diff options
author | dos-reis <gdr@axiomatics.org> | 2009-02-04 01:47:51 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2009-02-04 01:47:51 +0000 |
commit | 65045e7285ed629a68ae63529fae61bbcf7bf890 (patch) | |
tree | 736b7f67327b4a92953eb074d9965b5f9673a65a /src/share/algebra/browse.daase | |
parent | c0ab2c253aed35314d7cab2d68165268840dcb83 (diff) | |
download | open-axiom-65045e7285ed629a68ae63529fae61bbcf7bf890.tar.gz |
* algebra/boolean.spad.pamphlet (Boolean): Tidy.
Diffstat (limited to 'src/share/algebra/browse.daase')
-rw-r--r-- | src/share/algebra/browse.daase | 1132 |
1 files changed, 566 insertions, 566 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index d717bbcd..958715a9 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2281924 . 3442535947) +(2282336 . 3442698064) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}."))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4399 . T) (-4397 . T) (-4396 . T) ((-4404 "*") . T) (-4395 . T) (-4400 . T) (-4394 . T)) +((-4400 . T) (-4398 . T) (-4397 . T) ((-4405 "*") . T) (-4396 . T) (-4401 . T) (-4395 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,14 +56,14 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -3197) +(-32 R -3196) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL ((|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4402))) +((|HasAttribute| |#1| (QUOTE -4403))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4402 . T) (-4403 . T)) +((-4403 . T) (-4404 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) @@ -82,17 +82,17 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) -((-4396 . T) (-4397 . T) (-4399 . T)) +((-4397 . T) (-4398 . T) (-4400 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -3197 UP UPUP -3518) +(-40 -3196 UP UPUP -2685) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4395 |has| (-406 |#2|) (-362)) (-4400 |has| (-406 |#2|) (-362)) (-4394 |has| (-406 |#2|) (-362)) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4396 |has| (-406 |#2|) (-362)) (-4401 |has| (-406 |#2|) (-362)) (-4395 |has| (-406 |#2|) (-362)) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) ((|HasCategory| (-406 |#2|) (QUOTE (-144))) (|HasCategory| (-406 |#2|) (QUOTE (-146))) (|HasCategory| (-406 |#2|) (QUOTE (-348))) (-4037 (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-367))) (-4037 (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (-4037 (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-406 |#2|) (QUOTE (-348))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -635) (QUOTE (-562)))) (-4037 (|HasCategory| (-406 |#2|) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362))))) -(-41 R -3197) +(-41 R -3196) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))))) @@ -106,23 +106,23 @@ NIL ((|HasCategory| |#1| (QUOTE (-306)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4399 |has| |#1| (-554)) (-4397 . T) (-4396 . T)) +((-4400 |has| |#1| (-554)) (-4398 . T) (-4397 . T)) ((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4402 . T) (-4403 . T)) -((-4037 (-12 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-845))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2320) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2694) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2320) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2694) (|devaluate| |#2|))))))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-845))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-845))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2320) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2694) (|devaluate| |#2|))))))) +((-4403 . T) (-4404 . T)) +((-4037 (-12 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-845))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2319) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2693) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2319) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2693) (|devaluate| |#2|))))))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-845))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-845))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2319) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2693) (|devaluate| |#2|))))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL ((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4396 . T) (-4397 . T) (-4399 . T)) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) ((|HasCategory| $ (QUOTE (-1044))) (|HasCategory| $ (LIST (QUOTE -1033) (QUOTE (-562))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) @@ -130,7 +130,7 @@ NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4399 . T)) +((-4400 . T)) NIL (-51 S) ((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -3197) +(-54 |Base| R -3196) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -158,7 +158,7 @@ NIL NIL (-57 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4402 . T) (-4403 . T)) +((-4403 . T) (-4404 . T)) NIL (-58 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) @@ -166,65 +166,65 @@ NIL NIL (-59 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) ((-4037 (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4402 . T) (-4403 . T)) +((-4403 . T) (-4404 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) -(-61 -3254) +(-61 -3253) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-62 -3254) +(-62 -3253) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-63 -3254) +(-63 -3253) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -3254) +(-64 -3253) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-65 -3254) +(-65 -3253) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -3254) +(-66 -3253) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-67 -3254) +(-67 -3253) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -3254) +(-68 -3253) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-69 -3254) +(-69 -3253) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-70 -3254) +(-70 -3253) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-71 -3254) +(-71 -3253) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-72 -3254) +(-72 -3253) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-73 -3254) +(-73 -3253) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-74 -3254) +(-74 -3253) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL @@ -236,55 +236,55 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-77 -3254) +(-77 -3253) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-78 -3254) +(-78 -3253) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-79 -3254) +(-79 -3253) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -3254) +(-80 -3253) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -3254) +(-81 -3253) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}"))) NIL NIL -(-82 -3254) +(-82 -3253) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -3254) +(-83 -3253) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -3254) +(-84 -3253) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -3254) +(-85 -3253) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -3254) +(-86 -3253) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -3254) +(-87 -3253) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-88 -3254) +(-88 -3253) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-89 -3254) +(-89 -3253) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -294,7 +294,7 @@ NIL ((|HasCategory| |#1| (QUOTE (-362)))) (-91 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4402 . T) (-4403 . T)) +((-4403 . T) (-4404 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (-92 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) @@ -318,15 +318,15 @@ NIL NIL (-97) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4402 . T)) +((-4403 . T)) NIL (-98) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4402 . T) ((-4404 "*") . T) (-4403 . T) (-4399 . T) (-4397 . T) (-4396 . T) (-4395 . T) (-4400 . T) (-4394 . T) (-4393 . T) (-4392 . T) (-4391 . T) (-4390 . T) (-4398 . T) (-4401 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4389 . T)) +((-4403 . T) ((-4405 "*") . T) (-4404 . T) (-4400 . T) (-4398 . T) (-4397 . T) (-4396 . T) (-4401 . T) (-4395 . T) (-4394 . T) (-4393 . T) (-4392 . T) (-4391 . T) (-4399 . T) (-4402 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4390 . T)) NIL (-99 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4399 . T)) +((-4400 . T)) NIL (-100 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}."))) @@ -342,15 +342,15 @@ NIL NIL (-103 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4402 . T) (-4403 . T)) +((-4403 . T) (-4404 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (-104 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4404 "*")))) +((|HasAttribute| |#1| (QUOTE (-4405 "*")))) (-105) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4402 . T)) +((-4403 . T)) NIL (-106 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -358,11 +358,11 @@ NIL NIL (-107 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4403 . T)) +((-4404 . T)) NIL (-108) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) -((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) ((|HasCategory| (-562) (QUOTE (-904))) (|HasCategory| (-562) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| (-562) (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-146))) (|HasCategory| (-562) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-562) (QUOTE (-1017))) (|HasCategory| (-562) (QUOTE (-815))) (-4037 (|HasCategory| (-562) (QUOTE (-815))) (|HasCategory| (-562) (QUOTE (-845)))) (|HasCategory| (-562) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| (-562) (QUOTE (-1143))) (|HasCategory| (-562) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| (-562) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| (-562) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| (-562) (QUOTE (-232))) (|HasCategory| (-562) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-562) (LIST (QUOTE -513) (QUOTE (-1168)) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -308) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -285) (QUOTE (-562)) (QUOTE (-562)))) (|HasCategory| (-562) (QUOTE (-306))) (|HasCategory| (-562) (QUOTE (-544))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| (-562) (LIST (QUOTE -635) (QUOTE (-562)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-904)))) (|HasCategory| (-562) (QUOTE (-144))))) (-109) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) @@ -370,11 +370,11 @@ NIL NIL (-110) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) ((-12 (|HasCategory| (-112) (QUOTE (-1092))) (|HasCategory| (-112) (LIST (QUOTE -308) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-112) (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| (-112) (QUOTE (-1092))) (|HasCategory| (-112) (LIST (QUOTE -609) (QUOTE (-857))))) (-111 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4397 . T) (-4396 . T)) +((-4398 . T) (-4397 . T)) NIL (-112) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) @@ -388,22 +388,22 @@ NIL ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}."))) NIL NIL -(-115 -3197 UP) +(-115 -3196 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-116 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-117 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) ((|HasCategory| (-116 |#1|) (QUOTE (-904))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| (-116 |#1|) (QUOTE (-144))) (|HasCategory| (-116 |#1|) (QUOTE (-146))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-116 |#1|) (QUOTE (-1017))) (|HasCategory| (-116 |#1|) (QUOTE (-815))) (-4037 (|HasCategory| (-116 |#1|) (QUOTE (-815))) (|HasCategory| (-116 |#1|) (QUOTE (-845)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| (-116 |#1|) (QUOTE (-1143))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| (-116 |#1|) (QUOTE (-232))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -513) (QUOTE (-1168)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -308) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -285) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-306))) (|HasCategory| (-116 |#1|) (QUOTE (-544))) (|HasCategory| (-116 |#1|) (QUOTE (-845))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-116 |#1|) (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-116 |#1|) (QUOTE (-904)))) (|HasCategory| (-116 |#1|) (QUOTE (-144))))) (-118 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4403))) +((|HasAttribute| |#1| (QUOTE -4404))) (-119 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL @@ -414,7 +414,7 @@ NIL NIL (-121 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4402 . T) (-4403 . T)) +((-4403 . T) (-4404 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (-122 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) @@ -422,7 +422,7 @@ NIL NIL (-123) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) NIL (-124 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -430,19 +430,19 @@ NIL NIL (-125 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4402 . T) (-4403 . T)) +((-4403 . T) (-4404 . T)) NIL (-126 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4402 . T) (-4403 . T)) +((-4403 . T) (-4404 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (-127 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4402 . T) (-4403 . T)) +((-4403 . T) (-4404 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (-128) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,{}n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#buf} returns the number of active elements in the buffer.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) ((-4037 (-12 (|HasCategory| (-129) (QUOTE (-845))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1092))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129)))))) (-4037 (-12 (|HasCategory| (-129) (QUOTE (-1092))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-129) (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| (-129) (QUOTE (-845))) (|HasCategory| (-129) (QUOTE (-1092)))) (|HasCategory| (-129) (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| (-129) (QUOTE (-1092))) (|HasCategory| (-129) (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| (-129) (QUOTE (-1092))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129)))))) (-129) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample()} returns a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) @@ -462,13 +462,13 @@ NIL NIL (-133) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative."))) -(((-4404 "*") . T)) +(((-4405 "*") . T)) NIL -(-134 |minix| -2241 S T$) +(-134 |minix| -2240 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-135 |minix| -2241 R) +(-135 |minix| -2240 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL @@ -490,7 +490,7 @@ NIL NIL (-140) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4402 . T) (-4392 . T) (-4403 . T)) +((-4403 . T) (-4393 . T) (-4404 . T)) ((-4037 (-12 (|HasCategory| (-143) (QUOTE (-367))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (-12 (|HasCategory| (-143) (QUOTE (-1092))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (|HasCategory| (-143) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-143) (QUOTE (-367))) (|HasCategory| (-143) (QUOTE (-845))) (|HasCategory| (-143) (QUOTE (-1092))) (|HasCategory| (-143) (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| (-143) (QUOTE (-1092))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (-141 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) @@ -506,7 +506,7 @@ NIL NIL (-144) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4399 . T)) +((-4400 . T)) NIL (-145 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) @@ -514,9 +514,9 @@ NIL NIL (-146) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4399 . T)) +((-4400 . T)) NIL -(-147 -3197 UP UPUP) +(-147 -3196 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}."))) NIL NIL @@ -527,14 +527,14 @@ NIL (-149 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasAttribute| |#1| (QUOTE -4402))) +((|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasAttribute| |#1| (QUOTE -4403))) (-150 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL NIL (-151 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4397 . T) (-4396 . T) (-4399 . T)) +((-4398 . T) (-4397 . T) (-4400 . T)) NIL (-152) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) @@ -556,7 +556,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-157 R -3197) +(-157 R -3196) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -587,10 +587,10 @@ NIL (-164 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}."))) NIL -((|HasCategory| |#2| (QUOTE (-904))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-997))) (|HasCategory| |#2| (QUOTE (-1192))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4398)) (|HasAttribute| |#2| (QUOTE -4401)) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-845)))) +((|HasCategory| |#2| (QUOTE (-904))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-997))) (|HasCategory| |#2| (QUOTE (-1192))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4399)) (|HasAttribute| |#2| (QUOTE -4402)) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-845)))) (-165 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}."))) -((-4395 -4037 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904)))) (-4400 |has| |#1| (-362)) (-4394 |has| |#1| (-362)) (-4398 |has| |#1| (-6 -4398)) (-4401 |has| |#1| (-6 -4401)) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4396 -4037 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904)))) (-4401 |has| |#1| (-362)) (-4395 |has| |#1| (-362)) (-4399 |has| |#1| (-6 -4399)) (-4402 |has| |#1| (-6 -4402)) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-166 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) @@ -602,8 +602,8 @@ NIL NIL (-168 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4395 -4037 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904)))) (-4400 |has| |#1| (-362)) (-4394 |has| |#1| (-362)) (-4398 |has| |#1| (-6 -4398)) (-4401 |has| |#1| (-6 -4401)) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) -((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-348))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-232))) (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-845)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-1017)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-1192)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-904))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-904)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-904)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-904))))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-997))) (|HasCategory| |#1| (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1053))) (-12 (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-904))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-362)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-232))) (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasAttribute| |#1| (QUOTE -4398)) (|HasAttribute| |#1| (QUOTE -4401)) (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168))))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-348))))) +((-4396 -4037 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904)))) (-4401 |has| |#1| (-362)) (-4395 |has| |#1| (-362)) (-4399 |has| |#1| (-6 -4399)) (-4402 |has| |#1| (-6 -4402)) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-348))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-232))) (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-845)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-1017)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-1192)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-904))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-904)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-904)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-904))))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-997))) (|HasCategory| |#1| (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1053))) (-12 (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-904))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-362)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-232))) (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasAttribute| |#1| (QUOTE -4399)) (|HasAttribute| |#1| (QUOTE -4402)) (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168))))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-348))))) (-169 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL @@ -614,7 +614,7 @@ NIL NIL (-171) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +(((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-172) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) @@ -622,7 +622,7 @@ NIL NIL (-173 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4404 "*") . T) (-4395 . T) (-4400 . T) (-4394 . T) (-4396 . T) (-4397 . T) (-4399 . T)) +(((-4405 "*") . T) (-4396 . T) (-4401 . T) (-4395 . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-174) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `failed'.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) @@ -661,11 +661,11 @@ NIL NIL NIL (-183 S) -((|constructor| (NIL "This category declares basic operations on all constructors.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(i+1) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'."))) +((|constructor| (NIL "This category declares basic operations on all constructors.")) (|operations| (((|List| (|OverloadSet|)) $) "\\spad{operations(c)} returns the list of all operator exported by instantiations of constructor \\spad{c}. The operators are partitioned into overload sets.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(i+1) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'."))) NIL NIL (-184) -((|constructor| (NIL "This category declares basic operations on all constructors.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(i+1) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'."))) +((|constructor| (NIL "This category declares basic operations on all constructors.")) (|operations| (((|List| (|OverloadSet|)) $) "\\spad{operations(c)} returns the list of all operator exported by instantiations of constructor \\spad{c}. The operators are partitioned into overload sets.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(i+1) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'."))) NIL NIL (-185) @@ -676,7 +676,7 @@ NIL ((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Symbol|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-187 R -3197) +(-187 R -3196) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -784,23 +784,23 @@ NIL ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-214 -3197 UP UPUP R) +(-214 -3196 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-215 -3197 FP) +(-215 -3196 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL (-216) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) -((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) ((|HasCategory| (-562) (QUOTE (-904))) (|HasCategory| (-562) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| (-562) (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-146))) (|HasCategory| (-562) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-562) (QUOTE (-1017))) (|HasCategory| (-562) (QUOTE (-815))) (-4037 (|HasCategory| (-562) (QUOTE (-815))) (|HasCategory| (-562) (QUOTE (-845)))) (|HasCategory| (-562) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| (-562) (QUOTE (-1143))) (|HasCategory| (-562) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| (-562) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| (-562) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| (-562) (QUOTE (-232))) (|HasCategory| (-562) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-562) (LIST (QUOTE -513) (QUOTE (-1168)) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -308) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -285) (QUOTE (-562)) (QUOTE (-562)))) (|HasCategory| (-562) (QUOTE (-306))) (|HasCategory| (-562) (QUOTE (-544))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| (-562) (LIST (QUOTE -635) (QUOTE (-562)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-904)))) (|HasCategory| (-562) (QUOTE (-144))))) (-217) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-218 R -3197) +(-218 R -3196) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL @@ -814,19 +814,19 @@ NIL NIL (-221 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4402 . T) (-4403 . T)) +((-4403 . T) (-4404 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (-222 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4399 . T)) +((-4400 . T)) NIL -(-223 R -3197) +(-223 R -3196) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL (-224) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-1406 . T) (-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-1406 . T) (-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-225) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}"))) @@ -834,15 +834,15 @@ NIL NIL (-226 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4402 . T) (-4403 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-554))) (|HasAttribute| |#1| (QUOTE (-4404 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) +((-4403 . T) (-4404 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-554))) (|HasAttribute| |#1| (QUOTE (-4405 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (-227 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL (-228 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4403 . T)) +((-4404 . T)) NIL (-229 S R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) @@ -850,7 +850,7 @@ NIL ((|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-232)))) (-230 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) -((-4399 . T)) +((-4400 . T)) NIL (-231 S) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) @@ -858,36 +858,36 @@ NIL NIL (-232) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) -((-4399 . T)) +((-4400 . T)) NIL (-233 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4402))) +((|HasAttribute| |#1| (QUOTE -4403))) (-234 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4403 . T)) +((-4404 . T)) NIL (-235) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-236 S -2241 R) +(-236 S -2240 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (QUOTE (-843))) (|HasAttribute| |#3| (QUOTE -4399)) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (QUOTE (-1092)))) -(-237 -2241 R) +((|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (QUOTE (-843))) (|HasAttribute| |#3| (QUOTE -4400)) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (QUOTE (-1092)))) +(-237 -2240 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4396 |has| |#2| (-1044)) (-4397 |has| |#2| (-1044)) (-4399 |has| |#2| (-6 -4399)) ((-4404 "*") |has| |#2| (-171)) (-4402 . T)) +((-4397 |has| |#2| (-1044)) (-4398 |has| |#2| (-1044)) (-4400 |has| |#2| (-6 -4400)) ((-4405 "*") |has| |#2| (-171)) (-4403 . T)) NIL -(-238 -2241 A B) +(-238 -2240 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-239 -2241 R) +(-239 -2240 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4396 |has| |#2| (-1044)) (-4397 |has| |#2| (-1044)) (-4399 |has| |#2| (-6 -4399)) ((-4404 "*") |has| |#2| (-171)) (-4402 . T)) -((-4037 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (QUOTE (-362))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-788))) (-4037 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-171))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1044)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-171)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-232)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-721)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-788)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-843)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1044))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| (-562) (QUOTE (-845))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-4037 (|HasCategory| |#2| (QUOTE (-1044))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092)))) (|HasAttribute| |#2| (QUOTE -4399)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))))) +((-4397 |has| |#2| (-1044)) (-4398 |has| |#2| (-1044)) (-4400 |has| |#2| (-6 -4400)) ((-4405 "*") |has| |#2| (-171)) (-4403 . T)) +((-4037 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (QUOTE (-362))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-788))) (-4037 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-171))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1044)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-171)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-232)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-721)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-788)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-843)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1044))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| (-562) (QUOTE (-845))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-4037 (|HasCategory| |#2| (QUOTE (-1044))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092)))) (|HasAttribute| |#2| (QUOTE -4400)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))))) (-240) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL @@ -898,7 +898,7 @@ NIL NIL (-242) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4395 . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4396 . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-243 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) @@ -906,7 +906,7 @@ NIL NIL (-244 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) ((-4037 (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-245 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) @@ -914,8 +914,8 @@ NIL NIL (-246 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4404 "*") |has| |#2| (-171)) (-4395 |has| |#2| (-554)) (-4400 |has| |#2| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) -((|HasCategory| |#2| (QUOTE (-904))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-554)))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4400)) (|HasCategory| |#2| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-144))))) +(((-4405 "*") |has| |#2| (-171)) (-4396 |has| |#2| (-554)) (-4401 |has| |#2| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) +((|HasCategory| |#2| (QUOTE (-904))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-554)))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4401)) (|HasCategory| |#2| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-144))))) (-247) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}."))) NIL @@ -926,23 +926,23 @@ NIL NIL (-249 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4399 -4037 (-2246 (|has| |#4| (-1044)) (|has| |#4| (-232))) (-2246 (|has| |#4| (-1044)) (|has| |#4| (-895 (-1168)))) (|has| |#4| (-6 -4399)) (-2246 (|has| |#4| (-1044)) (|has| |#4| (-635 (-562))))) (-4396 |has| |#4| (-1044)) (-4397 |has| |#4| (-1044)) ((-4404 "*") |has| |#4| (-171)) (-4402 . T)) -((-4037 (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-721))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-788))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-843))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168)))))) (|HasCategory| |#4| (QUOTE (-362))) (-4037 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (QUOTE (-1044)))) (-4037 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-362)))) (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (QUOTE (-788))) (-4037 (|HasCategory| |#4| (QUOTE (-788))) (|HasCategory| |#4| (QUOTE (-843)))) (|HasCategory| |#4| (QUOTE (-843))) (|HasCategory| |#4| (QUOTE (-721))) (|HasCategory| |#4| (QUOTE (-171))) (-4037 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-1044)))) (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168)))) (-4037 (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1044)))) (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-171)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-232)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-362)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-367)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-721)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-788)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-843)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-1044)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-1092))))) (-4037 (-12 (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-721))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-788))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-843))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-1044))) (-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-721))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-788))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-843))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| (-562) (QUOTE (-845))) (-12 (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1044)))) (-4037 (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1044)))) (|HasCategory| |#4| (QUOTE (-721))) (-12 (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168)))))) (-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-4037 (|HasCategory| |#4| (QUOTE (-1044))) (-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-1092)))) (-4037 (|HasAttribute| |#4| (QUOTE -4399)) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1044)))) (-12 (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168)))))) (|HasCategory| |#4| (QUOTE (-130))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|))))) +((-4400 -4037 (-2245 (|has| |#4| (-1044)) (|has| |#4| (-232))) (-2245 (|has| |#4| (-1044)) (|has| |#4| (-895 (-1168)))) (|has| |#4| (-6 -4400)) (-2245 (|has| |#4| (-1044)) (|has| |#4| (-635 (-562))))) (-4397 |has| |#4| (-1044)) (-4398 |has| |#4| (-1044)) ((-4405 "*") |has| |#4| (-171)) (-4403 . T)) +((-4037 (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-721))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-788))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-843))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168)))))) (|HasCategory| |#4| (QUOTE (-362))) (-4037 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (QUOTE (-1044)))) (-4037 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-362)))) (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (QUOTE (-788))) (-4037 (|HasCategory| |#4| (QUOTE (-788))) (|HasCategory| |#4| (QUOTE (-843)))) (|HasCategory| |#4| (QUOTE (-843))) (|HasCategory| |#4| (QUOTE (-721))) (|HasCategory| |#4| (QUOTE (-171))) (-4037 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-1044)))) (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168)))) (-4037 (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1044)))) (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-171)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-232)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-362)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-367)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-721)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-788)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-843)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-1044)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-1092))))) (-4037 (-12 (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-721))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-788))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-843))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-1044))) (-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-721))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-788))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-843))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| (-562) (QUOTE (-845))) (-12 (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1044)))) (-4037 (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1044)))) (|HasCategory| |#4| (QUOTE (-721))) (-12 (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168)))))) (-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-4037 (|HasCategory| |#4| (QUOTE (-1044))) (-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-1092)))) (-4037 (|HasAttribute| |#4| (QUOTE -4400)) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1044)))) (-12 (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168)))))) (|HasCategory| |#4| (QUOTE (-130))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|))))) (-250 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4399 -4037 (-2246 (|has| |#3| (-1044)) (|has| |#3| (-232))) (-2246 (|has| |#3| (-1044)) (|has| |#3| (-895 (-1168)))) (|has| |#3| (-6 -4399)) (-2246 (|has| |#3| (-1044)) (|has| |#3| (-635 (-562))))) (-4396 |has| |#3| (-1044)) (-4397 |has| |#3| (-1044)) ((-4404 "*") |has| |#3| (-171)) (-4402 . T)) -((-4037 (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))))) (|HasCategory| |#3| (QUOTE (-362))) (-4037 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1044)))) (-4037 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (QUOTE (-788))) (-4037 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (QUOTE (-843)))) (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (QUOTE (-171))) (-4037 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-1044)))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (-4037 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1044)))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-171)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-232)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-362)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-367)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-721)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-788)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-843)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1044)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1092))))) (-4037 (-12 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1044))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| (-562) (QUOTE (-845))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1044)))) (-4037 (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1044)))) (|HasCategory| |#3| (QUOTE (-721))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-4037 (|HasCategory| |#3| (QUOTE (-1044))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1092)))) (-4037 (|HasAttribute| |#3| (QUOTE -4399)) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1044)))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))))) +((-4400 -4037 (-2245 (|has| |#3| (-1044)) (|has| |#3| (-232))) (-2245 (|has| |#3| (-1044)) (|has| |#3| (-895 (-1168)))) (|has| |#3| (-6 -4400)) (-2245 (|has| |#3| (-1044)) (|has| |#3| (-635 (-562))))) (-4397 |has| |#3| (-1044)) (-4398 |has| |#3| (-1044)) ((-4405 "*") |has| |#3| (-171)) (-4403 . T)) +((-4037 (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))))) (|HasCategory| |#3| (QUOTE (-362))) (-4037 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1044)))) (-4037 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (QUOTE (-788))) (-4037 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (QUOTE (-843)))) (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (QUOTE (-171))) (-4037 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-1044)))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (-4037 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1044)))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-171)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-232)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-362)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-367)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-721)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-788)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-843)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1044)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1092))))) (-4037 (-12 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1044))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| (-562) (QUOTE (-845))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1044)))) (-4037 (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1044)))) (|HasCategory| |#3| (QUOTE (-721))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-4037 (|HasCategory| |#3| (QUOTE (-1044))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1092)))) (-4037 (|HasAttribute| |#3| (QUOTE -4400)) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1044)))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))))) (-251 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL ((|HasCategory| |#2| (QUOTE (-232)))) (-252 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) NIL (-253 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4402 . T) (-4403 . T)) +((-4403 . T) (-4404 . T)) NIL (-254) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) @@ -982,8 +982,8 @@ NIL NIL (-263 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) -((|HasCategory| |#1| (QUOTE (-904))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#3| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#3| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#3| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4400)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) +((|HasCategory| |#1| (QUOTE (-904))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#3| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#3| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#3| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4401)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) (-264 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL @@ -1028,11 +1028,11 @@ NIL ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-275 R -3197) +(-275 R -3196) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-276 R -3197) +(-276 R -3196) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL @@ -1054,7 +1054,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1092)))) (-281 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4403 . T)) +((-4404 . T)) NIL (-282 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) @@ -1075,18 +1075,18 @@ NIL (-286 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4403))) +((|HasAttribute| |#1| (QUOTE -4404))) (-287 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-288 S R |Mod| -2925 -1610 |exactQuo|) +(-288 S R |Mod| -3834 -4103 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-289) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4395 . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4396 . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-290) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Symbol|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|Union| (|List| (|Property|)) "failed") (|Symbol|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}; otherwise `failed'.")) (|setProperty!| (($ (|Symbol|) (|Symbol|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Union| (|SExpression|) "failed") (|Symbol|) (|Symbol|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `failed'.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) @@ -1102,21 +1102,21 @@ NIL NIL (-293 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4399 -4037 (|has| |#1| (-1044)) (|has| |#1| (-472))) (-4396 |has| |#1| (-1044)) (-4397 |has| |#1| (-1044))) +((-4400 -4037 (|has| |#1| (-1044)) (|has| |#1| (-472))) (-4397 |has| |#1| (-1044)) (-4398 |has| |#1| (-1044))) ((|HasCategory| |#1| (QUOTE (-362))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1044)))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-1044)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1044)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1044)))) (-4037 (|HasCategory| |#1| (QUOTE (-472))) (|HasCategory| |#1| (QUOTE (-721)))) (|HasCategory| |#1| (QUOTE (-472))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-472))) (|HasCategory| |#1| (QUOTE (-721))) (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-1092)))) (-4037 (|HasCategory| |#1| (QUOTE (-472))) (|HasCategory| |#1| (QUOTE (-721))) (|HasCategory| |#1| (QUOTE (-1104)))) (|HasCategory| |#1| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-301))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-472)))) (-4037 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-721)))) (-4037 (|HasCategory| |#1| (QUOTE (-472))) (|HasCategory| |#1| (QUOTE (-1044)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-721))) (|HasCategory| |#1| (QUOTE (-171)))) (-294 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4402 . T) (-4403 . T)) -((-12 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2320) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2694) (|devaluate| |#2|)))))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1092))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857))))) +((-4403 . T) (-4404 . T)) +((-12 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2319) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2693) (|devaluate| |#2|)))))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1092))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857))))) (-295) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-296 -3197 S) +(-296 -3196 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-297 E -3197) +(-297 E -3196) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}."))) NIL NIL @@ -1154,7 +1154,7 @@ NIL NIL (-306) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-307 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) @@ -1164,7 +1164,7 @@ NIL ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-309 -3197) +(-309 -3196) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL @@ -1178,7 +1178,7 @@ NIL NIL (-312 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}."))) -((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) ((|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-904))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-144))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-1017))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-815))) (-4037 (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-815))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-845)))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-1143))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-232))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -513) (QUOTE (-1168)) (LIST (QUOTE -1242) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -308) (LIST (QUOTE -1242) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -285) (LIST (QUOTE -1242) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1242) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-306))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-544))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-845))) (-12 (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-904))) (|HasCategory| $ (QUOTE (-144)))) (-4037 (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-144))) (-12 (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-904))) (|HasCategory| $ (QUOTE (-144)))))) (-313 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) @@ -1190,9 +1190,9 @@ NIL NIL (-315 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4399 -4037 (-2246 (|has| |#1| (-1044)) (|has| |#1| (-635 (-562)))) (-12 (|has| |#1| (-554)) (-4037 (-2246 (|has| |#1| (-1044)) (|has| |#1| (-635 (-562)))) (|has| |#1| (-1044)) (|has| |#1| (-472)))) (|has| |#1| (-1044)) (|has| |#1| (-472))) (-4397 |has| |#1| (-171)) (-4396 |has| |#1| (-171)) ((-4404 "*") |has| |#1| (-554)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-554)) (-4394 |has| |#1| (-554))) +((-4400 -4037 (-2245 (|has| |#1| (-1044)) (|has| |#1| (-635 (-562)))) (-12 (|has| |#1| (-554)) (-4037 (-2245 (|has| |#1| (-1044)) (|has| |#1| (-635 (-562)))) (|has| |#1| (-1044)) (|has| |#1| (-472)))) (|has| |#1| (-1044)) (|has| |#1| (-472))) (-4398 |has| |#1| (-171)) (-4397 |has| |#1| (-171)) ((-4405 "*") |has| |#1| (-554)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-554)) (-4395 |has| |#1| (-554))) ((-4037 (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| |#1| (QUOTE (-554))) (-4037 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-1044)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (QUOTE (-472))) (|HasCategory| |#1| (QUOTE (-1104)))) (|HasCategory| |#1| (QUOTE (-472))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562))))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-1044)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-1044)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-1044)))) (-12 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (|HasCategory| |#1| (QUOTE (-472))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-1104)))) (-4037 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))))) (-4037 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-1104)))) (-4037 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))))) (-4037 (|HasCategory| |#1| (QUOTE (-472))) (|HasCategory| |#1| (QUOTE (-1044)))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| $ (QUOTE (-1044))) (|HasCategory| $ (LIST (QUOTE -1033) (QUOTE (-562))))) -(-316 R -3197) +(-316 R -3196) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}."))) NIL NIL @@ -1202,8 +1202,8 @@ NIL NIL (-318 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-362)) (-4394 |has| |#1| (-362)) (-4396 . T) (-4397 . T) (-4399 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-562)) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-362))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasSignature| |#1| (LIST (QUOTE -4054) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -2667) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1402) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|))))))) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-362)) (-4395 |has| |#1| (-362)) (-4397 . T) (-4398 . T) (-4400 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-562)) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-362))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasSignature| |#1| (LIST (QUOTE -4053) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -3081) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1401) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|))))))) (-319 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL @@ -1214,7 +1214,7 @@ NIL NIL (-321 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4397 . T) (-4396 . T)) +((-4398 . T) (-4397 . T)) ((|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-787)))) (-322 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) @@ -1230,19 +1230,19 @@ NIL ((|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171)))) (-325 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4396 . T) (-4397 . T) (-4399 . T)) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-326 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) ((-4037 (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) -(-327 S -3197) +(-327 S -3196) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL ((|HasCategory| |#2| (QUOTE (-367)))) -(-328 -3197) +(-328 -3196) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-329) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10."))) @@ -1260,15 +1260,15 @@ NIL ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}"))) NIL NIL -(-333 S -3197 UP UPUP R) +(-333 S -3196 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-334 -3197 UP UPUP R) +(-334 -3196 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-335 -3197 UP UPUP R) +(-335 -3196 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL @@ -1282,31 +1282,31 @@ NIL NIL (-338 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4396 . T) (-4397 . T) (-4399 . T)) +((-4397 . T) (-4398 . T) (-4400 . T)) ((|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-378)))) (|HasCategory| $ (QUOTE (-1044))) (|HasCategory| $ (LIST (QUOTE -1033) (QUOTE (-562))))) (-339 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-340 S -3197 UP UPUP) +(-340 S -3196 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL ((|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-362)))) -(-341 -3197 UP UPUP) +(-341 -3196 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4395 |has| (-406 |#2|) (-362)) (-4400 |has| (-406 |#2|) (-362)) (-4394 |has| (-406 |#2|) (-362)) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4396 |has| (-406 |#2|) (-362)) (-4401 |has| (-406 |#2|) (-362)) (-4395 |has| (-406 |#2|) (-362)) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-342 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) ((-4037 (|HasCategory| (-905 |#1|) (QUOTE (-144))) (|HasCategory| (-905 |#1|) (QUOTE (-367)))) (|HasCategory| (-905 |#1|) (QUOTE (-146))) (|HasCategory| (-905 |#1|) (QUOTE (-367))) (|HasCategory| (-905 |#1|) (QUOTE (-144)))) (-343 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) ((-4037 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144)))) (-344 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) ((-4037 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144)))) (-345 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) @@ -1322,33 +1322,33 @@ NIL NIL (-348) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL -(-349 R UP -3197) +(-349 R UP -3196) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-350 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) ((-4037 (|HasCategory| (-905 |#1|) (QUOTE (-144))) (|HasCategory| (-905 |#1|) (QUOTE (-367)))) (|HasCategory| (-905 |#1|) (QUOTE (-146))) (|HasCategory| (-905 |#1|) (QUOTE (-367))) (|HasCategory| (-905 |#1|) (QUOTE (-144)))) (-351 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) ((-4037 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144)))) (-352 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) ((-4037 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144)))) (-353 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) ((-4037 (|HasCategory| (-905 |#1|) (QUOTE (-144))) (|HasCategory| (-905 |#1|) (QUOTE (-367)))) (|HasCategory| (-905 |#1|) (QUOTE (-146))) (|HasCategory| (-905 |#1|) (QUOTE (-367))) (|HasCategory| (-905 |#1|) (QUOTE (-144)))) (-354 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) ((-4037 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144)))) -(-355 -3197 GF) +(-355 -3196 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL @@ -1356,13 +1356,13 @@ NIL ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-357 -3197 FP FPP) +(-357 -3196 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL (-358 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) ((-4037 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144)))) (-359 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) @@ -1370,7 +1370,7 @@ NIL NIL (-360 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4399 . T)) +((-4400 . T)) NIL (-361 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) @@ -1378,7 +1378,7 @@ NIL NIL (-362) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-363 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) @@ -1394,7 +1394,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-554)))) (-366 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4399 |has| |#1| (-554)) (-4397 . T) (-4396 . T)) +((-4400 |has| |#1| (-554)) (-4398 . T) (-4397 . T)) NIL (-367) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) @@ -1406,7 +1406,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-362)))) (-369 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4396 . T) (-4397 . T) (-4399 . T)) +((-4397 . T) (-4398 . T) (-4400 . T)) NIL (-370 S A R B) ((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) @@ -1415,14 +1415,14 @@ NIL (-371 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4403)) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1092)))) +((|HasAttribute| |#1| (QUOTE -4404)) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1092)))) (-372 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4402 . T)) +((-4403 . T)) NIL (-373 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4397 . T) (-4396 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4398 . T) (-4397 . T)) NIL (-374 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) @@ -1434,7 +1434,7 @@ NIL ((|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-376 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) -((-4399 . T)) +((-4400 . T)) NIL (-377 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) @@ -1442,7 +1442,7 @@ NIL NIL (-378) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4385 . T) (-4393 . T) (-1406 . T) (-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4386 . T) (-4394 . T) (-1406 . T) (-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-379 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) @@ -1450,11 +1450,11 @@ NIL NIL (-380 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4397 . T) (-4396 . T)) +((-4398 . T) (-4397 . T)) ((|HasCategory| |#1| (QUOTE (-171)))) (-381 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4397 . T) (-4396 . T)) +((-4398 . T) (-4397 . T)) NIL (-382) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) @@ -1466,7 +1466,7 @@ NIL NIL (-384 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4397 . T) (-4396 . T)) +((-4398 . T) (-4397 . T)) ((|HasCategory| |#1| (QUOTE (-171)))) (-385 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) @@ -1474,7 +1474,7 @@ NIL ((|HasCategory| |#1| (QUOTE (-845)))) (-386) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-387) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) @@ -1486,13 +1486,13 @@ NIL NIL (-389 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4397 . T) (-4396 . T)) +((-4398 . T) (-4397 . T)) NIL (-390) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-391 -3197 UP UPUP R) +(-391 -3196 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL @@ -1516,11 +1516,11 @@ NIL ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}"))) NIL NIL -(-397 -3254 |returnType| -3433 |symbols|) +(-397 -3253 |returnType| -3433 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-398 -3197 UP) +(-398 -3196 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL @@ -1534,15 +1534,15 @@ NIL NIL (-401) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-402 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4385)) (|HasAttribute| |#1| (QUOTE -4393))) +((|HasAttribute| |#1| (QUOTE -4386)) (|HasAttribute| |#1| (QUOTE -4394))) (-403) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-1406 . T) (-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-1406 . T) (-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-404 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) @@ -1554,15 +1554,15 @@ NIL NIL (-406 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4389 -12 (|has| |#1| (-6 -4400)) (|has| |#1| (-451)) (|has| |#1| (-6 -4389))) (-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) -((|HasCategory| |#1| (QUOTE (-904))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-815))) (-4037 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-845)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-823))))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-823))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-544))) (-12 (|HasAttribute| |#1| (QUOTE -4400)) (|HasAttribute| |#1| (QUOTE -4389)) (|HasCategory| |#1| (QUOTE (-451)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) +((-4390 -12 (|has| |#1| (-6 -4401)) (|has| |#1| (-451)) (|has| |#1| (-6 -4390))) (-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((|HasCategory| |#1| (QUOTE (-904))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-815))) (-4037 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-845)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-823))))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-823))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-544))) (-12 (|HasAttribute| |#1| (QUOTE -4401)) (|HasAttribute| |#1| (QUOTE -4390)) (|HasCategory| |#1| (QUOTE (-451)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) (-407 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL (-408 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4396 . T) (-4397 . T) (-4399 . T)) +((-4397 . T) (-4398 . T) (-4400 . T)) NIL (-409 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) @@ -1576,11 +1576,11 @@ NIL ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}"))) NIL NIL -(-412 R -3197 UP A) +(-412 R -3196 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}."))) -((-4399 . T)) +((-4400 . T)) NIL -(-413 R -3197 UP A |ibasis|) +(-413 R -3196 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}."))) NIL ((|HasCategory| |#4| (LIST (QUOTE -1033) (|devaluate| |#2|)))) @@ -1594,11 +1594,11 @@ NIL ((|HasCategory| |#2| (QUOTE (-362)))) (-416 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4399 |has| |#1| (-554)) (-4397 . T) (-4396 . T)) +((-4400 |has| |#1| (-554)) (-4398 . T) (-4397 . T)) NIL (-417 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) ((|HasCategory| |#1| (LIST (QUOTE -513) (QUOTE (-1168)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -308) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -285) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-1211))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-1211)))) (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-451)))) (-418 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}."))) @@ -1626,17 +1626,17 @@ NIL ((|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-367)))) (-424 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4402 . T) (-4392 . T) (-4403 . T)) +((-4403 . T) (-4393 . T) (-4404 . T)) NIL -(-425 R -3197) +(-425 R -3196) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL (-426 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4389 -12 (|has| |#1| (-6 -4389)) (|has| |#2| (-6 -4389))) (-4396 . T) (-4397 . T) (-4399 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4389)) (|HasAttribute| |#2| (QUOTE -4389)))) -(-427 R -3197) +((-4390 -12 (|has| |#1| (-6 -4390)) (|has| |#2| (-6 -4390))) (-4397 . T) (-4398 . T) (-4400 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4390)) (|HasAttribute| |#2| (QUOTE -4390)))) +(-427 R -3196) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL @@ -1646,17 +1646,17 @@ NIL ((|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-472))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (-429 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4399 -4037 (|has| |#1| (-1044)) (|has| |#1| (-472))) (-4397 |has| |#1| (-171)) (-4396 |has| |#1| (-171)) ((-4404 "*") |has| |#1| (-554)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-554)) (-4394 |has| |#1| (-554))) +((-4400 -4037 (|has| |#1| (-1044)) (|has| |#1| (-472))) (-4398 |has| |#1| (-171)) (-4397 |has| |#1| (-171)) ((-4405 "*") |has| |#1| (-554)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-554)) (-4395 |has| |#1| (-554))) NIL -(-430 R -3197) +(-430 R -3196) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-431 R -3197) +(-431 R -3196) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-432 R -3197) +(-432 R -3196) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL @@ -1664,7 +1664,7 @@ NIL ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-434 R -3197 UP) +(-434 R -3196 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL ((|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-48))))) @@ -1696,7 +1696,7 @@ NIL ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-442 R UP -3197) +(-442 R UP -3196) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL @@ -1734,16 +1734,16 @@ NIL NIL (-451) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-452 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4399 |has| (-406 (-947 |#1|)) (-554)) (-4397 . T) (-4396 . T)) +((-4400 |has| (-406 (-947 |#1|)) (-554)) (-4398 . T) (-4397 . T)) ((|HasCategory| (-406 (-947 |#1|)) (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| (-406 (-947 |#1|)) (QUOTE (-554)))) (-453 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4404 "*") |has| |#2| (-171)) (-4395 |has| |#2| (-554)) (-4400 |has| |#2| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) -((|HasCategory| |#2| (QUOTE (-904))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-554)))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4400)) (|HasCategory| |#2| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-144))))) +(((-4405 "*") |has| |#2| (-171)) (-4396 |has| |#2| (-554)) (-4401 |has| |#2| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) +((|HasCategory| |#2| (QUOTE (-904))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-554)))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4401)) (|HasCategory| |#2| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-144))))) (-454 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL @@ -1770,7 +1770,7 @@ NIL NIL (-460 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4397 . T) (-4396 . T)) +((-4398 . T) (-4397 . T)) NIL (-461 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) @@ -1778,7 +1778,7 @@ NIL NIL (-462 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) ((-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-857))))) (-463 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) @@ -1808,7 +1808,7 @@ NIL ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-470 |lv| -3197 R) +(-470 |lv| -3196 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL @@ -1818,23 +1818,23 @@ NIL NIL (-472) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4399 . T)) +((-4400 . T)) NIL (-473 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-362)) (-4394 |has| |#1| (-362)) (-4396 . T) (-4397 . T) (-4399 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-562)) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-362))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasSignature| |#1| (LIST (QUOTE -4054) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -2667) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1402) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|))))))) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-362)) (-4395 |has| |#1| (-362)) (-4397 . T) (-4398 . T) (-4400 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-562)) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-362))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasSignature| |#1| (LIST (QUOTE -4053) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -3081) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1401) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|))))))) (-474 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4403 . T)) -((-12 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2320) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2694) (|devaluate| |#2|)))))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-845))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092)))) +((-4404 . T)) +((-12 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2319) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2693) (|devaluate| |#2|)))))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-845))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092)))) (-475 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) ((-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-857))))) (-476) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}."))) -((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-477) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) @@ -1842,29 +1842,29 @@ NIL NIL (-478 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4402 . T) (-4403 . T)) -((-12 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2320) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2694) (|devaluate| |#2|)))))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1092))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857))))) +((-4403 . T) (-4404 . T)) +((-12 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2319) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2693) (|devaluate| |#2|)))))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1092))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857))))) (-479) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL (-480 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4404 "*") |has| |#2| (-171)) (-4395 |has| |#2| (-554)) (-4400 |has| |#2| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) -((|HasCategory| |#2| (QUOTE (-904))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-554)))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4400)) (|HasCategory| |#2| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-144))))) -(-481 -2241 S) +(((-4405 "*") |has| |#2| (-171)) (-4396 |has| |#2| (-554)) (-4401 |has| |#2| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) +((|HasCategory| |#2| (QUOTE (-904))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-554)))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4401)) (|HasCategory| |#2| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-144))))) +(-481 -2240 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4396 |has| |#2| (-1044)) (-4397 |has| |#2| (-1044)) (-4399 |has| |#2| (-6 -4399)) ((-4404 "*") |has| |#2| (-171)) (-4402 . T)) -((-4037 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (QUOTE (-362))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-788))) (-4037 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-171))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1044)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-171)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-232)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-721)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-788)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-843)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1044))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| (-562) (QUOTE (-845))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-4037 (|HasCategory| |#2| (QUOTE (-1044))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092)))) (|HasAttribute| |#2| (QUOTE -4399)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))))) +((-4397 |has| |#2| (-1044)) (-4398 |has| |#2| (-1044)) (-4400 |has| |#2| (-6 -4400)) ((-4405 "*") |has| |#2| (-171)) (-4403 . T)) +((-4037 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (QUOTE (-362))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-788))) (-4037 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-171))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1044)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-171)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-232)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-721)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-788)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-843)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1044))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| (-562) (QUOTE (-845))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-4037 (|HasCategory| |#2| (QUOTE (-1044))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092)))) (|HasAttribute| |#2| (QUOTE -4400)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))))) (-482) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|Identifier|))) "\\spad{headAst(f,{}[x1,{}..,{}xn])} constructs a function definition header."))) NIL NIL (-483 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4402 . T) (-4403 . T)) +((-4403 . T) (-4404 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) -(-484 -3197 UP UPUP R) +(-484 -3196 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL @@ -1874,12 +1874,12 @@ NIL NIL (-486) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) -((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) ((|HasCategory| (-562) (QUOTE (-904))) (|HasCategory| (-562) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| (-562) (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-146))) (|HasCategory| (-562) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-562) (QUOTE (-1017))) (|HasCategory| (-562) (QUOTE (-815))) (-4037 (|HasCategory| (-562) (QUOTE (-815))) (|HasCategory| (-562) (QUOTE (-845)))) (|HasCategory| (-562) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| (-562) (QUOTE (-1143))) (|HasCategory| (-562) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| (-562) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| (-562) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| (-562) (QUOTE (-232))) (|HasCategory| (-562) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-562) (LIST (QUOTE -513) (QUOTE (-1168)) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -308) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -285) (QUOTE (-562)) (QUOTE (-562)))) (|HasCategory| (-562) (QUOTE (-306))) (|HasCategory| (-562) (QUOTE (-544))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| (-562) (LIST (QUOTE -635) (QUOTE (-562)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-904)))) (|HasCategory| (-562) (QUOTE (-144))))) (-487 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4402)) (|HasAttribute| |#1| (QUOTE -4403)) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) +((|HasAttribute| |#1| (QUOTE -4403)) (|HasAttribute| |#1| (QUOTE -4404)) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (-488 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL @@ -1900,33 +1900,33 @@ NIL ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-493 -3197 UP |AlExt| |AlPol|) +(-493 -3196 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL (-494) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) ((|HasCategory| $ (QUOTE (-1044))) (|HasCategory| $ (LIST (QUOTE -1033) (QUOTE (-562))))) (-495 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) ((-4037 (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-496 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4402 . T) (-4403 . T)) +((-4403 . T) (-4404 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (-497 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented"))) NIL NIL -(-498 R UP -3197) +(-498 R UP -3196) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-499 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) ((-12 (|HasCategory| (-112) (QUOTE (-1092))) (|HasCategory| (-112) (LIST (QUOTE -308) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-112) (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| (-112) (QUOTE (-1092))) (|HasCategory| (-112) (LIST (QUOTE -609) (QUOTE (-857))))) (-500 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) @@ -1940,7 +1940,7 @@ NIL ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-503 -3197 |Expon| |VarSet| |DPoly|) +(-503 -3196 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-1168))))) @@ -1990,7 +1990,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-787)))) (-515 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) ((-4037 (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-516) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) @@ -1998,28 +1998,28 @@ NIL NIL (-517 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) ((-4037 (|HasCategory| (-579 |#1|) (QUOTE (-144))) (|HasCategory| (-579 |#1|) (QUOTE (-367)))) (|HasCategory| (-579 |#1|) (QUOTE (-146))) (|HasCategory| (-579 |#1|) (QUOTE (-367))) (|HasCategory| (-579 |#1|) (QUOTE (-144)))) (-518 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4402 . T) (-4403 . T)) +((-4403 . T) (-4404 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (-519 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) ((-4037 (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-520 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4403))) +((|HasAttribute| |#3| (QUOTE -4404))) (-521 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4403))) +((|HasAttribute| |#7| (QUOTE -4404))) (-522 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4402 . T) (-4403 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-554))) (|HasAttribute| |#1| (QUOTE (-4404 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) +((-4403 . T) (-4404 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-554))) (|HasAttribute| |#1| (QUOTE (-4405 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (-523) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL @@ -2052,7 +2052,7 @@ NIL ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL NIL -(-531 K -3197 |Par|) +(-531 K -3196 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL @@ -2076,7 +2076,7 @@ NIL ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-537 K -3197 |Par|) +(-537 K -3196 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL @@ -2106,7 +2106,7 @@ NIL NIL (-544) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4400 . T) (-4401 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4401 . T) (-4402 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-545) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits."))) @@ -2122,13 +2122,13 @@ NIL NIL (-548 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4402 . T) (-4403 . T)) -((-12 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2320) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2694) (|devaluate| |#2|)))))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1092))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857))))) -(-549 R -3197) +((-4403 . T) (-4404 . T)) +((-12 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2319) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2693) (|devaluate| |#2|)))))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1092))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857))))) +(-549 R -3196) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-550 R0 -3197 UP UPUP R) +(-550 R0 -3196 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL @@ -2138,7 +2138,7 @@ NIL NIL (-552 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-1406 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-1406 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-553 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) @@ -2146,9 +2146,9 @@ NIL NIL (-554) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL -(-555 R -3197) +(-555 R -3196) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL @@ -2160,7 +2160,7 @@ NIL ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-558 R -3197 L) +(-558 R -3196 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -650) (|devaluate| |#2|)))) @@ -2168,31 +2168,31 @@ NIL ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-560 -3197 UP UPUP R) +(-560 -3196 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-561 -3197 UP) +(-561 -3196 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL (-562) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}."))) -((-4384 . T) (-4390 . T) (-4394 . T) (-4389 . T) (-4400 . T) (-4401 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4385 . T) (-4391 . T) (-4395 . T) (-4390 . T) (-4401 . T) (-4402 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-563) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-564 R -3197 L) +(-564 R -3196 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -650) (|devaluate| |#2|)))) -(-565 R -3197) +(-565 R -3196) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL ((-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-1131)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-625))))) -(-566 -3197 UP) +(-566 -3196 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL @@ -2200,27 +2200,27 @@ NIL ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-568 -3197) +(-568 -3196) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL (-569 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-1406 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-1406 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-570) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-571 R -3197) +(-571 R -3196) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL ((-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-283))) (|HasCategory| |#2| (QUOTE (-625))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-1168))))) (-12 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-283)))) (|HasCategory| |#1| (QUOTE (-554)))) -(-572 -3197 UP) +(-572 -3196 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-573 R -3197) +(-573 R -3196) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL @@ -2242,27 +2242,27 @@ NIL NIL (-578 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-579 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) ((|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-144))) (|HasCategory| $ (QUOTE (-367)))) (-580) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-581 R -3197) +(-581 R -3196) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-582 E -3197) +(-582 E -3196) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented"))) NIL NIL -(-583 -3197) +(-583 -3196) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4397 . T) (-4396 . T)) +((-4398 . T) (-4397 . T)) ((|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-1168))))) (-584 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) @@ -2290,7 +2290,7 @@ NIL NIL (-590 |mn|) ((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings"))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) ((-4037 (-12 (|HasCategory| (-143) (QUOTE (-845))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (-12 (|HasCategory| (-143) (QUOTE (-1092))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (-4037 (|HasCategory| (-143) (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| (-143) (QUOTE (-1092))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (|HasCategory| (-143) (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| (-143) (QUOTE (-845))) (|HasCategory| (-143) (QUOTE (-1092)))) (|HasCategory| (-143) (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| (-143) (QUOTE (-1092))) (|HasCategory| (-143) (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| (-143) (QUOTE (-1092))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (-591 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) @@ -2298,11 +2298,11 @@ NIL NIL (-592 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4396 . T) (-4397 . T) (-4399 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-562)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-562)) (|devaluate| |#1|)))) (|HasCategory| (-562) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -4054) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-562)))))) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4397 . T) (-4398 . T) (-4400 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-562)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-562)) (|devaluate| |#1|)))) (|HasCategory| (-562) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -4053) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-562)))))) (-593 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -((-4397 |has| |#1| (-554)) (-4396 |has| |#1| (-554)) ((-4404 "*") |has| |#1| (-554)) (-4395 |has| |#1| (-554)) (-4399 . T)) +((-4398 |has| |#1| (-554)) (-4397 |has| |#1| (-554)) ((-4405 "*") |has| |#1| (-554)) (-4396 |has| |#1| (-554)) (-4400 . T)) ((|HasCategory| |#1| (QUOTE (-554)))) (-594 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}."))) @@ -2312,7 +2312,7 @@ NIL ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented"))) NIL NIL -(-596 R -3197 FG) +(-596 R -3196 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL @@ -2322,12 +2322,12 @@ NIL NIL (-598 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) ((-4037 (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-721))) (|HasCategory| |#1| (QUOTE (-1044))) (-12 (|HasCategory| |#1| (QUOTE (-997))) (|HasCategory| |#1| (QUOTE (-1044)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-599 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4403)) (|HasCategory| |#2| (QUOTE (-845))) (|HasAttribute| |#1| (QUOTE -4402)) (|HasCategory| |#3| (QUOTE (-1092)))) +((|HasAttribute| |#1| (QUOTE -4404)) (|HasCategory| |#2| (QUOTE (-845))) (|HasAttribute| |#1| (QUOTE -4403)) (|HasCategory| |#3| (QUOTE (-1092)))) (-600 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL @@ -2342,19 +2342,19 @@ NIL NIL (-603 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4399 -4037 (-2246 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))) (-4397 . T) (-4396 . T)) +((-4400 -4037 (-2245 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))) (-4398 . T) (-4397 . T)) ((-4037 (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|)))) (-604 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4402 . T) (-4403 . T)) -((-12 (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2320) (QUOTE (-1150))) (LIST (QUOTE |:|) (QUOTE -2694) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| (-1150) (QUOTE (-845))) (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (LIST (QUOTE -609) (QUOTE (-857))))) +((-4403 . T) (-4404 . T)) +((-12 (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2319) (QUOTE (-1150))) (LIST (QUOTE |:|) (QUOTE -2693) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| (-1150) (QUOTE (-845))) (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (LIST (QUOTE -609) (QUOTE (-857))))) (-605 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL (-606 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4403 . T)) +((-4404 . T)) NIL (-607 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) @@ -2372,7 +2372,7 @@ NIL ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-611 -3197 UP) +(-611 -3196 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL @@ -2394,19 +2394,19 @@ NIL NIL (-616 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4399 . T)) +((-4400 . T)) NIL (-617 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4396 . T) (-4397 . T) (-4399 . T)) +((-4397 . T) (-4398 . T) (-4400 . T)) ((|HasCategory| |#1| (QUOTE (-843)))) -(-618 R -3197) +(-618 R -3196) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform."))) NIL NIL (-619 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4397 . T) (-4396 . T) ((-4404 "*") . T) (-4395 . T) (-4399 . T)) +((-4398 . T) (-4397 . T) ((-4405 "*") . T) (-4396 . T) (-4400 . T)) ((|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562))))) (-620 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) @@ -2422,7 +2422,7 @@ NIL NIL (-623 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4399 . T)) +((-4400 . T)) NIL (-624 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) @@ -2432,29 +2432,29 @@ NIL ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-626 R -3197) +(-626 R -3196) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-627 |lv| -3197) +(-627 |lv| -3196) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL (-628) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4403 . T)) -((-12 (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2320) (QUOTE (-1150))) (LIST (QUOTE |:|) (QUOTE -2694) (QUOTE (-52))))))) (-4037 (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (QUOTE (-1092))) (|HasCategory| (-52) (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-52) (QUOTE (-1092))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| (-52) (QUOTE (-1092))) (|HasCategory| (-52) (LIST (QUOTE -308) (QUOTE (-52))))) (|HasCategory| (-1150) (QUOTE (-845))) (-4037 (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-52) (QUOTE (-1092))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (QUOTE (-1092)))) +((-4404 . T)) +((-12 (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2319) (QUOTE (-1150))) (LIST (QUOTE |:|) (QUOTE -2693) (QUOTE (-52))))))) (-4037 (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (QUOTE (-1092))) (|HasCategory| (-52) (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-52) (QUOTE (-1092))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| (-52) (QUOTE (-1092))) (|HasCategory| (-52) (LIST (QUOTE -308) (QUOTE (-52))))) (|HasCategory| (-1150) (QUOTE (-845))) (-4037 (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-52) (QUOTE (-1092))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (QUOTE (-1092)))) (-629 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL ((|HasCategory| |#2| (QUOTE (-362)))) (-630 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4397 . T) (-4396 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4398 . T) (-4397 . T)) NIL (-631 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4399 -4037 (-2246 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))) (-4397 . T) (-4396 . T)) +((-4400 -4037 (-2245 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))) (-4398 . T) (-4397 . T)) ((-4037 (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|)))) (-632 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}."))) @@ -2467,10 +2467,10 @@ NIL (-634 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-2236 (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-362)))) +((-2234 (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-362)))) (-635 R) ((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}."))) -((-4399 . T)) +((-4400 . T)) NIL (-636 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) @@ -2486,7 +2486,7 @@ NIL NIL (-639 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) ((-4037 (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-640 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) @@ -2494,7 +2494,7 @@ NIL NIL (-641 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4402 . T) (-4403 . T)) +((-4403 . T) (-4404 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (-642 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) @@ -2507,22 +2507,22 @@ NIL (-644 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4403))) +((|HasAttribute| |#1| (QUOTE -4404))) (-645 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-646 R -3197 L) +(-646 R -3196 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL (-647 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4396 . T) (-4397 . T) (-4399 . T)) +((-4397 . T) (-4398 . T) (-4400 . T)) ((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-362)))) (-648 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4396 . T) (-4397 . T) (-4399 . T)) +((-4397 . T) (-4398 . T) (-4400 . T)) ((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-362)))) (-649 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) @@ -2530,15 +2530,15 @@ NIL ((|HasCategory| |#2| (QUOTE (-362)))) (-650 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4396 . T) (-4397 . T) (-4399 . T)) +((-4397 . T) (-4398 . T) (-4400 . T)) NIL -(-651 -3197 UP) +(-651 -3196 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-652 A -4330) +(-652 A -3679) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4396 . T) (-4397 . T) (-4399 . T)) +((-4397 . T) (-4398 . T) (-4400 . T)) ((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-362)))) (-653 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) @@ -2554,7 +2554,7 @@ NIL NIL (-656 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4397 . T) (-4396 . T)) +((-4398 . T) (-4397 . T)) ((|HasCategory| |#1| (QUOTE (-786)))) (-657 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists."))) @@ -2562,7 +2562,7 @@ NIL NIL (-658 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4397 . T) (-4396 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4398 . T) (-4397 . T)) ((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-171)))) (-659 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) @@ -2570,13 +2570,13 @@ NIL NIL (-660 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) NIL -(-661 -3197) +(-661 -3196) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-662 -3197 |Row| |Col| M) +(-662 -3196 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL @@ -2586,8 +2586,8 @@ NIL NIL (-664 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4399 . T) (-4402 . T) (-4396 . T) (-4397 . T)) -((|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE (-4404 "*"))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-554))) (-4037 (|HasAttribute| |#2| (QUOTE (-4404 "*"))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-232)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-171)))) +((-4400 . T) (-4403 . T) (-4397 . T) (-4398 . T)) +((|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE (-4405 "*"))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-554))) (-4037 (|HasAttribute| |#2| (QUOTE (-4405 "*"))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-232)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-171)))) (-665) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL @@ -2651,10 +2651,10 @@ NIL (-680 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4404 "*"))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-554)))) +((|HasAttribute| |#2| (QUOTE (-4405 "*"))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-554)))) (-681 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4402 . T) (-4403 . T)) +((-4403 . T) (-4404 . T)) NIL (-682 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) @@ -2662,8 +2662,8 @@ NIL ((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-554)))) (-683 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4402 . T) (-4403 . T)) -((-4037 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-554))) (|HasAttribute| |#1| (QUOTE (-4404 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) +((-4403 . T) (-4404 . T)) +((-4037 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-554))) (|HasAttribute| |#1| (QUOTE (-4405 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-684 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL @@ -2672,7 +2672,7 @@ NIL ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%."))) NIL NIL -(-686 S -3197 FLAF FLAS) +(-686 S -3196 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL @@ -2682,11 +2682,11 @@ NIL NIL (-688) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4395 . T) (-4400 |has| (-693) (-362)) (-4394 |has| (-693) (-362)) (-4401 |has| (-693) (-6 -4401)) (-4398 |has| (-693) (-6 -4398)) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) -((|HasCategory| (-693) (QUOTE (-146))) (|HasCategory| (-693) (QUOTE (-144))) (|HasCategory| (-693) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-693) (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| (-693) (QUOTE (-367))) (|HasCategory| (-693) (QUOTE (-362))) (-4037 (|HasCategory| (-693) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-693) (QUOTE (-362)))) (|HasCategory| (-693) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-693) (QUOTE (-232))) (-4037 (|HasCategory| (-693) (QUOTE (-362))) (|HasCategory| (-693) (QUOTE (-348)))) (|HasCategory| (-693) (QUOTE (-348))) (|HasCategory| (-693) (LIST (QUOTE -285) (QUOTE (-693)) (QUOTE (-693)))) (|HasCategory| (-693) (LIST (QUOTE -308) (QUOTE (-693)))) (|HasCategory| (-693) (LIST (QUOTE -513) (QUOTE (-1168)) (QUOTE (-693)))) (|HasCategory| (-693) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| (-693) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| (-693) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| (-693) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (-4037 (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-362))) (|HasCategory| (-693) (QUOTE (-348)))) (|HasCategory| (-693) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-693) (QUOTE (-1017))) (|HasCategory| (-693) (QUOTE (-1192))) (-12 (|HasCategory| (-693) (QUOTE (-997))) (|HasCategory| (-693) (QUOTE (-1192)))) (-4037 (-12 (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-904)))) (|HasCategory| (-693) (QUOTE (-362))) (-12 (|HasCategory| (-693) (QUOTE (-348))) (|HasCategory| (-693) (QUOTE (-904))))) (-4037 (-12 (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-904)))) (-12 (|HasCategory| (-693) (QUOTE (-362))) (|HasCategory| (-693) (QUOTE (-904)))) (-12 (|HasCategory| (-693) (QUOTE (-348))) (|HasCategory| (-693) (QUOTE (-904))))) (|HasCategory| (-693) (QUOTE (-544))) (-12 (|HasCategory| (-693) (QUOTE (-1053))) (|HasCategory| (-693) (QUOTE (-1192)))) (|HasCategory| (-693) (QUOTE (-1053))) (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-904))) (-4037 (-12 (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-904)))) (|HasCategory| (-693) (QUOTE (-362)))) (-4037 (-12 (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-904)))) (|HasCategory| (-693) (QUOTE (-554)))) (-12 (|HasCategory| (-693) (QUOTE (-232))) (|HasCategory| (-693) (QUOTE (-362)))) (-12 (|HasCategory| (-693) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-693) (QUOTE (-362)))) (|HasCategory| (-693) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| (-693) (QUOTE (-845))) (|HasCategory| (-693) (QUOTE (-554))) (|HasAttribute| (-693) (QUOTE -4401)) (|HasAttribute| (-693) (QUOTE -4398)) (-12 (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-904)))) (|HasCategory| (-693) (QUOTE (-144)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-904)))) (|HasCategory| (-693) (QUOTE (-348))))) +((-4396 . T) (-4401 |has| (-693) (-362)) (-4395 |has| (-693) (-362)) (-4402 |has| (-693) (-6 -4402)) (-4399 |has| (-693) (-6 -4399)) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((|HasCategory| (-693) (QUOTE (-146))) (|HasCategory| (-693) (QUOTE (-144))) (|HasCategory| (-693) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-693) (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| (-693) (QUOTE (-367))) (|HasCategory| (-693) (QUOTE (-362))) (-4037 (|HasCategory| (-693) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-693) (QUOTE (-362)))) (|HasCategory| (-693) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-693) (QUOTE (-232))) (-4037 (|HasCategory| (-693) (QUOTE (-362))) (|HasCategory| (-693) (QUOTE (-348)))) (|HasCategory| (-693) (QUOTE (-348))) (|HasCategory| (-693) (LIST (QUOTE -285) (QUOTE (-693)) (QUOTE (-693)))) (|HasCategory| (-693) (LIST (QUOTE -308) (QUOTE (-693)))) (|HasCategory| (-693) (LIST (QUOTE -513) (QUOTE (-1168)) (QUOTE (-693)))) (|HasCategory| (-693) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| (-693) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| (-693) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| (-693) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (-4037 (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-362))) (|HasCategory| (-693) (QUOTE (-348)))) (|HasCategory| (-693) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-693) (QUOTE (-1017))) (|HasCategory| (-693) (QUOTE (-1192))) (-12 (|HasCategory| (-693) (QUOTE (-997))) (|HasCategory| (-693) (QUOTE (-1192)))) (-4037 (-12 (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-904)))) (|HasCategory| (-693) (QUOTE (-362))) (-12 (|HasCategory| (-693) (QUOTE (-348))) (|HasCategory| (-693) (QUOTE (-904))))) (-4037 (-12 (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-904)))) (-12 (|HasCategory| (-693) (QUOTE (-362))) (|HasCategory| (-693) (QUOTE (-904)))) (-12 (|HasCategory| (-693) (QUOTE (-348))) (|HasCategory| (-693) (QUOTE (-904))))) (|HasCategory| (-693) (QUOTE (-544))) (-12 (|HasCategory| (-693) (QUOTE (-1053))) (|HasCategory| (-693) (QUOTE (-1192)))) (|HasCategory| (-693) (QUOTE (-1053))) (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-904))) (-4037 (-12 (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-904)))) (|HasCategory| (-693) (QUOTE (-362)))) (-4037 (-12 (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-904)))) (|HasCategory| (-693) (QUOTE (-554)))) (-12 (|HasCategory| (-693) (QUOTE (-232))) (|HasCategory| (-693) (QUOTE (-362)))) (-12 (|HasCategory| (-693) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-693) (QUOTE (-362)))) (|HasCategory| (-693) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| (-693) (QUOTE (-845))) (|HasCategory| (-693) (QUOTE (-554))) (|HasAttribute| (-693) (QUOTE -4402)) (|HasAttribute| (-693) (QUOTE -4399)) (-12 (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-904)))) (|HasCategory| (-693) (QUOTE (-144)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-904)))) (|HasCategory| (-693) (QUOTE (-348))))) (-689 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4403 . T)) +((-4404 . T)) NIL (-690 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) @@ -2696,13 +2696,13 @@ NIL ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented"))) NIL NIL -(-692 OV E -3197 PG) +(-692 OV E -3196 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL (-693) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-1406 . T) (-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-1406 . T) (-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-694 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) @@ -2710,7 +2710,7 @@ NIL NIL (-695) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4401 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4402 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-696 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) @@ -2732,7 +2732,7 @@ NIL ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-701 S -3114 I) +(-701 S -3113 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL @@ -2742,7 +2742,7 @@ NIL NIL (-703 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4396 . T) (-4397 . T) (-4399 . T)) +((-4397 . T) (-4398 . T) (-4400 . T)) NIL (-704 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) @@ -2752,25 +2752,25 @@ NIL ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-706 R |Mod| -2925 -1610 |exactQuo|) +(-706 R |Mod| -3834 -4103 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-707 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4398 |has| |#1| (-362)) (-4400 |has| |#1| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) -((|HasCategory| |#1| (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4400)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4399 |has| |#1| (-362)) (-4401 |has| |#1| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) +((|HasCategory| |#1| (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4401)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) (-708 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL (-709 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4397 |has| |#1| (-171)) (-4396 |has| |#1| (-171)) (-4399 . T)) +((-4398 |has| |#1| (-171)) (-4397 |has| |#1| (-171)) (-4400 . T)) ((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146)))) -(-710 R |Mod| -2925 -1610 |exactQuo|) +(-710 R |Mod| -3834 -4103 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4399 . T)) +((-4400 . T)) NIL (-711 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) @@ -2778,11 +2778,11 @@ NIL NIL (-712 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4397 . T) (-4396 . T)) +((-4398 . T) (-4397 . T)) NIL -(-713 -3197) +(-713 -3196) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}."))) -((-4399 . T)) +((-4400 . T)) NIL (-714 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) @@ -2806,7 +2806,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367)))) (-719 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4395 |has| |#1| (-362)) (-4400 |has| |#1| (-362)) (-4394 |has| |#1| (-362)) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4396 |has| |#1| (-362)) (-4401 |has| |#1| (-362)) (-4395 |has| |#1| (-362)) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-720 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) @@ -2816,7 +2816,7 @@ NIL ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-722 -3197 UP) +(-722 -3196 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL @@ -2834,8 +2834,8 @@ NIL NIL (-726 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4404 "*") |has| |#2| (-171)) (-4395 |has| |#2| (-554)) (-4400 |has| |#2| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) -((|HasCategory| |#2| (QUOTE (-904))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-554)))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4400)) (|HasCategory| |#2| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-144))))) +(((-4405 "*") |has| |#2| (-171)) (-4396 |has| |#2| (-554)) (-4401 |has| |#2| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) +((|HasCategory| |#2| (QUOTE (-904))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-554)))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4401)) (|HasCategory| |#2| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-144))))) (-727 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL @@ -2850,15 +2850,15 @@ NIL NIL (-730 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4397 |has| |#1| (-171)) (-4396 |has| |#1| (-171)) (-4399 . T)) +((-4398 |has| |#1| (-171)) (-4397 |has| |#1| (-171)) (-4400 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-845)))) (-731 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4392 . T) (-4403 . T)) +((-4393 . T) (-4404 . T)) NIL (-732 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4402 . T) (-4392 . T) (-4403 . T)) +((-4403 . T) (-4393 . T) (-4404 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (-733) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) @@ -2870,7 +2870,7 @@ NIL NIL (-735 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4397 . T) (-4396 . T) (-4399 . T)) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4398 . T) (-4397 . T) (-4400 . T)) NIL (-736 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) @@ -2886,7 +2886,7 @@ NIL NIL (-739 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4397 . T) (-4396 . T)) +((-4398 . T) (-4397 . T)) NIL (-740) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) @@ -2968,11 +2968,11 @@ NIL ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-760 -3197) +(-760 -3196) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-761 P -3197) +(-761 P -3196) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL @@ -2980,7 +2980,7 @@ NIL NIL NIL NIL -(-763 UP -3197) +(-763 UP -3196) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL @@ -2994,9 +2994,9 @@ NIL NIL (-766) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4404 "*") . T)) +(((-4405 "*") . T)) NIL -(-767 R -3197) +(-767 R -3196) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL @@ -3016,7 +3016,7 @@ NIL ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-772 -3197 |ExtF| |SUEx| |ExtP| |n|) +(-772 -3196 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL @@ -3030,23 +3030,23 @@ NIL NIL (-775 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) -((|HasCategory| |#1| (QUOTE (-904))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-1168))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-1168))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-1168)))) (-2236 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-1168)))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-1168)))) (-2236 (|HasCategory| |#1| (QUOTE (-544)))) (-2236 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-1168)))) (-2236 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-562))))) (-2236 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-1168)))) (-2236 (|HasCategory| |#1| (LIST (QUOTE -987) (QUOTE (-562))))))) (|HasAttribute| |#1| (QUOTE -4400)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) +((|HasCategory| |#1| (QUOTE (-904))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-1168))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-1168))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-1168)))) (-2234 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-1168)))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-1168)))) (-2234 (|HasCategory| |#1| (QUOTE (-544)))) (-2234 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-1168)))) (-2234 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-562))))) (-2234 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-1168)))) (-2234 (|HasCategory| |#1| (LIST (QUOTE -987) (QUOTE (-562))))))) (|HasAttribute| |#1| (QUOTE -4401)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) (-776 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL (-777 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4398 |has| |#1| (-362)) (-4400 |has| |#1| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) -((|HasCategory| |#1| (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4400)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4399 |has| |#1| (-362)) (-4401 |has| |#1| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) +((|HasCategory| |#1| (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4401)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) (-778 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented"))) NIL ((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-779 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) NIL (-780 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) @@ -3098,7 +3098,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-367)))) (-792 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4396 . T) (-4397 . T) (-4399 . T)) +((-4397 . T) (-4398 . T) (-4400 . T)) NIL (-793 -4037 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) @@ -3106,17 +3106,17 @@ NIL NIL (-794 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4396 . T) (-4397 . T) (-4399 . T)) +((-4397 . T) (-4398 . T) (-4400 . T)) ((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (-4037 (|HasCategory| (-994 |#1|) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (-4037 (|HasCategory| (-994 |#1|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-994 |#1|) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-994 |#1|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562))))) (-795) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-796 R -3197 L) +(-796 R -3196 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-797 R -3197) +(-797 R -3196) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL @@ -3124,7 +3124,7 @@ NIL ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-799 R -3197) +(-799 R -3196) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL @@ -3132,11 +3132,11 @@ NIL ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-801 -3197 UP UPUP R) +(-801 -3196 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-802 -3197 UP L LQ) +(-802 -3196 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL @@ -3144,41 +3144,41 @@ NIL ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-804 -3197 UP L LQ) +(-804 -3196 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-805 -3197 UP) +(-805 -3196 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-806 -3197 L UP A LO) +(-806 -3196 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-807 -3197 UP) +(-807 -3196 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-808 -3197 LO) +(-808 -3196 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-809 -3197 LODO) +(-809 -3196 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}."))) NIL NIL -(-810 -2241 S |f|) +(-810 -2240 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4396 |has| |#2| (-1044)) (-4397 |has| |#2| (-1044)) (-4399 |has| |#2| (-6 -4399)) ((-4404 "*") |has| |#2| (-171)) (-4402 . T)) -((-4037 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (QUOTE (-362))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-788))) (-4037 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-171))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1044)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-171)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-232)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-721)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-788)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-843)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1044))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| (-562) (QUOTE (-845))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-4037 (|HasCategory| |#2| (QUOTE (-1044))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092)))) (|HasAttribute| |#2| (QUOTE -4399)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))))) +((-4397 |has| |#2| (-1044)) (-4398 |has| |#2| (-1044)) (-4400 |has| |#2| (-6 -4400)) ((-4405 "*") |has| |#2| (-171)) (-4403 . T)) +((-4037 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (QUOTE (-362))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-788))) (-4037 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-171))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1044)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-171)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-232)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-721)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-788)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-843)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1044))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| (-562) (QUOTE (-845))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-4037 (|HasCategory| |#2| (QUOTE (-1044))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092)))) (|HasAttribute| |#2| (QUOTE -4400)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))))) (-811 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) -((|HasCategory| |#1| (QUOTE (-904))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| (-813 (-1168)) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-813 (-1168)) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-813 (-1168)) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-813 (-1168)) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-813 (-1168)) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4400)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) +((|HasCategory| |#1| (QUOTE (-904))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| (-813 (-1168)) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-813 (-1168)) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-813 (-1168)) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-813 (-1168)) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-813 (-1168)) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4401)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) (-812 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) -(((-4404 "*") |has| |#2| (-362)) (-4395 |has| |#2| (-362)) (-4400 |has| |#2| (-362)) (-4394 |has| |#2| (-362)) (-4399 . T) (-4397 . T) (-4396 . T)) +(((-4405 "*") |has| |#2| (-362)) (-4396 |has| |#2| (-362)) (-4401 |has| |#2| (-362)) (-4395 |has| |#2| (-362)) (-4400 . T) (-4398 . T) (-4397 . T)) ((|HasCategory| |#2| (QUOTE (-362)))) (-813 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) @@ -3190,7 +3190,7 @@ NIL NIL (-815) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-816) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) @@ -3218,7 +3218,7 @@ NIL NIL (-822 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4396 . T) (-4397 . T) (-4399 . T)) +((-4397 . T) (-4398 . T) (-4400 . T)) ((|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-232)))) (-823) ((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) @@ -3230,7 +3230,7 @@ NIL NIL (-825 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4402 . T) (-4392 . T) (-4403 . T)) +((-4403 . T) (-4393 . T) (-4404 . T)) NIL (-826) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) @@ -3242,7 +3242,7 @@ NIL NIL (-828 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4399 |has| |#1| (-843))) +((-4400 |has| |#1| (-843))) ((|HasCategory| |#1| (QUOTE (-843))) (-4037 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (-4037 (|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-21)))) (-829 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator `op'.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of `op'."))) @@ -3254,7 +3254,7 @@ NIL NIL (-831 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4397 |has| |#1| (-171)) (-4396 |has| |#1| (-171)) (-4399 . T)) +((-4398 |has| |#1| (-171)) (-4397 |has| |#1| (-171)) (-4400 . T)) ((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146)))) (-832) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) @@ -3282,13 +3282,13 @@ NIL NIL (-838 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4399 |has| |#1| (-843))) +((-4400 |has| |#1| (-843))) ((|HasCategory| |#1| (QUOTE (-843))) (-4037 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (-4037 (|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-21)))) (-839) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-840 -2241 S) +(-840 -2240 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL @@ -3302,7 +3302,7 @@ NIL NIL (-843) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4399 . T)) +((-4400 . T)) NIL (-844 S) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) @@ -3318,7 +3318,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171)))) (-847 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4396 . T) (-4397 . T) (-4399 . T)) +((-4397 . T) (-4398 . T) (-4400 . T)) NIL (-848 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) @@ -3326,11 +3326,11 @@ NIL ((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-849 R |sigma| -3756) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4396 . T) (-4397 . T) (-4399 . T)) +((-4397 . T) (-4398 . T) (-4400 . T)) ((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-362)))) (-850 |x| R |sigma| -3756) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) -((-4396 . T) (-4397 . T) (-4399 . T)) +((-4397 . T) (-4398 . T) (-4400 . T)) ((|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-362)))) (-851 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}."))) @@ -3374,7 +3374,7 @@ NIL NIL (-861 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4397 |has| |#1| (-171)) (-4396 |has| |#1| (-171)) (-4399 . T)) +((-4398 |has| |#1| (-171)) (-4397 |has| |#1| (-171)) (-4400 . T)) ((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362)))) (-862 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) @@ -3386,19 +3386,19 @@ NIL NIL (-864 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-865 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-866 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) ((|HasCategory| (-865 |#1|) (QUOTE (-904))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| (-865 |#1|) (QUOTE (-144))) (|HasCategory| (-865 |#1|) (QUOTE (-146))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-865 |#1|) (QUOTE (-1017))) (|HasCategory| (-865 |#1|) (QUOTE (-815))) (-4037 (|HasCategory| (-865 |#1|) (QUOTE (-815))) (|HasCategory| (-865 |#1|) (QUOTE (-845)))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| (-865 |#1|) (QUOTE (-1143))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| (-865 |#1|) (QUOTE (-232))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -513) (QUOTE (-1168)) (LIST (QUOTE -865) (|devaluate| |#1|)))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -308) (LIST (QUOTE -865) (|devaluate| |#1|)))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -285) (LIST (QUOTE -865) (|devaluate| |#1|)) (LIST (QUOTE -865) (|devaluate| |#1|)))) (|HasCategory| (-865 |#1|) (QUOTE (-306))) (|HasCategory| (-865 |#1|) (QUOTE (-544))) (|HasCategory| (-865 |#1|) (QUOTE (-845))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-865 |#1|) (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-865 |#1|) (QUOTE (-904)))) (|HasCategory| (-865 |#1|) (QUOTE (-144))))) (-867 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) ((|HasCategory| |#2| (QUOTE (-904))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (QUOTE (-815))) (-4037 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-845)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-1143))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-845))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-144))))) (-868 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) @@ -3459,7 +3459,7 @@ NIL (-882 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-2236 (|HasCategory| |#2| (QUOTE (-1044)))) (-2236 (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-1168)))))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (-2236 (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-1168)))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-1168))))) +((-12 (-2234 (|HasCategory| |#2| (QUOTE (-1044)))) (-2234 (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-1168)))))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (-2234 (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-1168)))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-1168))))) (-883 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL @@ -3468,7 +3468,7 @@ NIL ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-885 R -3114) +(-885 R -3113) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL @@ -3492,7 +3492,7 @@ NIL ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-891 UP -3197) +(-891 UP -3196) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL @@ -3510,7 +3510,7 @@ NIL NIL (-895 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) -((-4399 . T)) +((-4400 . T)) NIL (-896 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) @@ -3522,7 +3522,7 @@ NIL NIL (-898 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4399 . T)) +((-4400 . T)) NIL (-899 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) @@ -3530,7 +3530,7 @@ NIL NIL (-900 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4399 . T)) +((-4400 . T)) ((-4037 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-845)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-845)))) (-901 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) @@ -3546,13 +3546,13 @@ NIL ((|HasCategory| |#1| (QUOTE (-144)))) (-904) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-905 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) ((|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-144))) (|HasCategory| $ (QUOTE (-367)))) -(-906 R0 -3197 UP UPUP R) +(-906 R0 -3196 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL @@ -3566,7 +3566,7 @@ NIL NIL (-909 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-910 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) @@ -3580,7 +3580,7 @@ NIL ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}."))) NIL NIL -(-913 -3197) +(-913 -3196) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL @@ -3590,17 +3590,17 @@ NIL NIL (-915) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-916) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4404 "*") . T)) +(((-4405 "*") . T)) NIL -(-917 -3197 P) +(-917 -3196 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented"))) NIL NIL -(-918 |xx| -3197) +(-918 |xx| -3196) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented"))) NIL NIL @@ -3624,7 +3624,7 @@ NIL ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-924 R -3197) +(-924 R -3196) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL @@ -3636,7 +3636,7 @@ NIL ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-927 S R -3197) +(-927 S R -3196) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL @@ -3656,11 +3656,11 @@ NIL ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -881) (|devaluate| |#1|)))) -(-932 R -3197 -3114) +(-932 R -3196 -3113) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-933 -3114) +(-933 -3113) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL @@ -3682,7 +3682,7 @@ NIL NIL (-938 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) ((-4037 (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-721))) (|HasCategory| |#1| (QUOTE (-1044))) (-12 (|HasCategory| |#1| (QUOTE (-997))) (|HasCategory| |#1| (QUOTE (-1044)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-939 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) @@ -3703,12 +3703,12 @@ NIL (-943 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-904))) (|HasAttribute| |#2| (QUOTE -4400)) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#4| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#4| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#4| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-845)))) +((|HasCategory| |#2| (QUOTE (-904))) (|HasAttribute| |#2| (QUOTE -4401)) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#4| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#4| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#4| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-845)))) (-944 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) NIL -(-945 E V R P -3197) +(-945 E V R P -3196) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL @@ -3718,9 +3718,9 @@ NIL NIL (-947 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) -((|HasCategory| |#1| (QUOTE (-904))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| (-1168) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-1168) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-1168) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-1168) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-1168) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4400)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) -(-948 E V R P -3197) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) +((|HasCategory| |#1| (QUOTE (-904))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| (-1168) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-1168) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-1168) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-1168) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-1168) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4401)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) +(-948 E V R P -3196) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL ((|HasCategory| |#3| (QUOTE (-451)))) @@ -3742,13 +3742,13 @@ NIL NIL (-953 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) ((-4037 (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-954) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-955 -3197) +(-955 -3196) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL @@ -3762,11 +3762,11 @@ NIL NIL (-958 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-6 -4400)) (-4396 . T) (-4397 . T) (-4399 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-130)))) (|HasAttribute| |#1| (QUOTE -4400))) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-6 -4401)) (-4397 . T) (-4398 . T) (-4400 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-130)))) (|HasAttribute| |#1| (QUOTE -4401))) (-959 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented"))) -((-4399 -12 (|has| |#2| (-472)) (|has| |#1| (-472)))) +((-4400 -12 (|has| |#2| (-472)) (|has| |#1| (-472)))) ((-4037 (-12 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-788)))) (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-845))))) (-12 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-788)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-788))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-788))))) (-12 (|HasCategory| |#1| (QUOTE (-472))) (|HasCategory| |#2| (QUOTE (-472)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-472))) (|HasCategory| |#2| (QUOTE (-472)))) (-12 (|HasCategory| |#1| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-721))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-367)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-472))) (|HasCategory| |#2| (QUOTE (-472)))) (-12 (|HasCategory| |#1| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-721)))) (-12 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-788))))) (-12 (|HasCategory| |#1| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-721)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-845))))) (-960) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) @@ -3782,7 +3782,7 @@ NIL NIL (-963 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4402 . T) (-4403 . T)) +((-4403 . T) (-4404 . T)) NIL (-964 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) @@ -3802,7 +3802,7 @@ NIL NIL (-968 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4396 . T) (-4397 . T) (-4399 . T)) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-969) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) @@ -3814,7 +3814,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-554)))) (-971 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4402 . T)) +((-4403 . T)) NIL (-972 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) @@ -3830,7 +3830,7 @@ NIL NIL (-975 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) NIL (-976 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented"))) @@ -3848,7 +3848,7 @@ NIL ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-980 K R UP -3197) +(-980 K R UP -3196) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL @@ -3878,7 +3878,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-904))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-1143)))) (-987 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-988 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) @@ -3890,7 +3890,7 @@ NIL NIL (-990 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4402 . T) (-4403 . T)) +((-4403 . T) (-4404 . T)) NIL (-991 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) @@ -3898,7 +3898,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-289)))) (-992 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4395 |has| |#1| (-289)) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4396 |has| |#1| (-289)) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-993 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) @@ -3906,11 +3906,11 @@ NIL NIL (-994 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4395 |has| |#1| (-289)) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4396 |has| |#1| (-289)) (-4397 . T) (-4398 . T) (-4400 . T)) ((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-362))) (-4037 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-544)))) (-995 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4402 . T) (-4403 . T)) +((-4403 . T) (-4404 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (-996 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) @@ -3920,13 +3920,13 @@ NIL ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-998 -3197 UP UPUP |radicnd| |n|) +(-998 -3196 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4395 |has| (-406 |#2|) (-362)) (-4400 |has| (-406 |#2|) (-362)) (-4394 |has| (-406 |#2|) (-362)) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4396 |has| (-406 |#2|) (-362)) (-4401 |has| (-406 |#2|) (-362)) (-4395 |has| (-406 |#2|) (-362)) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) ((|HasCategory| (-406 |#2|) (QUOTE (-144))) (|HasCategory| (-406 |#2|) (QUOTE (-146))) (|HasCategory| (-406 |#2|) (QUOTE (-348))) (-4037 (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-367))) (-4037 (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (-4037 (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-406 |#2|) (QUOTE (-348))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -635) (QUOTE (-562)))) (-4037 (|HasCategory| (-406 |#2|) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362))))) (-999 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) -((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) ((|HasCategory| (-562) (QUOTE (-904))) (|HasCategory| (-562) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| (-562) (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-146))) (|HasCategory| (-562) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-562) (QUOTE (-1017))) (|HasCategory| (-562) (QUOTE (-815))) (-4037 (|HasCategory| (-562) (QUOTE (-815))) (|HasCategory| (-562) (QUOTE (-845)))) (|HasCategory| (-562) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| (-562) (QUOTE (-1143))) (|HasCategory| (-562) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| (-562) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| (-562) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| (-562) (QUOTE (-232))) (|HasCategory| (-562) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-562) (LIST (QUOTE -513) (QUOTE (-1168)) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -308) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -285) (QUOTE (-562)) (QUOTE (-562)))) (|HasCategory| (-562) (QUOTE (-306))) (|HasCategory| (-562) (QUOTE (-544))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| (-562) (LIST (QUOTE -635) (QUOTE (-562)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-904)))) (|HasCategory| (-562) (QUOTE (-144))))) (-1000) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) @@ -3947,7 +3947,7 @@ NIL (-1004 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4403)) (|HasCategory| |#2| (QUOTE (-1092)))) +((|HasAttribute| |#1| (QUOTE -4404)) (|HasCategory| |#2| (QUOTE (-1092)))) (-1005 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL @@ -3958,21 +3958,21 @@ NIL NIL (-1007) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4395 . T) (-4400 . T) (-4394 . T) (-4397 . T) (-4396 . T) ((-4404 "*") . T) (-4399 . T)) +((-4396 . T) (-4401 . T) (-4395 . T) (-4398 . T) (-4397 . T) ((-4405 "*") . T) (-4400 . T)) NIL -(-1008 R -3197) +(-1008 R -3196) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-1009 R -3197) +(-1009 R -3196) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-1010 -3197 UP) +(-1010 -3196 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-1011 -3197 UP) +(-1011 -3196 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use."))) NIL NIL @@ -4006,9 +4006,9 @@ NIL NIL (-1019 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4395 . T) (-4400 . T) (-4394 . T) (-4397 . T) (-4396 . T) ((-4404 "*") . T) (-4399 . T)) +((-4396 . T) (-4401 . T) (-4395 . T) (-4398 . T) (-4397 . T) ((-4405 "*") . T) (-4400 . T)) ((-4037 (|HasCategory| (-406 (-562)) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| (-406 (-562)) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-406 (-562)) (LIST (QUOTE -1033) (QUOTE (-562))))) -(-1020 -3197 L) +(-1020 -3196 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL @@ -4018,12 +4018,12 @@ NIL ((|HasCategory| |#1| (QUOTE (-1092)))) (-1022 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) ((-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-857))))) (-1023 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4404 "*")))) +((|HasAttribute| |#1| (QUOTE (-4405 "*")))) (-1024 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL @@ -4044,14 +4044,14 @@ NIL ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1029 -3197 |Expon| |VarSet| |FPol| |LFPol|) +(-1029 -3196 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +(((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-1030) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4402 . T) (-4403 . T)) -((-12 (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2320) (QUOTE (-1168))) (LIST (QUOTE |:|) (QUOTE -2694) (QUOTE (-52))))))) (-4037 (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (QUOTE (-1092))) (|HasCategory| (-52) (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-52) (QUOTE (-1092))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| (-52) (QUOTE (-1092))) (|HasCategory| (-52) (LIST (QUOTE -308) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (QUOTE (-1092))) (|HasCategory| (-1168) (QUOTE (-845))) (|HasCategory| (-52) (QUOTE (-1092))) (-4037 (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (LIST (QUOTE -609) (QUOTE (-857))))) +((-4403 . T) (-4404 . T)) +((-12 (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2319) (QUOTE (-1168))) (LIST (QUOTE |:|) (QUOTE -2693) (QUOTE (-52))))))) (-4037 (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (QUOTE (-1092))) (|HasCategory| (-52) (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-52) (QUOTE (-1092))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| (-52) (QUOTE (-1092))) (|HasCategory| (-52) (LIST (QUOTE -308) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (QUOTE (-1092))) (|HasCategory| (-1168) (QUOTE (-845))) (|HasCategory| (-52) (QUOTE (-1092))) (-4037 (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (LIST (QUOTE -609) (QUOTE (-857))))) (-1031) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL @@ -4094,7 +4094,7 @@ NIL NIL (-1041 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) ((-12 (|HasCategory| (-775 |#1| (-859 |#2|)) (QUOTE (-1092))) (|HasCategory| (-775 |#1| (-859 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -775) (|devaluate| |#1|) (LIST (QUOTE -859) (|devaluate| |#2|)))))) (|HasCategory| (-775 |#1| (-859 |#2|)) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-775 |#1| (-859 |#2|)) (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| (-859 |#2|) (QUOTE (-367))) (|HasCategory| (-775 |#1| (-859 |#2|)) (LIST (QUOTE -609) (QUOTE (-857))))) (-1042) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) @@ -4106,9 +4106,9 @@ NIL NIL (-1044) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4399 . T)) +((-4400 . T)) NIL -(-1045 |xx| -3197) +(-1045 |xx| -3196) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL @@ -4118,11 +4118,11 @@ NIL ((|HasCategory| |#4| (QUOTE (-306))) (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (QUOTE (-554))) (|HasCategory| |#4| (QUOTE (-171)))) (-1047 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4402 . T) (-4397 . T) (-4396 . T)) +((-4403 . T) (-4398 . T) (-4397 . T)) NIL (-1048 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4402 . T) (-4397 . T) (-4396 . T)) +((-4403 . T) (-4398 . T) (-4397 . T)) ((-4037 (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (QUOTE (-306))) (|HasCategory| |#3| (QUOTE (-554))) (|HasCategory| |#3| (QUOTE (-171))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -609) (QUOTE (-857))))) (-1049 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) @@ -4142,7 +4142,7 @@ NIL NIL (-1053) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-1054 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) @@ -4150,19 +4150,19 @@ NIL NIL (-1055) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4390 . T) (-4394 . T) (-4389 . T) (-4400 . T) (-4401 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4391 . T) (-4395 . T) (-4390 . T) (-4401 . T) (-4402 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-1056) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4402 . T) (-4403 . T)) -((-12 (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2320) (QUOTE (-1168))) (LIST (QUOTE |:|) (QUOTE -2694) (QUOTE (-52))))))) (-4037 (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (QUOTE (-1092))) (|HasCategory| (-52) (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-52) (QUOTE (-1092))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| (-52) (QUOTE (-1092))) (|HasCategory| (-52) (LIST (QUOTE -308) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (QUOTE (-1092))) (|HasCategory| (-1168) (QUOTE (-845))) (|HasCategory| (-52) (QUOTE (-1092))) (-4037 (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (LIST (QUOTE -609) (QUOTE (-857))))) +((-4403 . T) (-4404 . T)) +((-12 (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2319) (QUOTE (-1168))) (LIST (QUOTE |:|) (QUOTE -2693) (QUOTE (-52))))))) (-4037 (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (QUOTE (-1092))) (|HasCategory| (-52) (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-52) (QUOTE (-1092))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| (-52) (QUOTE (-1092))) (|HasCategory| (-52) (LIST (QUOTE -308) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (QUOTE (-1092))) (|HasCategory| (-1168) (QUOTE (-845))) (|HasCategory| (-52) (QUOTE (-1092))) (-4037 (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (LIST (QUOTE -609) (QUOTE (-857))))) (-1057 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL ((|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -987) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-1168))))) (-1058 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) NIL (-1059) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) @@ -4186,7 +4186,7 @@ NIL NIL (-1064 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) NIL (-1065 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) @@ -4200,11 +4200,11 @@ NIL ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1068 |Base| R -3197) +(-1068 |Base| R -3196) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1069 |Base| R -3197) +(-1069 |Base| R -3196) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}."))) NIL NIL @@ -4218,7 +4218,7 @@ NIL NIL (-1072 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4395 |has| |#1| (-362)) (-4400 |has| |#1| (-362)) (-4394 |has| |#1| (-362)) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4396 |has| |#1| (-362)) (-4401 |has| |#1| (-362)) (-4395 |has| |#1| (-362)) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) ((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-348))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-348)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362))))) (-1073 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) @@ -4246,8 +4246,8 @@ NIL NIL (-1079 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) -((|HasCategory| |#1| (QUOTE (-904))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| (-1080 (-1168)) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-1080 (-1168)) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-1080 (-1168)) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-1080 (-1168)) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-1080 (-1168)) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4400)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) +((|HasCategory| |#1| (QUOTE (-904))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| (-1080 (-1168)) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-1080 (-1168)) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-1080 (-1168)) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-1080 (-1168)) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-1080 (-1168)) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4401)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) (-1080 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL @@ -4290,7 +4290,7 @@ NIL NIL (-1090 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4392 . T)) +((-4393 . T)) NIL (-1091 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) @@ -4306,7 +4306,7 @@ NIL NIL (-1094 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}"))) -((-4402 . T) (-4392 . T) (-4403 . T)) +((-4403 . T) (-4393 . T) (-4404 . T)) ((-4037 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-1095 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) @@ -4334,7 +4334,7 @@ NIL NIL (-1101 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) NIL (-1102) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) @@ -4350,8 +4350,8 @@ NIL NIL (-1105 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4396 |has| |#3| (-1044)) (-4397 |has| |#3| (-1044)) (-4399 |has| |#3| (-6 -4399)) ((-4404 "*") |has| |#3| (-171)) (-4402 . T)) -((-4037 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))))) (-4037 (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1092)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1044)))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#3| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#3| (QUOTE (-362))) (-4037 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1044)))) (-4037 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (QUOTE (-788))) (-4037 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (QUOTE (-843)))) (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (QUOTE (-171))) (-4037 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-1044)))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (-4037 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (QUOTE (-1092)))) (-4037 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1044)))) (-4037 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1044)))) (-4037 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1044)))) (-4037 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1044)))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-130)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-171)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-232)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-362)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-367)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-721)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-788)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-843)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1044)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1092))))) (-4037 (-12 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1044))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| (-562) (QUOTE (-845))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1044)))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168))))) (-4037 (|HasCategory| |#3| (QUOTE (-1044))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1092)))) (|HasAttribute| |#3| (QUOTE -4399)) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))))) +((-4397 |has| |#3| (-1044)) (-4398 |has| |#3| (-1044)) (-4400 |has| |#3| (-6 -4400)) ((-4405 "*") |has| |#3| (-171)) (-4403 . T)) +((-4037 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))))) (-4037 (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1092)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1044)))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#3| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#3| (QUOTE (-362))) (-4037 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1044)))) (-4037 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (QUOTE (-788))) (-4037 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (QUOTE (-843)))) (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (QUOTE (-171))) (-4037 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-1044)))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (-4037 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (QUOTE (-1092)))) (-4037 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1044)))) (-4037 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1044)))) (-4037 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1044)))) (-4037 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1044)))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-130)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-171)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-232)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-362)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-367)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-721)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-788)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-843)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1044)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1092))))) (-4037 (-12 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1044))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| (-562) (QUOTE (-845))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1044)))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168))))) (-4037 (|HasCategory| |#3| (QUOTE (-1044))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1092)))) (|HasAttribute| |#3| (QUOTE -4400)) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))))) (-1106 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL @@ -4360,7 +4360,7 @@ NIL ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,{}s,{}t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) NIL NIL -(-1108 R -3197) +(-1108 R -3196) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL @@ -4378,19 +4378,19 @@ NIL NIL (-1112) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4390 . T) (-4394 . T) (-4389 . T) (-4400 . T) (-4401 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4391 . T) (-4395 . T) (-4390 . T) (-4401 . T) (-4402 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-1113 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4402 . T) (-4403 . T)) +((-4403 . T) (-4404 . T)) NIL (-1114 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-362))) (|HasAttribute| |#3| (QUOTE (-4404 "*"))) (|HasCategory| |#3| (QUOTE (-171)))) +((|HasCategory| |#3| (QUOTE (-362))) (|HasAttribute| |#3| (QUOTE (-4405 "*"))) (|HasCategory| |#3| (QUOTE (-171)))) (-1115 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-4402 . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4403 . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-1116 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) @@ -4398,17 +4398,17 @@ NIL NIL (-1117 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) -((|HasCategory| |#1| (QUOTE (-904))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4400)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) +((|HasCategory| |#1| (QUOTE (-904))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4401)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) (-1118 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4397 . T) (-4396 . T) (-4399 . T)) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4398 . T) (-4397 . T) (-4400 . T)) ((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-362)))) (-1119 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) NIL -(-1120 UP -3197) +(-1120 UP -3196) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL @@ -4462,19 +4462,19 @@ NIL NIL (-1133 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4402 . T) (-4403 . T)) +((-4403 . T) (-4404 . T)) ((-12 (|HasCategory| (-1132 |#1| |#2|) (LIST (QUOTE -308) (LIST (QUOTE -1132) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1132 |#1| |#2|) (QUOTE (-1092)))) (|HasCategory| (-1132 |#1| |#2|) (QUOTE (-1092))) (-4037 (|HasCategory| (-1132 |#1| |#2|) (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| (-1132 |#1| |#2|) (LIST (QUOTE -308) (LIST (QUOTE -1132) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1132 |#1| |#2|) (QUOTE (-1092))))) (|HasCategory| (-1132 |#1| |#2|) (LIST (QUOTE -609) (QUOTE (-857))))) (-1134 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-4399 . T) (-4391 |has| |#2| (-6 (-4404 "*"))) (-4402 . T) (-4396 . T) (-4397 . T)) -((|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE (-4404 "*"))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-362))) (-4037 (|HasAttribute| |#2| (QUOTE (-4404 "*"))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-232)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-171)))) +((-4400 . T) (-4392 |has| |#2| (-6 (-4405 "*"))) (-4403 . T) (-4397 . T) (-4398 . T)) +((|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE (-4405 "*"))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-362))) (-4037 (|HasAttribute| |#2| (QUOTE (-4405 "*"))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-232)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-171)))) (-1135 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL (-1136) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) NIL (-1137 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) @@ -4482,11 +4482,11 @@ NIL NIL (-1138 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) ((-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-857))))) (-1139 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4402 . T) (-4403 . T)) +((-4403 . T) (-4404 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (-1140 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) @@ -4498,8 +4498,8 @@ NIL NIL (-1142 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4403 . T)) -((-12 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2320) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2694) (|devaluate| |#2|)))))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-845))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092)))) +((-4404 . T)) +((-12 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2319) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2693) (|devaluate| |#2|)))))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-845))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092)))) (-1143) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL @@ -4522,20 +4522,20 @@ NIL NIL (-1148 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4403 . T)) +((-4404 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (-1149) ((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) NIL (-1150) NIL -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) ((-4037 (-12 (|HasCategory| (-143) (QUOTE (-845))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (-12 (|HasCategory| (-143) (QUOTE (-1092))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (|HasCategory| (-143) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-143) (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| (-143) (QUOTE (-1092))) (|HasCategory| (-143) (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| (-143) (QUOTE (-1092))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (-1151 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4402 . T) (-4403 . T)) -((-12 (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2320) (QUOTE (-1150))) (LIST (QUOTE |:|) (QUOTE -2694) (|devaluate| |#1|)))))) (-4037 (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (QUOTE (-1092))) (|HasCategory| (-1150) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (LIST (QUOTE -609) (QUOTE (-857))))) +((-4403 . T) (-4404 . T)) +((-12 (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2319) (QUOTE (-1150))) (LIST (QUOTE |:|) (QUOTE -2693) (|devaluate| |#1|)))))) (-4037 (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (QUOTE (-1092))) (|HasCategory| (-1150) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (LIST (QUOTE -609) (QUOTE (-857))))) (-1152 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}"))) NIL @@ -4566,9 +4566,9 @@ NIL NIL (-1159 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4404 "*") -4037 (-2246 (|has| |#1| (-362)) (|has| (-1166 |#1| |#2| |#3|) (-815))) (|has| |#1| (-171)) (-2246 (|has| |#1| (-362)) (|has| (-1166 |#1| |#2| |#3|) (-904)))) (-4395 -4037 (-2246 (|has| |#1| (-362)) (|has| (-1166 |#1| |#2| |#3|) (-815))) (|has| |#1| (-554)) (-2246 (|has| |#1| (-362)) (|has| (-1166 |#1| |#2| |#3|) (-904)))) (-4400 |has| |#1| (-362)) (-4394 |has| |#1| (-362)) (-4396 . T) (-4397 . T) (-4399 . T)) -((-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -513) (QUOTE (-1168)) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144)))) (-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-146)))) (-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-562)) (|devaluate| |#1|)))))) (-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-562)) (|devaluate| |#1|))))) (|HasCategory| (-562) (QUOTE (-1104))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-362)))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-362))))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -513) (QUOTE (-1168)) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -4054) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-562))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -2667) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1402) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-144))) (-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-171)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144))))) -(-1160 R -3197) +(((-4405 "*") -4037 (-2245 (|has| |#1| (-362)) (|has| (-1166 |#1| |#2| |#3|) (-815))) (|has| |#1| (-171)) (-2245 (|has| |#1| (-362)) (|has| (-1166 |#1| |#2| |#3|) (-904)))) (-4396 -4037 (-2245 (|has| |#1| (-362)) (|has| (-1166 |#1| |#2| |#3|) (-815))) (|has| |#1| (-554)) (-2245 (|has| |#1| (-362)) (|has| (-1166 |#1| |#2| |#3|) (-904)))) (-4401 |has| |#1| (-362)) (-4395 |has| |#1| (-362)) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -513) (QUOTE (-1168)) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144)))) (-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-146)))) (-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-562)) (|devaluate| |#1|)))))) (-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-562)) (|devaluate| |#1|))))) (|HasCategory| (-562) (QUOTE (-1104))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-362)))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-362))))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -513) (QUOTE (-1168)) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -4053) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-562))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -3081) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1401) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-144))) (-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-171)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144))))) +(-1160 R -3196) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL @@ -4586,16 +4586,16 @@ NIL NIL (-1164 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4398 |has| |#1| (-362)) (-4400 |has| |#1| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) -((|HasCategory| |#1| (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4400)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4399 |has| |#1| (-362)) (-4401 |has| |#1| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) +((|HasCategory| |#1| (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4401)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) (-1165 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-362)) (-4394 |has| |#1| (-362)) (-4396 . T) (-4397 . T) (-4399 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-562)) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-362))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasSignature| |#1| (LIST (QUOTE -4054) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -2667) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1402) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|))))))) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-362)) (-4395 |has| |#1| (-362)) (-4397 . T) (-4398 . T) (-4400 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-562)) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-362))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasSignature| |#1| (LIST (QUOTE -4053) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -3081) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1401) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|))))))) (-1166 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4396 . T) (-4397 . T) (-4399 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-766)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-766)) (|devaluate| |#1|)))) (|HasCategory| (-766) (QUOTE (-1104))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-766))))) (|HasSignature| |#1| (LIST (QUOTE -4054) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-766))))) (|HasCategory| |#1| (QUOTE (-362))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -2667) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1402) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|))))))) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4397 . T) (-4398 . T) (-4400 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-766)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-766)) (|devaluate| |#1|)))) (|HasCategory| (-766) (QUOTE (-1104))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-766))))) (|HasSignature| |#1| (LIST (QUOTE -4053) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-766))))) (|HasCategory| |#1| (QUOTE (-362))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -3081) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1401) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|))))))) (-1167) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL @@ -4610,8 +4610,8 @@ NIL NIL (-1170 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-6 -4400)) (-4396 . T) (-4397 . T) (-4399 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| (-966) (QUOTE (-130))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasAttribute| |#1| (QUOTE -4400))) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-6 -4401)) (-4397 . T) (-4398 . T) (-4400 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| (-966) (QUOTE (-130))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasAttribute| |#1| (QUOTE -4401))) (-1171) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL @@ -4650,8 +4650,8 @@ NIL NIL (-1180 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4402 . T) (-4403 . T)) -((-12 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2320) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2694) (|devaluate| |#2|)))))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1092))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857))))) +((-4403 . T) (-4404 . T)) +((-12 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2319) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2693) (|devaluate| |#2|)))))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1092))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857))))) (-1181 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}."))) NIL @@ -4662,7 +4662,7 @@ NIL NIL (-1183 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4403 . T)) +((-4404 . T)) NIL (-1184 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) @@ -4702,7 +4702,7 @@ NIL NIL (-1193 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (-1194 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) @@ -4712,7 +4712,7 @@ NIL ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1196 R -3197) +(-1196 R -3196) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -4720,7 +4720,7 @@ NIL ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1198 R -3197) +(-1198 R -3196) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL ((-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -881) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -881) (|devaluate| |#1|))))) @@ -4730,11 +4730,11 @@ NIL ((|HasCategory| |#4| (QUOTE (-367)))) (-1200 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) NIL (-1201 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4397 . T) (-4396 . T) (-4399 . T)) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4398 . T) (-4397 . T) (-4400 . T)) ((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-362)))) (-1202 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) @@ -4748,7 +4748,7 @@ NIL ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL ((|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) -(-1205 -3197) +(-1205 -3196) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL @@ -4774,7 +4774,7 @@ NIL NIL (-1211) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-1212) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits."))) @@ -4794,7 +4794,7 @@ NIL NIL (-1216 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-362)) (-4394 |has| |#1| (-362)) (-4396 . T) (-4397 . T) (-4399 . T)) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-362)) (-4395 |has| |#1| (-362)) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-1217 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) @@ -4802,16 +4802,16 @@ NIL ((|HasCategory| |#2| (QUOTE (-362)))) (-1218 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-362)) (-4394 |has| |#1| (-362)) (-4396 . T) (-4397 . T) (-4399 . T)) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-362)) (-4395 |has| |#1| (-362)) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-1219 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-362)) (-4394 |has| |#1| (-362)) (-4396 . T) (-4397 . T) (-4399 . T)) -((-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-845)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-904)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1017)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1143)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-1168)))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-144))))) (-4037 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-146))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-562)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-232)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-562)) (|devaluate| |#1|))))) (|HasCategory| (-562) (QUOTE (-1104))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-904)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-1168))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1017)))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-815)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-845))))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-845)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-904)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1017)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1143)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-1168)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1143)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -4054) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-562))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -2667) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1402) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-845)))) (|HasCategory| |#2| (QUOTE (-904))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-306)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-144)))))) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-362)) (-4395 |has| |#1| (-362)) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-845)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-904)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1017)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1143)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-1168)))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-144))))) (-4037 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-146))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-562)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-232)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-562)) (|devaluate| |#1|))))) (|HasCategory| (-562) (QUOTE (-1104))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-904)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-1168))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1017)))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-815)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-845))))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-845)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-904)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1017)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1143)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-1168)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1143)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -4053) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-562))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -3081) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1401) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-845)))) (|HasCategory| |#2| (QUOTE (-904))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-306)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-144)))))) (-1220 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4404 "*") -4037 (-2246 (|has| |#1| (-362)) (|has| (-1248 |#1| |#2| |#3|) (-815))) (|has| |#1| (-171)) (-2246 (|has| |#1| (-362)) (|has| (-1248 |#1| |#2| |#3|) (-904)))) (-4395 -4037 (-2246 (|has| |#1| (-362)) (|has| (-1248 |#1| |#2| |#3|) (-815))) (|has| |#1| (-554)) (-2246 (|has| |#1| (-362)) (|has| (-1248 |#1| |#2| |#3|) (-904)))) (-4400 |has| |#1| (-362)) (-4394 |has| |#1| (-362)) (-4396 . T) (-4397 . T) (-4399 . T)) -((-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -513) (QUOTE (-1168)) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144)))) (-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-146)))) (-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-562)) (|devaluate| |#1|)))))) (-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-562)) (|devaluate| |#1|))))) (|HasCategory| (-562) (QUOTE (-1104))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-362)))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-362))))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -513) (QUOTE (-1168)) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -4054) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-562))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -2667) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1402) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-144))) (-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-171)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144))))) +(((-4405 "*") -4037 (-2245 (|has| |#1| (-362)) (|has| (-1248 |#1| |#2| |#3|) (-815))) (|has| |#1| (-171)) (-2245 (|has| |#1| (-362)) (|has| (-1248 |#1| |#2| |#3|) (-904)))) (-4396 -4037 (-2245 (|has| |#1| (-362)) (|has| (-1248 |#1| |#2| |#3|) (-815))) (|has| |#1| (-554)) (-2245 (|has| |#1| (-362)) (|has| (-1248 |#1| |#2| |#3|) (-904)))) (-4401 |has| |#1| (-362)) (-4395 |has| |#1| (-362)) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -513) (QUOTE (-1168)) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144)))) (-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-146)))) (-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-562)) (|devaluate| |#1|)))))) (-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-562)) (|devaluate| |#1|))))) (|HasCategory| (-562) (QUOTE (-1104))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-362)))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-362))))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -513) (QUOTE (-1168)) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -4053) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-562))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -3081) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1401) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-144))) (-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-171)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144))))) (-1221 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL @@ -4846,8 +4846,8 @@ NIL NIL (-1229 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4404 "*") |has| |#2| (-171)) (-4395 |has| |#2| (-554)) (-4398 |has| |#2| (-362)) (-4400 |has| |#2| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) -((|HasCategory| |#2| (QUOTE (-904))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-554)))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1143))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE -4400)) (|HasCategory| |#2| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-144))))) +(((-4405 "*") |has| |#2| (-171)) (-4396 |has| |#2| (-554)) (-4399 |has| |#2| (-362)) (-4401 |has| |#2| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) +((|HasCategory| |#2| (QUOTE (-904))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-554)))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1143))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE -4401)) (|HasCategory| |#2| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-144))))) (-1230 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL @@ -4858,15 +4858,15 @@ NIL ((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1143)))) (-1232 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4398 |has| |#1| (-362)) (-4400 |has| |#1| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4399 |has| |#1| (-362)) (-4401 |has| |#1| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) NIL (-1233 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1104))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4054) (LIST (|devaluate| |#2|) (QUOTE (-1168)))))) +((|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1104))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4053) (LIST (|devaluate| |#2|) (QUOTE (-1168)))))) (-1234 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4396 . T) (-4397 . T) (-4399 . T)) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-1235 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) @@ -4878,7 +4878,7 @@ NIL NIL (-1237 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-362)) (-4394 |has| |#1| (-362)) (-4396 . T) (-4397 . T) (-4399 . T)) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-362)) (-4395 |has| |#1| (-362)) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-1238 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) @@ -4886,24 +4886,24 @@ NIL NIL (-1239 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-362)) (-4394 |has| |#1| (-362)) (-4396 . T) (-4397 . T) (-4399 . T)) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-362)) (-4395 |has| |#1| (-362)) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-1240 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-362)) (-4394 |has| |#1| (-362)) (-4396 . T) (-4397 . T) (-4399 . T)) -((|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-562)) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-362))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasSignature| |#1| (LIST (QUOTE -4054) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -2667) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1402) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-362)) (-4395 |has| |#1| (-362)) (-4397 . T) (-4398 . T) (-4400 . T)) +((|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-562)) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-362))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasSignature| |#1| (LIST (QUOTE -4053) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -3081) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1401) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-1241 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-362)) (-4394 |has| |#1| (-362)) (-4396 . T) (-4397 . T) (-4399 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-562)) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-362))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasSignature| |#1| (LIST (QUOTE -4054) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -2667) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1402) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|))))))) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-362)) (-4395 |has| |#1| (-362)) (-4397 . T) (-4398 . T) (-4400 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-562)) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-362))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasSignature| |#1| (LIST (QUOTE -4053) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -3081) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1401) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|))))))) (-1242 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}."))) -(((-4404 "*") |has| (-1241 |#2| |#3| |#4|) (-171)) (-4395 |has| (-1241 |#2| |#3| |#4|) (-554)) (-4396 . T) (-4397 . T) (-4399 . T)) +(((-4405 "*") |has| (-1241 |#2| |#3| |#4|) (-171)) (-4396 |has| (-1241 |#2| |#3| |#4|) (-554)) (-4397 . T) (-4398 . T) (-4400 . T)) ((|HasCategory| (-1241 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-1241 |#2| |#3| |#4|) (QUOTE (-144))) (|HasCategory| (-1241 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1241 |#2| |#3| |#4|) (QUOTE (-171))) (-4037 (|HasCategory| (-1241 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-1241 |#2| |#3| |#4|) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| (-1241 |#2| |#3| |#4|) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-1241 |#2| |#3| |#4|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| (-1241 |#2| |#3| |#4|) (QUOTE (-362))) (|HasCategory| (-1241 |#2| |#3| |#4|) (QUOTE (-451))) (|HasCategory| (-1241 |#2| |#3| |#4|) (QUOTE (-554)))) (-1243 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4403))) +((|HasAttribute| |#1| (QUOTE -4404))) (-1244 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL @@ -4915,20 +4915,20 @@ NIL (-1246 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (QUOTE (-1192))) (|HasSignature| |#2| (LIST (QUOTE -1402) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2667) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1168))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362)))) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (QUOTE (-1192))) (|HasSignature| |#2| (LIST (QUOTE -1401) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3081) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1168))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362)))) (-1247 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4396 . T) (-4397 . T) (-4399 . T)) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-1248 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4396 . T) (-4397 . T) (-4399 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-766)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-766)) (|devaluate| |#1|)))) (|HasCategory| (-766) (QUOTE (-1104))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-766))))) (|HasSignature| |#1| (LIST (QUOTE -4054) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-766))))) (|HasCategory| |#1| (QUOTE (-362))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -2667) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1402) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|))))))) +(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4397 . T) (-4398 . T) (-4400 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-766)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-766)) (|devaluate| |#1|)))) (|HasCategory| (-766) (QUOTE (-1104))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-766))))) (|HasSignature| |#1| (LIST (QUOTE -4053) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-766))))) (|HasCategory| |#1| (QUOTE (-362))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -3081) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1401) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|))))))) (-1249 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1250 -3197 UP L UTS) +(-1250 -3196 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL ((|HasCategory| |#1| (QUOTE (-554)))) @@ -4946,7 +4946,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-997))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) (-1254 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) NIL (-1255 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) @@ -4954,7 +4954,7 @@ NIL NIL (-1256 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) ((-4037 (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-721))) (|HasCategory| |#1| (QUOTE (-1044))) (-12 (|HasCategory| |#1| (QUOTE (-997))) (|HasCategory| |#1| (QUOTE (-1044)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-1257) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) @@ -4982,13 +4982,13 @@ NIL NIL (-1263 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4397 . T) (-4396 . T)) +((-4398 . T) (-4397 . T)) NIL (-1264 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1265 K R UP -3197) +(-1265 K R UP -3196) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL @@ -5002,56 +5002,56 @@ NIL NIL (-1268 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4397 |has| |#1| (-171)) (-4396 |has| |#1| (-171)) (-4399 . T)) +((-4398 |has| |#1| (-171)) (-4397 |has| |#1| (-171)) (-4400 . T)) ((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362)))) (-1269 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4403 . T) (-4402 . T)) +((-4404 . T) (-4403 . T)) ((-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-857))))) (-1270 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})"))) -((-4396 . T) (-4397 . T) (-4399 . T)) +((-4397 . T) (-4398 . T) (-4400 . T)) NIL (-1271 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4399 . T) (-4395 |has| |#2| (-6 -4395)) (-4397 . T) (-4396 . T)) -((|HasCategory| |#2| (QUOTE (-171))) (|HasAttribute| |#2| (QUOTE -4395))) +((-4400 . T) (-4396 |has| |#2| (-6 -4396)) (-4398 . T) (-4397 . T)) +((|HasCategory| |#2| (QUOTE (-171))) (|HasAttribute| |#2| (QUOTE -4396))) (-1272 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL (-1273 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4395 |has| |#2| (-6 -4395)) (-4397 . T) (-4396 . T) (-4399 . T)) +((-4396 |has| |#2| (-6 -4396)) (-4398 . T) (-4397 . T) (-4400 . T)) NIL -(-1274 S -3197) +(-1274 S -3196) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL ((|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146)))) -(-1275 -3197) +(-1275 -3196) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL (-1276 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4395 |has| |#2| (-6 -4395)) (-4397 . T) (-4396 . T) (-4399 . T)) -((|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -712) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasAttribute| |#2| (QUOTE -4395))) +((-4396 |has| |#2| (-6 -4396)) (-4398 . T) (-4397 . T) (-4400 . T)) +((|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -712) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasAttribute| |#2| (QUOTE -4396))) (-1277 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4395 |has| |#2| (-6 -4395)) (-4397 . T) (-4396 . T) (-4399 . T)) +((-4396 |has| |#2| (-6 -4396)) (-4398 . T) (-4397 . T) (-4400 . T)) NIL (-1278 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4395 |has| |#1| (-6 -4395)) (-4397 . T) (-4396 . T) (-4399 . T)) -((|HasCategory| |#1| (QUOTE (-171))) (|HasAttribute| |#1| (QUOTE -4395))) +((-4396 |has| |#1| (-6 -4396)) (-4398 . T) (-4397 . T) (-4400 . T)) +((|HasCategory| |#1| (QUOTE (-171))) (|HasAttribute| |#1| (QUOTE -4396))) (-1279 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4399 . T) (-4400 |has| |#1| (-6 -4400)) (-4395 |has| |#1| (-6 -4395)) (-4397 . T) (-4396 . T)) -((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4399)) (|HasAttribute| |#1| (QUOTE -4400)) (|HasAttribute| |#1| (QUOTE -4395))) +((-4400 . T) (-4401 |has| |#1| (-6 -4401)) (-4396 |has| |#1| (-6 -4396)) (-4398 . T) (-4397 . T)) +((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4400)) (|HasAttribute| |#1| (QUOTE -4401)) (|HasAttribute| |#1| (QUOTE -4396))) (-1280 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4395 |has| |#2| (-6 -4395)) (-4397 . T) (-4396 . T) (-4399 . T)) -((|HasCategory| |#2| (QUOTE (-171))) (|HasAttribute| |#2| (QUOTE -4395))) +((-4396 |has| |#2| (-6 -4396)) (-4398 . T) (-4397 . T) (-4400 . T)) +((|HasCategory| |#2| (QUOTE (-171))) (|HasAttribute| |#2| (QUOTE -4396))) (-1281 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL @@ -5066,7 +5066,7 @@ NIL NIL (-1284 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +(((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) NIL NIL NIL @@ -5084,4 +5084,4 @@ NIL NIL NIL NIL -((-3 NIL 2281904 2281909 2281914 2281919) (-2 NIL 2281884 2281889 2281894 2281899) (-1 NIL 2281864 2281869 2281874 2281879) (0 NIL 2281844 2281849 2281854 2281859) (-1284 "ZMOD.spad" 2281653 2281666 2281782 2281839) (-1283 "ZLINDEP.spad" 2280697 2280708 2281643 2281648) (-1282 "ZDSOLVE.spad" 2270546 2270568 2280687 2280692) (-1281 "YSTREAM.spad" 2270039 2270050 2270536 2270541) (-1280 "XRPOLY.spad" 2269259 2269279 2269895 2269964) (-1279 "XPR.spad" 2267050 2267063 2268977 2269076) (-1278 "XPOLY.spad" 2266605 2266616 2266906 2266975) (-1277 "XPOLYC.spad" 2265922 2265938 2266531 2266600) (-1276 "XPBWPOLY.spad" 2264359 2264379 2265702 2265771) (-1275 "XF.spad" 2262820 2262835 2264261 2264354) (-1274 "XF.spad" 2261261 2261278 2262704 2262709) (-1273 "XFALG.spad" 2258285 2258301 2261187 2261256) (-1272 "XEXPPKG.spad" 2257536 2257562 2258275 2258280) (-1271 "XDPOLY.spad" 2257150 2257166 2257392 2257461) (-1270 "XALG.spad" 2256810 2256821 2257106 2257145) (-1269 "WUTSET.spad" 2252649 2252666 2256456 2256483) (-1268 "WP.spad" 2251848 2251892 2252507 2252574) (-1267 "WHILEAST.spad" 2251646 2251655 2251838 2251843) (-1266 "WHEREAST.spad" 2251317 2251326 2251636 2251641) (-1265 "WFFINTBS.spad" 2248880 2248902 2251307 2251312) (-1264 "WEIER.spad" 2247094 2247105 2248870 2248875) (-1263 "VSPACE.spad" 2246767 2246778 2247062 2247089) (-1262 "VSPACE.spad" 2246460 2246473 2246757 2246762) (-1261 "VOID.spad" 2246137 2246146 2246450 2246455) (-1260 "VIEW.spad" 2243759 2243768 2246127 2246132) (-1259 "VIEWDEF.spad" 2238956 2238965 2243749 2243754) (-1258 "VIEW3D.spad" 2222791 2222800 2238946 2238951) (-1257 "VIEW2D.spad" 2210528 2210537 2222781 2222786) (-1256 "VECTOR.spad" 2209203 2209214 2209454 2209481) (-1255 "VECTOR2.spad" 2207830 2207843 2209193 2209198) (-1254 "VECTCAT.spad" 2205730 2205741 2207798 2207825) (-1253 "VECTCAT.spad" 2203438 2203451 2205508 2205513) (-1252 "VARIABLE.spad" 2203218 2203233 2203428 2203433) (-1251 "UTYPE.spad" 2202862 2202871 2203208 2203213) (-1250 "UTSODETL.spad" 2202155 2202179 2202818 2202823) (-1249 "UTSODE.spad" 2200343 2200363 2202145 2202150) (-1248 "UTS.spad" 2195132 2195160 2198810 2198907) (-1247 "UTSCAT.spad" 2192583 2192599 2195030 2195127) (-1246 "UTSCAT.spad" 2189678 2189696 2192127 2192132) (-1245 "UTS2.spad" 2189271 2189306 2189668 2189673) (-1244 "URAGG.spad" 2183903 2183914 2189261 2189266) (-1243 "URAGG.spad" 2178499 2178512 2183859 2183864) (-1242 "UPXSSING.spad" 2176142 2176168 2177580 2177713) (-1241 "UPXS.spad" 2173290 2173318 2174274 2174423) (-1240 "UPXSCONS.spad" 2171047 2171067 2171422 2171571) (-1239 "UPXSCCA.spad" 2169612 2169632 2170893 2171042) (-1238 "UPXSCCA.spad" 2168319 2168341 2169602 2169607) (-1237 "UPXSCAT.spad" 2166900 2166916 2168165 2168314) (-1236 "UPXS2.spad" 2166441 2166494 2166890 2166895) (-1235 "UPSQFREE.spad" 2164853 2164867 2166431 2166436) (-1234 "UPSCAT.spad" 2162446 2162470 2164751 2164848) (-1233 "UPSCAT.spad" 2159745 2159771 2162052 2162057) (-1232 "UPOLYC.spad" 2154723 2154734 2159587 2159740) (-1231 "UPOLYC.spad" 2149593 2149606 2154459 2154464) (-1230 "UPOLYC2.spad" 2149062 2149081 2149583 2149588) (-1229 "UP.spad" 2146219 2146234 2146612 2146765) (-1228 "UPMP.spad" 2145109 2145122 2146209 2146214) (-1227 "UPDIVP.spad" 2144672 2144686 2145099 2145104) (-1226 "UPDECOMP.spad" 2142909 2142923 2144662 2144667) (-1225 "UPCDEN.spad" 2142116 2142132 2142899 2142904) (-1224 "UP2.spad" 2141478 2141499 2142106 2142111) (-1223 "UNISEG.spad" 2140831 2140842 2141397 2141402) (-1222 "UNISEG2.spad" 2140324 2140337 2140787 2140792) (-1221 "UNIFACT.spad" 2139425 2139437 2140314 2140319) (-1220 "ULS.spad" 2129977 2130005 2131070 2131499) (-1219 "ULSCONS.spad" 2122371 2122391 2122743 2122892) (-1218 "ULSCCAT.spad" 2120100 2120120 2122217 2122366) (-1217 "ULSCCAT.spad" 2117937 2117959 2120056 2120061) (-1216 "ULSCAT.spad" 2116153 2116169 2117783 2117932) (-1215 "ULS2.spad" 2115665 2115718 2116143 2116148) (-1214 "UINT8.spad" 2115542 2115551 2115655 2115660) (-1213 "UINT32.spad" 2115418 2115427 2115532 2115537) (-1212 "UINT16.spad" 2115294 2115303 2115408 2115413) (-1211 "UFD.spad" 2114359 2114368 2115220 2115289) (-1210 "UFD.spad" 2113486 2113497 2114349 2114354) (-1209 "UDVO.spad" 2112333 2112342 2113476 2113481) (-1208 "UDPO.spad" 2109760 2109771 2112289 2112294) (-1207 "TYPE.spad" 2109692 2109701 2109750 2109755) (-1206 "TYPEAST.spad" 2109611 2109620 2109682 2109687) (-1205 "TWOFACT.spad" 2108261 2108276 2109601 2109606) (-1204 "TUPLE.spad" 2107745 2107756 2108160 2108165) (-1203 "TUBETOOL.spad" 2104582 2104591 2107735 2107740) (-1202 "TUBE.spad" 2103223 2103240 2104572 2104577) (-1201 "TS.spad" 2101812 2101828 2102788 2102885) (-1200 "TSETCAT.spad" 2088939 2088956 2101780 2101807) (-1199 "TSETCAT.spad" 2076052 2076071 2088895 2088900) (-1198 "TRMANIP.spad" 2070418 2070435 2075758 2075763) (-1197 "TRIMAT.spad" 2069377 2069402 2070408 2070413) (-1196 "TRIGMNIP.spad" 2067894 2067911 2069367 2069372) (-1195 "TRIGCAT.spad" 2067406 2067415 2067884 2067889) (-1194 "TRIGCAT.spad" 2066916 2066927 2067396 2067401) (-1193 "TREE.spad" 2065487 2065498 2066523 2066550) (-1192 "TRANFUN.spad" 2065318 2065327 2065477 2065482) (-1191 "TRANFUN.spad" 2065147 2065158 2065308 2065313) (-1190 "TOPSP.spad" 2064821 2064830 2065137 2065142) (-1189 "TOOLSIGN.spad" 2064484 2064495 2064811 2064816) (-1188 "TEXTFILE.spad" 2063041 2063050 2064474 2064479) (-1187 "TEX.spad" 2060173 2060182 2063031 2063036) (-1186 "TEX1.spad" 2059729 2059740 2060163 2060168) (-1185 "TEMUTL.spad" 2059284 2059293 2059719 2059724) (-1184 "TBCMPPK.spad" 2057377 2057400 2059274 2059279) (-1183 "TBAGG.spad" 2056413 2056436 2057357 2057372) (-1182 "TBAGG.spad" 2055457 2055482 2056403 2056408) (-1181 "TANEXP.spad" 2054833 2054844 2055447 2055452) (-1180 "TABLE.spad" 2053244 2053267 2053514 2053541) (-1179 "TABLEAU.spad" 2052725 2052736 2053234 2053239) (-1178 "TABLBUMP.spad" 2049508 2049519 2052715 2052720) (-1177 "SYSTEM.spad" 2048782 2048791 2049498 2049503) (-1176 "SYSSOLP.spad" 2046255 2046266 2048772 2048777) (-1175 "SYSNNI.spad" 2045431 2045442 2046245 2046250) (-1174 "SYSINT.spad" 2044904 2044915 2045421 2045426) (-1173 "SYNTAX.spad" 2041174 2041183 2044894 2044899) (-1172 "SYMTAB.spad" 2039230 2039239 2041164 2041169) (-1171 "SYMS.spad" 2035215 2035224 2039220 2039225) (-1170 "SYMPOLY.spad" 2034222 2034233 2034304 2034431) (-1169 "SYMFUNC.spad" 2033697 2033708 2034212 2034217) (-1168 "SYMBOL.spad" 2031124 2031133 2033687 2033692) (-1167 "SWITCH.spad" 2027881 2027890 2031114 2031119) (-1166 "SUTS.spad" 2024780 2024808 2026348 2026445) (-1165 "SUPXS.spad" 2021915 2021943 2022912 2023061) (-1164 "SUP.spad" 2018684 2018695 2019465 2019618) (-1163 "SUPFRACF.spad" 2017789 2017807 2018674 2018679) (-1162 "SUP2.spad" 2017179 2017192 2017779 2017784) (-1161 "SUMRF.spad" 2016145 2016156 2017169 2017174) (-1160 "SUMFS.spad" 2015778 2015795 2016135 2016140) (-1159 "SULS.spad" 2006317 2006345 2007423 2007852) (-1158 "SUCHTAST.spad" 2006086 2006095 2006307 2006312) (-1157 "SUCH.spad" 2005766 2005781 2006076 2006081) (-1156 "SUBSPACE.spad" 1997773 1997788 2005756 2005761) (-1155 "SUBRESP.spad" 1996933 1996947 1997729 1997734) (-1154 "STTF.spad" 1993032 1993048 1996923 1996928) (-1153 "STTFNC.spad" 1989500 1989516 1993022 1993027) (-1152 "STTAYLOR.spad" 1981898 1981909 1989381 1989386) (-1151 "STRTBL.spad" 1980403 1980420 1980552 1980579) (-1150 "STRING.spad" 1979812 1979821 1979826 1979853) (-1149 "STRICAT.spad" 1979600 1979609 1979780 1979807) (-1148 "STREAM.spad" 1976458 1976469 1979125 1979140) (-1147 "STREAM3.spad" 1976003 1976018 1976448 1976453) (-1146 "STREAM2.spad" 1975071 1975084 1975993 1975998) (-1145 "STREAM1.spad" 1974775 1974786 1975061 1975066) (-1144 "STINPROD.spad" 1973681 1973697 1974765 1974770) (-1143 "STEP.spad" 1972882 1972891 1973671 1973676) (-1142 "STBL.spad" 1971408 1971436 1971575 1971590) (-1141 "STAGG.spad" 1970483 1970494 1971398 1971403) (-1140 "STAGG.spad" 1969556 1969569 1970473 1970478) (-1139 "STACK.spad" 1968907 1968918 1969163 1969190) (-1138 "SREGSET.spad" 1966611 1966628 1968553 1968580) (-1137 "SRDCMPK.spad" 1965156 1965176 1966601 1966606) (-1136 "SRAGG.spad" 1960253 1960262 1965124 1965151) (-1135 "SRAGG.spad" 1955370 1955381 1960243 1960248) (-1134 "SQMATRIX.spad" 1952986 1953004 1953902 1953989) (-1133 "SPLTREE.spad" 1947538 1947551 1952422 1952449) (-1132 "SPLNODE.spad" 1944126 1944139 1947528 1947533) (-1131 "SPFCAT.spad" 1942903 1942912 1944116 1944121) (-1130 "SPECOUT.spad" 1941453 1941462 1942893 1942898) (-1129 "SPADXPT.spad" 1933592 1933601 1941443 1941448) (-1128 "spad-parser.spad" 1933057 1933066 1933582 1933587) (-1127 "SPADAST.spad" 1932758 1932767 1933047 1933052) (-1126 "SPACEC.spad" 1916771 1916782 1932748 1932753) (-1125 "SPACE3.spad" 1916547 1916558 1916761 1916766) (-1124 "SORTPAK.spad" 1916092 1916105 1916503 1916508) (-1123 "SOLVETRA.spad" 1913849 1913860 1916082 1916087) (-1122 "SOLVESER.spad" 1912369 1912380 1913839 1913844) (-1121 "SOLVERAD.spad" 1908379 1908390 1912359 1912364) (-1120 "SOLVEFOR.spad" 1906799 1906817 1908369 1908374) (-1119 "SNTSCAT.spad" 1906399 1906416 1906767 1906794) (-1118 "SMTS.spad" 1904659 1904685 1905964 1906061) (-1117 "SMP.spad" 1902098 1902118 1902488 1902615) (-1116 "SMITH.spad" 1900941 1900966 1902088 1902093) (-1115 "SMATCAT.spad" 1899051 1899081 1900885 1900936) (-1114 "SMATCAT.spad" 1897093 1897125 1898929 1898934) (-1113 "SKAGG.spad" 1896054 1896065 1897061 1897088) (-1112 "SINT.spad" 1894880 1894889 1895920 1896049) (-1111 "SIMPAN.spad" 1894608 1894617 1894870 1894875) (-1110 "SIG.spad" 1893936 1893945 1894598 1894603) (-1109 "SIGNRF.spad" 1893044 1893055 1893926 1893931) (-1108 "SIGNEF.spad" 1892313 1892330 1893034 1893039) (-1107 "SIGAST.spad" 1891694 1891703 1892303 1892308) (-1106 "SHP.spad" 1889612 1889627 1891650 1891655) (-1105 "SHDP.spad" 1879323 1879350 1879832 1879963) (-1104 "SGROUP.spad" 1878931 1878940 1879313 1879318) (-1103 "SGROUP.spad" 1878537 1878548 1878921 1878926) (-1102 "SGCF.spad" 1871418 1871427 1878527 1878532) (-1101 "SFRTCAT.spad" 1870346 1870363 1871386 1871413) (-1100 "SFRGCD.spad" 1869409 1869429 1870336 1870341) (-1099 "SFQCMPK.spad" 1864046 1864066 1869399 1869404) (-1098 "SFORT.spad" 1863481 1863495 1864036 1864041) (-1097 "SEXOF.spad" 1863324 1863364 1863471 1863476) (-1096 "SEX.spad" 1863216 1863225 1863314 1863319) (-1095 "SEXCAT.spad" 1860767 1860807 1863206 1863211) (-1094 "SET.spad" 1859067 1859078 1860188 1860227) (-1093 "SETMN.spad" 1857501 1857518 1859057 1859062) (-1092 "SETCAT.spad" 1856986 1856995 1857491 1857496) (-1091 "SETCAT.spad" 1856469 1856480 1856976 1856981) (-1090 "SETAGG.spad" 1852990 1853001 1856449 1856464) (-1089 "SETAGG.spad" 1849519 1849532 1852980 1852985) (-1088 "SEQAST.spad" 1849222 1849231 1849509 1849514) (-1087 "SEGXCAT.spad" 1848344 1848357 1849212 1849217) (-1086 "SEG.spad" 1848157 1848168 1848263 1848268) (-1085 "SEGCAT.spad" 1847064 1847075 1848147 1848152) (-1084 "SEGBIND.spad" 1846136 1846147 1847019 1847024) (-1083 "SEGBIND2.spad" 1845832 1845845 1846126 1846131) (-1082 "SEGAST.spad" 1845546 1845555 1845822 1845827) (-1081 "SEG2.spad" 1844971 1844984 1845502 1845507) (-1080 "SDVAR.spad" 1844247 1844258 1844961 1844966) (-1079 "SDPOL.spad" 1841637 1841648 1841928 1842055) (-1078 "SCPKG.spad" 1839716 1839727 1841627 1841632) (-1077 "SCOPE.spad" 1838861 1838870 1839706 1839711) (-1076 "SCACHE.spad" 1837543 1837554 1838851 1838856) (-1075 "SASTCAT.spad" 1837452 1837461 1837533 1837538) (-1074 "SAOS.spad" 1837324 1837333 1837442 1837447) (-1073 "SAERFFC.spad" 1837037 1837057 1837314 1837319) (-1072 "SAE.spad" 1835212 1835228 1835823 1835958) (-1071 "SAEFACT.spad" 1834913 1834933 1835202 1835207) (-1070 "RURPK.spad" 1832554 1832570 1834903 1834908) (-1069 "RULESET.spad" 1831995 1832019 1832544 1832549) (-1068 "RULE.spad" 1830199 1830223 1831985 1831990) (-1067 "RULECOLD.spad" 1830051 1830064 1830189 1830194) (-1066 "RSTRCAST.spad" 1829768 1829777 1830041 1830046) (-1065 "RSETGCD.spad" 1826146 1826166 1829758 1829763) (-1064 "RSETCAT.spad" 1815930 1815947 1826114 1826141) (-1063 "RSETCAT.spad" 1805734 1805753 1815920 1815925) (-1062 "RSDCMPK.spad" 1804186 1804206 1805724 1805729) (-1061 "RRCC.spad" 1802570 1802600 1804176 1804181) (-1060 "RRCC.spad" 1800952 1800984 1802560 1802565) (-1059 "RPTAST.spad" 1800654 1800663 1800942 1800947) (-1058 "RPOLCAT.spad" 1780014 1780029 1800522 1800649) (-1057 "RPOLCAT.spad" 1759088 1759105 1779598 1779603) (-1056 "ROUTINE.spad" 1754951 1754960 1757735 1757762) (-1055 "ROMAN.spad" 1754279 1754288 1754817 1754946) (-1054 "ROIRC.spad" 1753359 1753391 1754269 1754274) (-1053 "RNS.spad" 1752262 1752271 1753261 1753354) (-1052 "RNS.spad" 1751251 1751262 1752252 1752257) (-1051 "RNG.spad" 1750986 1750995 1751241 1751246) (-1050 "RMODULE.spad" 1750624 1750635 1750976 1750981) (-1049 "RMCAT2.spad" 1750032 1750089 1750614 1750619) (-1048 "RMATRIX.spad" 1748856 1748875 1749199 1749238) (-1047 "RMATCAT.spad" 1744389 1744420 1748812 1748851) (-1046 "RMATCAT.spad" 1739812 1739845 1744237 1744242) (-1045 "RINTERP.spad" 1739700 1739720 1739802 1739807) (-1044 "RING.spad" 1739170 1739179 1739680 1739695) (-1043 "RING.spad" 1738648 1738659 1739160 1739165) (-1042 "RIDIST.spad" 1738032 1738041 1738638 1738643) (-1041 "RGCHAIN.spad" 1736611 1736627 1737517 1737544) (-1040 "RGBCSPC.spad" 1736392 1736404 1736601 1736606) (-1039 "RGBCMDL.spad" 1735922 1735934 1736382 1736387) (-1038 "RF.spad" 1733536 1733547 1735912 1735917) (-1037 "RFFACTOR.spad" 1732998 1733009 1733526 1733531) (-1036 "RFFACT.spad" 1732733 1732745 1732988 1732993) (-1035 "RFDIST.spad" 1731721 1731730 1732723 1732728) (-1034 "RETSOL.spad" 1731138 1731151 1731711 1731716) (-1033 "RETRACT.spad" 1730566 1730577 1731128 1731133) (-1032 "RETRACT.spad" 1729992 1730005 1730556 1730561) (-1031 "RETAST.spad" 1729804 1729813 1729982 1729987) (-1030 "RESULT.spad" 1727864 1727873 1728451 1728478) (-1029 "RESRING.spad" 1727211 1727258 1727802 1727859) (-1028 "RESLATC.spad" 1726535 1726546 1727201 1727206) (-1027 "REPSQ.spad" 1726264 1726275 1726525 1726530) (-1026 "REP.spad" 1723816 1723825 1726254 1726259) (-1025 "REPDB.spad" 1723521 1723532 1723806 1723811) (-1024 "REP2.spad" 1713093 1713104 1723363 1723368) (-1023 "REP1.spad" 1707083 1707094 1713043 1713048) (-1022 "REGSET.spad" 1704880 1704897 1706729 1706756) (-1021 "REF.spad" 1704209 1704220 1704835 1704840) (-1020 "REDORDER.spad" 1703385 1703402 1704199 1704204) (-1019 "RECLOS.spad" 1702168 1702188 1702872 1702965) (-1018 "REALSOLV.spad" 1701300 1701309 1702158 1702163) (-1017 "REAL.spad" 1701172 1701181 1701290 1701295) (-1016 "REAL0Q.spad" 1698454 1698469 1701162 1701167) (-1015 "REAL0.spad" 1695282 1695297 1698444 1698449) (-1014 "RDUCEAST.spad" 1695003 1695012 1695272 1695277) (-1013 "RDIV.spad" 1694654 1694679 1694993 1694998) (-1012 "RDIST.spad" 1694217 1694228 1694644 1694649) (-1011 "RDETRS.spad" 1693013 1693031 1694207 1694212) (-1010 "RDETR.spad" 1691120 1691138 1693003 1693008) (-1009 "RDEEFS.spad" 1690193 1690210 1691110 1691115) (-1008 "RDEEF.spad" 1689189 1689206 1690183 1690188) (-1007 "RCFIELD.spad" 1686375 1686384 1689091 1689184) (-1006 "RCFIELD.spad" 1683647 1683658 1686365 1686370) (-1005 "RCAGG.spad" 1681559 1681570 1683637 1683642) (-1004 "RCAGG.spad" 1679398 1679411 1681478 1681483) (-1003 "RATRET.spad" 1678758 1678769 1679388 1679393) (-1002 "RATFACT.spad" 1678450 1678462 1678748 1678753) (-1001 "RANDSRC.spad" 1677769 1677778 1678440 1678445) (-1000 "RADUTIL.spad" 1677523 1677532 1677759 1677764) (-999 "RADIX.spad" 1674425 1674438 1675990 1676083) (-998 "RADFF.spad" 1672839 1672875 1672957 1673113) (-997 "RADCAT.spad" 1672433 1672441 1672829 1672834) (-996 "RADCAT.spad" 1672025 1672035 1672423 1672428) (-995 "QUEUE.spad" 1671368 1671378 1671632 1671659) (-994 "QUAT.spad" 1669950 1669960 1670292 1670357) (-993 "QUATCT2.spad" 1669569 1669587 1669940 1669945) (-992 "QUATCAT.spad" 1667734 1667744 1669499 1669564) (-991 "QUATCAT.spad" 1665650 1665662 1667417 1667422) (-990 "QUAGG.spad" 1664476 1664486 1665618 1665645) (-989 "QQUTAST.spad" 1664245 1664253 1664466 1664471) (-988 "QFORM.spad" 1663708 1663722 1664235 1664240) (-987 "QFCAT.spad" 1662411 1662421 1663610 1663703) (-986 "QFCAT.spad" 1660705 1660717 1661906 1661911) (-985 "QFCAT2.spad" 1660396 1660412 1660695 1660700) (-984 "QEQUAT.spad" 1659953 1659961 1660386 1660391) (-983 "QCMPACK.spad" 1654700 1654719 1659943 1659948) (-982 "QALGSET.spad" 1650775 1650807 1654614 1654619) (-981 "QALGSET2.spad" 1648771 1648789 1650765 1650770) (-980 "PWFFINTB.spad" 1646081 1646102 1648761 1648766) (-979 "PUSHVAR.spad" 1645410 1645429 1646071 1646076) (-978 "PTRANFN.spad" 1641536 1641546 1645400 1645405) (-977 "PTPACK.spad" 1638624 1638634 1641526 1641531) (-976 "PTFUNC2.spad" 1638445 1638459 1638614 1638619) (-975 "PTCAT.spad" 1637694 1637704 1638413 1638440) (-974 "PSQFR.spad" 1637001 1637025 1637684 1637689) (-973 "PSEUDLIN.spad" 1635859 1635869 1636991 1636996) (-972 "PSETPK.spad" 1621292 1621308 1635737 1635742) (-971 "PSETCAT.spad" 1615212 1615235 1621272 1621287) (-970 "PSETCAT.spad" 1609106 1609131 1615168 1615173) (-969 "PSCURVE.spad" 1608089 1608097 1609096 1609101) (-968 "PSCAT.spad" 1606856 1606885 1607987 1608084) (-967 "PSCAT.spad" 1605713 1605744 1606846 1606851) (-966 "PRTITION.spad" 1604658 1604666 1605703 1605708) (-965 "PRTDAST.spad" 1604377 1604385 1604648 1604653) (-964 "PRS.spad" 1593939 1593956 1604333 1604338) (-963 "PRQAGG.spad" 1593370 1593380 1593907 1593934) (-962 "PROPLOG.spad" 1592773 1592781 1593360 1593365) (-961 "PROPFRML.spad" 1590691 1590702 1592763 1592768) (-960 "PROPERTY.spad" 1590185 1590193 1590681 1590686) (-959 "PRODUCT.spad" 1587865 1587877 1588151 1588206) (-958 "PR.spad" 1586251 1586263 1586956 1587083) (-957 "PRINT.spad" 1586003 1586011 1586241 1586246) (-956 "PRIMES.spad" 1584254 1584264 1585993 1585998) (-955 "PRIMELT.spad" 1582235 1582249 1584244 1584249) (-954 "PRIMCAT.spad" 1581858 1581866 1582225 1582230) (-953 "PRIMARR.spad" 1580863 1580873 1581041 1581068) (-952 "PRIMARR2.spad" 1579586 1579598 1580853 1580858) (-951 "PREASSOC.spad" 1578958 1578970 1579576 1579581) (-950 "PPCURVE.spad" 1578095 1578103 1578948 1578953) (-949 "PORTNUM.spad" 1577870 1577878 1578085 1578090) (-948 "POLYROOT.spad" 1576699 1576721 1577826 1577831) (-947 "POLY.spad" 1573996 1574006 1574513 1574640) (-946 "POLYLIFT.spad" 1573257 1573280 1573986 1573991) (-945 "POLYCATQ.spad" 1571359 1571381 1573247 1573252) (-944 "POLYCAT.spad" 1564765 1564786 1571227 1571354) (-943 "POLYCAT.spad" 1557473 1557496 1563937 1563942) (-942 "POLY2UP.spad" 1556921 1556935 1557463 1557468) (-941 "POLY2.spad" 1556516 1556528 1556911 1556916) (-940 "POLUTIL.spad" 1555457 1555486 1556472 1556477) (-939 "POLTOPOL.spad" 1554205 1554220 1555447 1555452) (-938 "POINT.spad" 1553044 1553054 1553131 1553158) (-937 "PNTHEORY.spad" 1549710 1549718 1553034 1553039) (-936 "PMTOOLS.spad" 1548467 1548481 1549700 1549705) (-935 "PMSYM.spad" 1548012 1548022 1548457 1548462) (-934 "PMQFCAT.spad" 1547599 1547613 1548002 1548007) (-933 "PMPRED.spad" 1547068 1547082 1547589 1547594) (-932 "PMPREDFS.spad" 1546512 1546534 1547058 1547063) (-931 "PMPLCAT.spad" 1545582 1545600 1546444 1546449) (-930 "PMLSAGG.spad" 1545163 1545177 1545572 1545577) (-929 "PMKERNEL.spad" 1544730 1544742 1545153 1545158) (-928 "PMINS.spad" 1544306 1544316 1544720 1544725) (-927 "PMFS.spad" 1543879 1543897 1544296 1544301) (-926 "PMDOWN.spad" 1543165 1543179 1543869 1543874) (-925 "PMASS.spad" 1542177 1542185 1543155 1543160) (-924 "PMASSFS.spad" 1541146 1541162 1542167 1542172) (-923 "PLOTTOOL.spad" 1540926 1540934 1541136 1541141) (-922 "PLOT.spad" 1535757 1535765 1540916 1540921) (-921 "PLOT3D.spad" 1532177 1532185 1535747 1535752) (-920 "PLOT1.spad" 1531318 1531328 1532167 1532172) (-919 "PLEQN.spad" 1518534 1518561 1531308 1531313) (-918 "PINTERP.spad" 1518150 1518169 1518524 1518529) (-917 "PINTERPA.spad" 1517932 1517948 1518140 1518145) (-916 "PI.spad" 1517539 1517547 1517906 1517927) (-915 "PID.spad" 1516495 1516503 1517465 1517534) (-914 "PICOERCE.spad" 1516152 1516162 1516485 1516490) (-913 "PGROEB.spad" 1514749 1514763 1516142 1516147) (-912 "PGE.spad" 1506002 1506010 1514739 1514744) (-911 "PGCD.spad" 1504884 1504901 1505992 1505997) (-910 "PFRPAC.spad" 1504027 1504037 1504874 1504879) (-909 "PFR.spad" 1500684 1500694 1503929 1504022) (-908 "PFOTOOLS.spad" 1499942 1499958 1500674 1500679) (-907 "PFOQ.spad" 1499312 1499330 1499932 1499937) (-906 "PFO.spad" 1498731 1498758 1499302 1499307) (-905 "PF.spad" 1498305 1498317 1498536 1498629) (-904 "PFECAT.spad" 1495971 1495979 1498231 1498300) (-903 "PFECAT.spad" 1493665 1493675 1495927 1495932) (-902 "PFBRU.spad" 1491535 1491547 1493655 1493660) (-901 "PFBR.spad" 1489073 1489096 1491525 1491530) (-900 "PERM.spad" 1484754 1484764 1488903 1488918) (-899 "PERMGRP.spad" 1479490 1479500 1484744 1484749) (-898 "PERMCAT.spad" 1478042 1478052 1479470 1479485) (-897 "PERMAN.spad" 1476574 1476588 1478032 1478037) (-896 "PENDTREE.spad" 1475913 1475923 1476203 1476208) (-895 "PDRING.spad" 1474404 1474414 1475893 1475908) (-894 "PDRING.spad" 1472903 1472915 1474394 1474399) (-893 "PDEPROB.spad" 1471918 1471926 1472893 1472898) (-892 "PDEPACK.spad" 1465920 1465928 1471908 1471913) (-891 "PDECOMP.spad" 1465382 1465399 1465910 1465915) (-890 "PDECAT.spad" 1463736 1463744 1465372 1465377) (-889 "PCOMP.spad" 1463587 1463600 1463726 1463731) (-888 "PBWLB.spad" 1462169 1462186 1463577 1463582) (-887 "PATTERN.spad" 1456600 1456610 1462159 1462164) (-886 "PATTERN2.spad" 1456336 1456348 1456590 1456595) (-885 "PATTERN1.spad" 1454638 1454654 1456326 1456331) (-884 "PATRES.spad" 1452185 1452197 1454628 1454633) (-883 "PATRES2.spad" 1451847 1451861 1452175 1452180) (-882 "PATMATCH.spad" 1450004 1450035 1451555 1451560) (-881 "PATMAB.spad" 1449429 1449439 1449994 1449999) (-880 "PATLRES.spad" 1448513 1448527 1449419 1449424) (-879 "PATAB.spad" 1448277 1448287 1448503 1448508) (-878 "PARTPERM.spad" 1445639 1445647 1448267 1448272) (-877 "PARSURF.spad" 1445067 1445095 1445629 1445634) (-876 "PARSU2.spad" 1444862 1444878 1445057 1445062) (-875 "script-parser.spad" 1444382 1444390 1444852 1444857) (-874 "PARSCURV.spad" 1443810 1443838 1444372 1444377) (-873 "PARSC2.spad" 1443599 1443615 1443800 1443805) (-872 "PARPCURV.spad" 1443057 1443085 1443589 1443594) (-871 "PARPC2.spad" 1442846 1442862 1443047 1443052) (-870 "PAN2EXPR.spad" 1442258 1442266 1442836 1442841) (-869 "PALETTE.spad" 1441228 1441236 1442248 1442253) (-868 "PAIR.spad" 1440211 1440224 1440816 1440821) (-867 "PADICRC.spad" 1437541 1437559 1438716 1438809) (-866 "PADICRAT.spad" 1435556 1435568 1435777 1435870) (-865 "PADIC.spad" 1435251 1435263 1435482 1435551) (-864 "PADICCT.spad" 1433792 1433804 1435177 1435246) (-863 "PADEPAC.spad" 1432471 1432490 1433782 1433787) (-862 "PADE.spad" 1431211 1431227 1432461 1432466) (-861 "OWP.spad" 1430451 1430481 1431069 1431136) (-860 "OVERSET.spad" 1430024 1430032 1430441 1430446) (-859 "OVAR.spad" 1429805 1429828 1430014 1430019) (-858 "OUT.spad" 1428889 1428897 1429795 1429800) (-857 "OUTFORM.spad" 1418185 1418193 1428879 1428884) (-856 "OUTBFILE.spad" 1417603 1417611 1418175 1418180) (-855 "OUTBCON.spad" 1416601 1416609 1417593 1417598) (-854 "OUTBCON.spad" 1415597 1415607 1416591 1416596) (-853 "OSI.spad" 1415072 1415080 1415587 1415592) (-852 "OSGROUP.spad" 1414990 1414998 1415062 1415067) (-851 "ORTHPOL.spad" 1413451 1413461 1414907 1414912) (-850 "OREUP.spad" 1412904 1412932 1413131 1413170) (-849 "ORESUP.spad" 1412203 1412227 1412584 1412623) (-848 "OREPCTO.spad" 1410022 1410034 1412123 1412128) (-847 "OREPCAT.spad" 1404079 1404089 1409978 1410017) (-846 "OREPCAT.spad" 1398026 1398038 1403927 1403932) (-845 "ORDSET.spad" 1397192 1397200 1398016 1398021) (-844 "ORDSET.spad" 1396356 1396366 1397182 1397187) (-843 "ORDRING.spad" 1395746 1395754 1396336 1396351) (-842 "ORDRING.spad" 1395144 1395154 1395736 1395741) (-841 "ORDMON.spad" 1394999 1395007 1395134 1395139) (-840 "ORDFUNS.spad" 1394125 1394141 1394989 1394994) (-839 "ORDFIN.spad" 1393945 1393953 1394115 1394120) (-838 "ORDCOMP.spad" 1392410 1392420 1393492 1393521) (-837 "ORDCOMP2.spad" 1391695 1391707 1392400 1392405) (-836 "OPTPROB.spad" 1390333 1390341 1391685 1391690) (-835 "OPTPACK.spad" 1382718 1382726 1390323 1390328) (-834 "OPTCAT.spad" 1380393 1380401 1382708 1382713) (-833 "OPSIG.spad" 1380045 1380053 1380383 1380388) (-832 "OPQUERY.spad" 1379594 1379602 1380035 1380040) (-831 "OP.spad" 1379336 1379346 1379416 1379483) (-830 "OPERCAT.spad" 1378924 1378934 1379326 1379331) (-829 "OPERCAT.spad" 1378510 1378522 1378914 1378919) (-828 "ONECOMP.spad" 1377255 1377265 1378057 1378086) (-827 "ONECOMP2.spad" 1376673 1376685 1377245 1377250) (-826 "OMSERVER.spad" 1375675 1375683 1376663 1376668) (-825 "OMSAGG.spad" 1375463 1375473 1375631 1375670) (-824 "OMPKG.spad" 1374075 1374083 1375453 1375458) (-823 "OM.spad" 1373040 1373048 1374065 1374070) (-822 "OMLO.spad" 1372465 1372477 1372926 1372965) (-821 "OMEXPR.spad" 1372299 1372309 1372455 1372460) (-820 "OMERR.spad" 1371842 1371850 1372289 1372294) (-819 "OMERRK.spad" 1370876 1370884 1371832 1371837) (-818 "OMENC.spad" 1370220 1370228 1370866 1370871) (-817 "OMDEV.spad" 1364509 1364517 1370210 1370215) (-816 "OMCONN.spad" 1363918 1363926 1364499 1364504) (-815 "OINTDOM.spad" 1363681 1363689 1363844 1363913) (-814 "OFMONOID.spad" 1359868 1359878 1363671 1363676) (-813 "ODVAR.spad" 1359129 1359139 1359858 1359863) (-812 "ODR.spad" 1358773 1358799 1358941 1359090) (-811 "ODPOL.spad" 1356119 1356129 1356459 1356586) (-810 "ODP.spad" 1345966 1345986 1346339 1346470) (-809 "ODETOOLS.spad" 1344549 1344568 1345956 1345961) (-808 "ODESYS.spad" 1342199 1342216 1344539 1344544) (-807 "ODERTRIC.spad" 1338140 1338157 1342156 1342161) (-806 "ODERED.spad" 1337527 1337551 1338130 1338135) (-805 "ODERAT.spad" 1335078 1335095 1337517 1337522) (-804 "ODEPRRIC.spad" 1331969 1331991 1335068 1335073) (-803 "ODEPROB.spad" 1331226 1331234 1331959 1331964) (-802 "ODEPRIM.spad" 1328500 1328522 1331216 1331221) (-801 "ODEPAL.spad" 1327876 1327900 1328490 1328495) (-800 "ODEPACK.spad" 1314478 1314486 1327866 1327871) (-799 "ODEINT.spad" 1313909 1313925 1314468 1314473) (-798 "ODEIFTBL.spad" 1311304 1311312 1313899 1313904) (-797 "ODEEF.spad" 1306671 1306687 1311294 1311299) (-796 "ODECONST.spad" 1306190 1306208 1306661 1306666) (-795 "ODECAT.spad" 1304786 1304794 1306180 1306185) (-794 "OCT.spad" 1302924 1302934 1303640 1303679) (-793 "OCTCT2.spad" 1302568 1302589 1302914 1302919) (-792 "OC.spad" 1300342 1300352 1302524 1302563) (-791 "OC.spad" 1297841 1297853 1300025 1300030) (-790 "OCAMON.spad" 1297689 1297697 1297831 1297836) (-789 "OASGP.spad" 1297504 1297512 1297679 1297684) (-788 "OAMONS.spad" 1297024 1297032 1297494 1297499) (-787 "OAMON.spad" 1296885 1296893 1297014 1297019) (-786 "OAGROUP.spad" 1296747 1296755 1296875 1296880) (-785 "NUMTUBE.spad" 1296334 1296350 1296737 1296742) (-784 "NUMQUAD.spad" 1284196 1284204 1296324 1296329) (-783 "NUMODE.spad" 1275332 1275340 1284186 1284191) (-782 "NUMINT.spad" 1272890 1272898 1275322 1275327) (-781 "NUMFMT.spad" 1271730 1271738 1272880 1272885) (-780 "NUMERIC.spad" 1263802 1263812 1271535 1271540) (-779 "NTSCAT.spad" 1262304 1262320 1263770 1263797) (-778 "NTPOLFN.spad" 1261849 1261859 1262221 1262226) (-777 "NSUP.spad" 1254859 1254869 1259399 1259552) (-776 "NSUP2.spad" 1254251 1254263 1254849 1254854) (-775 "NSMP.spad" 1250446 1250465 1250754 1250881) (-774 "NREP.spad" 1248818 1248832 1250436 1250441) (-773 "NPCOEF.spad" 1248064 1248084 1248808 1248813) (-772 "NORMRETR.spad" 1247662 1247701 1248054 1248059) (-771 "NORMPK.spad" 1245564 1245583 1247652 1247657) (-770 "NORMMA.spad" 1245252 1245278 1245554 1245559) (-769 "NONE.spad" 1244993 1245001 1245242 1245247) (-768 "NONE1.spad" 1244669 1244679 1244983 1244988) (-767 "NODE1.spad" 1244138 1244154 1244659 1244664) (-766 "NNI.spad" 1243025 1243033 1244112 1244133) (-765 "NLINSOL.spad" 1241647 1241657 1243015 1243020) (-764 "NIPROB.spad" 1240188 1240196 1241637 1241642) (-763 "NFINTBAS.spad" 1237648 1237665 1240178 1240183) (-762 "NETCLT.spad" 1237622 1237633 1237638 1237643) (-761 "NCODIV.spad" 1235820 1235836 1237612 1237617) (-760 "NCNTFRAC.spad" 1235462 1235476 1235810 1235815) (-759 "NCEP.spad" 1233622 1233636 1235452 1235457) (-758 "NASRING.spad" 1233218 1233226 1233612 1233617) (-757 "NASRING.spad" 1232812 1232822 1233208 1233213) (-756 "NARNG.spad" 1232156 1232164 1232802 1232807) (-755 "NARNG.spad" 1231498 1231508 1232146 1232151) (-754 "NAGSP.spad" 1230571 1230579 1231488 1231493) (-753 "NAGS.spad" 1220096 1220104 1230561 1230566) (-752 "NAGF07.spad" 1218489 1218497 1220086 1220091) (-751 "NAGF04.spad" 1212721 1212729 1218479 1218484) (-750 "NAGF02.spad" 1206530 1206538 1212711 1212716) (-749 "NAGF01.spad" 1202133 1202141 1206520 1206525) (-748 "NAGE04.spad" 1195593 1195601 1202123 1202128) (-747 "NAGE02.spad" 1185935 1185943 1195583 1195588) (-746 "NAGE01.spad" 1181819 1181827 1185925 1185930) (-745 "NAGD03.spad" 1179739 1179747 1181809 1181814) (-744 "NAGD02.spad" 1172270 1172278 1179729 1179734) (-743 "NAGD01.spad" 1166383 1166391 1172260 1172265) (-742 "NAGC06.spad" 1162170 1162178 1166373 1166378) (-741 "NAGC05.spad" 1160639 1160647 1162160 1162165) (-740 "NAGC02.spad" 1159894 1159902 1160629 1160634) (-739 "NAALG.spad" 1159429 1159439 1159862 1159889) (-738 "NAALG.spad" 1158984 1158996 1159419 1159424) (-737 "MULTSQFR.spad" 1155942 1155959 1158974 1158979) (-736 "MULTFACT.spad" 1155325 1155342 1155932 1155937) (-735 "MTSCAT.spad" 1153359 1153380 1155223 1155320) (-734 "MTHING.spad" 1153016 1153026 1153349 1153354) (-733 "MSYSCMD.spad" 1152450 1152458 1153006 1153011) (-732 "MSET.spad" 1150392 1150402 1152156 1152195) (-731 "MSETAGG.spad" 1150237 1150247 1150360 1150387) (-730 "MRING.spad" 1147208 1147220 1149945 1150012) (-729 "MRF2.spad" 1146776 1146790 1147198 1147203) (-728 "MRATFAC.spad" 1146322 1146339 1146766 1146771) (-727 "MPRFF.spad" 1144352 1144371 1146312 1146317) (-726 "MPOLY.spad" 1141787 1141802 1142146 1142273) (-725 "MPCPF.spad" 1141051 1141070 1141777 1141782) (-724 "MPC3.spad" 1140866 1140906 1141041 1141046) (-723 "MPC2.spad" 1140508 1140541 1140856 1140861) (-722 "MONOTOOL.spad" 1138843 1138860 1140498 1140503) (-721 "MONOID.spad" 1138162 1138170 1138833 1138838) (-720 "MONOID.spad" 1137479 1137489 1138152 1138157) (-719 "MONOGEN.spad" 1136225 1136238 1137339 1137474) (-718 "MONOGEN.spad" 1134993 1135008 1136109 1136114) (-717 "MONADWU.spad" 1133007 1133015 1134983 1134988) (-716 "MONADWU.spad" 1131019 1131029 1132997 1133002) (-715 "MONAD.spad" 1130163 1130171 1131009 1131014) (-714 "MONAD.spad" 1129305 1129315 1130153 1130158) (-713 "MOEBIUS.spad" 1127991 1128005 1129285 1129300) (-712 "MODULE.spad" 1127861 1127871 1127959 1127986) (-711 "MODULE.spad" 1127751 1127763 1127851 1127856) (-710 "MODRING.spad" 1127082 1127121 1127731 1127746) (-709 "MODOP.spad" 1125741 1125753 1126904 1126971) (-708 "MODMONOM.spad" 1125470 1125488 1125731 1125736) (-707 "MODMON.spad" 1122229 1122245 1122948 1123101) (-706 "MODFIELD.spad" 1121587 1121626 1122131 1122224) (-705 "MMLFORM.spad" 1120447 1120455 1121577 1121582) (-704 "MMAP.spad" 1120187 1120221 1120437 1120442) (-703 "MLO.spad" 1118614 1118624 1120143 1120182) (-702 "MLIFT.spad" 1117186 1117203 1118604 1118609) (-701 "MKUCFUNC.spad" 1116719 1116737 1117176 1117181) (-700 "MKRECORD.spad" 1116321 1116334 1116709 1116714) (-699 "MKFUNC.spad" 1115702 1115712 1116311 1116316) (-698 "MKFLCFN.spad" 1114658 1114668 1115692 1115697) (-697 "MKCHSET.spad" 1114523 1114533 1114648 1114653) (-696 "MKBCFUNC.spad" 1114008 1114026 1114513 1114518) (-695 "MINT.spad" 1113447 1113455 1113910 1114003) (-694 "MHROWRED.spad" 1111948 1111958 1113437 1113442) (-693 "MFLOAT.spad" 1110464 1110472 1111838 1111943) (-692 "MFINFACT.spad" 1109864 1109886 1110454 1110459) (-691 "MESH.spad" 1107596 1107604 1109854 1109859) (-690 "MDDFACT.spad" 1105789 1105799 1107586 1107591) (-689 "MDAGG.spad" 1105076 1105086 1105769 1105784) (-688 "MCMPLX.spad" 1101062 1101070 1101676 1101865) (-687 "MCDEN.spad" 1100270 1100282 1101052 1101057) (-686 "MCALCFN.spad" 1097372 1097398 1100260 1100265) (-685 "MAYBE.spad" 1096656 1096667 1097362 1097367) (-684 "MATSTOR.spad" 1093932 1093942 1096646 1096651) (-683 "MATRIX.spad" 1092636 1092646 1093120 1093147) (-682 "MATLIN.spad" 1089962 1089986 1092520 1092525) (-681 "MATCAT.spad" 1081547 1081569 1089930 1089957) (-680 "MATCAT.spad" 1073004 1073028 1081389 1081394) (-679 "MATCAT2.spad" 1072272 1072320 1072994 1072999) (-678 "MAPPKG3.spad" 1071171 1071185 1072262 1072267) (-677 "MAPPKG2.spad" 1070505 1070517 1071161 1071166) (-676 "MAPPKG1.spad" 1069323 1069333 1070495 1070500) (-675 "MAPPAST.spad" 1068636 1068644 1069313 1069318) (-674 "MAPHACK3.spad" 1068444 1068458 1068626 1068631) (-673 "MAPHACK2.spad" 1068209 1068221 1068434 1068439) (-672 "MAPHACK1.spad" 1067839 1067849 1068199 1068204) (-671 "MAGMA.spad" 1065629 1065646 1067829 1067834) (-670 "MACROAST.spad" 1065208 1065216 1065619 1065624) (-669 "M3D.spad" 1062904 1062914 1064586 1064591) (-668 "LZSTAGG.spad" 1060132 1060142 1062894 1062899) (-667 "LZSTAGG.spad" 1057358 1057370 1060122 1060127) (-666 "LWORD.spad" 1054063 1054080 1057348 1057353) (-665 "LSTAST.spad" 1053847 1053855 1054053 1054058) (-664 "LSQM.spad" 1052073 1052087 1052471 1052522) (-663 "LSPP.spad" 1051606 1051623 1052063 1052068) (-662 "LSMP.spad" 1050446 1050474 1051596 1051601) (-661 "LSMP1.spad" 1048250 1048264 1050436 1050441) (-660 "LSAGG.spad" 1047919 1047929 1048218 1048245) (-659 "LSAGG.spad" 1047608 1047620 1047909 1047914) (-658 "LPOLY.spad" 1046562 1046581 1047464 1047533) (-657 "LPEFRAC.spad" 1045819 1045829 1046552 1046557) (-656 "LO.spad" 1045220 1045234 1045753 1045780) (-655 "LOGIC.spad" 1044822 1044830 1045210 1045215) (-654 "LOGIC.spad" 1044422 1044432 1044812 1044817) (-653 "LODOOPS.spad" 1043340 1043352 1044412 1044417) (-652 "LODO.spad" 1042724 1042740 1043020 1043059) (-651 "LODOF.spad" 1041768 1041785 1042681 1042686) (-650 "LODOCAT.spad" 1040426 1040436 1041724 1041763) (-649 "LODOCAT.spad" 1039082 1039094 1040382 1040387) (-648 "LODO2.spad" 1038355 1038367 1038762 1038801) (-647 "LODO1.spad" 1037755 1037765 1038035 1038074) (-646 "LODEEF.spad" 1036527 1036545 1037745 1037750) (-645 "LNAGG.spad" 1032329 1032339 1036517 1036522) (-644 "LNAGG.spad" 1028095 1028107 1032285 1032290) (-643 "LMOPS.spad" 1024831 1024848 1028085 1028090) (-642 "LMODULE.spad" 1024473 1024483 1024821 1024826) (-641 "LMDICT.spad" 1023756 1023766 1024024 1024051) (-640 "LITERAL.spad" 1023662 1023673 1023746 1023751) (-639 "LIST.spad" 1021380 1021390 1022809 1022836) (-638 "LIST3.spad" 1020671 1020685 1021370 1021375) (-637 "LIST2.spad" 1019311 1019323 1020661 1020666) (-636 "LIST2MAP.spad" 1016188 1016200 1019301 1019306) (-635 "LINEXP.spad" 1015620 1015630 1016168 1016183) (-634 "LINDEP.spad" 1014397 1014409 1015532 1015537) (-633 "LIMITRF.spad" 1012311 1012321 1014387 1014392) (-632 "LIMITPS.spad" 1011194 1011207 1012301 1012306) (-631 "LIE.spad" 1009208 1009220 1010484 1010629) (-630 "LIECAT.spad" 1008684 1008694 1009134 1009203) (-629 "LIECAT.spad" 1008188 1008200 1008640 1008645) (-628 "LIB.spad" 1006236 1006244 1006847 1006862) (-627 "LGROBP.spad" 1003589 1003608 1006226 1006231) (-626 "LF.spad" 1002508 1002524 1003579 1003584) (-625 "LFCAT.spad" 1001527 1001535 1002498 1002503) (-624 "LEXTRIPK.spad" 997030 997045 1001517 1001522) (-623 "LEXP.spad" 995033 995060 997010 997025) (-622 "LETAST.spad" 994732 994740 995023 995028) (-621 "LEADCDET.spad" 993116 993133 994722 994727) (-620 "LAZM3PK.spad" 991820 991842 993106 993111) (-619 "LAUPOL.spad" 990509 990522 991413 991482) (-618 "LAPLACE.spad" 990082 990098 990499 990504) (-617 "LA.spad" 989522 989536 990004 990043) (-616 "LALG.spad" 989298 989308 989502 989517) (-615 "LALG.spad" 989082 989094 989288 989293) (-614 "KVTFROM.spad" 988817 988827 989072 989077) (-613 "KTVLOGIC.spad" 988240 988248 988807 988812) (-612 "KRCFROM.spad" 987978 987988 988230 988235) (-611 "KOVACIC.spad" 986691 986708 987968 987973) (-610 "KONVERT.spad" 986413 986423 986681 986686) (-609 "KOERCE.spad" 986150 986160 986403 986408) (-608 "KERNEL.spad" 984685 984695 985934 985939) (-607 "KERNEL2.spad" 984388 984400 984675 984680) (-606 "KDAGG.spad" 983491 983513 984368 984383) (-605 "KDAGG.spad" 982602 982626 983481 983486) (-604 "KAFILE.spad" 981565 981581 981800 981827) (-603 "JORDAN.spad" 979392 979404 980855 981000) (-602 "JOINAST.spad" 979086 979094 979382 979387) (-601 "JAVACODE.spad" 978952 978960 979076 979081) (-600 "IXAGG.spad" 977075 977099 978942 978947) (-599 "IXAGG.spad" 975053 975079 976922 976927) (-598 "IVECTOR.spad" 973824 973839 973979 974006) (-597 "ITUPLE.spad" 972969 972979 973814 973819) (-596 "ITRIGMNP.spad" 971780 971799 972959 972964) (-595 "ITFUN3.spad" 971274 971288 971770 971775) (-594 "ITFUN2.spad" 971004 971016 971264 971269) (-593 "ITAYLOR.spad" 968796 968811 970840 970965) (-592 "ISUPS.spad" 961207 961222 967770 967867) (-591 "ISUMP.spad" 960704 960720 961197 961202) (-590 "ISTRING.spad" 959707 959720 959873 959900) (-589 "ISAST.spad" 959426 959434 959697 959702) (-588 "IRURPK.spad" 958139 958158 959416 959421) (-587 "IRSN.spad" 956099 956107 958129 958134) (-586 "IRRF2F.spad" 954574 954584 956055 956060) (-585 "IRREDFFX.spad" 954175 954186 954564 954569) (-584 "IROOT.spad" 952506 952516 954165 954170) (-583 "IR.spad" 950295 950309 952361 952388) (-582 "IR2.spad" 949315 949331 950285 950290) (-581 "IR2F.spad" 948515 948531 949305 949310) (-580 "IPRNTPK.spad" 948275 948283 948505 948510) (-579 "IPF.spad" 947840 947852 948080 948173) (-578 "IPADIC.spad" 947601 947627 947766 947835) (-577 "IP4ADDR.spad" 947158 947166 947591 947596) (-576 "IOMODE.spad" 946779 946787 947148 947153) (-575 "IOBFILE.spad" 946140 946148 946769 946774) (-574 "IOBCON.spad" 946005 946013 946130 946135) (-573 "INVLAPLA.spad" 945650 945666 945995 946000) (-572 "INTTR.spad" 938896 938913 945640 945645) (-571 "INTTOOLS.spad" 936607 936623 938470 938475) (-570 "INTSLPE.spad" 935913 935921 936597 936602) (-569 "INTRVL.spad" 935479 935489 935827 935908) (-568 "INTRF.spad" 933843 933857 935469 935474) (-567 "INTRET.spad" 933275 933285 933833 933838) (-566 "INTRAT.spad" 931950 931967 933265 933270) (-565 "INTPM.spad" 930313 930329 931593 931598) (-564 "INTPAF.spad" 928081 928099 930245 930250) (-563 "INTPACK.spad" 918391 918399 928071 928076) (-562 "INT.spad" 917752 917760 918245 918386) (-561 "INTHERTR.spad" 