) (-2813 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-856)))) (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-734))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1060)))) (|HasCategory| |#2| (QUOTE (-375))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (QUOTE (-1111)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-237)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-375)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-734)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-801)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-856)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111))))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| (-572) (QUOTE (-858))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-2813 (|HasCategory| |#2| (QUOTE (-1060))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111)))) (|HasAttribute| |#2| (QUOTE -4451)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))))
(-491)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header.")))
NIL
@@ -2517,8 +2517,8 @@ NIL
NIL
((-2074 (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-370))))
(-647 R)
-((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")))
-((-4451 . T))
+((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{reducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}.")))
+NIL
NIL
(-648 R)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-linear set if it is stable by dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{Module} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: LeftLinearSet,{} RightLinearSet.")))
@@ -2592,7 +2592,7 @@ NIL
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-666 A -2514)
+(-666 A -3027)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
((-4448 . T) (-4449 . T) (-4451 . T))
((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-370))))
@@ -2643,7 +2643,7 @@ NIL
(-678 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
((-4451 . T) (-4454 . T) (-4448 . T) (-4449 . T))
-((|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4456 "*"))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))) (-2813 (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))))) (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-564))) (-2813 (|HasAttribute| |#2| (QUOTE (-4456 "*"))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174))))
+((|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4456 "*"))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))) (-2813 (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))))) (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-564))) (-2813 (|HasAttribute| |#2| (QUOTE (-4456 "*"))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174))))
(-679)
((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'.")))
NIL
@@ -2804,7 +2804,7 @@ NIL
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-719 R |Mod| -3635 -1867 |exactQuo|)
+(-719 R |Mod| -3104 -1767 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
@@ -2820,7 +2820,7 @@ NIL
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
((-4449 |has| |#1| (-174)) (-4448 |has| |#1| (-174)) (-4451 . T))
((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))))
-(-723 R |Mod| -3635 -1867 |exactQuo|)
+(-723 R |Mod| -3104 -1767 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
((-4451 . T))
NIL
@@ -3220,10 +3220,10 @@ NIL
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.")))
NIL
NIL
-(-823 -4131 S |f|)
+(-823 -4127 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
((-4448 |has| |#2| (-1060)) (-4449 |has| |#2| (-1060)) (-4451 |has| |#2| (-6 -4451)) ((-4456 "*") |has| |#2| (-174)) (-4454 . T))
-((-2813 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111)))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#2| (QUOTE (-370))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-370)))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-801))) (-2813 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-856)))) (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-734))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1060)))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (|HasCategory| |#2| (QUOTE (-237))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (QUOTE (-1111)))) (|HasCategory| |#2| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-237)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-375)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-734)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-801)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-856)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111))))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| (-572) (QUOTE (-858))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-2813 (|HasCategory| |#2| (QUOTE (-1060))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111)))) (|HasAttribute| |#2| (QUOTE -4451)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))))
+((-2813 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111)))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#2| (QUOTE (-370))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-370)))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-801))) (-2813 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-856)))) (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-734))) (-2813 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1060)))) (|HasCategory| |#2| (QUOTE (-375))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (QUOTE (-1111)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060)))) (-2813 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-237)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-375)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-734)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-801)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-856)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111))))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| (-572) (QUOTE (-858))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-2813 (|HasCategory| |#2| (QUOTE (-1060))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111)))) (|HasAttribute| |#2| (QUOTE -4451)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))))
(-824 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
@@ -3340,7 +3340,7 @@ NIL
((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%.")))
NIL
NIL
-(-853 -4131 S)
+(-853 -4127 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
@@ -4427,7 +4427,7 @@ NIL
(-1124 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
((-4448 |has| |#3| (-1060)) (-4449 |has| |#3| (-1060)) (-4451 |has| |#3| (-6 -4451)) ((-4456 "*") |has| |#3| (-174)) (-4454 . T))
-((-2813 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))))) (-2813 (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1111)))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1060)))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#3| (QUOTE (-370))) (-2813 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-1060)))) (-2813 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-370)))) (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-801))) (-2813 (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (QUOTE (-856)))) (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (QUOTE (-734))) (-2813 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1060)))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (-2813 (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-1060)))) (-2813 (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-1060)))) (-2813 (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-1060)))) (-2813 (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1060)))) (|HasCategory| |#3| (QUOTE (-237))) (-2813 (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (QUOTE (-1111)))) (|HasCategory| |#3| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-237)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-375)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-734)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-801)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-856)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1060)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1111))))) (-2813 (-12 (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1060))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| (-572) (QUOTE (-858))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1060)))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188))))) (-2813 (|HasCategory| |#3| (QUOTE (-1060))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1111)))) (|HasAttribute| |#3| (QUOTE -4451)) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))))
+((-2813 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))))) (-2813 (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1111)))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1060)))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#3| (QUOTE (-370))) (-2813 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-1060)))) (-2813 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-370)))) (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-801))) (-2813 (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (QUOTE (-856)))) (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (QUOTE (-734))) (-2813 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1060)))) (|HasCategory| |#3| (QUOTE (-375))) (-2813 (-12 (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572)))))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (-2813 (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (QUOTE (-1111)))) (-2813 (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-370))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1060)))) (-2813 (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-370))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1060)))) (-2813 (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-370))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1060)))) (-2813 (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1060)))) (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1111))) (-2813 (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-237)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-375)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-734)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-801)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-856)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1060)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1111))))) (-2813 (-12 (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1060))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| (-572) (QUOTE (-858))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1060)))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188))))) (-2813 (|HasCategory| |#3| (QUOTE (-1060))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1111)))) (|HasAttribute| |#3| (QUOTE -4451)) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))))
(-1125 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
@@ -4543,7 +4543,7 @@ NIL
(-1153 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}.")))
((-4451 . T) (-4443 |has| |#2| (-6 (-4456 "*"))) (-4454 . T) (-4448 . T) (-4449 . T))
-((|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4456 "*"))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))) (-2813 (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (QUOTE (-370))) (-2813 (|HasAttribute| |#2| (QUOTE (-4456 "*"))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174))))
+((|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4456 "*"))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))) (-2813 (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (QUOTE (-370))) (-2813 (|HasAttribute| |#2| (QUOTE (-4456 "*"))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174))))
(-1154 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
@@ -4647,7 +4647,7 @@ NIL
(-1179 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
(((-4456 "*") -2813 (-2085 (|has| |#1| (-370)) (|has| (-1186 |#1| |#2| |#3|) (-828))) (|has| |#1| (-174)) (-2085 (|has| |#1| (-370)) (|has| (-1186 |#1| |#2| |#3|) (-918)))) (-4447 -2813 (-2085 (|has| |#1| (-370)) (|has| (-1186 |#1| |#2| |#3|) (-828))) (|has| |#1| (-564)) (-2085 (|has| |#1| (-370)) (|has| (-1186 |#1| |#2| |#3|) (-918)))) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4448 . T) (-4449 . T) (-4451 . T))
-((-2813 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-1163))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -292) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -315) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -522) (QUOTE (-1188)) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2813 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2813 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-572)) (|devaluate| |#1|)))))) (-2813 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-572)) (|devaluate| |#1|))))) (|HasCategory| (-572) (QUOTE (-1123))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-370)))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-2813 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-370))))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-1163))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -292) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -315) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -522) (QUOTE (-1188)) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-572))))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3921) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2813 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-146)))))
+((-2813 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-1163))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -292) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -315) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -522) (QUOTE (-1188)) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2813 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2813 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-572)) (|devaluate| |#1|)))))) (-2813 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-572)) (|devaluate| |#1|))))) (|HasCategory| (-572) (QUOTE (-1123))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-370)))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-2813 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-370))))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-1163))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -292) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -315) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -522) (QUOTE (-1188)) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-572))))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3034) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2813 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-146)))))
(-1180 R -1384)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
@@ -4671,11 +4671,11 @@ NIL
(-1185 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|)))) (|HasCategory| (-415 (-572)) (QUOTE (-1123))) (|HasCategory| |#1| (QUOTE (-370))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3921) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|)))) (|HasCategory| (-415 (-572)) (QUOTE (-1123))) (|HasCategory| |#1| (QUOTE (-370))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3034) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))))
(-1186 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-779)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-779)) (|devaluate| |#1|)))) (|HasCategory| (-779) (QUOTE (-1123))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-779))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-779))))) (|HasCategory| |#1| (QUOTE (-370))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3921) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-779)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-779)) (|devaluate| |#1|)))) (|HasCategory| (-779) (QUOTE (-1123))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-779))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-779))))) (|HasCategory| |#1| (QUOTE (-370))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3034) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))))
(-1187)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
@@ -4899,11 +4899,11 @@ NIL
(-1242 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4448 . T) (-4449 . T) (-4451 . T))
-((-2813 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -292) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -522) (QUOTE (-1188)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-828)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-918)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1033)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1163)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-1188)))))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-146))))) (-2813 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-148))))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-572)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-572)) (|devaluate| |#1|))))) (|HasCategory| (-572) (QUOTE (-1123))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-918)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-1188))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1033)))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-828)))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-828)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-858))))) (-2813 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -292) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -522) (QUOTE (-1188)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-828)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-918)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1033)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1163)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-1188)))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1163)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -292) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -522) (QUOTE (-1188)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-572))))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3921) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-918))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-553)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-313)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-918)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-146))))))
+((-2813 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -292) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -522) (QUOTE (-1188)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-828)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-918)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1033)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1163)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-1188)))))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-146))))) (-2813 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-148))))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-572)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-572)) (|devaluate| |#1|))))) (|HasCategory| (-572) (QUOTE (-1123))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-918)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-1188))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1033)))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-828)))) (-2813 (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-828)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-858))))) (-2813 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -292) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -522) (QUOTE (-1188)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-828)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-918)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1033)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1163)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-1188)))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1163)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -292) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -522) (QUOTE (-1188)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-572))))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3034) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-918))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-553)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-313)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-918)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-146))))))
(-1243 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
(((-4456 "*") -2813 (-2085 (|has| |#1| (-370)) (|has| (-1271 |#1| |#2| |#3|) (-828))) (|has| |#1| (-174)) (-2085 (|has| |#1| (-370)) (|has| (-1271 |#1| |#2| |#3|) (-918)))) (-4447 -2813 (-2085 (|has| |#1| (-370)) (|has| (-1271 |#1| |#2| |#3|) (-828))) (|has| |#1| (-564)) (-2085 (|has| |#1| (-370)) (|has| (-1271 |#1| |#2| |#3|) (-918)))) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4448 . T) (-4449 . T) (-4451 . T))
-((-2813 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-1163))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -292) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -315) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -522) (QUOTE (-1188)) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2813 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2813 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-572)) (|devaluate| |#1|)))))) (-2813 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-572)) (|devaluate| |#1|))))) (|HasCategory| (-572) (QUOTE (-1123))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-370)))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-2813 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-370))))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-1163))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -292) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -315) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -522) (QUOTE (-1188)) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-572))))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3921) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2813 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-146)))))
+((-2813 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-1163))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -292) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -315) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -522) (QUOTE (-1188)) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2813 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2813 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-572)) (|devaluate| |#1|)))))) (-2813 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-572)) (|devaluate| |#1|))))) (|HasCategory| (-572) (QUOTE (-1123))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-370)))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-2813 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-370))))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-1163))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -292) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -315) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -522) (QUOTE (-1188)) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-572))))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3034) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2813 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (-2813 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-146)))))
(-1244 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
@@ -4983,11 +4983,11 @@ NIL
(-1263 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|)))) (|HasCategory| (-415 (-572)) (QUOTE (-1123))) (|HasCategory| |#1| (QUOTE (-370))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3921) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))))
+((|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|)))) (|HasCategory| (-415 (-572)) (QUOTE (-1123))) (|HasCategory| |#1| (QUOTE (-370))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3034) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))))
(-1264 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|)))) (|HasCategory| (-415 (-572)) (QUOTE (-1123))) (|HasCategory| |#1| (QUOTE (-370))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3921) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|)))) (|HasCategory| (-415 (-572)) (QUOTE (-1123))) (|HasCategory| |#1| (QUOTE (-370))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-2813 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3034) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))))
(-1265 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}.")))
(((-4456 "*") |has| (-1264 |#2| |#3| |#4|) (-174)) (-4447 |has| (-1264 |#2| |#3| |#4|) (-564)) (-4448 . T) (-4449 . T) (-4451 . T))
@@ -5007,7 +5007,7 @@ NIL
(-1269 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#2| (QUOTE (-968))) (|HasCategory| |#2| (QUOTE (-1214))) (|HasSignature| |#2| (LIST (QUOTE -4353) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3921) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1188))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-370))))
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#2| (QUOTE (-968))) (|HasCategory| |#2| (QUOTE (-1214))) (|HasSignature| |#2| (LIST (QUOTE -4353) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3034) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1188))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-370))))
(-1270 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4448 . T) (-4449 . T) (-4451 . T))
@@ -5015,7 +5015,7 @@ NIL
(-1271 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4448 . T) (-4449 . T) (-4451 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-779)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-779)) (|devaluate| |#1|)))) (|HasCategory| (-779) (QUOTE (-1123))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-779))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-779))))) (|HasCategory| |#1| (QUOTE (-370))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3921) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564))) (-2813 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-779)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-779)) (|devaluate| |#1|)))) (|HasCategory| (-779) (QUOTE (-1123))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-779))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-779))))) (|HasCategory| |#1| (QUOTE (-370))) (-2813 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3034) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))))
(-1272 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
@@ -5180,4 +5180,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2267377 2267382 2267387 2267392) (-2 NIL 2267357 2267362 2267367 2267372) (-1 NIL 2267337 2267342 2267347 2267352) (0 NIL 2267317 2267322 2267327 2267332) (-1308 "ZMOD.spad" 2267126 2267139 2267255 2267312) (-1307 "ZLINDEP.spad" 2266192 2266203 2267116 2267121) (-1306 "ZDSOLVE.spad" 2256137 2256159 2266182 2266187) (-1305 "YSTREAM.spad" 2255632 2255643 2256127 2256132) (-1304 "YDIAGRAM.spad" 2255266 2255275 2255622 2255627) (-1303 "XRPOLY.spad" 2254486 2254506 2255122 2255191) (-1302 "XPR.spad" 2252281 2252294 2254204 2254303) (-1301 "XPOLY.spad" 2251836 2251847 2252137 2252206) (-1300 "XPOLYC.spad" 2251155 2251171 2251762 2251831) (-1299 "XPBWPOLY.spad" 2249592 2249612 2250935 2251004) (-1298 "XF.spad" 2248055 2248070 2249494 2249587) (-1297 "XF.spad" 2246498 2246515 2247939 2247944) (-1296 "XFALG.spad" 2243546 2243562 2246424 2246493) (-1295 "XEXPPKG.spad" 2242797 2242823 2243536 2243541) (-1294 "XDPOLY.spad" 2242411 2242427 2242653 2242722) (-1293 "XALG.spad" 2242071 2242082 2242367 2242406) (-1292 "WUTSET.spad" 2237910 2237927 2241717 2241744) (-1291 "WP.spad" 2237109 2237153 2237768 2237835) (-1290 "WHILEAST.spad" 2236907 2236916 2237099 2237104) (-1289 "WHEREAST.spad" 2236578 2236587 2236897 2236902) (-1288 "WFFINTBS.spad" 2234241 2234263 2236568 2236573) (-1287 "WEIER.spad" 2232463 2232474 2234231 2234236) (-1286 "VSPACE.spad" 2232136 2232147 2232431 2232458) (-1285 "VSPACE.spad" 2231829 2231842 2232126 2232131) (-1284 "VOID.spad" 2231506 2231515 2231819 2231824) (-1283 "VIEW.spad" 2229186 2229195 2231496 2231501) (-1282 "VIEWDEF.spad" 2224387 2224396 2229176 2229181) (-1281 "VIEW3D.spad" 2208348 2208357 2224377 2224382) (-1280 "VIEW2D.spad" 2196239 2196248 2208338 2208343) (-1279 "VECTOR.spad" 2194913 2194924 2195164 2195191) (-1278 "VECTOR2.spad" 2193552 2193565 2194903 2194908) (-1277 "VECTCAT.spad" 2191456 2191467 2193520 2193547) (-1276 "VECTCAT.spad" 2189167 2189180 2191233 2191238) (-1275 "VARIABLE.spad" 2188947 2188962 2189157 2189162) (-1274 "UTYPE.spad" 2188591 2188600 2188937 2188942) (-1273 "UTSODETL.spad" 2187886 2187910 2188547 2188552) (-1272 "UTSODE.spad" 2186102 2186122 2187876 2187881) (-1271 "UTS.spad" 2180906 2180934 2184569 2184666) (-1270 "UTSCAT.spad" 2178385 2178401 2180804 2180901) (-1269 "UTSCAT.spad" 2175508 2175526 2177929 2177934) (-1268 "UTS2.spad" 2175103 2175138 2175498 2175503) (-1267 "URAGG.spad" 2169776 2169787 2175093 2175098) (-1266 "URAGG.spad" 2164413 2164426 2169732 2169737) (-1265 "UPXSSING.spad" 2162058 2162084 2163494 2163627) (-1264 "UPXS.spad" 2159212 2159240 2160190 2160339) (-1263 "UPXSCONS.spad" 2156971 2156991 2157344 2157493) (-1262 "UPXSCCA.spad" 2155542 2155562 2156817 2156966) (-1261 "UPXSCCA.spad" 2154255 2154277 2155532 2155537) (-1260 "UPXSCAT.spad" 2152844 2152860 2154101 2154250) (-1259 "UPXS2.spad" 2152387 2152440 2152834 2152839) (-1258 "UPSQFREE.spad" 2150801 2150815 2152377 2152382) (-1257 "UPSCAT.spad" 2148588 2148612 2150699 2150796) (-1256 "UPSCAT.spad" 2146081 2146107 2148194 2148199) (-1255 "UPOLYC.spad" 2141121 2141132 2145923 2146076) (-1254 "UPOLYC.spad" 2136053 2136066 2140857 2140862) (-1253 "UPOLYC2.spad" 2135524 2135543 2136043 2136048) (-1252 "UP.spad" 2132723 2132738 2133110 2133263) (-1251 "UPMP.spad" 2131623 2131636 2132713 2132718) (-1250 "UPDIVP.spad" 2131188 2131202 2131613 2131618) (-1249 "UPDECOMP.spad" 2129433 2129447 2131178 2131183) (-1248 "UPCDEN.spad" 2128642 2128658 2129423 2129428) (-1247 "UP2.spad" 2128006 2128027 2128632 2128637) (-1246 "UNISEG.spad" 2127359 2127370 2127925 2127930) (-1245 "UNISEG2.spad" 2126856 2126869 2127315 2127320) (-1244 "UNIFACT.spad" 2125959 2125971 2126846 2126851) (-1243 "ULS.spad" 2116517 2116545 2117604 2118033) (-1242 "ULSCONS.spad" 2108913 2108933 2109283 2109432) (-1241 "ULSCCAT.spad" 2106650 2106670 2108759 2108908) (-1240 "ULSCCAT.spad" 2104495 2104517 2106606 2106611) (-1239 "ULSCAT.spad" 2102727 2102743 2104341 2104490) (-1238 "ULS2.spad" 2102241 2102294 2102717 2102722) (-1237 "UINT8.spad" 2102118 2102127 2102231 2102236) (-1236 "UINT64.spad" 2101994 2102003 2102108 2102113) (-1235 "UINT32.spad" 2101870 2101879 2101984 2101989) (-1234 "UINT16.spad" 2101746 2101755 2101860 2101865) (-1233 "UFD.spad" 2100811 2100820 2101672 2101741) (-1232 "UFD.spad" 2099938 2099949 2100801 2100806) (-1231 "UDVO.spad" 2098819 2098828 2099928 2099933) (-1230 "UDPO.spad" 2096312 2096323 2098775 2098780) (-1229 "TYPE.spad" 2096244 2096253 2096302 2096307) (-1228 "TYPEAST.spad" 2096163 2096172 2096234 2096239) (-1227 "TWOFACT.spad" 2094815 2094830 2096153 2096158) (-1226 "TUPLE.spad" 2094301 2094312 2094714 2094719) (-1225 "TUBETOOL.spad" 2091168 2091177 2094291 2094296) (-1224 "TUBE.spad" 2089815 2089832 2091158 2091163) (-1223 "TS.spad" 2088414 2088430 2089380 2089477) (-1222 "TSETCAT.spad" 2075541 2075558 2088382 2088409) (-1221 "TSETCAT.spad" 2062654 2062673 2075497 2075502) (-1220 "TRMANIP.spad" 2057020 2057037 2062360 2062365) (-1219 "TRIMAT.spad" 2055983 2056008 2057010 2057015) (-1218 "TRIGMNIP.spad" 2054510 2054527 2055973 2055978) (-1217 "TRIGCAT.spad" 2054022 2054031 2054500 2054505) (-1216 "TRIGCAT.spad" 2053532 2053543 2054012 2054017) (-1215 "TREE.spad" 2052107 2052118 2053139 2053166) (-1214 "TRANFUN.spad" 2051946 2051955 2052097 2052102) (-1213 "TRANFUN.spad" 2051783 2051794 2051936 2051941) (-1212 "TOPSP.spad" 2051457 2051466 2051773 2051778) (-1211 "TOOLSIGN.spad" 2051120 2051131 2051447 2051452) (-1210 "TEXTFILE.spad" 2049681 2049690 2051110 2051115) (-1209 "TEX.spad" 2046827 2046836 2049671 2049676) (-1208 "TEX1.spad" 2046383 2046394 2046817 2046822) (-1207 "TEMUTL.spad" 2045938 2045947 2046373 2046378) (-1206 "TBCMPPK.spad" 2044031 2044054 2045928 2045933) (-1205 "TBAGG.spad" 2043081 2043104 2044011 2044026) (-1204 "TBAGG.spad" 2042139 2042164 2043071 2043076) (-1203 "TANEXP.spad" 2041547 2041558 2042129 2042134) (-1202 "TALGOP.spad" 2041271 2041282 2041537 2041542) (-1201 "TABLE.spad" 2039682 2039705 2039952 2039979) (-1200 "TABLEAU.spad" 2039163 2039174 2039672 2039677) (-1199 "TABLBUMP.spad" 2035966 2035977 2039153 2039158) (-1198 "SYSTEM.spad" 2035194 2035203 2035956 2035961) (-1197 "SYSSOLP.spad" 2032677 2032688 2035184 2035189) (-1196 "SYSPTR.spad" 2032576 2032585 2032667 2032672) (-1195 "SYSNNI.spad" 2031758 2031769 2032566 2032571) (-1194 "SYSINT.spad" 2031162 2031173 2031748 2031753) (-1193 "SYNTAX.spad" 2027368 2027377 2031152 2031157) (-1192 "SYMTAB.spad" 2025436 2025445 2027358 2027363) (-1191 "SYMS.spad" 2021459 2021468 2025426 2025431) (-1190 "SYMPOLY.spad" 2020466 2020477 2020548 2020675) (-1189 "SYMFUNC.spad" 2019967 2019978 2020456 2020461) (-1188 "SYMBOL.spad" 2017470 2017479 2019957 2019962) (-1187 "SWITCH.spad" 2014241 2014250 2017460 2017465) (-1186 "SUTS.spad" 2011146 2011174 2012708 2012805) (-1185 "SUPXS.spad" 2008287 2008315 2009278 2009427) (-1184 "SUP.spad" 2005100 2005111 2005873 2006026) (-1183 "SUPFRACF.spad" 2004205 2004223 2005090 2005095) (-1182 "SUP2.spad" 2003597 2003610 2004195 2004200) (-1181 "SUMRF.spad" 2002571 2002582 2003587 2003592) (-1180 "SUMFS.spad" 2002208 2002225 2002561 2002566) (-1179 "SULS.spad" 1992753 1992781 1993853 1994282) (-1178 "SUCHTAST.spad" 1992522 1992531 1992743 1992748) (-1177 "SUCH.spad" 1992204 1992219 1992512 1992517) (-1176 "SUBSPACE.spad" 1984319 1984334 1992194 1992199) (-1175 "SUBRESP.spad" 1983489 1983503 1984275 1984280) (-1174 "STTF.spad" 1979588 1979604 1983479 1983484) (-1173 "STTFNC.spad" 1976056 1976072 1979578 1979583) (-1172 "STTAYLOR.spad" 1968691 1968702 1975937 1975942) (-1171 "STRTBL.spad" 1967196 1967213 1967345 1967372) (-1170 "STRING.spad" 1966605 1966614 1966619 1966646) (-1169 "STRICAT.spad" 1966393 1966402 1966573 1966600) (-1168 "STREAM.spad" 1963311 1963322 1965918 1965933) (-1167 "STREAM3.spad" 1962884 1962899 1963301 1963306) (-1166 "STREAM2.spad" 1962012 1962025 1962874 1962879) (-1165 "STREAM1.spad" 1961718 1961729 1962002 1962007) (-1164 "STINPROD.spad" 1960654 1960670 1961708 1961713) (-1163 "STEP.spad" 1959855 1959864 1960644 1960649) (-1162 "STEPAST.spad" 1959089 1959098 1959845 1959850) (-1161 "STBL.spad" 1957615 1957643 1957782 1957797) (-1160 "STAGG.spad" 1956690 1956701 1957605 1957610) (-1159 "STAGG.spad" 1955763 1955776 1956680 1956685) (-1158 "STACK.spad" 1955120 1955131 1955370 1955397) (-1157 "SREGSET.spad" 1952824 1952841 1954766 1954793) (-1156 "SRDCMPK.spad" 1951385 1951405 1952814 1952819) (-1155 "SRAGG.spad" 1946528 1946537 1951353 1951380) (-1154 "SRAGG.spad" 1941691 1941702 1946518 1946523) (-1153 "SQMATRIX.spad" 1939307 1939325 1940223 1940310) (-1152 "SPLTREE.spad" 1933859 1933872 1938743 1938770) (-1151 "SPLNODE.spad" 1930447 1930460 1933849 1933854) (-1150 "SPFCAT.spad" 1929256 1929265 1930437 1930442) (-1149 "SPECOUT.spad" 1927808 1927817 1929246 1929251) (-1148 "SPADXPT.spad" 1919403 1919412 1927798 1927803) (-1147 "spad-parser.spad" 1918868 1918877 1919393 1919398) (-1146 "SPADAST.spad" 1918569 1918578 1918858 1918863) (-1145 "SPACEC.spad" 1902768 1902779 1918559 1918564) (-1144 "SPACE3.spad" 1902544 1902555 1902758 1902763) (-1143 "SORTPAK.spad" 1902093 1902106 1902500 1902505) (-1142 "SOLVETRA.spad" 1899856 1899867 1902083 1902088) (-1141 "SOLVESER.spad" 1898384 1898395 1899846 1899851) (-1140 "SOLVERAD.spad" 1894410 1894421 1898374 1898379) (-1139 "SOLVEFOR.spad" 1892872 1892890 1894400 1894405) (-1138 "SNTSCAT.spad" 1892472 1892489 1892840 1892867) (-1137 "SMTS.spad" 1890744 1890770 1892037 1892134) (-1136 "SMP.spad" 1888219 1888239 1888609 1888736) (-1135 "SMITH.spad" 1887064 1887089 1888209 1888214) (-1134 "SMATCAT.spad" 1885174 1885204 1887008 1887059) (-1133 "SMATCAT.spad" 1883216 1883248 1885052 1885057) (-1132 "SKAGG.spad" 1882179 1882190 1883184 1883211) (-1131 "SINT.spad" 1881119 1881128 1882045 1882174) (-1130 "SIMPAN.spad" 1880847 1880856 1881109 1881114) (-1129 "SIG.spad" 1880177 1880186 1880837 1880842) (-1128 "SIGNRF.spad" 1879295 1879306 1880167 1880172) (-1127 "SIGNEF.spad" 1878574 1878591 1879285 1879290) (-1126 "SIGAST.spad" 1877959 1877968 1878564 1878569) (-1125 "SHP.spad" 1875887 1875902 1877915 1877920) (-1124 "SHDP.spad" 1865598 1865625 1866107 1866238) (-1123 "SGROUP.spad" 1865206 1865215 1865588 1865593) (-1122 "SGROUP.spad" 1864812 1864823 1865196 1865201) (-1121 "SGCF.spad" 1857951 1857960 1864802 1864807) (-1120 "SFRTCAT.spad" 1856881 1856898 1857919 1857946) (-1119 "SFRGCD.spad" 1855944 1855964 1856871 1856876) (-1118 "SFQCMPK.spad" 1850581 1850601 1855934 1855939) (-1117 "SFORT.spad" 1850020 1850034 1850571 1850576) (-1116 "SEXOF.spad" 1849863 1849903 1850010 1850015) (-1115 "SEX.spad" 1849755 1849764 1849853 1849858) (-1114 "SEXCAT.spad" 1847536 1847576 1849745 1849750) (-1113 "SET.spad" 1845860 1845871 1846957 1846996) (-1112 "SETMN.spad" 1844310 1844327 1845850 1845855) (-1111 "SETCAT.spad" 1843632 1843641 1844300 1844305) (-1110 "SETCAT.spad" 1842952 1842963 1843622 1843627) (-1109 "SETAGG.spad" 1839501 1839512 1842932 1842947) (-1108 "SETAGG.spad" 1836058 1836071 1839491 1839496) (-1107 "SEQAST.spad" 1835761 1835770 1836048 1836053) (-1106 "SEGXCAT.spad" 1834917 1834930 1835751 1835756) (-1105 "SEG.spad" 1834730 1834741 1834836 1834841) (-1104 "SEGCAT.spad" 1833655 1833666 1834720 1834725) (-1103 "SEGBIND.spad" 1833413 1833424 1833602 1833607) (-1102 "SEGBIND2.spad" 1833111 1833124 1833403 1833408) (-1101 "SEGAST.spad" 1832825 1832834 1833101 1833106) (-1100 "SEG2.spad" 1832260 1832273 1832781 1832786) (-1099 "SDVAR.spad" 1831536 1831547 1832250 1832255) (-1098 "SDPOL.spad" 1828962 1828973 1829253 1829380) (-1097 "SCPKG.spad" 1827051 1827062 1828952 1828957) (-1096 "SCOPE.spad" 1826204 1826213 1827041 1827046) (-1095 "SCACHE.spad" 1824900 1824911 1826194 1826199) (-1094 "SASTCAT.spad" 1824809 1824818 1824890 1824895) (-1093 "SAOS.spad" 1824681 1824690 1824799 1824804) (-1092 "SAERFFC.spad" 1824394 1824414 1824671 1824676) (-1091 "SAE.spad" 1822569 1822585 1823180 1823315) (-1090 "SAEFACT.spad" 1822270 1822290 1822559 1822564) (-1089 "RURPK.spad" 1819929 1819945 1822260 1822265) (-1088 "RULESET.spad" 1819382 1819406 1819919 1819924) (-1087 "RULE.spad" 1817622 1817646 1819372 1819377) (-1086 "RULECOLD.spad" 1817474 1817487 1817612 1817617) (-1085 "RTVALUE.spad" 1817209 1817218 1817464 1817469) (-1084 "RSTRCAST.spad" 1816926 1816935 1817199 1817204) (-1083 "RSETGCD.spad" 1813304 1813324 1816916 1816921) (-1082 "RSETCAT.spad" 1803240 1803257 1813272 1813299) (-1081 "RSETCAT.spad" 1793196 1793215 1803230 1803235) (-1080 "RSDCMPK.spad" 1791648 1791668 1793186 1793191) (-1079 "RRCC.spad" 1790032 1790062 1791638 1791643) (-1078 "RRCC.spad" 1788414 1788446 1790022 1790027) (-1077 "RPTAST.spad" 1788116 1788125 1788404 1788409) (-1076 "RPOLCAT.spad" 1767476 1767491 1787984 1788111) (-1075 "RPOLCAT.spad" 1746549 1746566 1767059 1767064) (-1074 "ROUTINE.spad" 1742432 1742441 1745196 1745223) (-1073 "ROMAN.spad" 1741760 1741769 1742298 1742427) (-1072 "ROIRC.spad" 1740840 1740872 1741750 1741755) (-1071 "RNS.spad" 1739743 1739752 1740742 1740835) (-1070 "RNS.spad" 1738732 1738743 1739733 1739738) (-1069 "RNG.spad" 1738467 1738476 1738722 1738727) (-1068 "RNGBIND.spad" 1737627 1737641 1738422 1738427) (-1067 "RMODULE.spad" 1737392 1737403 1737617 1737622) (-1066 "RMCAT2.spad" 1736812 1736869 1737382 1737387) (-1065 "RMATRIX.spad" 1735636 1735655 1735979 1736018) (-1064 "RMATCAT.spad" 1731215 1731246 1735592 1735631) (-1063 "RMATCAT.spad" 1726684 1726717 1731063 1731068) (-1062 "RLINSET.spad" 1726078 1726089 1726674 1726679) (-1061 "RINTERP.spad" 1725966 1725986 1726068 1726073) (-1060 "RING.spad" 1725436 1725445 1725946 1725961) (-1059 "RING.spad" 1724914 1724925 1725426 1725431) (-1058 "RIDIST.spad" 1724306 1724315 1724904 1724909) (-1057 "RGCHAIN.spad" 1722889 1722905 1723791 1723818) (-1056 "RGBCSPC.spad" 1722670 1722682 1722879 1722884) (-1055 "RGBCMDL.spad" 1722200 1722212 1722660 1722665) (-1054 "RF.spad" 1719842 1719853 1722190 1722195) (-1053 "RFFACTOR.spad" 1719304 1719315 1719832 1719837) (-1052 "RFFACT.spad" 1719039 1719051 1719294 1719299) (-1051 "RFDIST.spad" 1718035 1718044 1719029 1719034) (-1050 "RETSOL.spad" 1717454 1717467 1718025 1718030) (-1049 "RETRACT.spad" 1716882 1716893 1717444 1717449) (-1048 "RETRACT.spad" 1716308 1716321 1716872 1716877) (-1047 "RETAST.spad" 1716120 1716129 1716298 1716303) (-1046 "RESULT.spad" 1714180 1714189 1714767 1714794) (-1045 "RESRING.spad" 1713527 1713574 1714118 1714175) (-1044 "RESLATC.spad" 1712851 1712862 1713517 1713522) (-1043 "REPSQ.spad" 1712582 1712593 1712841 1712846) (-1042 "REP.spad" 1710136 1710145 1712572 1712577) (-1041 "REPDB.spad" 1709843 1709854 1710126 1710131) (-1040 "REP2.spad" 1699501 1699512 1709685 1709690) (-1039 "REP1.spad" 1693697 1693708 1699451 1699456) (-1038 "REGSET.spad" 1691494 1691511 1693343 1693370) (-1037 "REF.spad" 1690829 1690840 1691449 1691454) (-1036 "REDORDER.spad" 1690035 1690052 1690819 1690824) (-1035 "RECLOS.spad" 1688818 1688838 1689522 1689615) (-1034 "REALSOLV.spad" 1687958 1687967 1688808 1688813) (-1033 "REAL.spad" 1687830 1687839 1687948 1687953) (-1032 "REAL0Q.spad" 1685128 1685143 1687820 1687825) (-1031 "REAL0.spad" 1681972 1681987 1685118 1685123) (-1030 "RDUCEAST.spad" 1681693 1681702 1681962 1681967) (-1029 "RDIV.spad" 1681348 1681373 1681683 1681688) (-1028 "RDIST.spad" 1680915 1680926 1681338 1681343) (-1027 "RDETRS.spad" 1679779 1679797 1680905 1680910) (-1026 "RDETR.spad" 1677918 1677936 1679769 1679774) (-1025 "RDEEFS.spad" 1677017 1677034 1677908 1677913) (-1024 "RDEEF.spad" 1676027 1676044 1677007 1677012) (-1023 "RCFIELD.spad" 1673213 1673222 1675929 1676022) (-1022 "RCFIELD.spad" 1670485 1670496 1673203 1673208) (-1021 "RCAGG.spad" 1668413 1668424 1670475 1670480) (-1020 "RCAGG.spad" 1666268 1666281 1668332 1668337) (-1019 "RATRET.spad" 1665628 1665639 1666258 1666263) (-1018 "RATFACT.spad" 1665320 1665332 1665618 1665623) (-1017 "RANDSRC.spad" 1664639 1664648 1665310 1665315) (-1016 "RADUTIL.spad" 1664395 1664404 1664629 1664634) (-1015 "RADIX.spad" 1661316 1661330 1662862 1662955) (-1014 "RADFF.spad" 1659729 1659766 1659848 1660004) (-1013 "RADCAT.spad" 1659324 1659333 1659719 1659724) (-1012 "RADCAT.spad" 1658917 1658928 1659314 1659319) (-1011 "QUEUE.spad" 1658265 1658276 1658524 1658551) (-1010 "QUAT.spad" 1656723 1656734 1657066 1657131) (-1009 "QUATCT2.spad" 1656343 1656362 1656713 1656718) (-1008 "QUATCAT.spad" 1654513 1654524 1656273 1656338) (-1007 "QUATCAT.spad" 1652434 1652447 1654196 1654201) (-1006 "QUAGG.spad" 1651261 1651272 1652402 1652429) (-1005 "QQUTAST.spad" 1651029 1651038 1651251 1651256) (-1004 "QFORM.spad" 1650647 1650662 1651019 1651024) (-1003 "QFCAT.spad" 1649349 1649360 1650549 1650642) (-1002 "QFCAT.spad" 1647642 1647655 1648844 1648849) (-1001 "QFCAT2.spad" 1647334 1647351 1647632 1647637) (-1000 "QEQUAT.spad" 1646892 1646901 1647324 1647329) (-999 "QCMPACK.spad" 1641639 1641658 1646882 1646887) (-998 "QALGSET.spad" 1637718 1637750 1641553 1641558) (-997 "QALGSET2.spad" 1635714 1635732 1637708 1637713) (-996 "PWFFINTB.spad" 1633130 1633151 1635704 1635709) (-995 "PUSHVAR.spad" 1632469 1632488 1633120 1633125) (-994 "PTRANFN.spad" 1628597 1628607 1632459 1632464) (-993 "PTPACK.spad" 1625685 1625695 1628587 1628592) (-992 "PTFUNC2.spad" 1625508 1625522 1625675 1625680) (-991 "PTCAT.spad" 1624763 1624773 1625476 1625503) (-990 "PSQFR.spad" 1624070 1624094 1624753 1624758) (-989 "PSEUDLIN.spad" 1622956 1622966 1624060 1624065) (-988 "PSETPK.spad" 1608389 1608405 1622834 1622839) (-987 "PSETCAT.spad" 1602309 1602332 1608369 1608384) (-986 "PSETCAT.spad" 1596203 1596228 1602265 1602270) (-985 "PSCURVE.spad" 1595186 1595194 1596193 1596198) (-984 "PSCAT.spad" 1593969 1593998 1595084 1595181) (-983 "PSCAT.spad" 1592842 1592873 1593959 1593964) (-982 "PRTITION.spad" 1591540 1591548 1592832 1592837) (-981 "PRTDAST.spad" 1591259 1591267 1591530 1591535) (-980 "PRS.spad" 1580821 1580838 1591215 1591220) (-979 "PRQAGG.spad" 1580256 1580266 1580789 1580816) (-978 "PROPLOG.spad" 1579828 1579836 1580246 1580251) (-977 "PROPFUN2.spad" 1579451 1579464 1579818 1579823) (-976 "PROPFUN1.spad" 1578849 1578860 1579441 1579446) (-975 "PROPFRML.spad" 1577417 1577428 1578839 1578844) (-974 "PROPERTY.spad" 1576905 1576913 1577407 1577412) (-973 "PRODUCT.spad" 1574587 1574599 1574871 1574926) (-972 "PR.spad" 1572979 1572991 1573678 1573805) (-971 "PRINT.spad" 1572731 1572739 1572969 1572974) (-970 "PRIMES.spad" 1570984 1570994 1572721 1572726) (-969 "PRIMELT.spad" 1569065 1569079 1570974 1570979) (-968 "PRIMCAT.spad" 1568692 1568700 1569055 1569060) (-967 "PRIMARR.spad" 1567697 1567707 1567875 1567902) (-966 "PRIMARR2.spad" 1566464 1566476 1567687 1567692) (-965 "PREASSOC.spad" 1565846 1565858 1566454 1566459) (-964 "PPCURVE.spad" 1564983 1564991 1565836 1565841) (-963 "PORTNUM.spad" 1564758 1564766 1564973 1564978) (-962 "POLYROOT.spad" 1563607 1563629 1564714 1564719) (-961 "POLY.spad" 1560942 1560952 1561457 1561584) (-960 "POLYLIFT.spad" 1560207 1560230 1560932 1560937) (-959 "POLYCATQ.spad" 1558325 1558347 1560197 1560202) (-958 "POLYCAT.spad" 1551795 1551816 1558193 1558320) (-957 "POLYCAT.spad" 1544603 1544626 1551003 1551008) (-956 "POLY2UP.spad" 1544055 1544069 1544593 1544598) (-955 "POLY2.spad" 1543652 1543664 1544045 1544050) (-954 "POLUTIL.spad" 1542593 1542622 1543608 1543613) (-953 "POLTOPOL.spad" 1541341 1541356 1542583 1542588) (-952 "POINT.spad" 1540179 1540189 1540266 1540293) (-951 "PNTHEORY.spad" 1536881 1536889 1540169 1540174) (-950 "PMTOOLS.spad" 1535656 1535670 1536871 1536876) (-949 "PMSYM.spad" 1535205 1535215 1535646 1535651) (-948 "PMQFCAT.spad" 1534796 1534810 1535195 1535200) (-947 "PMPRED.spad" 1534275 1534289 1534786 1534791) (-946 "PMPREDFS.spad" 1533729 1533751 1534265 1534270) (-945 "PMPLCAT.spad" 1532809 1532827 1533661 1533666) (-944 "PMLSAGG.spad" 1532394 1532408 1532799 1532804) (-943 "PMKERNEL.spad" 1531973 1531985 1532384 1532389) (-942 "PMINS.spad" 1531553 1531563 1531963 1531968) (-941 "PMFS.spad" 1531130 1531148 1531543 1531548) (-940 "PMDOWN.spad" 1530420 1530434 1531120 1531125) (-939 "PMASS.spad" 1529430 1529438 1530410 1530415) (-938 "PMASSFS.spad" 1528397 1528413 1529420 1529425) (-937 "PLOTTOOL.spad" 1528177 1528185 1528387 1528392) (-936 "PLOT.spad" 1523100 1523108 1528167 1528172) (-935 "PLOT3D.spad" 1519564 1519572 1523090 1523095) (-934 "PLOT1.spad" 1518721 1518731 1519554 1519559) (-933 "PLEQN.spad" 1506011 1506038 1518711 1518716) (-932 "PINTERP.spad" 1505633 1505652 1506001 1506006) (-931 "PINTERPA.spad" 1505417 1505433 1505623 1505628) (-930 "PI.spad" 1505026 1505034 1505391 1505412) (-929 "PID.spad" 1503996 1504004 1504952 1505021) (-928 "PICOERCE.spad" 1503653 1503663 1503986 1503991) (-927 "PGROEB.spad" 1502254 1502268 1503643 1503648) (-926 "PGE.spad" 1493871 1493879 1502244 1502249) (-925 "PGCD.spad" 1492761 1492778 1493861 1493866) (-924 "PFRPAC.spad" 1491910 1491920 1492751 1492756) (-923 "PFR.spad" 1488573 1488583 1491812 1491905) (-922 "PFOTOOLS.spad" 1487831 1487847 1488563 1488568) (-921 "PFOQ.spad" 1487201 1487219 1487821 1487826) (-920 "PFO.spad" 1486620 1486647 1487191 1487196) (-919 "PF.spad" 1486194 1486206 1486425 1486518) (-918 "PFECAT.spad" 1483876 1483884 1486120 1486189) (-917 "PFECAT.spad" 1481586 1481596 1483832 1483837) (-916 "PFBRU.spad" 1479474 1479486 1481576 1481581) (-915 "PFBR.spad" 1477034 1477057 1479464 1479469) (-914 "PERM.spad" 1472841 1472851 1476864 1476879) (-913 "PERMGRP.spad" 1467611 1467621 1472831 1472836) (-912 "PERMCAT.spad" 1466272 1466282 1467591 1467606) (-911 "PERMAN.spad" 1464804 1464818 1466262 1466267) (-910 "PENDTREE.spad" 1464145 1464155 1464433 1464438) (-909 "PDRING.spad" 1462696 1462706 1464125 1464140) (-908 "PDRING.spad" 1461255 1461267 1462686 1462691) (-907 "PDEPROB.spad" 1460270 1460278 1461245 1461250) (-906 "PDEPACK.spad" 1454310 1454318 1460260 1460265) (-905 "PDECOMP.spad" 1453780 1453797 1454300 1454305) (-904 "PDECAT.spad" 1452136 1452144 1453770 1453775) (-903 "PCOMP.spad" 1451989 1452002 1452126 1452131) (-902 "PBWLB.spad" 1450577 1450594 1451979 1451984) (-901 "PATTERN.spad" 1445116 1445126 1450567 1450572) (-900 "PATTERN2.spad" 1444854 1444866 1445106 1445111) (-899 "PATTERN1.spad" 1443190 1443206 1444844 1444849) (-898 "PATRES.spad" 1440765 1440777 1443180 1443185) (-897 "PATRES2.spad" 1440437 1440451 1440755 1440760) (-896 "PATMATCH.spad" 1438634 1438665 1440145 1440150) (-895 "PATMAB.spad" 1438063 1438073 1438624 1438629) (-894 "PATLRES.spad" 1437149 1437163 1438053 1438058) (-893 "PATAB.spad" 1436913 1436923 1437139 1437144) (-892 "PARTPERM.spad" 1434921 1434929 1436903 1436908) (-891 "PARSURF.spad" 1434355 1434383 1434911 1434916) (-890 "PARSU2.spad" 1434152 1434168 1434345 1434350) (-889 "script-parser.spad" 1433672 1433680 1434142 1434147) (-888 "PARSCURV.spad" 1433106 1433134 1433662 1433667) (-887 "PARSC2.spad" 1432897 1432913 1433096 1433101) (-886 "PARPCURV.spad" 1432359 1432387 1432887 1432892) (-885 "PARPC2.spad" 1432150 1432166 1432349 1432354) (-884 "PARAMAST.spad" 1431278 1431286 1432140 1432145) (-883 "PAN2EXPR.spad" 1430690 1430698 1431268 1431273) (-882 "PALETTE.spad" 1429660 1429668 1430680 1430685) (-881 "PAIR.spad" 1428647 1428660 1429248 1429253) (-880 "PADICRC.spad" 1425981 1425999 1427152 1427245) (-879 "PADICRAT.spad" 1423996 1424008 1424217 1424310) (-878 "PADIC.spad" 1423691 1423703 1423922 1423991) (-877 "PADICCT.spad" 1422240 1422252 1423617 1423686) (-876 "PADEPAC.spad" 1420929 1420948 1422230 1422235) (-875 "PADE.spad" 1419681 1419697 1420919 1420924) (-874 "OWP.spad" 1418921 1418951 1419539 1419606) (-873 "OVERSET.spad" 1418494 1418502 1418911 1418916) (-872 "OVAR.spad" 1418275 1418298 1418484 1418489) (-871 "OUT.spad" 1417361 1417369 1418265 1418270) (-870 "OUTFORM.spad" 1406753 1406761 1417351 1417356) (-869 "OUTBFILE.spad" 1406171 1406179 1406743 1406748) (-868 "OUTBCON.spad" 1405177 1405185 1406161 1406166) (-867 "OUTBCON.spad" 1404181 1404191 1405167 1405172) (-866 "OSI.spad" 1403656 1403664 1404171 1404176) (-865 "OSGROUP.spad" 1403574 1403582 1403646 1403651) (-864 "ORTHPOL.spad" 1402059 1402069 1403491 1403496) (-863 "OREUP.spad" 1401512 1401540 1401739 1401778) (-862 "ORESUP.spad" 1400813 1400837 1401192 1401231) (-861 "OREPCTO.spad" 1398670 1398682 1400733 1400738) (-860 "OREPCAT.spad" 1392817 1392827 1398626 1398665) (-859 "OREPCAT.spad" 1386854 1386866 1392665 1392670) (-858 "ORDSET.spad" 1386026 1386034 1386844 1386849) (-857 "ORDSET.spad" 1385196 1385206 1386016 1386021) (-856 "ORDRING.spad" 1384586 1384594 1385176 1385191) (-855 "ORDRING.spad" 1383984 1383994 1384576 1384581) (-854 "ORDMON.spad" 1383839 1383847 1383974 1383979) (-853 "ORDFUNS.spad" 1382971 1382987 1383829 1383834) (-852 "ORDFIN.spad" 1382791 1382799 1382961 1382966) (-851 "ORDCOMP.spad" 1381256 1381266 1382338 1382367) (-850 "ORDCOMP2.spad" 1380549 1380561 1381246 1381251) (-849 "OPTPROB.spad" 1379187 1379195 1380539 1380544) (-848 "OPTPACK.spad" 1371596 1371604 1379177 1379182) (-847 "OPTCAT.spad" 1369275 1369283 1371586 1371591) (-846 "OPSIG.spad" 1368929 1368937 1369265 1369270) (-845 "OPQUERY.spad" 1368478 1368486 1368919 1368924) (-844 "OP.spad" 1368220 1368230 1368300 1368367) (-843 "OPERCAT.spad" 1367686 1367696 1368210 1368215) (-842 "OPERCAT.spad" 1367150 1367162 1367676 1367681) (-841 "ONECOMP.spad" 1365895 1365905 1366697 1366726) (-840 "ONECOMP2.spad" 1365319 1365331 1365885 1365890) (-839 "OMSERVER.spad" 1364325 1364333 1365309 1365314) (-838 "OMSAGG.spad" 1364113 1364123 1364281 1364320) (-837 "OMPKG.spad" 1362729 1362737 1364103 1364108) (-836 "OM.spad" 1361702 1361710 1362719 1362724) (-835 "OMLO.spad" 1361127 1361139 1361588 1361627) (-834 "OMEXPR.spad" 1360961 1360971 1361117 1361122) (-833 "OMERR.spad" 1360506 1360514 1360951 1360956) (-832 "OMERRK.spad" 1359540 1359548 1360496 1360501) (-831 "OMENC.spad" 1358884 1358892 1359530 1359535) (-830 "OMDEV.spad" 1353193 1353201 1358874 1358879) (-829 "OMCONN.spad" 1352602 1352610 1353183 1353188) (-828 "OINTDOM.spad" 1352365 1352373 1352528 1352597) (-827 "OFMONOID.spad" 1350488 1350498 1352321 1352326) (-826 "ODVAR.spad" 1349749 1349759 1350478 1350483) (-825 "ODR.spad" 1349393 1349419 1349561 1349710) (-824 "ODPOL.spad" 1346775 1346785 1347115 1347242) (-823 "ODP.spad" 1336622 1336642 1336995 1337126) (-822 "ODETOOLS.spad" 1335271 1335290 1336612 1336617) (-821 "ODESYS.spad" 1332965 1332982 1335261 1335266) (-820 "ODERTRIC.spad" 1328974 1328991 1332922 1332927) (-819 "ODERED.spad" 1328373 1328397 1328964 1328969) (-818 "ODERAT.spad" 1325988 1326005 1328363 1328368) (-817 "ODEPRRIC.spad" 1323025 1323047 1325978 1325983) (-816 "ODEPROB.spad" 1322282 1322290 1323015 1323020) (-815 "ODEPRIM.spad" 1319616 1319638 1322272 1322277) (-814 "ODEPAL.spad" 1319002 1319026 1319606 1319611) (-813 "ODEPACK.spad" 1305668 1305676 1318992 1318997) (-812 "ODEINT.spad" 1305103 1305119 1305658 1305663) (-811 "ODEIFTBL.spad" 1302498 1302506 1305093 1305098) (-810 "ODEEF.spad" 1297989 1298005 1302488 1302493) (-809 "ODECONST.spad" 1297526 1297544 1297979 1297984) (-808 "ODECAT.spad" 1296124 1296132 1297516 1297521) (-807 "OCT.spad" 1294260 1294270 1294974 1295013) (-806 "OCTCT2.spad" 1293906 1293927 1294250 1294255) (-805 "OC.spad" 1291702 1291712 1293862 1293901) (-804 "OC.spad" 1289223 1289235 1291385 1291390) (-803 "OCAMON.spad" 1289071 1289079 1289213 1289218) (-802 "OASGP.spad" 1288886 1288894 1289061 1289066) (-801 "OAMONS.spad" 1288408 1288416 1288876 1288881) (-800 "OAMON.spad" 1288269 1288277 1288398 1288403) (-799 "OAGROUP.spad" 1288131 1288139 1288259 1288264) (-798 "NUMTUBE.spad" 1287722 1287738 1288121 1288126) (-797 "NUMQUAD.spad" 1275698 1275706 1287712 1287717) (-796 "NUMODE.spad" 1267052 1267060 1275688 1275693) (-795 "NUMINT.spad" 1264618 1264626 1267042 1267047) (-794 "NUMFMT.spad" 1263458 1263466 1264608 1264613) (-793 "NUMERIC.spad" 1255572 1255582 1263263 1263268) (-792 "NTSCAT.spad" 1254080 1254096 1255540 1255567) (-791 "NTPOLFN.spad" 1253631 1253641 1253997 1254002) (-790 "NSUP.spad" 1246677 1246687 1251217 1251370) (-789 "NSUP2.spad" 1246069 1246081 1246667 1246672) (-788 "NSMP.spad" 1242299 1242318 1242607 1242734) (-787 "NREP.spad" 1240677 1240691 1242289 1242294) (-786 "NPCOEF.spad" 1239923 1239943 1240667 1240672) (-785 "NORMRETR.spad" 1239521 1239560 1239913 1239918) (-784 "NORMPK.spad" 1237423 1237442 1239511 1239516) (-783 "NORMMA.spad" 1237111 1237137 1237413 1237418) (-782 "NONE.spad" 1236852 1236860 1237101 1237106) (-781 "NONE1.spad" 1236528 1236538 1236842 1236847) (-780 "NODE1.spad" 1236015 1236031 1236518 1236523) (-779 "NNI.spad" 1234910 1234918 1235989 1236010) (-778 "NLINSOL.spad" 1233536 1233546 1234900 1234905) (-777 "NIPROB.spad" 1232077 1232085 1233526 1233531) (-776 "NFINTBAS.spad" 1229637 1229654 1232067 1232072) (-775 "NETCLT.spad" 1229611 1229622 1229627 1229632) (-774 "NCODIV.spad" 1227827 1227843 1229601 1229606) (-773 "NCNTFRAC.spad" 1227469 1227483 1227817 1227822) (-772 "NCEP.spad" 1225635 1225649 1227459 1227464) (-771 "NASRING.spad" 1225231 1225239 1225625 1225630) (-770 "NASRING.spad" 1224825 1224835 1225221 1225226) (-769 "NARNG.spad" 1224177 1224185 1224815 1224820) (-768 "NARNG.spad" 1223527 1223537 1224167 1224172) (-767 "NAGSP.spad" 1222604 1222612 1223517 1223522) (-766 "NAGS.spad" 1212265 1212273 1222594 1222599) (-765 "NAGF07.spad" 1210696 1210704 1212255 1212260) (-764 "NAGF04.spad" 1205098 1205106 1210686 1210691) (-763 "NAGF02.spad" 1199167 1199175 1205088 1205093) (-762 "NAGF01.spad" 1194928 1194936 1199157 1199162) (-761 "NAGE04.spad" 1188628 1188636 1194918 1194923) (-760 "NAGE02.spad" 1179288 1179296 1188618 1188623) (-759 "NAGE01.spad" 1175290 1175298 1179278 1179283) (-758 "NAGD03.spad" 1173294 1173302 1175280 1175285) (-757 "NAGD02.spad" 1166041 1166049 1173284 1173289) (-756 "NAGD01.spad" 1160334 1160342 1166031 1166036) (-755 "NAGC06.spad" 1156209 1156217 1160324 1160329) (-754 "NAGC05.spad" 1154710 1154718 1156199 1156204) (-753 "NAGC02.spad" 1153977 1153985 1154700 1154705) (-752 "NAALG.spad" 1153518 1153528 1153945 1153972) (-751 "NAALG.spad" 1153079 1153091 1153508 1153513) (-750 "MULTSQFR.spad" 1150037 1150054 1153069 1153074) (-749 "MULTFACT.spad" 1149420 1149437 1150027 1150032) (-748 "MTSCAT.spad" 1147514 1147535 1149318 1149415) (-747 "MTHING.spad" 1147173 1147183 1147504 1147509) (-746 "MSYSCMD.spad" 1146607 1146615 1147163 1147168) (-745 "MSET.spad" 1144565 1144575 1146313 1146352) (-744 "MSETAGG.spad" 1144410 1144420 1144533 1144560) (-743 "MRING.spad" 1141387 1141399 1144118 1144185) (-742 "MRF2.spad" 1140957 1140971 1141377 1141382) (-741 "MRATFAC.spad" 1140503 1140520 1140947 1140952) (-740 "MPRFF.spad" 1138543 1138562 1140493 1140498) (-739 "MPOLY.spad" 1136014 1136029 1136373 1136500) (-738 "MPCPF.spad" 1135278 1135297 1136004 1136009) (-737 "MPC3.spad" 1135095 1135135 1135268 1135273) (-736 "MPC2.spad" 1134741 1134774 1135085 1135090) (-735 "MONOTOOL.spad" 1133092 1133109 1134731 1134736) (-734 "MONOID.spad" 1132411 1132419 1133082 1133087) (-733 "MONOID.spad" 1131728 1131738 1132401 1132406) (-732 "MONOGEN.spad" 1130476 1130489 1131588 1131723) (-731 "MONOGEN.spad" 1129246 1129261 1130360 1130365) (-730 "MONADWU.spad" 1127276 1127284 1129236 1129241) (-729 "MONADWU.spad" 1125304 1125314 1127266 1127271) (-728 "MONAD.spad" 1124464 1124472 1125294 1125299) (-727 "MONAD.spad" 1123622 1123632 1124454 1124459) (-726 "MOEBIUS.spad" 1122358 1122372 1123602 1123617) (-725 "MODULE.spad" 1122228 1122238 1122326 1122353) (-724 "MODULE.spad" 1122118 1122130 1122218 1122223) (-723 "MODRING.spad" 1121453 1121492 1122098 1122113) (-722 "MODOP.spad" 1120118 1120130 1121275 1121342) (-721 "MODMONOM.spad" 1119849 1119867 1120108 1120113) (-720 "MODMON.spad" 1116644 1116660 1117363 1117516) (-719 "MODFIELD.spad" 1116006 1116045 1116546 1116639) (-718 "MMLFORM.spad" 1114866 1114874 1115996 1116001) (-717 "MMAP.spad" 1114608 1114642 1114856 1114861) (-716 "MLO.spad" 1113067 1113077 1114564 1114603) (-715 "MLIFT.spad" 1111679 1111696 1113057 1113062) (-714 "MKUCFUNC.spad" 1111214 1111232 1111669 1111674) (-713 "MKRECORD.spad" 1110818 1110831 1111204 1111209) (-712 "MKFUNC.spad" 1110225 1110235 1110808 1110813) (-711 "MKFLCFN.spad" 1109193 1109203 1110215 1110220) (-710 "MKBCFUNC.spad" 1108688 1108706 1109183 1109188) (-709 "MINT.spad" 1108127 1108135 1108590 1108683) (-708 "MHROWRED.spad" 1106638 1106648 1108117 1108122) (-707 "MFLOAT.spad" 1105158 1105166 1106528 1106633) (-706 "MFINFACT.spad" 1104558 1104580 1105148 1105153) (-705 "MESH.spad" 1102340 1102348 1104548 1104553) (-704 "MDDFACT.spad" 1100551 1100561 1102330 1102335) (-703 "MDAGG.spad" 1099842 1099852 1100531 1100546) (-702 "MCMPLX.spad" 1095853 1095861 1096467 1096668) (-701 "MCDEN.spad" 1095063 1095075 1095843 1095848) (-700 "MCALCFN.spad" 1092185 1092211 1095053 1095058) (-699 "MAYBE.spad" 1091469 1091480 1092175 1092180) (-698 "MATSTOR.spad" 1088777 1088787 1091459 1091464) (-697 "MATRIX.spad" 1087481 1087491 1087965 1087992) (-696 "MATLIN.spad" 1084825 1084849 1087365 1087370) (-695 "MATCAT.spad" 1076554 1076576 1084793 1084820) (-694 "MATCAT.spad" 1068155 1068179 1076396 1076401) (-693 "MATCAT2.spad" 1067437 1067485 1068145 1068150) (-692 "MAPPKG3.spad" 1066352 1066366 1067427 1067432) (-691 "MAPPKG2.spad" 1065690 1065702 1066342 1066347) (-690 "MAPPKG1.spad" 1064518 1064528 1065680 1065685) (-689 "MAPPAST.spad" 1063833 1063841 1064508 1064513) (-688 "MAPHACK3.spad" 1063645 1063659 1063823 1063828) (-687 "MAPHACK2.spad" 1063414 1063426 1063635 1063640) (-686 "MAPHACK1.spad" 1063058 1063068 1063404 1063409) (-685 "MAGMA.spad" 1060848 1060865 1063048 1063053) (-684 "MACROAST.spad" 1060427 1060435 1060838 1060843) (-683 "M3D.spad" 1058147 1058157 1059805 1059810) (-682 "LZSTAGG.spad" 1055385 1055395 1058137 1058142) (-681 "LZSTAGG.spad" 1052621 1052633 1055375 1055380) (-680 "LWORD.spad" 1049326 1049343 1052611 1052616) (-679 "LSTAST.spad" 1049110 1049118 1049316 1049321) (-678 "LSQM.spad" 1047340 1047354 1047734 1047785) (-677 "LSPP.spad" 1046875 1046892 1047330 1047335) (-676 "LSMP.spad" 1045725 1045753 1046865 1046870) (-675 "LSMP1.spad" 1043543 1043557 1045715 1045720) (-674 "LSAGG.spad" 1043212 1043222 1043511 1043538) (-673 "LSAGG.spad" 1042901 1042913 1043202 1043207) (-672 "LPOLY.spad" 1041855 1041874 1042757 1042826) (-671 "LPEFRAC.spad" 1041126 1041136 1041845 1041850) (-670 "LO.spad" 1040527 1040541 1041060 1041087) (-669 "LOGIC.spad" 1040129 1040137 1040517 1040522) (-668 "LOGIC.spad" 1039729 1039739 1040119 1040124) (-667 "LODOOPS.spad" 1038659 1038671 1039719 1039724) (-666 "LODO.spad" 1038043 1038059 1038339 1038378) (-665 "LODOF.spad" 1037089 1037106 1038000 1038005) (-664 "LODOCAT.spad" 1035755 1035765 1037045 1037084) (-663 "LODOCAT.spad" 1034419 1034431 1035711 1035716) (-662 "LODO2.spad" 1033692 1033704 1034099 1034138) (-661 "LODO1.spad" 1033092 1033102 1033372 1033411) (-660 "LODEEF.spad" 1031894 1031912 1033082 1033087) (-659 "LNAGG.spad" 1028041 1028051 1031884 1031889) (-658 "LNAGG.spad" 1024152 1024164 1027997 1028002) (-657 "LMOPS.spad" 1020920 1020937 1024142 1024147) (-656 "LMODULE.spad" 1020688 1020698 1020910 1020915) (-655 "LMDICT.spad" 1019975 1019985 1020239 1020266) (-654 "LLINSET.spad" 1019372 1019382 1019965 1019970) (-653 "LITERAL.spad" 1019278 1019289 1019362 1019367) (-652 "LIST.spad" 1017013 1017023 1018425 1018452) (-651 "LIST3.spad" 1016324 1016338 1017003 1017008) (-650 "LIST2.spad" 1015026 1015038 1016314 1016319) (-649 "LIST2MAP.spad" 1011929 1011941 1015016 1015021) (-648 "LINSET.spad" 1011551 1011561 1011919 1011924) (-647 "LINEXP.spad" 1010985 1010995 1011531 1011546) (-646 "LINDEP.spad" 1009794 1009806 1010897 1010902) (-645 "LIMITRF.spad" 1007722 1007732 1009784 1009789) (-644 "LIMITPS.spad" 1006625 1006638 1007712 1007717) (-643 "LIE.spad" 1004641 1004653 1005915 1006060) (-642 "LIECAT.spad" 1004117 1004127 1004567 1004636) (-641 "LIECAT.spad" 1003621 1003633 1004073 1004078) (-640 "LIB.spad" 1001834 1001842 1002280 1002295) (-639 "LGROBP.spad" 999187 999206 1001824 1001829) (-638 "LF.spad" 998142 998158 999177 999182) (-637 "LFCAT.spad" 997201 997209 998132 998137) (-636 "LEXTRIPK.spad" 992704 992719 997191 997196) (-635 "LEXP.spad" 990707 990734 992684 992699) (-634 "LETAST.spad" 990406 990414 990697 990702) (-633 "LEADCDET.spad" 988804 988821 990396 990401) (-632 "LAZM3PK.spad" 987508 987530 988794 988799) (-631 "LAUPOL.spad" 986201 986214 987101 987170) (-630 "LAPLACE.spad" 985784 985800 986191 986196) (-629 "LA.spad" 985224 985238 985706 985745) (-628 "LALG.spad" 985000 985010 985204 985219) (-627 "LALG.spad" 984784 984796 984990 984995) (-626 "KVTFROM.spad" 984519 984529 984774 984779) (-625 "KTVLOGIC.spad" 984031 984039 984509 984514) (-624 "KRCFROM.spad" 983769 983779 984021 984026) (-623 "KOVACIC.spad" 982492 982509 983759 983764) (-622 "KONVERT.spad" 982214 982224 982482 982487) (-621 "KOERCE.spad" 981951 981961 982204 982209) (-620 "KERNEL.spad" 980606 980616 981735 981740) (-619 "KERNEL2.spad" 980309 980321 980596 980601) (-618 "KDAGG.spad" 979418 979440 980289 980304) (-617 "KDAGG.spad" 978535 978559 979408 979413) (-616 "KAFILE.spad" 977498 977514 977733 977760) (-615 "JORDAN.spad" 975327 975339 976788 976933) (-614 "JOINAST.spad" 975021 975029 975317 975322) (-613 "JAVACODE.spad" 974887 974895 975011 975016) (-612 "IXAGG.spad" 973020 973044 974877 974882) (-611 "IXAGG.spad" 971008 971034 972867 972872) (-610 "IVECTOR.spad" 969778 969793 969933 969960) (-609 "ITUPLE.spad" 968939 968949 969768 969773) (-608 "ITRIGMNP.spad" 967778 967797 968929 968934) (-607 "ITFUN3.spad" 967284 967298 967768 967773) (-606 "ITFUN2.spad" 967028 967040 967274 967279) (-605 "ITFORM.spad" 966383 966391 967018 967023) (-604 "ITAYLOR.spad" 964377 964392 966247 966344) (-603 "ISUPS.spad" 956814 956829 963351 963448) (-602 "ISUMP.spad" 956315 956331 956804 956809) (-601 "ISTRING.spad" 955403 955416 955484 955511) (-600 "ISAST.spad" 955122 955130 955393 955398) (-599 "IRURPK.spad" 953839 953858 955112 955117) (-598 "IRSN.spad" 951811 951819 953829 953834) (-597 "IRRF2F.spad" 950296 950306 951767 951772) (-596 "IRREDFFX.spad" 949897 949908 950286 950291) (-595 "IROOT.spad" 948236 948246 949887 949892) (-594 "IR.spad" 946037 946051 948091 948118) (-593 "IRFORM.spad" 945361 945369 946027 946032) (-592 "IR2.spad" 944389 944405 945351 945356) (-591 "IR2F.spad" 943595 943611 944379 944384) (-590 "IPRNTPK.spad" 943355 943363 943585 943590) (-589 "IPF.spad" 942920 942932 943160 943253) (-588 "IPADIC.spad" 942681 942707 942846 942915) (-587 "IP4ADDR.spad" 942238 942246 942671 942676) (-586 "IOMODE.spad" 941760 941768 942228 942233) (-585 "IOBFILE.spad" 941121 941129 941750 941755) (-584 "IOBCON.spad" 940986 940994 941111 941116) (-583 "INVLAPLA.spad" 940635 940651 940976 940981) (-582 "INTTR.spad" 934017 934034 940625 940630) (-581 "INTTOOLS.spad" 931772 931788 933591 933596) (-580 "INTSLPE.spad" 931092 931100 931762 931767) (-579 "INTRVL.spad" 930658 930668 931006 931087) (-578 "INTRF.spad" 929082 929096 930648 930653) (-577 "INTRET.spad" 928514 928524 929072 929077) (-576 "INTRAT.spad" 927241 927258 928504 928509) (-575 "INTPM.spad" 925626 925642 926884 926889) (-574 "INTPAF.spad" 923490 923508 925558 925563) (-573 "INTPACK.spad" 913864 913872 923480 923485) (-572 "INT.spad" 913312 913320 913718 913859) (-571 "INTHERTR.spad" 912586 912603 913302 913307) (-570 "INTHERAL.spad" 912256 912280 912576 912581) (-569 "INTHEORY.spad" 908695 908703 912246 912251) (-568 "INTG0.spad" 902428 902446 908627 908632) (-567 "INTFTBL.spad" 896457 896465 902418 902423) (-566 "INTFACT.spad" 895516 895526 896447 896452) (-565 "INTEF.spad" 893901 893917 895506 895511) (-564 "INTDOM.spad" 892524 892532 893827 893896) (-563 "INTDOM.spad" 891209 891219 892514 892519) (-562 "INTCAT.spad" 889468 889478 891123 891204) (-561 "INTBIT.spad" 888975 888983 889458 889463) (-560 "INTALG.spad" 888163 888190 888965 888970) (-559 "INTAF.spad" 887663 887679 888153 888158) (-558 "INTABL.spad" 886181 886212 886344 886371) (-557 "INT8.spad" 886061 886069 886171 886176) (-556 "INT64.spad" 885940 885948 886051 886056) (-555 "INT32.spad" 885819 885827 885930 885935) (-554 "INT16.spad" 885698 885706 885809 885814) (-553 "INS.spad" 883201 883209 885600 885693) (-552 "INS.spad" 880790 880800 883191 883196) (-551 "INPSIGN.spad" 880238 880251 880780 880785) (-550 "INPRODPF.spad" 879334 879353 880228 880233) (-549 "INPRODFF.spad" 878422 878446 879324 879329) (-548 "INNMFACT.spad" 877397 877414 878412 878417) (-547 "INMODGCD.spad" 876885 876915 877387 877392) (-546 "INFSP.spad" 875182 875204 876875 876880) (-545 "INFPROD0.spad" 874262 874281 875172 875177) (-544 "INFORM.spad" 871461 871469 874252 874257) (-543 "INFORM1.spad" 871086 871096 871451 871456) (-542 "INFINITY.spad" 870638 870646 871076 871081) (-541 "INETCLTS.spad" 870615 870623 870628 870633) (-540 "INEP.spad" 869153 869175 870605 870610) (-539 "INDE.spad" 868882 868899 869143 869148) (-538 "INCRMAPS.spad" 868303 868313 868872 868877) (-537 "INBFILE.spad" 867375 867383 868293 868298) (-536 "INBFF.spad" 863169 863180 867365 867370) (-535 "INBCON.spad" 861459 861467 863159 863164) (-534 "INBCON.spad" 859747 859757 861449 861454) (-533 "INAST.spad" 859408 859416 859737 859742) (-532 "IMPTAST.spad" 859116 859124 859398 859403) (-531 "IMATRIX.spad" 858061 858087 858573 858600) (-530 "IMATQF.spad" 857155 857199 858017 858022) (-529 "IMATLIN.spad" 855760 855784 857111 857116) (-528 "ILIST.spad" 854418 854433 854943 854970) (-527 "IIARRAY2.spad" 853806 853844 854025 854052) (-526 "IFF.spad" 853216 853232 853487 853580) (-525 "IFAST.spad" 852830 852838 853206 853211) (-524 "IFARRAY.spad" 850323 850338 852013 852040) (-523 "IFAMON.spad" 850185 850202 850279 850284) (-522 "IEVALAB.spad" 849590 849602 850175 850180) (-521 "IEVALAB.spad" 848993 849007 849580 849585) (-520 "IDPO.spad" 848791 848803 848983 848988) (-519 "IDPOAMS.spad" 848547 848559 848781 848786) (-518 "IDPOAM.spad" 848267 848279 848537 848542) (-517 "IDPC.spad" 847205 847217 848257 848262) (-516 "IDPAM.spad" 846950 846962 847195 847200) (-515 "IDPAG.spad" 846697 846709 846940 846945) (-514 "IDENT.spad" 846347 846355 846687 846692) (-513 "IDECOMP.spad" 843586 843604 846337 846342) (-512 "IDEAL.spad" 838535 838574 843521 843526) (-511 "ICDEN.spad" 837724 837740 838525 838530) (-510 "ICARD.spad" 836915 836923 837714 837719) (-509 "IBPTOOLS.spad" 835522 835539 836905 836910) (-508 "IBITS.spad" 834725 834738 835158 835185) (-507 "IBATOOL.spad" 831702 831721 834715 834720) (-506 "IBACHIN.spad" 830209 830224 831692 831697) (-505 "IARRAY2.spad" 829197 829223 829816 829843) (-504 "IARRAY1.spad" 828242 828257 828380 828407) (-503 "IAN.spad" 826465 826473 828058 828151) (-502 "IALGFACT.spad" 826068 826101 826455 826460) (-501 "HYPCAT.spad" 825492 825500 826058 826063) (-500 "HYPCAT.spad" 824914 824924 825482 825487) (-499 "HOSTNAME.spad" 824722 824730 824904 824909) (-498 "HOMOTOP.spad" 824465 824475 824712 824717) (-497 "HOAGG.spad" 821747 821757 824455 824460) (-496 "HOAGG.spad" 818804 818816 821514 821519) (-495 "HEXADEC.spad" 816906 816914 817271 817364) (-494 "HEUGCD.spad" 815941 815952 816896 816901) (-493 "HELLFDIV.spad" 815531 815555 815931 815936) (-492 "HEAP.spad" 814923 814933 815138 815165) (-491 "HEADAST.spad" 814456 814464 814913 814918) (-490 "HDP.spad" 804299 804315 804676 804807) (-489 "HDMP.spad" 801513 801528 802129 802256) (-488 "HB.spad" 799764 799772 801503 801508) (-487 "HASHTBL.spad" 798234 798265 798445 798472) (-486 "HASAST.spad" 797950 797958 798224 798229) (-485 "HACKPI.spad" 797441 797449 797852 797945) (-484 "GTSET.spad" 796380 796396 797087 797114) (-483 "GSTBL.spad" 794899 794934 795073 795088) (-482 "GSERIES.spad" 792070 792097 793031 793180) (-481 "GROUP.spad" 791343 791351 792050 792065) (-480 "GROUP.spad" 790624 790634 791333 791338) (-479 "GROEBSOL.spad" 789118 789139 790614 790619) (-478 "GRMOD.spad" 787689 787701 789108 789113) (-477 "GRMOD.spad" 786258 786272 787679 787684) (-476 "GRIMAGE.spad" 779147 779155 786248 786253) (-475 "GRDEF.spad" 777526 777534 779137 779142) (-474 "GRAY.spad" 775989 775997 777516 777521) (-473 "GRALG.spad" 775066 775078 775979 775984) (-472 "GRALG.spad" 774141 774155 775056 775061) (-471 "GPOLSET.spad" 773595 773618 773823 773850) (-470 "GOSPER.spad" 772864 772882 773585 773590) (-469 "GMODPOL.spad" 772012 772039 772832 772859) (-468 "GHENSEL.spad" 771095 771109 772002 772007) (-467 "GENUPS.spad" 767388 767401 771085 771090) (-466 "GENUFACT.spad" 766965 766975 767378 767383) (-465 "GENPGCD.spad" 766551 766568 766955 766960) (-464 "GENMFACT.spad" 766003 766022 766541 766546) (-463 "GENEEZ.spad" 763954 763967 765993 765998) (-462 "GDMP.spad" 761010 761027 761784 761911) (-461 "GCNAALG.spad" 754933 754960 760804 760871) (-460 "GCDDOM.spad" 754109 754117 754859 754928) (-459 "GCDDOM.spad" 753347 753357 754099 754104) (-458 "GB.spad" 750873 750911 753303 753308) (-457 "GBINTERN.spad" 746893 746931 750863 750868) (-456 "GBF.spad" 742660 742698 746883 746888) (-455 "GBEUCLID.spad" 740542 740580 742650 742655) (-454 "GAUSSFAC.spad" 739855 739863 740532 740537) (-453 "GALUTIL.spad" 738181 738191 739811 739816) (-452 "GALPOLYU.spad" 736635 736648 738171 738176) (-451 "GALFACTU.spad" 734808 734827 736625 736630) (-450 "GALFACT.spad" 724997 725008 734798 734803) (-449 "FVFUN.spad" 722020 722028 724987 724992) (-448 "FVC.spad" 721072 721080 722010 722015) (-447 "FUNDESC.spad" 720750 720758 721062 721067) (-446 "FUNCTION.spad" 720599 720611 720740 720745) (-445 "FT.spad" 718896 718904 720589 720594) (-444 "FTEM.spad" 718061 718069 718886 718891) (-443 "FSUPFACT.spad" 716961 716980 717997 718002) (-442 "FST.spad" 715047 715055 716951 716956) (-441 "FSRED.spad" 714527 714543 715037 715042) (-440 "FSPRMELT.spad" 713409 713425 714484 714489) (-439 "FSPECF.spad" 711500 711516 713399 713404) (-438 "FS.spad" 705768 705778 711275 711495) (-437 "FS.spad" 699814 699826 705323 705328) (-436 "FSINT.spad" 699474 699490 699804 699809) (-435 "FSERIES.spad" 698665 698677 699294 699393) (-434 "FSCINT.spad" 697982 697998 698655 698660) (-433 "FSAGG.spad" 697099 697109 697938 697977) (-432 "FSAGG.spad" 696178 696190 697019 697024) (-431 "FSAGG2.spad" 694921 694937 696168 696173) (-430 "FS2UPS.spad" 689412 689446 694911 694916) (-429 "FS2.spad" 689059 689075 689402 689407) (-428 "FS2EXPXP.spad" 688184 688207 689049 689054) (-427 "FRUTIL.spad" 687138 687148 688174 688179) (-426 "FR.spad" 680670 680680 685978 686047) (-425 "FRNAALG.spad" 675939 675949 680612 680665) (-424 "FRNAALG.spad" 671220 671232 675895 675900) (-423 "FRNAAF2.spad" 670676 670694 671210 671215) (-422 "FRMOD.spad" 670086 670116 670607 670612) (-421 "FRIDEAL.spad" 669311 669332 670066 670081) (-420 "FRIDEAL2.spad" 668915 668947 669301 669306) (-419 "FRETRCT.spad" 668426 668436 668905 668910) (-418 "FRETRCT.spad" 667803 667815 668284 668289) (-417 "FRAMALG.spad" 666151 666164 667759 667798) (-416 "FRAMALG.spad" 664531 664546 666141 666146) (-415 "FRAC.spad" 661630 661640 662033 662206) (-414 "FRAC2.spad" 661235 661247 661620 661625) (-413 "FR2.spad" 660571 660583 661225 661230) (-412 "FPS.spad" 657386 657394 660461 660566) (-411 "FPS.spad" 654229 654239 657306 657311) (-410 "FPC.spad" 653275 653283 654131 654224) (-409 "FPC.spad" 652407 652417 653265 653270) (-408 "FPATMAB.spad" 652169 652179 652397 652402) (-407 "FPARFRAC.spad" 650656 650673 652159 652164) (-406 "FORTRAN.spad" 649162 649205 650646 650651) (-405 "FORT.spad" 648111 648119 649152 649157) (-404 "FORTFN.spad" 645281 645289 648101 648106) (-403 "FORTCAT.spad" 644965 644973 645271 645276) (-402 "FORMULA.spad" 642439 642447 644955 644960) (-401 "FORMULA1.spad" 641918 641928 642429 642434) (-400 "FORDER.spad" 641609 641633 641908 641913) (-399 "FOP.spad" 640810 640818 641599 641604) (-398 "FNLA.spad" 640234 640256 640778 640805) (-397 "FNCAT.spad" 638829 638837 640224 640229) (-396 "FNAME.spad" 638721 638729 638819 638824) (-395 "FMTC.spad" 638519 638527 638647 638716) (-394 "FMONOID.spad" 638184 638194 638475 638480) (-393 "FMONCAT.spad" 635337 635347 638174 638179) (-392 "FM.spad" 635032 635044 635271 635298) (-391 "FMFUN.spad" 632062 632070 635022 635027) (-390 "FMC.spad" 631114 631122 632052 632057) (-389 "FMCAT.spad" 628782 628800 631082 631109) (-388 "FM1.spad" 628139 628151 628716 628743) (-387 "FLOATRP.spad" 625874 625888 628129 628134) (-386 "FLOAT.spad" 619188 619196 625740 625869) (-385 "FLOATCP.spad" 616619 616633 619178 619183) (-384 "FLINEXP.spad" 616331 616341 616599 616614) (-383 "FLINEXP.spad" 615997 616009 616267 616272) (-382 "FLASORT.spad" 615323 615335 615987 615992) (-381 "FLALG.spad" 612969 612988 615249 615318) (-380 "FLAGG.spad" 610011 610021 612949 612964) (-379 "FLAGG.spad" 606954 606966 609894 609899) (-378 "FLAGG2.spad" 605679 605695 606944 606949) (-377 "FINRALG.spad" 603740 603753 605635 605674) (-376 "FINRALG.spad" 601727 601742 603624 603629) (-375 "FINITE.spad" 600879 600887 601717 601722) (-374 "FINAALG.spad" 590000 590010 600821 600874) (-373 "FINAALG.spad" 579133 579145 589956 589961) (-372 "FILE.spad" 578716 578726 579123 579128) (-371 "FILECAT.spad" 577242 577259 578706 578711) (-370 "FIELD.spad" 576648 576656 577144 577237) (-369 "FIELD.spad" 576140 576150 576638 576643) (-368 "FGROUP.spad" 574787 574797 576120 576135) (-367 "FGLMICPK.spad" 573574 573589 574777 574782) (-366 "FFX.spad" 572949 572964 573290 573383) (-365 "FFSLPE.spad" 572452 572473 572939 572944) (-364 "FFPOLY.spad" 563714 563725 572442 572447) (-363 "FFPOLY2.spad" 562774 562791 563704 563709) (-362 "FFP.spad" 562171 562191 562490 562583) (-361 "FF.spad" 561619 561635 561852 561945) (-360 "FFNBX.spad" 560131 560151 561335 561428) (-359 "FFNBP.spad" 558644 558661 559847 559940) (-358 "FFNB.spad" 557109 557130 558325 558418) (-357 "FFINTBAS.spad" 554623 554642 557099 557104) (-356 "FFIELDC.spad" 552200 552208 554525 554618) (-355 "FFIELDC.spad" 549863 549873 552190 552195) (-354 "FFHOM.spad" 548611 548628 549853 549858) (-353 "FFF.spad" 546046 546057 548601 548606) (-352 "FFCGX.spad" 544893 544913 545762 545855) (-351 "FFCGP.spad" 543782 543802 544609 544702) (-350 "FFCG.spad" 542574 542595 543463 543556) (-349 "FFCAT.spad" 535747 535769 542413 542569) (-348 "FFCAT.spad" 528999 529023 535667 535672) (-347 "FFCAT2.spad" 528746 528786 528989 528994) (-346 "FEXPR.spad" 520463 520509 528502 528541) (-345 "FEVALAB.spad" 520171 520181 520453 520458) (-344 "FEVALAB.spad" 519664 519676 519948 519953) (-343 "FDIV.spad" 519106 519130 519654 519659) (-342 "FDIVCAT.spad" 517170 517194 519096 519101) (-341 "FDIVCAT.spad" 515232 515258 517160 517165) (-340 "FDIV2.spad" 514888 514928 515222 515227) (-339 "FCTRDATA.spad" 513896 513904 514878 514883) (-338 "FCPAK1.spad" 512463 512471 513886 513891) (-337 "FCOMP.spad" 511842 511852 512453 512458) (-336 "FC.spad" 501849 501857 511832 511837) (-335 "FAXF.spad" 494820 494834 501751 501844) (-334 "FAXF.spad" 487843 487859 494776 494781) (-333 "FARRAY.spad" 485993 486003 487026 487053) (-332 "FAMR.spad" 484129 484141 485891 485988) (-331 "FAMR.spad" 482249 482263 484013 484018) (-330 "FAMONOID.spad" 481917 481927 482203 482208) (-329 "FAMONC.spad" 480213 480225 481907 481912) (-328 "FAGROUP.spad" 479837 479847 480109 480136) (-327 "FACUTIL.spad" 478041 478058 479827 479832) (-326 "FACTFUNC.spad" 477235 477245 478031 478036) (-325 "EXPUPXS.spad" 474068 474091 475367 475516) (-324 "EXPRTUBE.spad" 471356 471364 474058 474063) (-323 "EXPRODE.spad" 468516 468532 471346 471351) (-322 "EXPR.spad" 463791 463801 464505 464912) (-321 "EXPR2UPS.spad" 459913 459926 463781 463786) (-320 "EXPR2.spad" 459618 459630 459903 459908) (-319 "EXPEXPAN.spad" 456558 456583 457190 457283) (-318 "EXIT.spad" 456229 456237 456548 456553) (-317 "EXITAST.spad" 455965 455973 456219 456224) (-316 "EVALCYC.spad" 455425 455439 455955 455960) (-315 "EVALAB.spad" 454997 455007 455415 455420) (-314 "EVALAB.spad" 454567 454579 454987 454992) (-313 "EUCDOM.spad" 452141 452149 454493 454562) (-312 "EUCDOM.spad" 449777 449787 452131 452136) (-311 "ESTOOLS.spad" 441623 441631 449767 449772) (-310 "ESTOOLS2.spad" 441226 441240 441613 441618) (-309 "ESTOOLS1.spad" 440911 440922 441216 441221) (-308 "ES.spad" 433726 433734 440901 440906) (-307 "ES.spad" 426447 426457 433624 433629) (-306 "ESCONT.spad" 423240 423248 426437 426442) (-305 "ESCONT1.spad" 422989 423001 423230 423235) (-304 "ES2.spad" 422494 422510 422979 422984) (-303 "ES1.spad" 422064 422080 422484 422489) (-302 "ERROR.spad" 419391 419399 422054 422059) (-301 "EQTBL.spad" 417863 417885 418072 418099) (-300 "EQ.spad" 412668 412678 415455 415567) (-299 "EQ2.spad" 412386 412398 412658 412663) (-298 "EP.spad" 408712 408722 412376 412381) (-297 "ENV.spad" 407390 407398 408702 408707) (-296 "ENTIRER.spad" 407058 407066 407334 407385) (-295 "EMR.spad" 406346 406387 406984 407053) (-294 "ELTAGG.spad" 404600 404619 406336 406341) (-293 "ELTAGG.spad" 402818 402839 404556 404561) (-292 "ELTAB.spad" 402293 402306 402808 402813) (-291 "ELFUTS.spad" 401680 401699 402283 402288) (-290 "ELEMFUN.spad" 401369 401377 401670 401675) (-289 "ELEMFUN.spad" 401056 401066 401359 401364) (-288 "ELAGG.spad" 399027 399037 401036 401051) (-287 "ELAGG.spad" 396935 396947 398946 398951) (-286 "ELABOR.spad" 396281 396289 396925 396930) (-285 "ELABEXPR.spad" 395213 395221 396271 396276) (-284 "EFUPXS.spad" 391989 392019 395169 395174) (-283 "EFULS.spad" 388825 388848 391945 391950) (-282 "EFSTRUC.spad" 386840 386856 388815 388820) (-281 "EF.spad" 381616 381632 386830 386835) (-280 "EAB.spad" 379892 379900 381606 381611) (-279 "E04UCFA.spad" 379428 379436 379882 379887) (-278 "E04NAFA.spad" 379005 379013 379418 379423) (-277 "E04MBFA.spad" 378585 378593 378995 379000) (-276 "E04JAFA.spad" 378121 378129 378575 378580) (-275 "E04GCFA.spad" 377657 377665 378111 378116) (-274 "E04FDFA.spad" 377193 377201 377647 377652) (-273 "E04DGFA.spad" 376729 376737 377183 377188) (-272 "E04AGNT.spad" 372579 372587 376719 376724) (-271 "DVARCAT.spad" 369268 369278 372569 372574) (-270 "DVARCAT.spad" 365955 365967 369258 369263) (-269 "DSMP.spad" 363422 363436 363727 363854) (-268 "DROPT.spad" 357381 357389 363412 363417) (-267 "DROPT1.spad" 357046 357056 357371 357376) (-266 "DROPT0.spad" 351903 351911 357036 357041) (-265 "DRAWPT.spad" 350076 350084 351893 351898) (-264 "DRAW.spad" 342952 342965 350066 350071) (-263 "DRAWHACK.spad" 342260 342270 342942 342947) (-262 "DRAWCX.spad" 339730 339738 342250 342255) (-261 "DRAWCURV.spad" 339277 339292 339720 339725) (-260 "DRAWCFUN.spad" 328809 328817 339267 339272) (-259 "DQAGG.spad" 326987 326997 328777 328804) (-258 "DPOLCAT.spad" 322336 322352 326855 326982) (-257 "DPOLCAT.spad" 317771 317789 322292 322297) (-256 "DPMO.spad" 309997 310013 310135 310436) (-255 "DPMM.spad" 302236 302254 302361 302662) (-254 "DOMTMPLT.spad" 302007 302015 302226 302231) (-253 "DOMCTOR.spad" 301762 301770 301997 302002) (-252 "DOMAIN.spad" 300849 300857 301752 301757) (-251 "DMP.spad" 298109 298124 298679 298806) (-250 "DLP.spad" 297461 297471 298099 298104) (-249 "DLIST.spad" 296040 296050 296644 296671) (-248 "DLAGG.spad" 294457 294467 296030 296035) (-247 "DIVRING.spad" 293999 294007 294401 294452) (-246 "DIVRING.spad" 293585 293595 293989 293994) (-245 "DISPLAY.spad" 291775 291783 293575 293580) (-244 "DIRPROD.spad" 281355 281371 281995 282126) (-243 "DIRPROD2.spad" 280173 280191 281345 281350) (-242 "DIRPCAT.spad" 279117 279133 280037 280168) (-241 "DIRPCAT.spad" 277790 277808 278712 278717) (-240 "DIOSP.spad" 276615 276623 277780 277785) (-239 "DIOPS.spad" 275611 275621 276595 276610) (-238 "DIOPS.spad" 274581 274593 275567 275572) (-237 "DIFRING.spad" 274187 274195 274561 274576) (-236 "DIFRING.spad" 273801 273811 274177 274182) (-235 "DIFFDOM.spad" 272966 272977 273791 273796) (-234 "DIFFDOM.spad" 272129 272142 272956 272961) (-233 "DIFEXT.spad" 271300 271310 272109 272124) (-232 "DIFEXT.spad" 270388 270400 271199 271204) (-231 "DIAGG.spad" 270018 270028 270368 270383) (-230 "DIAGG.spad" 269656 269668 270008 270013) (-229 "DHMATRIX.spad" 267968 267978 269113 269140) (-228 "DFSFUN.spad" 261608 261616 267958 267963) (-227 "DFLOAT.spad" 258339 258347 261498 261603) (-226 "DFINTTLS.spad" 256570 256586 258329 258334) (-225 "DERHAM.spad" 254484 254516 256550 256565) (-224 "DEQUEUE.spad" 253808 253818 254091 254118) (-223 "DEGRED.spad" 253425 253439 253798 253803) (-222 "DEFINTRF.spad" 250962 250972 253415 253420) (-221 "DEFINTEF.spad" 249472 249488 250952 250957) (-220 "DEFAST.spad" 248840 248848 249462 249467) (-219 "DECIMAL.spad" 246946 246954 247307 247400) (-218 "DDFACT.spad" 244759 244776 246936 246941) (-217 "DBLRESP.spad" 244359 244383 244749 244754) (-216 "DBASE.spad" 243023 243033 244349 244354) (-215 "DATAARY.spad" 242485 242498 243013 243018) (-214 "D03FAFA.spad" 242313 242321 242475 242480) (-213 "D03EEFA.spad" 242133 242141 242303 242308) (-212 "D03AGNT.spad" 241219 241227 242123 242128) (-211 "D02EJFA.spad" 240681 240689 241209 241214) (-210 "D02CJFA.spad" 240159 240167 240671 240676) (-209 "D02BHFA.spad" 239649 239657 240149 240154) (-208 "D02BBFA.spad" 239139 239147 239639 239644) (-207 "D02AGNT.spad" 233953 233961 239129 239134) (-206 "D01WGTS.spad" 232272 232280 233943 233948) (-205 "D01TRNS.spad" 232249 232257 232262 232267) (-204 "D01GBFA.spad" 231771 231779 232239 232244) (-203 "D01FCFA.spad" 231293 231301 231761 231766) (-202 "D01ASFA.spad" 230761 230769 231283 231288) (-201 "D01AQFA.spad" 230207 230215 230751 230756) (-200 "D01APFA.spad" 229631 229639 230197 230202) (-199 "D01ANFA.spad" 229125 229133 229621 229626) (-198 "D01AMFA.spad" 228635 228643 229115 229120) (-197 "D01ALFA.spad" 228175 228183 228625 228630) (-196 "D01AKFA.spad" 227701 227709 228165 228170) (-195 "D01AJFA.spad" 227224 227232 227691 227696) (-194 "D01AGNT.spad" 223291 223299 227214 227219) (-193 "CYCLOTOM.spad" 222797 222805 223281 223286) (-192 "CYCLES.spad" 219589 219597 222787 222792) (-191 "CVMP.spad" 219006 219016 219579 219584) (-190 "CTRIGMNP.spad" 217506 217522 218996 219001) (-189 "CTOR.spad" 217197 217205 217496 217501) (-188 "CTORKIND.spad" 216800 216808 217187 217192) (-187 "CTORCAT.spad" 216049 216057 216790 216795) (-186 "CTORCAT.spad" 215296 215306 216039 216044) (-185 "CTORCALL.spad" 214885 214895 215286 215291) (-184 "CSTTOOLS.spad" 214130 214143 214875 214880) (-183 "CRFP.spad" 207854 207867 214120 214125) (-182 "CRCEAST.spad" 207574 207582 207844 207849) (-181 "CRAPACK.spad" 206625 206635 207564 207569) (-180 "CPMATCH.spad" 206129 206144 206550 206555) (-179 "CPIMA.spad" 205834 205853 206119 206124) (-178 "COORDSYS.spad" 200843 200853 205824 205829) (-177 "CONTOUR.spad" 200254 200262 200833 200838) (-176 "CONTFRAC.spad" 196004 196014 200156 200249) (-175 "CONDUIT.spad" 195762 195770 195994 195999) (-174 "COMRING.spad" 195436 195444 195700 195757) (-173 "COMPPROP.spad" 194954 194962 195426 195431) (-172 "COMPLPAT.spad" 194721 194736 194944 194949) (-171 "COMPLEX.spad" 188858 188868 189102 189363) (-170 "COMPLEX2.spad" 188573 188585 188848 188853) (-169 "COMPILER.spad" 188122 188130 188563 188568) (-168 "COMPFACT.spad" 187724 187738 188112 188117) (-167 "COMPCAT.spad" 185796 185806 187458 187719) (-166 "COMPCAT.spad" 183596 183608 185260 185265) (-165 "COMMUPC.spad" 183344 183362 183586 183591) (-164 "COMMONOP.spad" 182877 182885 183334 183339) (-163 "COMM.spad" 182688 182696 182867 182872) (-162 "COMMAAST.spad" 182451 182459 182678 182683) (-161 "COMBOPC.spad" 181366 181374 182441 182446) (-160 "COMBINAT.spad" 180133 180143 181356 181361) (-159 "COMBF.spad" 177515 177531 180123 180128) (-158 "COLOR.spad" 176352 176360 177505 177510) (-157 "COLONAST.spad" 176018 176026 176342 176347) (-156 "CMPLXRT.spad" 175729 175746 176008 176013) (-155 "CLLCTAST.spad" 175391 175399 175719 175724) (-154 "CLIP.spad" 171499 171507 175381 175386) (-153 "CLIF.spad" 170154 170170 171455 171494) (-152 "CLAGG.spad" 166659 166669 170144 170149) (-151 "CLAGG.spad" 163035 163047 166522 166527) (-150 "CINTSLPE.spad" 162366 162379 163025 163030) (-149 "CHVAR.spad" 160504 160526 162356 162361) (-148 "CHARZ.spad" 160419 160427 160484 160499) (-147 "CHARPOL.spad" 159929 159939 160409 160414) (-146 "CHARNZ.spad" 159682 159690 159909 159924) (-145 "CHAR.spad" 157556 157564 159672 159677) (-144 "CFCAT.spad" 156884 156892 157546 157551) (-143 "CDEN.spad" 156080 156094 156874 156879) (-142 "CCLASS.spad" 154229 154237 155491 155530) (-141 "CATEGORY.spad" 153271 153279 154219 154224) (-140 "CATCTOR.spad" 153162 153170 153261 153266) (-139 "CATAST.spad" 152780 152788 153152 153157) (-138 "CASEAST.spad" 152494 152502 152770 152775) (-137 "CARTEN.spad" 147861 147885 152484 152489) (-136 "CARTEN2.spad" 147251 147278 147851 147856) (-135 "CARD.spad" 144546 144554 147225 147246) (-134 "CAPSLAST.spad" 144320 144328 144536 144541) (-133 "CACHSET.spad" 143944 143952 144310 144315) (-132 "CABMON.spad" 143499 143507 143934 143939) (-131 "BYTEORD.spad" 143174 143182 143489 143494) (-130 "BYTE.spad" 142601 142609 143164 143169) (-129 "BYTEBUF.spad" 140460 140468 141770 141797) (-128 "BTREE.spad" 139533 139543 140067 140094) (-127 "BTOURN.spad" 138538 138548 139140 139167) (-126 "BTCAT.spad" 137930 137940 138506 138533) (-125 "BTCAT.spad" 137342 137354 137920 137925) (-124 "BTAGG.spad" 136808 136816 137310 137337) (-123 "BTAGG.spad" 136294 136304 136798 136803) (-122 "BSTREE.spad" 135035 135045 135901 135928) (-121 "BRILL.spad" 133232 133243 135025 135030) (-120 "BRAGG.spad" 132172 132182 133222 133227) (-119 "BRAGG.spad" 131076 131088 132128 132133) (-118 "BPADICRT.spad" 129057 129069 129312 129405) (-117 "BPADIC.spad" 128721 128733 128983 129052) (-116 "BOUNDZRO.spad" 128377 128394 128711 128716) (-115 "BOP.spad" 123559 123567 128367 128372) (-114 "BOP1.spad" 121025 121035 123549 123554) (-113 "BOOLE.spad" 120675 120683 121015 121020) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2267465 2267470 2267475 2267480) (-2 NIL 2267445 2267450 2267455 2267460) (-1 NIL 2267425 2267430 2267435 2267440) (0 NIL 2267405 2267410 2267415 2267420) (-1308 "ZMOD.spad" 2267214 2267227 2267343 2267400) (-1307 "ZLINDEP.spad" 2266280 2266291 2267204 2267209) (-1306 "ZDSOLVE.spad" 2256225 2256247 2266270 2266275) (-1305 "YSTREAM.spad" 2255720 2255731 2256215 2256220) (-1304 "YDIAGRAM.spad" 2255354 2255363 2255710 2255715) (-1303 "XRPOLY.spad" 2254574 2254594 2255210 2255279) (-1302 "XPR.spad" 2252369 2252382 2254292 2254391) (-1301 "XPOLY.spad" 2251924 2251935 2252225 2252294) (-1300 "XPOLYC.spad" 2251243 2251259 2251850 2251919) (-1299 "XPBWPOLY.spad" 2249680 2249700 2251023 2251092) (-1298 "XF.spad" 2248143 2248158 2249582 2249675) (-1297 "XF.spad" 2246586 2246603 2248027 2248032) (-1296 "XFALG.spad" 2243634 2243650 2246512 2246581) (-1295 "XEXPPKG.spad" 2242885 2242911 2243624 2243629) (-1294 "XDPOLY.spad" 2242499 2242515 2242741 2242810) (-1293 "XALG.spad" 2242159 2242170 2242455 2242494) (-1292 "WUTSET.spad" 2237998 2238015 2241805 2241832) (-1291 "WP.spad" 2237197 2237241 2237856 2237923) (-1290 "WHILEAST.spad" 2236995 2237004 2237187 2237192) (-1289 "WHEREAST.spad" 2236666 2236675 2236985 2236990) (-1288 "WFFINTBS.spad" 2234329 2234351 2236656 2236661) (-1287 "WEIER.spad" 2232551 2232562 2234319 2234324) (-1286 "VSPACE.spad" 2232224 2232235 2232519 2232546) (-1285 "VSPACE.spad" 2231917 2231930 2232214 2232219) (-1284 "VOID.spad" 2231594 2231603 2231907 2231912) (-1283 "VIEW.spad" 2229274 2229283 2231584 2231589) (-1282 "VIEWDEF.spad" 2224475 2224484 2229264 2229269) (-1281 "VIEW3D.spad" 2208436 2208445 2224465 2224470) (-1280 "VIEW2D.spad" 2196327 2196336 2208426 2208431) (-1279 "VECTOR.spad" 2195001 2195012 2195252 2195279) (-1278 "VECTOR2.spad" 2193640 2193653 2194991 2194996) (-1277 "VECTCAT.spad" 2191544 2191555 2193608 2193635) (-1276 "VECTCAT.spad" 2189255 2189268 2191321 2191326) (-1275 "VARIABLE.spad" 2189035 2189050 2189245 2189250) (-1274 "UTYPE.spad" 2188679 2188688 2189025 2189030) (-1273 "UTSODETL.spad" 2187974 2187998 2188635 2188640) (-1272 "UTSODE.spad" 2186190 2186210 2187964 2187969) (-1271 "UTS.spad" 2180994 2181022 2184657 2184754) (-1270 "UTSCAT.spad" 2178473 2178489 2180892 2180989) (-1269 "UTSCAT.spad" 2175596 2175614 2178017 2178022) (-1268 "UTS2.spad" 2175191 2175226 2175586 2175591) (-1267 "URAGG.spad" 2169864 2169875 2175181 2175186) (-1266 "URAGG.spad" 2164501 2164514 2169820 2169825) (-1265 "UPXSSING.spad" 2162146 2162172 2163582 2163715) (-1264 "UPXS.spad" 2159300 2159328 2160278 2160427) (-1263 "UPXSCONS.spad" 2157059 2157079 2157432 2157581) (-1262 "UPXSCCA.spad" 2155630 2155650 2156905 2157054) (-1261 "UPXSCCA.spad" 2154343 2154365 2155620 2155625) (-1260 "UPXSCAT.spad" 2152932 2152948 2154189 2154338) (-1259 "UPXS2.spad" 2152475 2152528 2152922 2152927) (-1258 "UPSQFREE.spad" 2150889 2150903 2152465 2152470) (-1257 "UPSCAT.spad" 2148676 2148700 2150787 2150884) (-1256 "UPSCAT.spad" 2146169 2146195 2148282 2148287) (-1255 "UPOLYC.spad" 2141209 2141220 2146011 2146164) (-1254 "UPOLYC.spad" 2136141 2136154 2140945 2140950) (-1253 "UPOLYC2.spad" 2135612 2135631 2136131 2136136) (-1252 "UP.spad" 2132811 2132826 2133198 2133351) (-1251 "UPMP.spad" 2131711 2131724 2132801 2132806) (-1250 "UPDIVP.spad" 2131276 2131290 2131701 2131706) (-1249 "UPDECOMP.spad" 2129521 2129535 2131266 2131271) (-1248 "UPCDEN.spad" 2128730 2128746 2129511 2129516) (-1247 "UP2.spad" 2128094 2128115 2128720 2128725) (-1246 "UNISEG.spad" 2127447 2127458 2128013 2128018) (-1245 "UNISEG2.spad" 2126944 2126957 2127403 2127408) (-1244 "UNIFACT.spad" 2126047 2126059 2126934 2126939) (-1243 "ULS.spad" 2116605 2116633 2117692 2118121) (-1242 "ULSCONS.spad" 2109001 2109021 2109371 2109520) (-1241 "ULSCCAT.spad" 2106738 2106758 2108847 2108996) (-1240 "ULSCCAT.spad" 2104583 2104605 2106694 2106699) (-1239 "ULSCAT.spad" 2102815 2102831 2104429 2104578) (-1238 "ULS2.spad" 2102329 2102382 2102805 2102810) (-1237 "UINT8.spad" 2102206 2102215 2102319 2102324) (-1236 "UINT64.spad" 2102082 2102091 2102196 2102201) (-1235 "UINT32.spad" 2101958 2101967 2102072 2102077) (-1234 "UINT16.spad" 2101834 2101843 2101948 2101953) (-1233 "UFD.spad" 2100899 2100908 2101760 2101829) (-1232 "UFD.spad" 2100026 2100037 2100889 2100894) (-1231 "UDVO.spad" 2098907 2098916 2100016 2100021) (-1230 "UDPO.spad" 2096400 2096411 2098863 2098868) (-1229 "TYPE.spad" 2096332 2096341 2096390 2096395) (-1228 "TYPEAST.spad" 2096251 2096260 2096322 2096327) (-1227 "TWOFACT.spad" 2094903 2094918 2096241 2096246) (-1226 "TUPLE.spad" 2094389 2094400 2094802 2094807) (-1225 "TUBETOOL.spad" 2091256 2091265 2094379 2094384) (-1224 "TUBE.spad" 2089903 2089920 2091246 2091251) (-1223 "TS.spad" 2088502 2088518 2089468 2089565) (-1222 "TSETCAT.spad" 2075629 2075646 2088470 2088497) (-1221 "TSETCAT.spad" 2062742 2062761 2075585 2075590) (-1220 "TRMANIP.spad" 2057108 2057125 2062448 2062453) (-1219 "TRIMAT.spad" 2056071 2056096 2057098 2057103) (-1218 "TRIGMNIP.spad" 2054598 2054615 2056061 2056066) (-1217 "TRIGCAT.spad" 2054110 2054119 2054588 2054593) (-1216 "TRIGCAT.spad" 2053620 2053631 2054100 2054105) (-1215 "TREE.spad" 2052195 2052206 2053227 2053254) (-1214 "TRANFUN.spad" 2052034 2052043 2052185 2052190) (-1213 "TRANFUN.spad" 2051871 2051882 2052024 2052029) (-1212 "TOPSP.spad" 2051545 2051554 2051861 2051866) (-1211 "TOOLSIGN.spad" 2051208 2051219 2051535 2051540) (-1210 "TEXTFILE.spad" 2049769 2049778 2051198 2051203) (-1209 "TEX.spad" 2046915 2046924 2049759 2049764) (-1208 "TEX1.spad" 2046471 2046482 2046905 2046910) (-1207 "TEMUTL.spad" 2046026 2046035 2046461 2046466) (-1206 "TBCMPPK.spad" 2044119 2044142 2046016 2046021) (-1205 "TBAGG.spad" 2043169 2043192 2044099 2044114) (-1204 "TBAGG.spad" 2042227 2042252 2043159 2043164) (-1203 "TANEXP.spad" 2041635 2041646 2042217 2042222) (-1202 "TALGOP.spad" 2041359 2041370 2041625 2041630) (-1201 "TABLE.spad" 2039770 2039793 2040040 2040067) (-1200 "TABLEAU.spad" 2039251 2039262 2039760 2039765) (-1199 "TABLBUMP.spad" 2036054 2036065 2039241 2039246) (-1198 "SYSTEM.spad" 2035282 2035291 2036044 2036049) (-1197 "SYSSOLP.spad" 2032765 2032776 2035272 2035277) (-1196 "SYSPTR.spad" 2032664 2032673 2032755 2032760) (-1195 "SYSNNI.spad" 2031846 2031857 2032654 2032659) (-1194 "SYSINT.spad" 2031250 2031261 2031836 2031841) (-1193 "SYNTAX.spad" 2027456 2027465 2031240 2031245) (-1192 "SYMTAB.spad" 2025524 2025533 2027446 2027451) (-1191 "SYMS.spad" 2021547 2021556 2025514 2025519) (-1190 "SYMPOLY.spad" 2020554 2020565 2020636 2020763) (-1189 "SYMFUNC.spad" 2020055 2020066 2020544 2020549) (-1188 "SYMBOL.spad" 2017558 2017567 2020045 2020050) (-1187 "SWITCH.spad" 2014329 2014338 2017548 2017553) (-1186 "SUTS.spad" 2011234 2011262 2012796 2012893) (-1185 "SUPXS.spad" 2008375 2008403 2009366 2009515) (-1184 "SUP.spad" 2005188 2005199 2005961 2006114) (-1183 "SUPFRACF.spad" 2004293 2004311 2005178 2005183) (-1182 "SUP2.spad" 2003685 2003698 2004283 2004288) (-1181 "SUMRF.spad" 2002659 2002670 2003675 2003680) (-1180 "SUMFS.spad" 2002296 2002313 2002649 2002654) (-1179 "SULS.spad" 1992841 1992869 1993941 1994370) (-1178 "SUCHTAST.spad" 1992610 1992619 1992831 1992836) (-1177 "SUCH.spad" 1992292 1992307 1992600 1992605) (-1176 "SUBSPACE.spad" 1984407 1984422 1992282 1992287) (-1175 "SUBRESP.spad" 1983577 1983591 1984363 1984368) (-1174 "STTF.spad" 1979676 1979692 1983567 1983572) (-1173 "STTFNC.spad" 1976144 1976160 1979666 1979671) (-1172 "STTAYLOR.spad" 1968779 1968790 1976025 1976030) (-1171 "STRTBL.spad" 1967284 1967301 1967433 1967460) (-1170 "STRING.spad" 1966693 1966702 1966707 1966734) (-1169 "STRICAT.spad" 1966481 1966490 1966661 1966688) (-1168 "STREAM.spad" 1963399 1963410 1966006 1966021) (-1167 "STREAM3.spad" 1962972 1962987 1963389 1963394) (-1166 "STREAM2.spad" 1962100 1962113 1962962 1962967) (-1165 "STREAM1.spad" 1961806 1961817 1962090 1962095) (-1164 "STINPROD.spad" 1960742 1960758 1961796 1961801) (-1163 "STEP.spad" 1959943 1959952 1960732 1960737) (-1162 "STEPAST.spad" 1959177 1959186 1959933 1959938) (-1161 "STBL.spad" 1957703 1957731 1957870 1957885) (-1160 "STAGG.spad" 1956778 1956789 1957693 1957698) (-1159 "STAGG.spad" 1955851 1955864 1956768 1956773) (-1158 "STACK.spad" 1955208 1955219 1955458 1955485) (-1157 "SREGSET.spad" 1952912 1952929 1954854 1954881) (-1156 "SRDCMPK.spad" 1951473 1951493 1952902 1952907) (-1155 "SRAGG.spad" 1946616 1946625 1951441 1951468) (-1154 "SRAGG.spad" 1941779 1941790 1946606 1946611) (-1153 "SQMATRIX.spad" 1939451 1939469 1940367 1940454) (-1152 "SPLTREE.spad" 1934003 1934016 1938887 1938914) (-1151 "SPLNODE.spad" 1930591 1930604 1933993 1933998) (-1150 "SPFCAT.spad" 1929400 1929409 1930581 1930586) (-1149 "SPECOUT.spad" 1927952 1927961 1929390 1929395) (-1148 "SPADXPT.spad" 1919547 1919556 1927942 1927947) (-1147 "spad-parser.spad" 1919012 1919021 1919537 1919542) (-1146 "SPADAST.spad" 1918713 1918722 1919002 1919007) (-1145 "SPACEC.spad" 1902912 1902923 1918703 1918708) (-1144 "SPACE3.spad" 1902688 1902699 1902902 1902907) (-1143 "SORTPAK.spad" 1902237 1902250 1902644 1902649) (-1142 "SOLVETRA.spad" 1900000 1900011 1902227 1902232) (-1141 "SOLVESER.spad" 1898528 1898539 1899990 1899995) (-1140 "SOLVERAD.spad" 1894554 1894565 1898518 1898523) (-1139 "SOLVEFOR.spad" 1893016 1893034 1894544 1894549) (-1138 "SNTSCAT.spad" 1892616 1892633 1892984 1893011) (-1137 "SMTS.spad" 1890888 1890914 1892181 1892278) (-1136 "SMP.spad" 1888363 1888383 1888753 1888880) (-1135 "SMITH.spad" 1887208 1887233 1888353 1888358) (-1134 "SMATCAT.spad" 1885318 1885348 1887152 1887203) (-1133 "SMATCAT.spad" 1883360 1883392 1885196 1885201) (-1132 "SKAGG.spad" 1882323 1882334 1883328 1883355) (-1131 "SINT.spad" 1881263 1881272 1882189 1882318) (-1130 "SIMPAN.spad" 1880991 1881000 1881253 1881258) (-1129 "SIG.spad" 1880321 1880330 1880981 1880986) (-1128 "SIGNRF.spad" 1879439 1879450 1880311 1880316) (-1127 "SIGNEF.spad" 1878718 1878735 1879429 1879434) (-1126 "SIGAST.spad" 1878103 1878112 1878708 1878713) (-1125 "SHP.spad" 1876031 1876046 1878059 1878064) (-1124 "SHDP.spad" 1865665 1865692 1866174 1866305) (-1123 "SGROUP.spad" 1865273 1865282 1865655 1865660) (-1122 "SGROUP.spad" 1864879 1864890 1865263 1865268) (-1121 "SGCF.spad" 1858018 1858027 1864869 1864874) (-1120 "SFRTCAT.spad" 1856948 1856965 1857986 1858013) (-1119 "SFRGCD.spad" 1856011 1856031 1856938 1856943) (-1118 "SFQCMPK.spad" 1850648 1850668 1856001 1856006) (-1117 "SFORT.spad" 1850087 1850101 1850638 1850643) (-1116 "SEXOF.spad" 1849930 1849970 1850077 1850082) (-1115 "SEX.spad" 1849822 1849831 1849920 1849925) (-1114 "SEXCAT.spad" 1847603 1847643 1849812 1849817) (-1113 "SET.spad" 1845927 1845938 1847024 1847063) (-1112 "SETMN.spad" 1844377 1844394 1845917 1845922) (-1111 "SETCAT.spad" 1843699 1843708 1844367 1844372) (-1110 "SETCAT.spad" 1843019 1843030 1843689 1843694) (-1109 "SETAGG.spad" 1839568 1839579 1842999 1843014) (-1108 "SETAGG.spad" 1836125 1836138 1839558 1839563) (-1107 "SEQAST.spad" 1835828 1835837 1836115 1836120) (-1106 "SEGXCAT.spad" 1834984 1834997 1835818 1835823) (-1105 "SEG.spad" 1834797 1834808 1834903 1834908) (-1104 "SEGCAT.spad" 1833722 1833733 1834787 1834792) (-1103 "SEGBIND.spad" 1833480 1833491 1833669 1833674) (-1102 "SEGBIND2.spad" 1833178 1833191 1833470 1833475) (-1101 "SEGAST.spad" 1832892 1832901 1833168 1833173) (-1100 "SEG2.spad" 1832327 1832340 1832848 1832853) (-1099 "SDVAR.spad" 1831603 1831614 1832317 1832322) (-1098 "SDPOL.spad" 1829029 1829040 1829320 1829447) (-1097 "SCPKG.spad" 1827118 1827129 1829019 1829024) (-1096 "SCOPE.spad" 1826271 1826280 1827108 1827113) (-1095 "SCACHE.spad" 1824967 1824978 1826261 1826266) (-1094 "SASTCAT.spad" 1824876 1824885 1824957 1824962) (-1093 "SAOS.spad" 1824748 1824757 1824866 1824871) (-1092 "SAERFFC.spad" 1824461 1824481 1824738 1824743) (-1091 "SAE.spad" 1822636 1822652 1823247 1823382) (-1090 "SAEFACT.spad" 1822337 1822357 1822626 1822631) (-1089 "RURPK.spad" 1819996 1820012 1822327 1822332) (-1088 "RULESET.spad" 1819449 1819473 1819986 1819991) (-1087 "RULE.spad" 1817689 1817713 1819439 1819444) (-1086 "RULECOLD.spad" 1817541 1817554 1817679 1817684) (-1085 "RTVALUE.spad" 1817276 1817285 1817531 1817536) (-1084 "RSTRCAST.spad" 1816993 1817002 1817266 1817271) (-1083 "RSETGCD.spad" 1813371 1813391 1816983 1816988) (-1082 "RSETCAT.spad" 1803307 1803324 1813339 1813366) (-1081 "RSETCAT.spad" 1793263 1793282 1803297 1803302) (-1080 "RSDCMPK.spad" 1791715 1791735 1793253 1793258) (-1079 "RRCC.spad" 1790099 1790129 1791705 1791710) (-1078 "RRCC.spad" 1788481 1788513 1790089 1790094) (-1077 "RPTAST.spad" 1788183 1788192 1788471 1788476) (-1076 "RPOLCAT.spad" 1767543 1767558 1788051 1788178) (-1075 "RPOLCAT.spad" 1746616 1746633 1767126 1767131) (-1074 "ROUTINE.spad" 1742499 1742508 1745263 1745290) (-1073 "ROMAN.spad" 1741827 1741836 1742365 1742494) (-1072 "ROIRC.spad" 1740907 1740939 1741817 1741822) (-1071 "RNS.spad" 1739810 1739819 1740809 1740902) (-1070 "RNS.spad" 1738799 1738810 1739800 1739805) (-1069 "RNG.spad" 1738534 1738543 1738789 1738794) (-1068 "RNGBIND.spad" 1737694 1737708 1738489 1738494) (-1067 "RMODULE.spad" 1737459 1737470 1737684 1737689) (-1066 "RMCAT2.spad" 1736879 1736936 1737449 1737454) (-1065 "RMATRIX.spad" 1735703 1735722 1736046 1736085) (-1064 "RMATCAT.spad" 1731282 1731313 1735659 1735698) (-1063 "RMATCAT.spad" 1726751 1726784 1731130 1731135) (-1062 "RLINSET.spad" 1726145 1726156 1726741 1726746) (-1061 "RINTERP.spad" 1726033 1726053 1726135 1726140) (-1060 "RING.spad" 1725503 1725512 1726013 1726028) (-1059 "RING.spad" 1724981 1724992 1725493 1725498) (-1058 "RIDIST.spad" 1724373 1724382 1724971 1724976) (-1057 "RGCHAIN.spad" 1722956 1722972 1723858 1723885) (-1056 "RGBCSPC.spad" 1722737 1722749 1722946 1722951) (-1055 "RGBCMDL.spad" 1722267 1722279 1722727 1722732) (-1054 "RF.spad" 1719909 1719920 1722257 1722262) (-1053 "RFFACTOR.spad" 1719371 1719382 1719899 1719904) (-1052 "RFFACT.spad" 1719106 1719118 1719361 1719366) (-1051 "RFDIST.spad" 1718102 1718111 1719096 1719101) (-1050 "RETSOL.spad" 1717521 1717534 1718092 1718097) (-1049 "RETRACT.spad" 1716949 1716960 1717511 1717516) (-1048 "RETRACT.spad" 1716375 1716388 1716939 1716944) (-1047 "RETAST.spad" 1716187 1716196 1716365 1716370) (-1046 "RESULT.spad" 1714247 1714256 1714834 1714861) (-1045 "RESRING.spad" 1713594 1713641 1714185 1714242) (-1044 "RESLATC.spad" 1712918 1712929 1713584 1713589) (-1043 "REPSQ.spad" 1712649 1712660 1712908 1712913) (-1042 "REP.spad" 1710203 1710212 1712639 1712644) (-1041 "REPDB.spad" 1709910 1709921 1710193 1710198) (-1040 "REP2.spad" 1699568 1699579 1709752 1709757) (-1039 "REP1.spad" 1693764 1693775 1699518 1699523) (-1038 "REGSET.spad" 1691561 1691578 1693410 1693437) (-1037 "REF.spad" 1690896 1690907 1691516 1691521) (-1036 "REDORDER.spad" 1690102 1690119 1690886 1690891) (-1035 "RECLOS.spad" 1688885 1688905 1689589 1689682) (-1034 "REALSOLV.spad" 1688025 1688034 1688875 1688880) (-1033 "REAL.spad" 1687897 1687906 1688015 1688020) (-1032 "REAL0Q.spad" 1685195 1685210 1687887 1687892) (-1031 "REAL0.spad" 1682039 1682054 1685185 1685190) (-1030 "RDUCEAST.spad" 1681760 1681769 1682029 1682034) (-1029 "RDIV.spad" 1681415 1681440 1681750 1681755) (-1028 "RDIST.spad" 1680982 1680993 1681405 1681410) (-1027 "RDETRS.spad" 1679846 1679864 1680972 1680977) (-1026 "RDETR.spad" 1677985 1678003 1679836 1679841) (-1025 "RDEEFS.spad" 1677084 1677101 1677975 1677980) (-1024 "RDEEF.spad" 1676094 1676111 1677074 1677079) (-1023 "RCFIELD.spad" 1673280 1673289 1675996 1676089) (-1022 "RCFIELD.spad" 1670552 1670563 1673270 1673275) (-1021 "RCAGG.spad" 1668480 1668491 1670542 1670547) (-1020 "RCAGG.spad" 1666335 1666348 1668399 1668404) (-1019 "RATRET.spad" 1665695 1665706 1666325 1666330) (-1018 "RATFACT.spad" 1665387 1665399 1665685 1665690) (-1017 "RANDSRC.spad" 1664706 1664715 1665377 1665382) (-1016 "RADUTIL.spad" 1664462 1664471 1664696 1664701) (-1015 "RADIX.spad" 1661383 1661397 1662929 1663022) (-1014 "RADFF.spad" 1659796 1659833 1659915 1660071) (-1013 "RADCAT.spad" 1659391 1659400 1659786 1659791) (-1012 "RADCAT.spad" 1658984 1658995 1659381 1659386) (-1011 "QUEUE.spad" 1658332 1658343 1658591 1658618) (-1010 "QUAT.spad" 1656790 1656801 1657133 1657198) (-1009 "QUATCT2.spad" 1656410 1656429 1656780 1656785) (-1008 "QUATCAT.spad" 1654580 1654591 1656340 1656405) (-1007 "QUATCAT.spad" 1652501 1652514 1654263 1654268) (-1006 "QUAGG.spad" 1651328 1651339 1652469 1652496) (-1005 "QQUTAST.spad" 1651096 1651105 1651318 1651323) (-1004 "QFORM.spad" 1650714 1650729 1651086 1651091) (-1003 "QFCAT.spad" 1649416 1649427 1650616 1650709) (-1002 "QFCAT.spad" 1647709 1647722 1648911 1648916) (-1001 "QFCAT2.spad" 1647401 1647418 1647699 1647704) (-1000 "QEQUAT.spad" 1646959 1646968 1647391 1647396) (-999 "QCMPACK.spad" 1641706 1641725 1646949 1646954) (-998 "QALGSET.spad" 1637785 1637817 1641620 1641625) (-997 "QALGSET2.spad" 1635781 1635799 1637775 1637780) (-996 "PWFFINTB.spad" 1633197 1633218 1635771 1635776) (-995 "PUSHVAR.spad" 1632536 1632555 1633187 1633192) (-994 "PTRANFN.spad" 1628664 1628674 1632526 1632531) (-993 "PTPACK.spad" 1625752 1625762 1628654 1628659) (-992 "PTFUNC2.spad" 1625575 1625589 1625742 1625747) (-991 "PTCAT.spad" 1624830 1624840 1625543 1625570) (-990 "PSQFR.spad" 1624137 1624161 1624820 1624825) (-989 "PSEUDLIN.spad" 1623023 1623033 1624127 1624132) (-988 "PSETPK.spad" 1608456 1608472 1622901 1622906) (-987 "PSETCAT.spad" 1602376 1602399 1608436 1608451) (-986 "PSETCAT.spad" 1596270 1596295 1602332 1602337) (-985 "PSCURVE.spad" 1595253 1595261 1596260 1596265) (-984 "PSCAT.spad" 1594036 1594065 1595151 1595248) (-983 "PSCAT.spad" 1592909 1592940 1594026 1594031) (-982 "PRTITION.spad" 1591607 1591615 1592899 1592904) (-981 "PRTDAST.spad" 1591326 1591334 1591597 1591602) (-980 "PRS.spad" 1580888 1580905 1591282 1591287) (-979 "PRQAGG.spad" 1580323 1580333 1580856 1580883) (-978 "PROPLOG.spad" 1579895 1579903 1580313 1580318) (-977 "PROPFUN2.spad" 1579518 1579531 1579885 1579890) (-976 "PROPFUN1.spad" 1578916 1578927 1579508 1579513) (-975 "PROPFRML.spad" 1577484 1577495 1578906 1578911) (-974 "PROPERTY.spad" 1576972 1576980 1577474 1577479) (-973 "PRODUCT.spad" 1574654 1574666 1574938 1574993) (-972 "PR.spad" 1573046 1573058 1573745 1573872) (-971 "PRINT.spad" 1572798 1572806 1573036 1573041) (-970 "PRIMES.spad" 1571051 1571061 1572788 1572793) (-969 "PRIMELT.spad" 1569132 1569146 1571041 1571046) (-968 "PRIMCAT.spad" 1568759 1568767 1569122 1569127) (-967 "PRIMARR.spad" 1567764 1567774 1567942 1567969) (-966 "PRIMARR2.spad" 1566531 1566543 1567754 1567759) (-965 "PREASSOC.spad" 1565913 1565925 1566521 1566526) (-964 "PPCURVE.spad" 1565050 1565058 1565903 1565908) (-963 "PORTNUM.spad" 1564825 1564833 1565040 1565045) (-962 "POLYROOT.spad" 1563674 1563696 1564781 1564786) (-961 "POLY.spad" 1561009 1561019 1561524 1561651) (-960 "POLYLIFT.spad" 1560274 1560297 1560999 1561004) (-959 "POLYCATQ.spad" 1558392 1558414 1560264 1560269) (-958 "POLYCAT.spad" 1551862 1551883 1558260 1558387) (-957 "POLYCAT.spad" 1544670 1544693 1551070 1551075) (-956 "POLY2UP.spad" 1544122 1544136 1544660 1544665) (-955 "POLY2.spad" 1543719 1543731 1544112 1544117) (-954 "POLUTIL.spad" 1542660 1542689 1543675 1543680) (-953 "POLTOPOL.spad" 1541408 1541423 1542650 1542655) (-952 "POINT.spad" 1540246 1540256 1540333 1540360) (-951 "PNTHEORY.spad" 1536948 1536956 1540236 1540241) (-950 "PMTOOLS.spad" 1535723 1535737 1536938 1536943) (-949 "PMSYM.spad" 1535272 1535282 1535713 1535718) (-948 "PMQFCAT.spad" 1534863 1534877 1535262 1535267) (-947 "PMPRED.spad" 1534342 1534356 1534853 1534858) (-946 "PMPREDFS.spad" 1533796 1533818 1534332 1534337) (-945 "PMPLCAT.spad" 1532876 1532894 1533728 1533733) (-944 "PMLSAGG.spad" 1532461 1532475 1532866 1532871) (-943 "PMKERNEL.spad" 1532040 1532052 1532451 1532456) (-942 "PMINS.spad" 1531620 1531630 1532030 1532035) (-941 "PMFS.spad" 1531197 1531215 1531610 1531615) (-940 "PMDOWN.spad" 1530487 1530501 1531187 1531192) (-939 "PMASS.spad" 1529497 1529505 1530477 1530482) (-938 "PMASSFS.spad" 1528464 1528480 1529487 1529492) (-937 "PLOTTOOL.spad" 1528244 1528252 1528454 1528459) (-936 "PLOT.spad" 1523167 1523175 1528234 1528239) (-935 "PLOT3D.spad" 1519631 1519639 1523157 1523162) (-934 "PLOT1.spad" 1518788 1518798 1519621 1519626) (-933 "PLEQN.spad" 1506078 1506105 1518778 1518783) (-932 "PINTERP.spad" 1505700 1505719 1506068 1506073) (-931 "PINTERPA.spad" 1505484 1505500 1505690 1505695) (-930 "PI.spad" 1505093 1505101 1505458 1505479) (-929 "PID.spad" 1504063 1504071 1505019 1505088) (-928 "PICOERCE.spad" 1503720 1503730 1504053 1504058) (-927 "PGROEB.spad" 1502321 1502335 1503710 1503715) (-926 "PGE.spad" 1493938 1493946 1502311 1502316) (-925 "PGCD.spad" 1492828 1492845 1493928 1493933) (-924 "PFRPAC.spad" 1491977 1491987 1492818 1492823) (-923 "PFR.spad" 1488640 1488650 1491879 1491972) (-922 "PFOTOOLS.spad" 1487898 1487914 1488630 1488635) (-921 "PFOQ.spad" 1487268 1487286 1487888 1487893) (-920 "PFO.spad" 1486687 1486714 1487258 1487263) (-919 "PF.spad" 1486261 1486273 1486492 1486585) (-918 "PFECAT.spad" 1483943 1483951 1486187 1486256) (-917 "PFECAT.spad" 1481653 1481663 1483899 1483904) (-916 "PFBRU.spad" 1479541 1479553 1481643 1481648) (-915 "PFBR.spad" 1477101 1477124 1479531 1479536) (-914 "PERM.spad" 1472908 1472918 1476931 1476946) (-913 "PERMGRP.spad" 1467678 1467688 1472898 1472903) (-912 "PERMCAT.spad" 1466339 1466349 1467658 1467673) (-911 "PERMAN.spad" 1464871 1464885 1466329 1466334) (-910 "PENDTREE.spad" 1464212 1464222 1464500 1464505) (-909 "PDRING.spad" 1462763 1462773 1464192 1464207) (-908 "PDRING.spad" 1461322 1461334 1462753 1462758) (-907 "PDEPROB.spad" 1460337 1460345 1461312 1461317) (-906 "PDEPACK.spad" 1454377 1454385 1460327 1460332) (-905 "PDECOMP.spad" 1453847 1453864 1454367 1454372) (-904 "PDECAT.spad" 1452203 1452211 1453837 1453842) (-903 "PCOMP.spad" 1452056 1452069 1452193 1452198) (-902 "PBWLB.spad" 1450644 1450661 1452046 1452051) (-901 "PATTERN.spad" 1445183 1445193 1450634 1450639) (-900 "PATTERN2.spad" 1444921 1444933 1445173 1445178) (-899 "PATTERN1.spad" 1443257 1443273 1444911 1444916) (-898 "PATRES.spad" 1440832 1440844 1443247 1443252) (-897 "PATRES2.spad" 1440504 1440518 1440822 1440827) (-896 "PATMATCH.spad" 1438701 1438732 1440212 1440217) (-895 "PATMAB.spad" 1438130 1438140 1438691 1438696) (-894 "PATLRES.spad" 1437216 1437230 1438120 1438125) (-893 "PATAB.spad" 1436980 1436990 1437206 1437211) (-892 "PARTPERM.spad" 1434988 1434996 1436970 1436975) (-891 "PARSURF.spad" 1434422 1434450 1434978 1434983) (-890 "PARSU2.spad" 1434219 1434235 1434412 1434417) (-889 "script-parser.spad" 1433739 1433747 1434209 1434214) (-888 "PARSCURV.spad" 1433173 1433201 1433729 1433734) (-887 "PARSC2.spad" 1432964 1432980 1433163 1433168) (-886 "PARPCURV.spad" 1432426 1432454 1432954 1432959) (-885 "PARPC2.spad" 1432217 1432233 1432416 1432421) (-884 "PARAMAST.spad" 1431345 1431353 1432207 1432212) (-883 "PAN2EXPR.spad" 1430757 1430765 1431335 1431340) (-882 "PALETTE.spad" 1429727 1429735 1430747 1430752) (-881 "PAIR.spad" 1428714 1428727 1429315 1429320) (-880 "PADICRC.spad" 1426048 1426066 1427219 1427312) (-879 "PADICRAT.spad" 1424063 1424075 1424284 1424377) (-878 "PADIC.spad" 1423758 1423770 1423989 1424058) (-877 "PADICCT.spad" 1422307 1422319 1423684 1423753) (-876 "PADEPAC.spad" 1420996 1421015 1422297 1422302) (-875 "PADE.spad" 1419748 1419764 1420986 1420991) (-874 "OWP.spad" 1418988 1419018 1419606 1419673) (-873 "OVERSET.spad" 1418561 1418569 1418978 1418983) (-872 "OVAR.spad" 1418342 1418365 1418551 1418556) (-871 "OUT.spad" 1417428 1417436 1418332 1418337) (-870 "OUTFORM.spad" 1406820 1406828 1417418 1417423) (-869 "OUTBFILE.spad" 1406238 1406246 1406810 1406815) (-868 "OUTBCON.spad" 1405244 1405252 1406228 1406233) (-867 "OUTBCON.spad" 1404248 1404258 1405234 1405239) (-866 "OSI.spad" 1403723 1403731 1404238 1404243) (-865 "OSGROUP.spad" 1403641 1403649 1403713 1403718) (-864 "ORTHPOL.spad" 1402126 1402136 1403558 1403563) (-863 "OREUP.spad" 1401579 1401607 1401806 1401845) (-862 "ORESUP.spad" 1400880 1400904 1401259 1401298) (-861 "OREPCTO.spad" 1398737 1398749 1400800 1400805) (-860 "OREPCAT.spad" 1392884 1392894 1398693 1398732) (-859 "OREPCAT.spad" 1386921 1386933 1392732 1392737) (-858 "ORDSET.spad" 1386093 1386101 1386911 1386916) (-857 "ORDSET.spad" 1385263 1385273 1386083 1386088) (-856 "ORDRING.spad" 1384653 1384661 1385243 1385258) (-855 "ORDRING.spad" 1384051 1384061 1384643 1384648) (-854 "ORDMON.spad" 1383906 1383914 1384041 1384046) (-853 "ORDFUNS.spad" 1383038 1383054 1383896 1383901) (-852 "ORDFIN.spad" 1382858 1382866 1383028 1383033) (-851 "ORDCOMP.spad" 1381323 1381333 1382405 1382434) (-850 "ORDCOMP2.spad" 1380616 1380628 1381313 1381318) (-849 "OPTPROB.spad" 1379254 1379262 1380606 1380611) (-848 "OPTPACK.spad" 1371663 1371671 1379244 1379249) (-847 "OPTCAT.spad" 1369342 1369350 1371653 1371658) (-846 "OPSIG.spad" 1368996 1369004 1369332 1369337) (-845 "OPQUERY.spad" 1368545 1368553 1368986 1368991) (-844 "OP.spad" 1368287 1368297 1368367 1368434) (-843 "OPERCAT.spad" 1367753 1367763 1368277 1368282) (-842 "OPERCAT.spad" 1367217 1367229 1367743 1367748) (-841 "ONECOMP.spad" 1365962 1365972 1366764 1366793) (-840 "ONECOMP2.spad" 1365386 1365398 1365952 1365957) (-839 "OMSERVER.spad" 1364392 1364400 1365376 1365381) (-838 "OMSAGG.spad" 1364180 1364190 1364348 1364387) (-837 "OMPKG.spad" 1362796 1362804 1364170 1364175) (-836 "OM.spad" 1361769 1361777 1362786 1362791) (-835 "OMLO.spad" 1361194 1361206 1361655 1361694) (-834 "OMEXPR.spad" 1361028 1361038 1361184 1361189) (-833 "OMERR.spad" 1360573 1360581 1361018 1361023) (-832 "OMERRK.spad" 1359607 1359615 1360563 1360568) (-831 "OMENC.spad" 1358951 1358959 1359597 1359602) (-830 "OMDEV.spad" 1353260 1353268 1358941 1358946) (-829 "OMCONN.spad" 1352669 1352677 1353250 1353255) (-828 "OINTDOM.spad" 1352432 1352440 1352595 1352664) (-827 "OFMONOID.spad" 1350555 1350565 1352388 1352393) (-826 "ODVAR.spad" 1349816 1349826 1350545 1350550) (-825 "ODR.spad" 1349460 1349486 1349628 1349777) (-824 "ODPOL.spad" 1346842 1346852 1347182 1347309) (-823 "ODP.spad" 1336612 1336632 1336985 1337116) (-822 "ODETOOLS.spad" 1335261 1335280 1336602 1336607) (-821 "ODESYS.spad" 1332955 1332972 1335251 1335256) (-820 "ODERTRIC.spad" 1328964 1328981 1332912 1332917) (-819 "ODERED.spad" 1328363 1328387 1328954 1328959) (-818 "ODERAT.spad" 1325978 1325995 1328353 1328358) (-817 "ODEPRRIC.spad" 1323015 1323037 1325968 1325973) (-816 "ODEPROB.spad" 1322272 1322280 1323005 1323010) (-815 "ODEPRIM.spad" 1319606 1319628 1322262 1322267) (-814 "ODEPAL.spad" 1318992 1319016 1319596 1319601) (-813 "ODEPACK.spad" 1305658 1305666 1318982 1318987) (-812 "ODEINT.spad" 1305093 1305109 1305648 1305653) (-811 "ODEIFTBL.spad" 1302488 1302496 1305083 1305088) (-810 "ODEEF.spad" 1297979 1297995 1302478 1302483) (-809 "ODECONST.spad" 1297516 1297534 1297969 1297974) (-808 "ODECAT.spad" 1296114 1296122 1297506 1297511) (-807 "OCT.spad" 1294250 1294260 1294964 1295003) (-806 "OCTCT2.spad" 1293896 1293917 1294240 1294245) (-805 "OC.spad" 1291692 1291702 1293852 1293891) (-804 "OC.spad" 1289213 1289225 1291375 1291380) (-803 "OCAMON.spad" 1289061 1289069 1289203 1289208) (-802 "OASGP.spad" 1288876 1288884 1289051 1289056) (-801 "OAMONS.spad" 1288398 1288406 1288866 1288871) (-800 "OAMON.spad" 1288259 1288267 1288388 1288393) (-799 "OAGROUP.spad" 1288121 1288129 1288249 1288254) (-798 "NUMTUBE.spad" 1287712 1287728 1288111 1288116) (-797 "NUMQUAD.spad" 1275688 1275696 1287702 1287707) (-796 "NUMODE.spad" 1267042 1267050 1275678 1275683) (-795 "NUMINT.spad" 1264608 1264616 1267032 1267037) (-794 "NUMFMT.spad" 1263448 1263456 1264598 1264603) (-793 "NUMERIC.spad" 1255562 1255572 1263253 1263258) (-792 "NTSCAT.spad" 1254070 1254086 1255530 1255557) (-791 "NTPOLFN.spad" 1253621 1253631 1253987 1253992) (-790 "NSUP.spad" 1246667 1246677 1251207 1251360) (-789 "NSUP2.spad" 1246059 1246071 1246657 1246662) (-788 "NSMP.spad" 1242289 1242308 1242597 1242724) (-787 "NREP.spad" 1240667 1240681 1242279 1242284) (-786 "NPCOEF.spad" 1239913 1239933 1240657 1240662) (-785 "NORMRETR.spad" 1239511 1239550 1239903 1239908) (-784 "NORMPK.spad" 1237413 1237432 1239501 1239506) (-783 "NORMMA.spad" 1237101 1237127 1237403 1237408) (-782 "NONE.spad" 1236842 1236850 1237091 1237096) (-781 "NONE1.spad" 1236518 1236528 1236832 1236837) (-780 "NODE1.spad" 1236005 1236021 1236508 1236513) (-779 "NNI.spad" 1234900 1234908 1235979 1236000) (-778 "NLINSOL.spad" 1233526 1233536 1234890 1234895) (-777 "NIPROB.spad" 1232067 1232075 1233516 1233521) (-776 "NFINTBAS.spad" 1229627 1229644 1232057 1232062) (-775 "NETCLT.spad" 1229601 1229612 1229617 1229622) (-774 "NCODIV.spad" 1227817 1227833 1229591 1229596) (-773 "NCNTFRAC.spad" 1227459 1227473 1227807 1227812) (-772 "NCEP.spad" 1225625 1225639 1227449 1227454) (-771 "NASRING.spad" 1225221 1225229 1225615 1225620) (-770 "NASRING.spad" 1224815 1224825 1225211 1225216) (-769 "NARNG.spad" 1224167 1224175 1224805 1224810) (-768 "NARNG.spad" 1223517 1223527 1224157 1224162) (-767 "NAGSP.spad" 1222594 1222602 1223507 1223512) (-766 "NAGS.spad" 1212255 1212263 1222584 1222589) (-765 "NAGF07.spad" 1210686 1210694 1212245 1212250) (-764 "NAGF04.spad" 1205088 1205096 1210676 1210681) (-763 "NAGF02.spad" 1199157 1199165 1205078 1205083) (-762 "NAGF01.spad" 1194918 1194926 1199147 1199152) (-761 "NAGE04.spad" 1188618 1188626 1194908 1194913) (-760 "NAGE02.spad" 1179278 1179286 1188608 1188613) (-759 "NAGE01.spad" 1175280 1175288 1179268 1179273) (-758 "NAGD03.spad" 1173284 1173292 1175270 1175275) (-757 "NAGD02.spad" 1166031 1166039 1173274 1173279) (-756 "NAGD01.spad" 1160324 1160332 1166021 1166026) (-755 "NAGC06.spad" 1156199 1156207 1160314 1160319) (-754 "NAGC05.spad" 1154700 1154708 1156189 1156194) (-753 "NAGC02.spad" 1153967 1153975 1154690 1154695) (-752 "NAALG.spad" 1153508 1153518 1153935 1153962) (-751 "NAALG.spad" 1153069 1153081 1153498 1153503) (-750 "MULTSQFR.spad" 1150027 1150044 1153059 1153064) (-749 "MULTFACT.spad" 1149410 1149427 1150017 1150022) (-748 "MTSCAT.spad" 1147504 1147525 1149308 1149405) (-747 "MTHING.spad" 1147163 1147173 1147494 1147499) (-746 "MSYSCMD.spad" 1146597 1146605 1147153 1147158) (-745 "MSET.spad" 1144555 1144565 1146303 1146342) (-744 "MSETAGG.spad" 1144400 1144410 1144523 1144550) (-743 "MRING.spad" 1141377 1141389 1144108 1144175) (-742 "MRF2.spad" 1140947 1140961 1141367 1141372) (-741 "MRATFAC.spad" 1140493 1140510 1140937 1140942) (-740 "MPRFF.spad" 1138533 1138552 1140483 1140488) (-739 "MPOLY.spad" 1136004 1136019 1136363 1136490) (-738 "MPCPF.spad" 1135268 1135287 1135994 1135999) (-737 "MPC3.spad" 1135085 1135125 1135258 1135263) (-736 "MPC2.spad" 1134731 1134764 1135075 1135080) (-735 "MONOTOOL.spad" 1133082 1133099 1134721 1134726) (-734 "MONOID.spad" 1132401 1132409 1133072 1133077) (-733 "MONOID.spad" 1131718 1131728 1132391 1132396) (-732 "MONOGEN.spad" 1130466 1130479 1131578 1131713) (-731 "MONOGEN.spad" 1129236 1129251 1130350 1130355) (-730 "MONADWU.spad" 1127266 1127274 1129226 1129231) (-729 "MONADWU.spad" 1125294 1125304 1127256 1127261) (-728 "MONAD.spad" 1124454 1124462 1125284 1125289) (-727 "MONAD.spad" 1123612 1123622 1124444 1124449) (-726 "MOEBIUS.spad" 1122348 1122362 1123592 1123607) (-725 "MODULE.spad" 1122218 1122228 1122316 1122343) (-724 "MODULE.spad" 1122108 1122120 1122208 1122213) (-723 "MODRING.spad" 1121443 1121482 1122088 1122103) (-722 "MODOP.spad" 1120108 1120120 1121265 1121332) (-721 "MODMONOM.spad" 1119839 1119857 1120098 1120103) (-720 "MODMON.spad" 1116634 1116650 1117353 1117506) (-719 "MODFIELD.spad" 1115996 1116035 1116536 1116629) (-718 "MMLFORM.spad" 1114856 1114864 1115986 1115991) (-717 "MMAP.spad" 1114598 1114632 1114846 1114851) (-716 "MLO.spad" 1113057 1113067 1114554 1114593) (-715 "MLIFT.spad" 1111669 1111686 1113047 1113052) (-714 "MKUCFUNC.spad" 1111204 1111222 1111659 1111664) (-713 "MKRECORD.spad" 1110808 1110821 1111194 1111199) (-712 "MKFUNC.spad" 1110215 1110225 1110798 1110803) (-711 "MKFLCFN.spad" 1109183 1109193 1110205 1110210) (-710 "MKBCFUNC.spad" 1108678 1108696 1109173 1109178) (-709 "MINT.spad" 1108117 1108125 1108580 1108673) (-708 "MHROWRED.spad" 1106628 1106638 1108107 1108112) (-707 "MFLOAT.spad" 1105148 1105156 1106518 1106623) (-706 "MFINFACT.spad" 1104548 1104570 1105138 1105143) (-705 "MESH.spad" 1102330 1102338 1104538 1104543) (-704 "MDDFACT.spad" 1100541 1100551 1102320 1102325) (-703 "MDAGG.spad" 1099832 1099842 1100521 1100536) (-702 "MCMPLX.spad" 1095843 1095851 1096457 1096658) (-701 "MCDEN.spad" 1095053 1095065 1095833 1095838) (-700 "MCALCFN.spad" 1092175 1092201 1095043 1095048) (-699 "MAYBE.spad" 1091459 1091470 1092165 1092170) (-698 "MATSTOR.spad" 1088767 1088777 1091449 1091454) (-697 "MATRIX.spad" 1087471 1087481 1087955 1087982) (-696 "MATLIN.spad" 1084815 1084839 1087355 1087360) (-695 "MATCAT.spad" 1076544 1076566 1084783 1084810) (-694 "MATCAT.spad" 1068145 1068169 1076386 1076391) (-693 "MATCAT2.spad" 1067427 1067475 1068135 1068140) (-692 "MAPPKG3.spad" 1066342 1066356 1067417 1067422) (-691 "MAPPKG2.spad" 1065680 1065692 1066332 1066337) (-690 "MAPPKG1.spad" 1064508 1064518 1065670 1065675) (-689 "MAPPAST.spad" 1063823 1063831 1064498 1064503) (-688 "MAPHACK3.spad" 1063635 1063649 1063813 1063818) (-687 "MAPHACK2.spad" 1063404 1063416 1063625 1063630) (-686 "MAPHACK1.spad" 1063048 1063058 1063394 1063399) (-685 "MAGMA.spad" 1060838 1060855 1063038 1063043) (-684 "MACROAST.spad" 1060417 1060425 1060828 1060833) (-683 "M3D.spad" 1058137 1058147 1059795 1059800) (-682 "LZSTAGG.spad" 1055375 1055385 1058127 1058132) (-681 "LZSTAGG.spad" 1052611 1052623 1055365 1055370) (-680 "LWORD.spad" 1049316 1049333 1052601 1052606) (-679 "LSTAST.spad" 1049100 1049108 1049306 1049311) (-678 "LSQM.spad" 1047386 1047400 1047780 1047831) (-677 "LSPP.spad" 1046921 1046938 1047376 1047381) (-676 "LSMP.spad" 1045771 1045799 1046911 1046916) (-675 "LSMP1.spad" 1043589 1043603 1045761 1045766) (-674 "LSAGG.spad" 1043258 1043268 1043557 1043584) (-673 "LSAGG.spad" 1042947 1042959 1043248 1043253) (-672 "LPOLY.spad" 1041901 1041920 1042803 1042872) (-671 "LPEFRAC.spad" 1041172 1041182 1041891 1041896) (-670 "LO.spad" 1040573 1040587 1041106 1041133) (-669 "LOGIC.spad" 1040175 1040183 1040563 1040568) (-668 "LOGIC.spad" 1039775 1039785 1040165 1040170) (-667 "LODOOPS.spad" 1038705 1038717 1039765 1039770) (-666 "LODO.spad" 1038089 1038105 1038385 1038424) (-665 "LODOF.spad" 1037135 1037152 1038046 1038051) (-664 "LODOCAT.spad" 1035801 1035811 1037091 1037130) (-663 "LODOCAT.spad" 1034465 1034477 1035757 1035762) (-662 "LODO2.spad" 1033738 1033750 1034145 1034184) (-661 "LODO1.spad" 1033138 1033148 1033418 1033457) (-660 "LODEEF.spad" 1031940 1031958 1033128 1033133) (-659 "LNAGG.spad" 1028087 1028097 1031930 1031935) (-658 "LNAGG.spad" 1024198 1024210 1028043 1028048) (-657 "LMOPS.spad" 1020966 1020983 1024188 1024193) (-656 "LMODULE.spad" 1020734 1020744 1020956 1020961) (-655 "LMDICT.spad" 1020021 1020031 1020285 1020312) (-654 "LLINSET.spad" 1019418 1019428 1020011 1020016) (-653 "LITERAL.spad" 1019324 1019335 1019408 1019413) (-652 "LIST.spad" 1017059 1017069 1018471 1018498) (-651 "LIST3.spad" 1016370 1016384 1017049 1017054) (-650 "LIST2.spad" 1015072 1015084 1016360 1016365) (-649 "LIST2MAP.spad" 1011975 1011987 1015062 1015067) (-648 "LINSET.spad" 1011597 1011607 1011965 1011970) (-647 "LINEXP.spad" 1010735 1010745 1011587 1011592) (-646 "LINDEP.spad" 1009544 1009556 1010647 1010652) (-645 "LIMITRF.spad" 1007472 1007482 1009534 1009539) (-644 "LIMITPS.spad" 1006375 1006388 1007462 1007467) (-643 "LIE.spad" 1004391 1004403 1005665 1005810) (-642 "LIECAT.spad" 1003867 1003877 1004317 1004386) (-641 "LIECAT.spad" 1003371 1003383 1003823 1003828) (-640 "LIB.spad" 1001584 1001592 1002030 1002045) (-639 "LGROBP.spad" 998937 998956 1001574 1001579) (-638 "LF.spad" 997892 997908 998927 998932) (-637 "LFCAT.spad" 996951 996959 997882 997887) (-636 "LEXTRIPK.spad" 992454 992469 996941 996946) (-635 "LEXP.spad" 990457 990484 992434 992449) (-634 "LETAST.spad" 990156 990164 990447 990452) (-633 "LEADCDET.spad" 988554 988571 990146 990151) (-632 "LAZM3PK.spad" 987258 987280 988544 988549) (-631 "LAUPOL.spad" 985951 985964 986851 986920) (-630 "LAPLACE.spad" 985534 985550 985941 985946) (-629 "LA.spad" 984974 984988 985456 985495) (-628 "LALG.spad" 984750 984760 984954 984969) (-627 "LALG.spad" 984534 984546 984740 984745) (-626 "KVTFROM.spad" 984269 984279 984524 984529) (-625 "KTVLOGIC.spad" 983781 983789 984259 984264) (-624 "KRCFROM.spad" 983519 983529 983771 983776) (-623 "KOVACIC.spad" 982242 982259 983509 983514) (-622 "KONVERT.spad" 981964 981974 982232 982237) (-621 "KOERCE.spad" 981701 981711 981954 981959) (-620 "KERNEL.spad" 980356 980366 981485 981490) (-619 "KERNEL2.spad" 980059 980071 980346 980351) (-618 "KDAGG.spad" 979168 979190 980039 980054) (-617 "KDAGG.spad" 978285 978309 979158 979163) (-616 "KAFILE.spad" 977248 977264 977483 977510) (-615 "JORDAN.spad" 975077 975089 976538 976683) (-614 "JOINAST.spad" 974771 974779 975067 975072) (-613 "JAVACODE.spad" 974637 974645 974761 974766) (-612 "IXAGG.spad" 972770 972794 974627 974632) (-611 "IXAGG.spad" 970758 970784 972617 972622) (-610 "IVECTOR.spad" 969528 969543 969683 969710) (-609 "ITUPLE.spad" 968689 968699 969518 969523) (-608 "ITRIGMNP.spad" 967528 967547 968679 968684) (-607 "ITFUN3.spad" 967034 967048 967518 967523) (-606 "ITFUN2.spad" 966778 966790 967024 967029) (-605 "ITFORM.spad" 966133 966141 966768 966773) (-604 "ITAYLOR.spad" 964127 964142 965997 966094) (-603 "ISUPS.spad" 956564 956579 963101 963198) (-602 "ISUMP.spad" 956065 956081 956554 956559) (-601 "ISTRING.spad" 955153 955166 955234 955261) (-600 "ISAST.spad" 954872 954880 955143 955148) (-599 "IRURPK.spad" 953589 953608 954862 954867) (-598 "IRSN.spad" 951561 951569 953579 953584) (-597 "IRRF2F.spad" 950046 950056 951517 951522) (-596 "IRREDFFX.spad" 949647 949658 950036 950041) (-595 "IROOT.spad" 947986 947996 949637 949642) (-594 "IR.spad" 945787 945801 947841 947868) (-593 "IRFORM.spad" 945111 945119 945777 945782) (-592 "IR2.spad" 944139 944155 945101 945106) (-591 "IR2F.spad" 943345 943361 944129 944134) (-590 "IPRNTPK.spad" 943105 943113 943335 943340) (-589 "IPF.spad" 942670 942682 942910 943003) (-588 "IPADIC.spad" 942431 942457 942596 942665) (-587 "IP4ADDR.spad" 941988 941996 942421 942426) (-586 "IOMODE.spad" 941510 941518 941978 941983) (-585 "IOBFILE.spad" 940871 940879 941500 941505) (-584 "IOBCON.spad" 940736 940744 940861 940866) (-583 "INVLAPLA.spad" 940385 940401 940726 940731) (-582 "INTTR.spad" 933767 933784 940375 940380) (-581 "INTTOOLS.spad" 931522 931538 933341 933346) (-580 "INTSLPE.spad" 930842 930850 931512 931517) (-579 "INTRVL.spad" 930408 930418 930756 930837) (-578 "INTRF.spad" 928832 928846 930398 930403) (-577 "INTRET.spad" 928264 928274 928822 928827) (-576 "INTRAT.spad" 926991 927008 928254 928259) (-575 "INTPM.spad" 925376 925392 926634 926639) (-574 "INTPAF.spad" 923240 923258 925308 925313) (-573 "INTPACK.spad" 913614 913622 923230 923235) (-572 "INT.spad" 913062 913070 913468 913609) (-571 "INTHERTR.spad" 912336 912353 913052 913057) (-570 "INTHERAL.spad" 912006 912030 912326 912331) (-569 "INTHEORY.spad" 908445 908453 911996 912001) (-568 "INTG0.spad" 902178 902196 908377 908382) (-567 "INTFTBL.spad" 896207 896215 902168 902173) (-566 "INTFACT.spad" 895266 895276 896197 896202) (-565 "INTEF.spad" 893651 893667 895256 895261) (-564 "INTDOM.spad" 892274 892282 893577 893646) (-563 "INTDOM.spad" 890959 890969 892264 892269) (-562 "INTCAT.spad" 889218 889228 890873 890954) (-561 "INTBIT.spad" 888725 888733 889208 889213) (-560 "INTALG.spad" 887913 887940 888715 888720) (-559 "INTAF.spad" 887413 887429 887903 887908) (-558 "INTABL.spad" 885931 885962 886094 886121) (-557 "INT8.spad" 885811 885819 885921 885926) (-556 "INT64.spad" 885690 885698 885801 885806) (-555 "INT32.spad" 885569 885577 885680 885685) (-554 "INT16.spad" 885448 885456 885559 885564) (-553 "INS.spad" 882951 882959 885350 885443) (-552 "INS.spad" 880540 880550 882941 882946) (-551 "INPSIGN.spad" 879988 880001 880530 880535) (-550 "INPRODPF.spad" 879084 879103 879978 879983) (-549 "INPRODFF.spad" 878172 878196 879074 879079) (-548 "INNMFACT.spad" 877147 877164 878162 878167) (-547 "INMODGCD.spad" 876635 876665 877137 877142) (-546 "INFSP.spad" 874932 874954 876625 876630) (-545 "INFPROD0.spad" 874012 874031 874922 874927) (-544 "INFORM.spad" 871211 871219 874002 874007) (-543 "INFORM1.spad" 870836 870846 871201 871206) (-542 "INFINITY.spad" 870388 870396 870826 870831) (-541 "INETCLTS.spad" 870365 870373 870378 870383) (-540 "INEP.spad" 868903 868925 870355 870360) (-539 "INDE.spad" 868632 868649 868893 868898) (-538 "INCRMAPS.spad" 868053 868063 868622 868627) (-537 "INBFILE.spad" 867125 867133 868043 868048) (-536 "INBFF.spad" 862919 862930 867115 867120) (-535 "INBCON.spad" 861209 861217 862909 862914) (-534 "INBCON.spad" 859497 859507 861199 861204) (-533 "INAST.spad" 859158 859166 859487 859492) (-532 "IMPTAST.spad" 858866 858874 859148 859153) (-531 "IMATRIX.spad" 857811 857837 858323 858350) (-530 "IMATQF.spad" 856905 856949 857767 857772) (-529 "IMATLIN.spad" 855510 855534 856861 856866) (-528 "ILIST.spad" 854168 854183 854693 854720) (-527 "IIARRAY2.spad" 853556 853594 853775 853802) (-526 "IFF.spad" 852966 852982 853237 853330) (-525 "IFAST.spad" 852580 852588 852956 852961) (-524 "IFARRAY.spad" 850073 850088 851763 851790) (-523 "IFAMON.spad" 849935 849952 850029 850034) (-522 "IEVALAB.spad" 849340 849352 849925 849930) (-521 "IEVALAB.spad" 848743 848757 849330 849335) (-520 "IDPO.spad" 848541 848553 848733 848738) (-519 "IDPOAMS.spad" 848297 848309 848531 848536) (-518 "IDPOAM.spad" 848017 848029 848287 848292) (-517 "IDPC.spad" 846955 846967 848007 848012) (-516 "IDPAM.spad" 846700 846712 846945 846950) (-515 "IDPAG.spad" 846447 846459 846690 846695) (-514 "IDENT.spad" 846097 846105 846437 846442) (-513 "IDECOMP.spad" 843336 843354 846087 846092) (-512 "IDEAL.spad" 838285 838324 843271 843276) (-511 "ICDEN.spad" 837474 837490 838275 838280) (-510 "ICARD.spad" 836665 836673 837464 837469) (-509 "IBPTOOLS.spad" 835272 835289 836655 836660) (-508 "IBITS.spad" 834475 834488 834908 834935) (-507 "IBATOOL.spad" 831452 831471 834465 834470) (-506 "IBACHIN.spad" 829959 829974 831442 831447) (-505 "IARRAY2.spad" 828947 828973 829566 829593) (-504 "IARRAY1.spad" 827992 828007 828130 828157) (-503 "IAN.spad" 826215 826223 827808 827901) (-502 "IALGFACT.spad" 825818 825851 826205 826210) (-501 "HYPCAT.spad" 825242 825250 825808 825813) (-500 "HYPCAT.spad" 824664 824674 825232 825237) (-499 "HOSTNAME.spad" 824472 824480 824654 824659) (-498 "HOMOTOP.spad" 824215 824225 824462 824467) (-497 "HOAGG.spad" 821497 821507 824205 824210) (-496 "HOAGG.spad" 818554 818566 821264 821269) (-495 "HEXADEC.spad" 816656 816664 817021 817114) (-494 "HEUGCD.spad" 815691 815702 816646 816651) (-493 "HELLFDIV.spad" 815281 815305 815681 815686) (-492 "HEAP.spad" 814673 814683 814888 814915) (-491 "HEADAST.spad" 814206 814214 814663 814668) (-490 "HDP.spad" 803972 803988 804349 804480) (-489 "HDMP.spad" 801186 801201 801802 801929) (-488 "HB.spad" 799437 799445 801176 801181) (-487 "HASHTBL.spad" 797907 797938 798118 798145) (-486 "HASAST.spad" 797623 797631 797897 797902) (-485 "HACKPI.spad" 797114 797122 797525 797618) (-484 "GTSET.spad" 796053 796069 796760 796787) (-483 "GSTBL.spad" 794572 794607 794746 794761) (-482 "GSERIES.spad" 791743 791770 792704 792853) (-481 "GROUP.spad" 791016 791024 791723 791738) (-480 "GROUP.spad" 790297 790307 791006 791011) (-479 "GROEBSOL.spad" 788791 788812 790287 790292) (-478 "GRMOD.spad" 787362 787374 788781 788786) (-477 "GRMOD.spad" 785931 785945 787352 787357) (-476 "GRIMAGE.spad" 778820 778828 785921 785926) (-475 "GRDEF.spad" 777199 777207 778810 778815) (-474 "GRAY.spad" 775662 775670 777189 777194) (-473 "GRALG.spad" 774739 774751 775652 775657) (-472 "GRALG.spad" 773814 773828 774729 774734) (-471 "GPOLSET.spad" 773268 773291 773496 773523) (-470 "GOSPER.spad" 772537 772555 773258 773263) (-469 "GMODPOL.spad" 771685 771712 772505 772532) (-468 "GHENSEL.spad" 770768 770782 771675 771680) (-467 "GENUPS.spad" 767061 767074 770758 770763) (-466 "GENUFACT.spad" 766638 766648 767051 767056) (-465 "GENPGCD.spad" 766224 766241 766628 766633) (-464 "GENMFACT.spad" 765676 765695 766214 766219) (-463 "GENEEZ.spad" 763627 763640 765666 765671) (-462 "GDMP.spad" 760683 760700 761457 761584) (-461 "GCNAALG.spad" 754606 754633 760477 760544) (-460 "GCDDOM.spad" 753782 753790 754532 754601) (-459 "GCDDOM.spad" 753020 753030 753772 753777) (-458 "GB.spad" 750546 750584 752976 752981) (-457 "GBINTERN.spad" 746566 746604 750536 750541) (-456 "GBF.spad" 742333 742371 746556 746561) (-455 "GBEUCLID.spad" 740215 740253 742323 742328) (-454 "GAUSSFAC.spad" 739528 739536 740205 740210) (-453 "GALUTIL.spad" 737854 737864 739484 739489) (-452 "GALPOLYU.spad" 736308 736321 737844 737849) (-451 "GALFACTU.spad" 734481 734500 736298 736303) (-450 "GALFACT.spad" 724670 724681 734471 734476) (-449 "FVFUN.spad" 721693 721701 724660 724665) (-448 "FVC.spad" 720745 720753 721683 721688) (-447 "FUNDESC.spad" 720423 720431 720735 720740) (-446 "FUNCTION.spad" 720272 720284 720413 720418) (-445 "FT.spad" 718569 718577 720262 720267) (-444 "FTEM.spad" 717734 717742 718559 718564) (-443 "FSUPFACT.spad" 716634 716653 717670 717675) (-442 "FST.spad" 714720 714728 716624 716629) (-441 "FSRED.spad" 714200 714216 714710 714715) (-440 "FSPRMELT.spad" 713082 713098 714157 714162) (-439 "FSPECF.spad" 711173 711189 713072 713077) (-438 "FS.spad" 705441 705451 710948 711168) (-437 "FS.spad" 699487 699499 704996 705001) (-436 "FSINT.spad" 699147 699163 699477 699482) (-435 "FSERIES.spad" 698338 698350 698967 699066) (-434 "FSCINT.spad" 697655 697671 698328 698333) (-433 "FSAGG.spad" 696772 696782 697611 697650) (-432 "FSAGG.spad" 695851 695863 696692 696697) (-431 "FSAGG2.spad" 694594 694610 695841 695846) (-430 "FS2UPS.spad" 689085 689119 694584 694589) (-429 "FS2.spad" 688732 688748 689075 689080) (-428 "FS2EXPXP.spad" 687857 687880 688722 688727) (-427 "FRUTIL.spad" 686811 686821 687847 687852) (-426 "FR.spad" 680343 680353 685651 685720) (-425 "FRNAALG.spad" 675612 675622 680285 680338) (-424 "FRNAALG.spad" 670893 670905 675568 675573) (-423 "FRNAAF2.spad" 670349 670367 670883 670888) (-422 "FRMOD.spad" 669759 669789 670280 670285) (-421 "FRIDEAL.spad" 668984 669005 669739 669754) (-420 "FRIDEAL2.spad" 668588 668620 668974 668979) (-419 "FRETRCT.spad" 668099 668109 668578 668583) (-418 "FRETRCT.spad" 667476 667488 667957 667962) (-417 "FRAMALG.spad" 665824 665837 667432 667471) (-416 "FRAMALG.spad" 664204 664219 665814 665819) (-415 "FRAC.spad" 661303 661313 661706 661879) (-414 "FRAC2.spad" 660908 660920 661293 661298) (-413 "FR2.spad" 660244 660256 660898 660903) (-412 "FPS.spad" 657059 657067 660134 660239) (-411 "FPS.spad" 653902 653912 656979 656984) (-410 "FPC.spad" 652948 652956 653804 653897) (-409 "FPC.spad" 652080 652090 652938 652943) (-408 "FPATMAB.spad" 651842 651852 652070 652075) (-407 "FPARFRAC.spad" 650329 650346 651832 651837) (-406 "FORTRAN.spad" 648835 648878 650319 650324) (-405 "FORT.spad" 647784 647792 648825 648830) (-404 "FORTFN.spad" 644954 644962 647774 647779) (-403 "FORTCAT.spad" 644638 644646 644944 644949) (-402 "FORMULA.spad" 642112 642120 644628 644633) (-401 "FORMULA1.spad" 641591 641601 642102 642107) (-400 "FORDER.spad" 641282 641306 641581 641586) (-399 "FOP.spad" 640483 640491 641272 641277) (-398 "FNLA.spad" 639907 639929 640451 640478) (-397 "FNCAT.spad" 638502 638510 639897 639902) (-396 "FNAME.spad" 638394 638402 638492 638497) (-395 "FMTC.spad" 638192 638200 638320 638389) (-394 "FMONOID.spad" 637857 637867 638148 638153) (-393 "FMONCAT.spad" 635010 635020 637847 637852) (-392 "FM.spad" 634705 634717 634944 634971) (-391 "FMFUN.spad" 631735 631743 634695 634700) (-390 "FMC.spad" 630787 630795 631725 631730) (-389 "FMCAT.spad" 628455 628473 630755 630782) (-388 "FM1.spad" 627812 627824 628389 628416) (-387 "FLOATRP.spad" 625547 625561 627802 627807) (-386 "FLOAT.spad" 618861 618869 625413 625542) (-385 "FLOATCP.spad" 616292 616306 618851 618856) (-384 "FLINEXP.spad" 616014 616024 616282 616287) (-383 "FLINEXP.spad" 615680 615692 615950 615955) (-382 "FLASORT.spad" 615006 615018 615670 615675) (-381 "FLALG.spad" 612652 612671 614932 615001) (-380 "FLAGG.spad" 609694 609704 612632 612647) (-379 "FLAGG.spad" 606637 606649 609577 609582) (-378 "FLAGG2.spad" 605362 605378 606627 606632) (-377 "FINRALG.spad" 603423 603436 605318 605357) (-376 "FINRALG.spad" 601410 601425 603307 603312) (-375 "FINITE.spad" 600562 600570 601400 601405) (-374 "FINAALG.spad" 589683 589693 600504 600557) (-373 "FINAALG.spad" 578816 578828 589639 589644) (-372 "FILE.spad" 578399 578409 578806 578811) (-371 "FILECAT.spad" 576925 576942 578389 578394) (-370 "FIELD.spad" 576331 576339 576827 576920) (-369 "FIELD.spad" 575823 575833 576321 576326) (-368 "FGROUP.spad" 574470 574480 575803 575818) (-367 "FGLMICPK.spad" 573257 573272 574460 574465) (-366 "FFX.spad" 572632 572647 572973 573066) (-365 "FFSLPE.spad" 572135 572156 572622 572627) (-364 "FFPOLY.spad" 563397 563408 572125 572130) (-363 "FFPOLY2.spad" 562457 562474 563387 563392) (-362 "FFP.spad" 561854 561874 562173 562266) (-361 "FF.spad" 561302 561318 561535 561628) (-360 "FFNBX.spad" 559814 559834 561018 561111) (-359 "FFNBP.spad" 558327 558344 559530 559623) (-358 "FFNB.spad" 556792 556813 558008 558101) (-357 "FFINTBAS.spad" 554306 554325 556782 556787) (-356 "FFIELDC.spad" 551883 551891 554208 554301) (-355 "FFIELDC.spad" 549546 549556 551873 551878) (-354 "FFHOM.spad" 548294 548311 549536 549541) (-353 "FFF.spad" 545729 545740 548284 548289) (-352 "FFCGX.spad" 544576 544596 545445 545538) (-351 "FFCGP.spad" 543465 543485 544292 544385) (-350 "FFCG.spad" 542257 542278 543146 543239) (-349 "FFCAT.spad" 535430 535452 542096 542252) (-348 "FFCAT.spad" 528682 528706 535350 535355) (-347 "FFCAT2.spad" 528429 528469 528672 528677) (-346 "FEXPR.spad" 520146 520192 528185 528224) (-345 "FEVALAB.spad" 519854 519864 520136 520141) (-344 "FEVALAB.spad" 519347 519359 519631 519636) (-343 "FDIV.spad" 518789 518813 519337 519342) (-342 "FDIVCAT.spad" 516853 516877 518779 518784) (-341 "FDIVCAT.spad" 514915 514941 516843 516848) (-340 "FDIV2.spad" 514571 514611 514905 514910) (-339 "FCTRDATA.spad" 513579 513587 514561 514566) (-338 "FCPAK1.spad" 512146 512154 513569 513574) (-337 "FCOMP.spad" 511525 511535 512136 512141) (-336 "FC.spad" 501532 501540 511515 511520) (-335 "FAXF.spad" 494503 494517 501434 501527) (-334 "FAXF.spad" 487526 487542 494459 494464) (-333 "FARRAY.spad" 485676 485686 486709 486736) (-332 "FAMR.spad" 483812 483824 485574 485671) (-331 "FAMR.spad" 481932 481946 483696 483701) (-330 "FAMONOID.spad" 481600 481610 481886 481891) (-329 "FAMONC.spad" 479896 479908 481590 481595) (-328 "FAGROUP.spad" 479520 479530 479792 479819) (-327 "FACUTIL.spad" 477724 477741 479510 479515) (-326 "FACTFUNC.spad" 476918 476928 477714 477719) (-325 "EXPUPXS.spad" 473751 473774 475050 475199) (-324 "EXPRTUBE.spad" 471039 471047 473741 473746) (-323 "EXPRODE.spad" 468199 468215 471029 471034) (-322 "EXPR.spad" 463374 463384 464088 464383) (-321 "EXPR2UPS.spad" 459496 459509 463364 463369) (-320 "EXPR2.spad" 459201 459213 459486 459491) (-319 "EXPEXPAN.spad" 456141 456166 456773 456866) (-318 "EXIT.spad" 455812 455820 456131 456136) (-317 "EXITAST.spad" 455548 455556 455802 455807) (-316 "EVALCYC.spad" 455008 455022 455538 455543) (-315 "EVALAB.spad" 454580 454590 454998 455003) (-314 "EVALAB.spad" 454150 454162 454570 454575) (-313 "EUCDOM.spad" 451724 451732 454076 454145) (-312 "EUCDOM.spad" 449360 449370 451714 451719) (-311 "ESTOOLS.spad" 441206 441214 449350 449355) (-310 "ESTOOLS2.spad" 440809 440823 441196 441201) (-309 "ESTOOLS1.spad" 440494 440505 440799 440804) (-308 "ES.spad" 433309 433317 440484 440489) (-307 "ES.spad" 426030 426040 433207 433212) (-306 "ESCONT.spad" 422823 422831 426020 426025) (-305 "ESCONT1.spad" 422572 422584 422813 422818) (-304 "ES2.spad" 422077 422093 422562 422567) (-303 "ES1.spad" 421647 421663 422067 422072) (-302 "ERROR.spad" 418974 418982 421637 421642) (-301 "EQTBL.spad" 417446 417468 417655 417682) (-300 "EQ.spad" 412251 412261 415038 415150) (-299 "EQ2.spad" 411969 411981 412241 412246) (-298 "EP.spad" 408295 408305 411959 411964) (-297 "ENV.spad" 406973 406981 408285 408290) (-296 "ENTIRER.spad" 406641 406649 406917 406968) (-295 "EMR.spad" 405929 405970 406567 406636) (-294 "ELTAGG.spad" 404183 404202 405919 405924) (-293 "ELTAGG.spad" 402401 402422 404139 404144) (-292 "ELTAB.spad" 401876 401889 402391 402396) (-291 "ELFUTS.spad" 401263 401282 401866 401871) (-290 "ELEMFUN.spad" 400952 400960 401253 401258) (-289 "ELEMFUN.spad" 400639 400649 400942 400947) (-288 "ELAGG.spad" 398610 398620 400619 400634) (-287 "ELAGG.spad" 396518 396530 398529 398534) (-286 "ELABOR.spad" 395864 395872 396508 396513) (-285 "ELABEXPR.spad" 394796 394804 395854 395859) (-284 "EFUPXS.spad" 391572 391602 394752 394757) (-283 "EFULS.spad" 388408 388431 391528 391533) (-282 "EFSTRUC.spad" 386423 386439 388398 388403) (-281 "EF.spad" 381199 381215 386413 386418) (-280 "EAB.spad" 379475 379483 381189 381194) (-279 "E04UCFA.spad" 379011 379019 379465 379470) (-278 "E04NAFA.spad" 378588 378596 379001 379006) (-277 "E04MBFA.spad" 378168 378176 378578 378583) (-276 "E04JAFA.spad" 377704 377712 378158 378163) (-275 "E04GCFA.spad" 377240 377248 377694 377699) (-274 "E04FDFA.spad" 376776 376784 377230 377235) (-273 "E04DGFA.spad" 376312 376320 376766 376771) (-272 "E04AGNT.spad" 372162 372170 376302 376307) (-271 "DVARCAT.spad" 368851 368861 372152 372157) (-270 "DVARCAT.spad" 365538 365550 368841 368846) (-269 "DSMP.spad" 363005 363019 363310 363437) (-268 "DROPT.spad" 356964 356972 362995 363000) (-267 "DROPT1.spad" 356629 356639 356954 356959) (-266 "DROPT0.spad" 351486 351494 356619 356624) (-265 "DRAWPT.spad" 349659 349667 351476 351481) (-264 "DRAW.spad" 342535 342548 349649 349654) (-263 "DRAWHACK.spad" 341843 341853 342525 342530) (-262 "DRAWCX.spad" 339313 339321 341833 341838) (-261 "DRAWCURV.spad" 338860 338875 339303 339308) (-260 "DRAWCFUN.spad" 328392 328400 338850 338855) (-259 "DQAGG.spad" 326570 326580 328360 328387) (-258 "DPOLCAT.spad" 321919 321935 326438 326565) (-257 "DPOLCAT.spad" 317354 317372 321875 321880) (-256 "DPMO.spad" 309827 309843 309965 310210) (-255 "DPMM.spad" 302313 302331 302438 302683) (-254 "DOMTMPLT.spad" 302084 302092 302303 302308) (-253 "DOMCTOR.spad" 301839 301847 302074 302079) (-252 "DOMAIN.spad" 300926 300934 301829 301834) (-251 "DMP.spad" 298186 298201 298756 298883) (-250 "DLP.spad" 297538 297548 298176 298181) (-249 "DLIST.spad" 296117 296127 296721 296748) (-248 "DLAGG.spad" 294534 294544 296107 296112) (-247 "DIVRING.spad" 294076 294084 294478 294529) (-246 "DIVRING.spad" 293662 293672 294066 294071) (-245 "DISPLAY.spad" 291852 291860 293652 293657) (-244 "DIRPROD.spad" 281355 281371 281995 282126) (-243 "DIRPROD2.spad" 280173 280191 281345 281350) (-242 "DIRPCAT.spad" 279117 279133 280037 280168) (-241 "DIRPCAT.spad" 277790 277808 278712 278717) (-240 "DIOSP.spad" 276615 276623 277780 277785) (-239 "DIOPS.spad" 275611 275621 276595 276610) (-238 "DIOPS.spad" 274581 274593 275567 275572) (-237 "DIFRING.spad" 274187 274195 274561 274576) (-236 "DIFRING.spad" 273801 273811 274177 274182) (-235 "DIFFDOM.spad" 272966 272977 273791 273796) (-234 "DIFFDOM.spad" 272129 272142 272956 272961) (-233 "DIFEXT.spad" 271300 271310 272109 272124) (-232 "DIFEXT.spad" 270388 270400 271199 271204) (-231 "DIAGG.spad" 270018 270028 270368 270383) (-230 "DIAGG.spad" 269656 269668 270008 270013) (-229 "DHMATRIX.spad" 267968 267978 269113 269140) (-228 "DFSFUN.spad" 261608 261616 267958 267963) (-227 "DFLOAT.spad" 258339 258347 261498 261603) (-226 "DFINTTLS.spad" 256570 256586 258329 258334) (-225 "DERHAM.spad" 254484 254516 256550 256565) (-224 "DEQUEUE.spad" 253808 253818 254091 254118) (-223 "DEGRED.spad" 253425 253439 253798 253803) (-222 "DEFINTRF.spad" 250962 250972 253415 253420) (-221 "DEFINTEF.spad" 249472 249488 250952 250957) (-220 "DEFAST.spad" 248840 248848 249462 249467) (-219 "DECIMAL.spad" 246946 246954 247307 247400) (-218 "DDFACT.spad" 244759 244776 246936 246941) (-217 "DBLRESP.spad" 244359 244383 244749 244754) (-216 "DBASE.spad" 243023 243033 244349 244354) (-215 "DATAARY.spad" 242485 242498 243013 243018) (-214 "D03FAFA.spad" 242313 242321 242475 242480) (-213 "D03EEFA.spad" 242133 242141 242303 242308) (-212 "D03AGNT.spad" 241219 241227 242123 242128) (-211 "D02EJFA.spad" 240681 240689 241209 241214) (-210 "D02CJFA.spad" 240159 240167 240671 240676) (-209 "D02BHFA.spad" 239649 239657 240149 240154) (-208 "D02BBFA.spad" 239139 239147 239639 239644) (-207 "D02AGNT.spad" 233953 233961 239129 239134) (-206 "D01WGTS.spad" 232272 232280 233943 233948) (-205 "D01TRNS.spad" 232249 232257 232262 232267) (-204 "D01GBFA.spad" 231771 231779 232239 232244) (-203 "D01FCFA.spad" 231293 231301 231761 231766) (-202 "D01ASFA.spad" 230761 230769 231283 231288) (-201 "D01AQFA.spad" 230207 230215 230751 230756) (-200 "D01APFA.spad" 229631 229639 230197 230202) (-199 "D01ANFA.spad" 229125 229133 229621 229626) (-198 "D01AMFA.spad" 228635 228643 229115 229120) (-197 "D01ALFA.spad" 228175 228183 228625 228630) (-196 "D01AKFA.spad" 227701 227709 228165 228170) (-195 "D01AJFA.spad" 227224 227232 227691 227696) (-194 "D01AGNT.spad" 223291 223299 227214 227219) (-193 "CYCLOTOM.spad" 222797 222805 223281 223286) (-192 "CYCLES.spad" 219589 219597 222787 222792) (-191 "CVMP.spad" 219006 219016 219579 219584) (-190 "CTRIGMNP.spad" 217506 217522 218996 219001) (-189 "CTOR.spad" 217197 217205 217496 217501) (-188 "CTORKIND.spad" 216800 216808 217187 217192) (-187 "CTORCAT.spad" 216049 216057 216790 216795) (-186 "CTORCAT.spad" 215296 215306 216039 216044) (-185 "CTORCALL.spad" 214885 214895 215286 215291) (-184 "CSTTOOLS.spad" 214130 214143 214875 214880) (-183 "CRFP.spad" 207854 207867 214120 214125) (-182 "CRCEAST.spad" 207574 207582 207844 207849) (-181 "CRAPACK.spad" 206625 206635 207564 207569) (-180 "CPMATCH.spad" 206129 206144 206550 206555) (-179 "CPIMA.spad" 205834 205853 206119 206124) (-178 "COORDSYS.spad" 200843 200853 205824 205829) (-177 "CONTOUR.spad" 200254 200262 200833 200838) (-176 "CONTFRAC.spad" 196004 196014 200156 200249) (-175 "CONDUIT.spad" 195762 195770 195994 195999) (-174 "COMRING.spad" 195436 195444 195700 195757) (-173 "COMPPROP.spad" 194954 194962 195426 195431) (-172 "COMPLPAT.spad" 194721 194736 194944 194949) (-171 "COMPLEX.spad" 188858 188868 189102 189363) (-170 "COMPLEX2.spad" 188573 188585 188848 188853) (-169 "COMPILER.spad" 188122 188130 188563 188568) (-168 "COMPFACT.spad" 187724 187738 188112 188117) (-167 "COMPCAT.spad" 185796 185806 187458 187719) (-166 "COMPCAT.spad" 183596 183608 185260 185265) (-165 "COMMUPC.spad" 183344 183362 183586 183591) (-164 "COMMONOP.spad" 182877 182885 183334 183339) (-163 "COMM.spad" 182688 182696 182867 182872) (-162 "COMMAAST.spad" 182451 182459 182678 182683) (-161 "COMBOPC.spad" 181366 181374 182441 182446) (-160 "COMBINAT.spad" 180133 180143 181356 181361) (-159 "COMBF.spad" 177515 177531 180123 180128) (-158 "COLOR.spad" 176352 176360 177505 177510) (-157 "COLONAST.spad" 176018 176026 176342 176347) (-156 "CMPLXRT.spad" 175729 175746 176008 176013) (-155 "CLLCTAST.spad" 175391 175399 175719 175724) (-154 "CLIP.spad" 171499 171507 175381 175386) (-153 "CLIF.spad" 170154 170170 171455 171494) (-152 "CLAGG.spad" 166659 166669 170144 170149) (-151 "CLAGG.spad" 163035 163047 166522 166527) (-150 "CINTSLPE.spad" 162366 162379 163025 163030) (-149 "CHVAR.spad" 160504 160526 162356 162361) (-148 "CHARZ.spad" 160419 160427 160484 160499) (-147 "CHARPOL.spad" 159929 159939 160409 160414) (-146 "CHARNZ.spad" 159682 159690 159909 159924) (-145 "CHAR.spad" 157556 157564 159672 159677) (-144 "CFCAT.spad" 156884 156892 157546 157551) (-143 "CDEN.spad" 156080 156094 156874 156879) (-142 "CCLASS.spad" 154229 154237 155491 155530) (-141 "CATEGORY.spad" 153271 153279 154219 154224) (-140 "CATCTOR.spad" 153162 153170 153261 153266) (-139 "CATAST.spad" 152780 152788 153152 153157) (-138 "CASEAST.spad" 152494 152502 152770 152775) (-137 "CARTEN.spad" 147861 147885 152484 152489) (-136 "CARTEN2.spad" 147251 147278 147851 147856) (-135 "CARD.spad" 144546 144554 147225 147246) (-134 "CAPSLAST.spad" 144320 144328 144536 144541) (-133 "CACHSET.spad" 143944 143952 144310 144315) (-132 "CABMON.spad" 143499 143507 143934 143939) (-131 "BYTEORD.spad" 143174 143182 143489 143494) (-130 "BYTE.spad" 142601 142609 143164 143169) (-129 "BYTEBUF.spad" 140460 140468 141770 141797) (-128 "BTREE.spad" 139533 139543 140067 140094) (-127 "BTOURN.spad" 138538 138548 139140 139167) (-126 "BTCAT.spad" 137930 137940 138506 138533) (-125 "BTCAT.spad" 137342 137354 137920 137925) (-124 "BTAGG.spad" 136808 136816 137310 137337) (-123 "BTAGG.spad" 136294 136304 136798 136803) (-122 "BSTREE.spad" 135035 135045 135901 135928) (-121 "BRILL.spad" 133232 133243 135025 135030) (-120 "BRAGG.spad" 132172 132182 133222 133227) (-119 "BRAGG.spad" 131076 131088 132128 132133) (-118 "BPADICRT.spad" 129057 129069 129312 129405) (-117 "BPADIC.spad" 128721 128733 128983 129052) (-116 "BOUNDZRO.spad" 128377 128394 128711 128716) (-115 "BOP.spad" 123559 123567 128367 128372) (-114 "BOP1.spad" 121025 121035 123549 123554) (-113 "BOOLE.spad" 120675 120683 121015 121020) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file