917018 917035 917742 917747) (-560 "INTHERAL.spad" 916684 916708 917008 917013) (-559 "INTHEORY.spad" 913097 913105 916674 916679) (-558 "INTG0.spad" 906560 906578 913029 913034) (-557 "INTFTBL.spad" 900589 900597 906550 906555) (-556 "INTFACT.spad" 899648 899658 900579 900584) (-555 "INTEF.spad" 897963 897979 899638 899643) (-554 "INTDOM.spad" 896578 896586 897889 897958) (-553 "INTDOM.spad" 895255 895265 896568 896573) (-552 "INTCAT.spad" 893508 893518 895169 895250) (-551 "INTBIT.spad" 893011 893019 893498 893503) (-550 "INTALG.spad" 892193 892220 893001 893006) (-549 "INTAF.spad" 891685 891701 892183 892188) (-548 "INTABL.spad" 890203 890234 890366 890393) (-547 "INT8.spad" 890083 890091 890193 890198) (-546 "INT32.spad" 889962 889970 890073 890078) (-545 "INT16.spad" 889841 889849 889952 889957) (-544 "INS.spad" 887308 887316 889743 889836) (-543 "INS.spad" 884861 884871 887298 887303) (-542 "INPSIGN.spad" 884295 884308 884851 884856) (-541 "INPRODPF.spad" 883361 883380 884285 884290) (-540 "INPRODFF.spad" 882419 882443 883351 883356) (-539 "INNMFACT.spad" 881390 881407 882409 882414) (-538 "INMODGCD.spad" 880874 880904 881380 881385) (-537 "INFSP.spad" 879159 879181 880864 880869) (-536 "INFPROD0.spad" 878209 878228 879149 879154) (-535 "INFORM.spad" 875370 875378 878199 878204) (-534 "INFORM1.spad" 874995 875005 875360 875365) (-533 "INFINITY.spad" 874547 874555 874985 874990) (-532 "INETCLTS.spad" 874524 874532 874537 874542) (-531 "INEP.spad" 873056 873078 874514 874519) (-530 "INDE.spad" 872785 872802 873046 873051) (-529 "INCRMAPS.spad" 872206 872216 872775 872780) (-528 "INBFILE.spad" 871278 871286 872196 872201) (-527 "INBFF.spad" 867048 867059 871268 871273) (-526 "INBCON.spad" 865336 865344 867038 867043) (-525 "INBCON.spad" 863622 863632 865326 865331) (-524 "INAST.spad" 863287 863295 863612 863617) (-523 "IMPTAST.spad" 862995 863003 863277 863282) (-522 "IMATRIX.spad" 861940 861966 862452 862479) (-521 "IMATQF.spad" 861034 861078 861896 861901) (-520 "IMATLIN.spad" 859639 859663 860990 860995) (-519 "ILIST.spad" 858295 858310 858822 858849) (-518 "IIARRAY2.spad" 857683 857721 857902 857929) (-517 "IFF.spad" 857093 857109 857364 857457) (-516 "IFAST.spad" 856707 856715 857083 857088) (-515 "IFARRAY.spad" 854194 854209 855890 855917) (-514 "IFAMON.spad" 854056 854073 854150 854155) (-513 "IEVALAB.spad" 853445 853457 854046 854051) (-512 "IEVALAB.spad" 852832 852846 853435 853440) (-511 "IDPO.spad" 852630 852642 852822 852827) (-510 "IDPOAMS.spad" 852386 852398 852620 852625) (-509 "IDPOAM.spad" 852106 852118 852376 852381) (-508 "IDPC.spad" 851040 851052 852096 852101) (-507 "IDPAM.spad" 850785 850797 851030 851035) (-506 "IDPAG.spad" 850532 850544 850775 850780) (-505 "IDENT.spad" 850304 850312 850522 850527) (-504 "IDECOMP.spad" 847541 847559 850294 850299) (-503 "IDEAL.spad" 842464 842503 847476 847481) (-502 "ICDEN.spad" 841615 841631 842454 842459) (-501 "ICARD.spad" 840804 840812 841605 841610) (-500 "IBPTOOLS.spad" 839397 839414 840794 840799) (-499 "IBITS.spad" 838596 838609 839033 839060) (-498 "IBATOOL.spad" 835471 835490 838586 838591) (-497 "IBACHIN.spad" 833958 833973 835461 835466) (-496 "IARRAY2.spad" 832946 832972 833565 833592) (-495 "IARRAY1.spad" 831991 832006 832129 832156) (-494 "IAN.spad" 830204 830212 831807 831900) (-493 "IALGFACT.spad" 829805 829838 830194 830199) (-492 "HYPCAT.spad" 829229 829237 829795 829800) (-491 "HYPCAT.spad" 828651 828661 829219 829224) (-490 "HOSTNAME.spad" 828459 828467 828641 828646) (-489 "HOMOTOP.spad" 828202 828212 828449 828454) (-488 "HOAGG.spad" 825470 825480 828192 828197) (-487 "HOAGG.spad" 822513 822525 825237 825242) (-486 "HEXADEC.spad" 820615 820623 820980 821073) (-485 "HEUGCD.spad" 819630 819641 820605 820610) (-484 "HELLFDIV.spad" 819220 819244 819620 819625) (-483 "HEAP.spad" 818612 818622 818827 818854) (-482 "HEADAST.spad" 818143 818151 818602 818607) (-481 "HDP.spad" 807986 808002 808363 808494) (-480 "HDMP.spad" 805162 805177 805780 805907) (-479 "HB.spad" 803399 803407 805152 805157) (-478 "HASHTBL.spad" 801869 801900 802080 802107) (-477 "HASAST.spad" 801585 801593 801859 801864) (-476 "HACKPI.spad" 801068 801076 801487 801580) (-475 "GTSET.spad" 800007 800023 800714 800741) (-474 "GSTBL.spad" 798526 798561 798700 798715) (-473 "GSERIES.spad" 795693 795720 796658 796807) (-472 "GROUP.spad" 794962 794970 795673 795688) (-471 "GROUP.spad" 794239 794249 794952 794957) (-470 "GROEBSOL.spad" 792727 792748 794229 794234) (-469 "GRMOD.spad" 791298 791310 792717 792722) (-468 "GRMOD.spad" 789867 789881 791288 791293) (-467 "GRIMAGE.spad" 782472 782480 789857 789862) (-466 "GRDEF.spad" 780851 780859 782462 782467) (-465 "GRAY.spad" 779310 779318 780841 780846) (-464 "GRALG.spad" 778357 778369 779300 779305) (-463 "GRALG.spad" 777402 777416 778347 778352) (-462 "GPOLSET.spad" 776856 776879 777084 777111) (-461 "GOSPER.spad" 776121 776139 776846 776851) (-460 "GMODPOL.spad" 775259 775286 776089 776116) (-459 "GHENSEL.spad" 774328 774342 775249 775254) (-458 "GENUPS.spad" 770429 770442 774318 774323) (-457 "GENUFACT.spad" 770006 770016 770419 770424) (-456 "GENPGCD.spad" 769590 769607 769996 770001) (-455 "GENMFACT.spad" 769042 769061 769580 769585) (-454 "GENEEZ.spad" 766981 766994 769032 769037) (-453 "GDMP.spad" 763999 764016 764775 764902) (-452 "GCNAALG.spad" 757894 757921 763793 763860) (-451 "GCDDOM.spad" 757066 757074 757820 757889) (-450 "GCDDOM.spad" 756300 756310 757056 757061) (-449 "GB.spad" 753818 753856 756256 756261) (-448 "GBINTERN.spad" 749838 749876 753808 753813) (-447 "GBF.spad" 745595 745633 749828 749833) (-446 "GBEUCLID.spad" 743469 743507 745585 745590) (-445 "GAUSSFAC.spad" 742766 742774 743459 743464) (-444 "GALUTIL.spad" 741088 741098 742722 742727) (-443 "GALPOLYU.spad" 739534 739547 741078 741083) (-442 "GALFACTU.spad" 737699 737718 739524 739529) (-441 "GALFACT.spad" 727832 727843 737689 737694) (-440 "FVFUN.spad" 724855 724863 727822 727827) (-439 "FVC.spad" 723907 723915 724845 724850) (-438 "FUNDESC.spad" 723585 723593 723897 723902) (-437 "FUNCTION.spad" 723434 723446 723575 723580) (-436 "FT.spad" 721727 721735 723424 723429) (-435 "FTEM.spad" 720890 720898 721717 721722) (-434 "FSUPFACT.spad" 719790 719809 720826 720831) (-433 "FST.spad" 717876 717884 719780 719785) (-432 "FSRED.spad" 717354 717370 717866 717871) (-431 "FSPRMELT.spad" 716178 716194 717311 717316) (-430 "FSPECF.spad" 714255 714271 716168 716173) (-429 "FS.spad" 708317 708327 714030 714250) (-428 "FS.spad" 702157 702169 707872 707877) (-427 "FSINT.spad" 701815 701831 702147 702152) (-426 "FSERIES.spad" 701002 701014 701635 701734) (-425 "FSCINT.spad" 700315 700331 700992 700997) (-424 "FSAGG.spad" 699432 699442 700271 700310) (-423 "FSAGG.spad" 698511 698523 699352 699357) (-422 "FSAGG2.spad" 697210 697226 698501 698506) (-421 "FS2UPS.spad" 691693 691727 697200 697205) (-420 "FS2.spad" 691338 691354 691683 691688) (-419 "FS2EXPXP.spad" 690461 690484 691328 691333) (-418 "FRUTIL.spad" 689403 689413 690451 690456) (-417 "FR.spad" 683097 683107 688427 688496) (-416 "FRNAALG.spad" 678184 678194 683039 683092) (-415 "FRNAALG.spad" 673283 673295 678140 678145) (-414 "FRNAAF2.spad" 672737 672755 673273 673278) (-413 "FRMOD.spad" 672131 672161 672668 672673) (-412 "FRIDEAL.spad" 671326 671347 672111 672126) (-411 "FRIDEAL2.spad" 670928 670960 671316 671321) (-410 "FRETRCT.spad" 670439 670449 670918 670923) (-409 "FRETRCT.spad" 669816 669828 670297 670302) (-408 "FRAMALG.spad" 668144 668157 669772 669811) (-407 "FRAMALG.spad" 666504 666519 668134 668139) (-406 "FRAC.spad" 663603 663613 664006 664179) (-405 "FRAC2.spad" 663206 663218 663593 663598) (-404 "FR2.spad" 662540 662552 663196 663201) (-403 "FPS.spad" 659349 659357 662430 662535) (-402 "FPS.spad" 656186 656196 659269 659274) (-401 "FPC.spad" 655228 655236 656088 656181) (-400 "FPC.spad" 654356 654366 655218 655223) (-399 "FPATMAB.spad" 654118 654128 654346 654351) (-398 "FPARFRAC.spad" 652591 652608 654108 654113) (-397 "FORTRAN.spad" 651097 651140 652581 652586) (-396 "FORT.spad" 650026 650034 651087 651092) (-395 "FORTFN.spad" 647196 647204 650016 650021) (-394 "FORTCAT.spad" 646880 646888 647186 647191) (-393 "FORMULA.spad" 644344 644352 646870 646875) (-392 "FORMULA1.spad" 643823 643833 644334 644339) (-391 "FORDER.spad" 643514 643538 643813 643818) (-390 "FOP.spad" 642715 642723 643504 643509) (-389 "FNLA.spad" 642139 642161 642683 642710) (-388 "FNCAT.spad" 640726 640734 642129 642134) (-387 "FNAME.spad" 640618 640626 640716 640721) (-386 "FMTC.spad" 640416 640424 640544 640613) (-385 "FMONOID.spad" 637471 637481 640372 640377) (-384 "FM.spad" 637166 637178 637405 637432) (-383 "FMFUN.spad" 634196 634204 637156 637161) (-382 "FMC.spad" 633248 633256 634186 634191) (-381 "FMCAT.spad" 630902 630920 633216 633243) (-380 "FM1.spad" 630259 630271 630836 630863) (-379 "FLOATRP.spad" 627980 627994 630249 630254) (-378 "FLOAT.spad" 621268 621276 627846 627975) (-377 "FLOATCP.spad" 618685 618699 621258 621263) (-376 "FLINEXP.spad" 618397 618407 618665 618680) (-375 "FLINEXP.spad" 618063 618075 618333 618338) (-374 "FLASORT.spad" 617383 617395 618053 618058) (-373 "FLALG.spad" 615029 615048 617309 617378) (-372 "FLAGG.spad" 612047 612057 615009 615024) (-371 "FLAGG.spad" 608966 608978 611930 611935) (-370 "FLAGG2.spad" 607647 607663 608956 608961) (-369 "FINRALG.spad" 605676 605689 607603 607642) (-368 "FINRALG.spad" 603631 603646 605560 605565) (-367 "FINITE.spad" 602783 602791 603621 603626) (-366 "FINAALG.spad" 591764 591774 602725 602778) (-365 "FINAALG.spad" 580757 580769 591720 591725) (-364 "FILE.spad" 580340 580350 580747 580752) (-363 "FILECAT.spad" 578858 578875 580330 580335) (-362 "FIELD.spad" 578264 578272 578760 578853) (-361 "FIELD.spad" 577756 577766 578254 578259) (-360 "FGROUP.spad" 576365 576375 577736 577751) (-359 "FGLMICPK.spad" 575152 575167 576355 576360) (-358 "FFX.spad" 574527 574542 574868 574961) (-357 "FFSLPE.spad" 574016 574037 574517 574522) (-356 "FFPOLY.spad" 565268 565279 574006 574011) (-355 "FFPOLY2.spad" 564328 564345 565258 565263) (-354 "FFP.spad" 563725 563745 564044 564137) (-353 "FF.spad" 563173 563189 563406 563499) (-352 "FFNBX.spad" 561685 561705 562889 562982) (-351 "FFNBP.spad" 560198 560215 561401 561494) (-350 "FFNB.spad" 558663 558684 559879 559972) (-349 "FFINTBAS.spad" 556077 556096 558653 558658) (-348 "FFIELDC.spad" 553652 553660 555979 556072) (-347 "FFIELDC.spad" 551313 551323 553642 553647) (-346 "FFHOM.spad" 550061 550078 551303 551308) (-345 "FFF.spad" 547496 547507 550051 550056) (-344 "FFCGX.spad" 546343 546363 547212 547305) (-343 "FFCGP.spad" 545232 545252 546059 546152) (-342 "FFCG.spad" 544024 544045 544913 545006) (-341 "FFCAT.spad" 537051 537073 543863 544019) (-340 "FFCAT.spad" 530157 530181 536971 536976) (-339 "FFCAT2.spad" 529902 529942 530147 530152) (-338 "FEXPR.spad" 521611 521657 529658 529697) (-337 "FEVALAB.spad" 521317 521327 521601 521606) (-336 "FEVALAB.spad" 520808 520820 521094 521099) (-335 "FDIV.spad" 520250 520274 520798 520803) (-334 "FDIVCAT.spad" 518292 518316 520240 520245) (-333 "FDIVCAT.spad" 516332 516358 518282 518287) (-332 "FDIV2.spad" 515986 516026 516322 516327) (-331 "FCPAK1.spad" 514539 514547 515976 515981) (-330 "FCOMP.spad" 513918 513928 514529 514534) (-329 "FC.spad" 503833 503841 513908 513913) (-328 "FAXF.spad" 496768 496782 503735 503828) (-327 "FAXF.spad" 489755 489771 496724 496729) (-326 "FARRAY.spad" 487901 487911 488938 488965) (-325 "FAMR.spad" 486021 486033 487799 487896) (-324 "FAMR.spad" 484125 484139 485905 485910) (-323 "FAMONOID.spad" 483775 483785 484079 484084) (-322 "FAMONC.spad" 481997 482009 483765 483770) (-321 "FAGROUP.spad" 481603 481613 481893 481920) (-320 "FACUTIL.spad" 479799 479816 481593 481598) (-319 "FACTFUNC.spad" 478975 478985 479789 479794) (-318 "EXPUPXS.spad" 475808 475831 477107 477256) (-317 "EXPRTUBE.spad" 473036 473044 475798 475803) (-316 "EXPRODE.spad" 469908 469924 473026 473031) (-315 "EXPR.spad" 465183 465193 465897 466304) (-314 "EXPR2UPS.spad" 461275 461288 465173 465178) (-313 "EXPR2.spad" 460978 460990 461265 461270) (-312 "EXPEXPAN.spad" 457916 457941 458550 458643) (-311 "EXIT.spad" 457587 457595 457906 457911) (-310 "EXITAST.spad" 457323 457331 457577 457582) (-309 "EVALCYC.spad" 456781 456795 457313 457318) (-308 "EVALAB.spad" 456345 456355 456771 456776) (-307 "EVALAB.spad" 455907 455919 456335 456340) (-306 "EUCDOM.spad" 453449 453457 455833 455902) (-305 "EUCDOM.spad" 451053 451063 453439 453444) (-304 "ESTOOLS.spad" 442893 442901 451043 451048) (-303 "ESTOOLS2.spad" 442494 442508 442883 442888) (-302 "ESTOOLS1.spad" 442179 442190 442484 442489) (-301 "ES.spad" 434726 434734 442169 442174) (-300 "ES.spad" 427179 427189 434624 434629) (-299 "ESCONT.spad" 423952 423960 427169 427174) (-298 "ESCONT1.spad" 423701 423713 423942 423947) (-297 "ES2.spad" 423196 423212 423691 423696) (-296 "ES1.spad" 422762 422778 423186 423191) (-295 "ERROR.spad" 420083 420091 422752 422757) (-294 "EQTBL.spad" 418555 418577 418764 418791) (-293 "EQ.spad" 413429 413439 416228 416340) (-292 "EQ2.spad" 413145 413157 413419 413424) (-291 "EP.spad" 409459 409469 413135 413140) (-290 "ENV.spad" 408161 408169 409449 409454) (-289 "ENTIRER.spad" 407829 407837 408105 408156) (-288 "EMR.spad" 407030 407071 407755 407824) (-287 "ELTAGG.spad" 405270 405289 407020 407025) (-286 "ELTAGG.spad" 403474 403495 405226 405231) (-285 "ELTAB.spad" 402921 402939 403464 403469) (-284 "ELFUTS.spad" 402300 402319 402911 402916) (-283 "ELEMFUN.spad" 401989 401997 402290 402295) (-282 "ELEMFUN.spad" 401676 401686 401979 401984) (-281 "ELAGG.spad" 399619 399629 401656 401671) (-280 "ELAGG.spad" 397499 397511 399538 399543) (-279 "ELABEXPR.spad" 396430 396438 397489 397494) (-278 "EFUPXS.spad" 393206 393236 396386 396391) (-277 "EFULS.spad" 390042 390065 393162 393167) (-276 "EFSTRUC.spad" 387997 388013 390032 390037) (-275 "EF.spad" 382763 382779 387987 387992) (-274 "EAB.spad" 381039 381047 382753 382758) (-273 "E04UCFA.spad" 380575 380583 381029 381034) (-272 "E04NAFA.spad" 380152 380160 380565 380570) (-271 "E04MBFA.spad" 379732 379740 380142 380147) (-270 "E04JAFA.spad" 379268 379276 379722 379727) (-269 "E04GCFA.spad" 378804 378812 379258 379263) (-268 "E04FDFA.spad" 378340 378348 378794 378799) (-267 "E04DGFA.spad" 377876 377884 378330 378335) (-266 "E04AGNT.spad" 373718 373726 377866 377871) (-265 "DVARCAT.spad" 370403 370413 373708 373713) (-264 "DVARCAT.spad" 367086 367098 370393 370398) (-263 "DSMP.spad" 364517 364531 364822 364949) (-262 "DROPT.spad" 358462 358470 364507 364512) (-261 "DROPT1.spad" 358125 358135 358452 358457) (-260 "DROPT0.spad" 352952 352960 358115 358120) (-259 "DRAWPT.spad" 351107 351115 352942 352947) (-258 "DRAW.spad" 343707 343720 351097 351102) (-257 "DRAWHACK.spad" 343015 343025 343697 343702) (-256 "DRAWCX.spad" 340457 340465 343005 343010) (-255 "DRAWCURV.spad" 339994 340009 340447 340452) (-254 "DRAWCFUN.spad" 329166 329174 339984 339989) (-253 "DQAGG.spad" 327334 327344 329134 329161) (-252 "DPOLCAT.spad" 322675 322691 327202 327329) (-251 "DPOLCAT.spad" 318102 318120 322631 322636) (-250 "DPMO.spad" 310328 310344 310466 310767) (-249 "DPMM.spad" 302567 302585 302692 302993) (-248 "DOMCTOR.spad" 302459 302467 302557 302562) (-247 "DOMAIN.spad" 301590 301598 302449 302454) (-246 "DMP.spad" 298812 298827 299384 299511) (-245 "DLP.spad" 298160 298170 298802 298807) (-244 "DLIST.spad" 296739 296749 297343 297370) (-243 "DLAGG.spad" 295150 295160 296729 296734) (-242 "DIVRING.spad" 294692 294700 295094 295145) (-241 "DIVRING.spad" 294278 294288 294682 294687) (-240 "DISPLAY.spad" 292458 292466 294268 294273) (-239 "DIRPROD.spad" 282038 282054 282678 282809) (-238 "DIRPROD2.spad" 280846 280864 282028 282033) (-237 "DIRPCAT.spad" 279788 279804 280710 280841) (-236 "DIRPCAT.spad" 278459 278477 279383 279388) (-235 "DIOSP.spad" 277284 277292 278449 278454) (-234 "DIOPS.spad" 276268 276278 277264 277279) (-233 "DIOPS.spad" 275226 275238 276224 276229) (-232 "DIFRING.spad" 274518 274526 275206 275221) (-231 "DIFRING.spad" 273818 273828 274508 274513) (-230 "DIFEXT.spad" 272977 272987 273798 273813) (-229 "DIFEXT.spad" 272053 272065 272876 272881) (-228 "DIAGG.spad" 271683 271693 272033 272048) (-227 "DIAGG.spad" 271321 271333 271673 271678) (-226 "DHMATRIX.spad" 269625 269635 270778 270805) (-225 "DFSFUN.spad" 263033 263041 269615 269620) (-224 "DFLOAT.spad" 259754 259762 262923 263028) (-223 "DFINTTLS.spad" 257963 257979 259744 259749) (-222 "DERHAM.spad" 255873 255905 257943 257958) (-221 "DEQUEUE.spad" 255191 255201 255480 255507) (-220 "DEGRED.spad" 254806 254820 255181 255186) (-219 "DEFINTRF.spad" 252331 252341 254796 254801) (-218 "DEFINTEF.spad" 250827 250843 252321 252326) (-217 "DEFAST.spad" 250195 250203 250817 250822) (-216 "DECIMAL.spad" 248301 248309 248662 248755) (-215 "DDFACT.spad" 246100 246117 248291 248296) (-214 "DBLRESP.spad" 245698 245722 246090 246095) (-213 "DBASE.spad" 244352 244362 245688 245693) (-212 "DATAARY.spad" 243814 243827 244342 244347) (-211 "D03FAFA.spad" 243642 243650 243804 243809) (-210 "D03EEFA.spad" 243462 243470 243632 243637) (-209 "D03AGNT.spad" 242542 242550 243452 243457) (-208 "D02EJFA.spad" 242004 242012 242532 242537) (-207 "D02CJFA.spad" 241482 241490 241994 241999) (-206 "D02BHFA.spad" 240972 240980 241472 241477) (-205 "D02BBFA.spad" 240462 240470 240962 240967) (-204 "D02AGNT.spad" 235266 235274 240452 240457) (-203 "D01WGTS.spad" 233585 233593 235256 235261) (-202 "D01TRNS.spad" 233562 233570 233575 233580) (-201 "D01GBFA.spad" 233084 233092 233552 233557) (-200 "D01FCFA.spad" 232606 232614 233074 233079) (-199 "D01ASFA.spad" 232074 232082 232596 232601) (-198 "D01AQFA.spad" 231520 231528 232064 232069) (-197 "D01APFA.spad" 230944 230952 231510 231515) (-196 "D01ANFA.spad" 230438 230446 230934 230939) (-195 "D01AMFA.spad" 229948 229956 230428 230433) (-194 "D01ALFA.spad" 229488 229496 229938 229943) (-193 "D01AKFA.spad" 229014 229022 229478 229483) (-192 "D01AJFA.spad" 228537 228545 229004 229009) (-191 "D01AGNT.spad" 224596 224604 228527 228532) (-190 "CYCLOTOM.spad" 224102 224110 224586 224591) (-189 "CYCLES.spad" 220934 220942 224092 224097) (-188 "CVMP.spad" 220351 220361 220924 220929) (-187 "CTRIGMNP.spad" 218841 218857 220341 220346) (-186 "CTOR.spad" 218536 218544 218831 218836) (-185 "CTORKIND.spad" 218139 218147 218526 218531) (-184 "CTORCAT.spad" 217594 217602 218129 218134) (-183 "CTORCAT.spad" 217047 217057 217584 217589) (-182 "CTORCALL.spad" 216627 216635 217037 217042) (-181 "CSTTOOLS.spad" 215870 215883 216617 216622) (-180 "CRFP.spad" 209574 209587 215860 215865) (-179 "CRCEAST.spad" 209294 209302 209564 209569) (-178 "CRAPACK.spad" 208337 208347 209284 209289) (-177 "CPMATCH.spad" 207837 207852 208262 208267) (-176 "CPIMA.spad" 207542 207561 207827 207832) (-175 "COORDSYS.spad" 202435 202445 207532 207537) (-174 "CONTOUR.spad" 201837 201845 202425 202430) (-173 "CONTFRAC.spad" 197449 197459 201739 201832) (-172 "CONDUIT.spad" 197207 197215 197439 197444) (-171 "COMRING.spad" 196881 196889 197145 197202) (-170 "COMPPROP.spad" 196395 196403 196871 196876) (-169 "COMPLPAT.spad" 196162 196177 196385 196390) (-168 "COMPLEX.spad" 190198 190208 190442 190691) (-167 "COMPLEX2.spad" 189911 189923 190188 190193) (-166 "COMPFACT.spad" 189513 189527 189901 189906) (-165 "COMPCAT.spad" 187651 187661 189259 189508) (-164 "COMPCAT.spad" 185470 185482 187080 187085) (-163 "COMMUPC.spad" 185216 185234 185460 185465) (-162 "COMMONOP.spad" 184749 184757 185206 185211) (-161 "COMM.spad" 184558 184566 184739 184744) (-160 "COMMAAST.spad" 184321 184329 184548 184553) (-159 "COMBOPC.spad" 183226 183234 184311 184316) (-158 "COMBINAT.spad" 181971 181981 183216 183221) (-157 "COMBF.spad" 179339 179355 181961 181966) (-156 "COLOR.spad" 178176 178184 179329 179334) (-155 "COLONAST.spad" 177842 177850 178166 178171) (-154 "CMPLXRT.spad" 177551 177568 177832 177837) (-153 "CLLCTAST.spad" 177213 177221 177541 177546) (-152 "CLIP.spad" 173305 173313 177203 177208) (-151 "CLIF.spad" 171944 171960 173261 173300) (-150 "CLAGG.spad" 168429 168439 171934 171939) (-149 "CLAGG.spad" 164785 164797 168292 168297) (-148 "CINTSLPE.spad" 164110 164123 164775 164780) (-147 "CHVAR.spad" 162188 162210 164100 164105) (-146 "CHARZ.spad" 162103 162111 162168 162183) (-145 "CHARPOL.spad" 161611 161621 162093 162098) (-144 "CHARNZ.spad" 161364 161372 161591 161606) (-143 "CHAR.spad" 159232 159240 161354 161359) (-142 "CFCAT.spad" 158548 158556 159222 159227) (-141 "CDEN.spad" 157706 157720 158538 158543) (-140 "CCLASS.spad" 155855 155863 157117 157156) (-139 "CATEGORY.spad" 154945 154953 155845 155850) (-138 "CATCTOR.spad" 154836 154844 154935 154940) (-137 "CATAST.spad" 154463 154471 154826 154831) (-136 "CASEAST.spad" 154177 154185 154453 154458) (-135 "CARTEN.spad" 149280 149304 154167 154172) (-134 "CARTEN2.spad" 148666 148693 149270 149275) (-133 "CARD.spad" 145955 145963 148640 148661) (-132 "CAPSLAST.spad" 145729 145737 145945 145950) (-131 "CACHSET.spad" 145351 145359 145719 145724) (-130 "CABMON.spad" 144904 144912 145341 145346) (-129 "BYTE.spad" 144325 144333 144894 144899) (-128 "BYTEBUF.spad" 142157 142165 143494 143521) (-127 "BTREE.spad" 141226 141236 141764 141791) (-126 "BTOURN.spad" 140229 140239 140833 140860) (-125 "BTCAT.spad" 139617 139627 140197 140224) (-124 "BTCAT.spad" 139025 139037 139607 139612) (-123 "BTAGG.spad" 138147 138155 138993 139020) (-122 "BTAGG.spad" 137289 137299 138137 138142) (-121 "BSTREE.spad" 136024 136034 136896 136923) (-120 "BRILL.spad" 134219 134230 136014 136019) (-119 "BRAGG.spad" 133143 133153 134209 134214) (-118 "BRAGG.spad" 132031 132043 133099 133104) (-117 "BPADICRT.spad" 130012 130024 130267 130360) (-116 "BPADIC.spad" 129676 129688 129938 130007) (-115 "BOUNDZRO.spad" 129332 129349 129666 129671) (-114 "BOP.spad" 124796 124804 129322 129327) (-113 "BOP1.spad" 122182 122192 124752 124757) (-112 "BOOLEAN.spad" 121506 121514 122172 122177) (-111 "BMODULE.spad" 121218 121230 121474 121501) (-110 "BITS.spad" 120637 120645 120854 120881) (-109 "BINDING.spad" 120056 120064 120627 120632) (-108 "BINARY.spad" 118167 118175 118523 118616) (-107 "BGAGG.spad" 117364 117374 118147 118162) (-106 "BGAGG.spad" 116569 116581 117354 117359) (-105 "BFUNCT.spad" 116133 116141 116549 116564) (-104 "BEZOUT.spad" 115267 115294 116083 116088) (-103 "BBTREE.spad" 112086 112096 114874 114901) (-102 "BASTYPE.spad" 111758 111766 112076 112081) (-101 "BASTYPE.spad" 111428 111438 111748 111753) (-100 "BALFACT.spad" 110867 110880 111418 111423) (-99 "AUTOMOR.spad" 110314 110323 110847 110862) (-98 "ATTREG.spad" 107033 107040 110066 110309) (-97 "ATTRBUT.spad" 103056 103063 107013 107028) (-96 "ATTRAST.spad" 102773 102780 103046 103051) (-95 "ATRIG.spad" 102243 102250 102763 102768) (-94 "ATRIG.spad" 101711 101720 102233 102238) (-93 "ASTCAT.spad" 101615 101622 101701 101706) (-92 "ASTCAT.spad" 101517 101526 101605 101610) (-91 "ASTACK.spad" 100850 100859 101124 101151) (-90 "ASSOCEQ.spad" 99650 99661 100806 100811) (-89 "ASP9.spad" 98731 98744 99640 99645) (-88 "ASP8.spad" 97774 97787 98721 98726) (-87 "ASP80.spad" 97096 97109 97764 97769) (-86 "ASP7.spad" 96256 96269 97086 97091) (-85 "ASP78.spad" 95707 95720 96246 96251) (-84 "ASP77.spad" 95076 95089 95697 95702) (-83 "ASP74.spad" 94168 94181 95066 95071) (-82 "ASP73.spad" 93439 93452 94158 94163) (-81 "ASP6.spad" 92306 92319 93429 93434) (-80 "ASP55.spad" 90815 90828 92296 92301) (-79 "ASP50.spad" 88632 88645 90805 90810) (-78 "ASP4.spad" 87927 87940 88622 88627) (-77 "ASP49.spad" 86926 86939 87917 87922) (-76 "ASP42.spad" 85333 85372 86916 86921) (-75 "ASP41.spad" 83912 83951 85323 85328) (-74 "ASP35.spad" 82900 82913 83902 83907) (-73 "ASP34.spad" 82201 82214 82890 82895) (-72 "ASP33.spad" 81761 81774 82191 82196) (-71 "ASP31.spad" 80901 80914 81751 81756) (-70 "ASP30.spad" 79793 79806 80891 80896) (-69 "ASP29.spad" 79259 79272 79783 79788) (-68 "ASP28.spad" 70532 70545 79249 79254) (-67 "ASP27.spad" 69429 69442 70522 70527) (-66 "ASP24.spad" 68516 68529 69419 69424) (-65 "ASP20.spad" 67980 67993 68506 68511) (-64 "ASP1.spad" 67361 67374 67970 67975) (-63 "ASP19.spad" 62047 62060 67351 67356) (-62 "ASP12.spad" 61461 61474 62037 62042) (-61 "ASP10.spad" 60732 60745 61451 61456) (-60 "ARRAY2.spad" 60092 60101 60339 60366) (-59 "ARRAY1.spad" 58927 58936 59275 59302) (-58 "ARRAY12.spad" 57596 57607 58917 58922) (-57 "ARR2CAT.spad" 53258 53279 57564 57591) (-56 "ARR2CAT.spad" 48940 48963 53248 53253) (-55 "ARITY.spad" 48508 48515 48930 48935) (-54 "APPRULE.spad" 47752 47774 48498 48503) (-53 "APPLYORE.spad" 47367 47380 47742 47747) (-52 "ANY.spad" 45709 45716 47357 47362) (-51 "ANY1.spad" 44780 44789 45699 45704) (-50 "ANTISYM.spad" 43219 43235 44760 44775) (-49 "ANON.spad" 42916 42923 43209 43214) (-48 "AN.spad" 41217 41224 42732 42825) (-47 "AMR.spad" 39396 39407 41115 41212) (-46 "AMR.spad" 37412 37425 39133 39138) (-45 "ALIST.spad" 34824 34845 35174 35201) (-44 "ALGSC.spad" 33947 33973 34696 34749) (-43 "ALGPKG.spad" 29656 29667 33903 33908) (-42 "ALGMFACT.spad" 28845 28859 29646 29651) (-41 "ALGMANIP.spad" 26265 26280 28642 28647) (-40 "ALGFF.spad" 24580 24607 24797 24953) (-39 "ALGFACT.spad" 23701 23711 24570 24575) (-38 "ALGEBRA.spad" 23534 23543 23657 23696) (-37 "ALGEBRA.spad" 23399 23410 23524 23529) (-36 "ALAGG.spad" 22909 22930 23367 23394) (-35 "AHYP.spad" 22290 22297 22899 22904) (-34 "AGG.spad" 20599 20606 22280 22285) (-33 "AGG.spad" 18872 18881 20555 20560) (-32 "AF.spad" 17297 17312 18807 18812) (-31 "ADDAST.spad" 16975 16982 17287 17292) (-30 "ACPLOT.spad" 15546 15553 16965 16970) (-29 "ACFS.spad" 13297 13306 15448 15541) (-28 "ACFS.spad" 11134 11145 13287 13292) (-27 "ACF.spad" 7736 7743 11036 11129) (-26 "ACF.spad" 4424 4433 7726 7731) (-25 "ABELSG.spad" 3965 3972 4414 4419) (-24 "ABELSG.spad" 3504 3513 3955 3960) (-23 "ABELMON.spad" 3047 3054 3494 3499) (-22 "ABELMON.spad" 2588 2597 3037 3042) (-21 "ABELGRP.spad" 2160 2167 2578 2583) (-20 "ABELGRP.spad" 1730 1739 2150 2155) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2282316 2282321 2282326 2282331) (-2 NIL 2282296 2282301 2282306 2282311) (-1 NIL 2282276 2282281 2282286 2282291) (0 NIL 2282256 2282261 2282266 2282271) (-1284 "ZMOD.spad" 2282065 2282078 2282194 2282251) (-1283 "ZLINDEP.spad" 2281109 2281120 2282055 2282060) (-1282 "ZDSOLVE.spad" 2270958 2270980 2281099 2281104) (-1281 "YSTREAM.spad" 2270451 2270462 2270948 2270953) (-1280 "XRPOLY.spad" 2269671 2269691 2270307 2270376) (-1279 "XPR.spad" 2267462 2267475 2269389 2269488) (-1278 "XPOLY.spad" 2267017 2267028 2267318 2267387) (-1277 "XPOLYC.spad" 2266334 2266350 2266943 2267012) (-1276 "XPBWPOLY.spad" 2264771 2264791 2266114 2266183) (-1275 "XF.spad" 2263232 2263247 2264673 2264766) (-1274 "XF.spad" 2261673 2261690 2263116 2263121) (-1273 "XFALG.spad" 2258697 2258713 2261599 2261668) (-1272 "XEXPPKG.spad" 2257948 2257974 2258687 2258692) (-1271 "XDPOLY.spad" 2257562 2257578 2257804 2257873) (-1270 "XALG.spad" 2257222 2257233 2257518 2257557) (-1269 "WUTSET.spad" 2253061 2253078 2256868 2256895) (-1268 "WP.spad" 2252260 2252304 2252919 2252986) (-1267 "WHILEAST.spad" 2252058 2252067 2252250 2252255) (-1266 "WHEREAST.spad" 2251729 2251738 2252048 2252053) (-1265 "WFFINTBS.spad" 2249292 2249314 2251719 2251724) (-1264 "WEIER.spad" 2247506 2247517 2249282 2249287) (-1263 "VSPACE.spad" 2247179 2247190 2247474 2247501) (-1262 "VSPACE.spad" 2246872 2246885 2247169 2247174) (-1261 "VOID.spad" 2246549 2246558 2246862 2246867) (-1260 "VIEW.spad" 2244171 2244180 2246539 2246544) (-1259 "VIEWDEF.spad" 2239368 2239377 2244161 2244166) (-1258 "VIEW3D.spad" 2223203 2223212 2239358 2239363) (-1257 "VIEW2D.spad" 2210940 2210949 2223193 2223198) (-1256 "VECTOR.spad" 2209615 2209626 2209866 2209893) (-1255 "VECTOR2.spad" 2208242 2208255 2209605 2209610) (-1254 "VECTCAT.spad" 2206142 2206153 2208210 2208237) (-1253 "VECTCAT.spad" 2203850 2203863 2205920 2205925) (-1252 "VARIABLE.spad" 2203630 2203645 2203840 2203845) (-1251 "UTYPE.spad" 2203274 2203283 2203620 2203625) (-1250 "UTSODETL.spad" 2202567 2202591 2203230 2203235) (-1249 "UTSODE.spad" 2200755 2200775 2202557 2202562) (-1248 "UTS.spad" 2195544 2195572 2199222 2199319) (-1247 "UTSCAT.spad" 2192995 2193011 2195442 2195539) (-1246 "UTSCAT.spad" 2190090 2190108 2192539 2192544) (-1245 "UTS2.spad" 2189683 2189718 2190080 2190085) (-1244 "URAGG.spad" 2184315 2184326 2189673 2189678) (-1243 "URAGG.spad" 2178911 2178924 2184271 2184276) (-1242 "UPXSSING.spad" 2176554 2176580 2177992 2178125) (-1241 "UPXS.spad" 2173702 2173730 2174686 2174835) (-1240 "UPXSCONS.spad" 2171459 2171479 2171834 2171983) (-1239 "UPXSCCA.spad" 2170024 2170044 2171305 2171454) (-1238 "UPXSCCA.spad" 2168731 2168753 2170014 2170019) (-1237 "UPXSCAT.spad" 2167312 2167328 2168577 2168726) (-1236 "UPXS2.spad" 2166853 2166906 2167302 2167307) (-1235 "UPSQFREE.spad" 2165265 2165279 2166843 2166848) (-1234 "UPSCAT.spad" 2162858 2162882 2165163 2165260) (-1233 "UPSCAT.spad" 2160157 2160183 2162464 2162469) (-1232 "UPOLYC.spad" 2155135 2155146 2159999 2160152) (-1231 "UPOLYC.spad" 2150005 2150018 2154871 2154876) (-1230 "UPOLYC2.spad" 2149474 2149493 2149995 2150000) (-1229 "UP.spad" 2146631 2146646 2147024 2147177) (-1228 "UPMP.spad" 2145521 2145534 2146621 2146626) (-1227 "UPDIVP.spad" 2145084 2145098 2145511 2145516) (-1226 "UPDECOMP.spad" 2143321 2143335 2145074 2145079) (-1225 "UPCDEN.spad" 2142528 2142544 2143311 2143316) (-1224 "UP2.spad" 2141890 2141911 2142518 2142523) (-1223 "UNISEG.spad" 2141243 2141254 2141809 2141814) (-1222 "UNISEG2.spad" 2140736 2140749 2141199 2141204) (-1221 "UNIFACT.spad" 2139837 2139849 2140726 2140731) (-1220 "ULS.spad" 2130389 2130417 2131482 2131911) (-1219 "ULSCONS.spad" 2122783 2122803 2123155 2123304) (-1218 "ULSCCAT.spad" 2120512 2120532 2122629 2122778) (-1217 "ULSCCAT.spad" 2118349 2118371 2120468 2120473) (-1216 "ULSCAT.spad" 2116565 2116581 2118195 2118344) (-1215 "ULS2.spad" 2116077 2116130 2116555 2116560) (-1214 "UINT8.spad" 2115954 2115963 2116067 2116072) (-1213 "UINT32.spad" 2115830 2115839 2115944 2115949) (-1212 "UINT16.spad" 2115706 2115715 2115820 2115825) (-1211 "UFD.spad" 2114771 2114780 2115632 2115701) (-1210 "UFD.spad" 2113898 2113909 2114761 2114766) (-1209 "UDVO.spad" 2112745 2112754 2113888 2113893) (-1208 "UDPO.spad" 2110172 2110183 2112701 2112706) (-1207 "TYPE.spad" 2110104 2110113 2110162 2110167) (-1206 "TYPEAST.spad" 2110023 2110032 2110094 2110099) (-1205 "TWOFACT.spad" 2108673 2108688 2110013 2110018) (-1204 "TUPLE.spad" 2108157 2108168 2108572 2108577) (-1203 "TUBETOOL.spad" 2104994 2105003 2108147 2108152) (-1202 "TUBE.spad" 2103635 2103652 2104984 2104989) (-1201 "TS.spad" 2102224 2102240 2103200 2103297) (-1200 "TSETCAT.spad" 2089351 2089368 2102192 2102219) (-1199 "TSETCAT.spad" 2076464 2076483 2089307 2089312) (-1198 "TRMANIP.spad" 2070830 2070847 2076170 2076175) (-1197 "TRIMAT.spad" 2069789 2069814 2070820 2070825) (-1196 "TRIGMNIP.spad" 2068306 2068323 2069779 2069784) (-1195 "TRIGCAT.spad" 2067818 2067827 2068296 2068301) (-1194 "TRIGCAT.spad" 2067328 2067339 2067808 2067813) (-1193 "TREE.spad" 2065899 2065910 2066935 2066962) (-1192 "TRANFUN.spad" 2065730 2065739 2065889 2065894) (-1191 "TRANFUN.spad" 2065559 2065570 2065720 2065725) (-1190 "TOPSP.spad" 2065233 2065242 2065549 2065554) (-1189 "TOOLSIGN.spad" 2064896 2064907 2065223 2065228) (-1188 "TEXTFILE.spad" 2063453 2063462 2064886 2064891) (-1187 "TEX.spad" 2060585 2060594 2063443 2063448) (-1186 "TEX1.spad" 2060141 2060152 2060575 2060580) (-1185 "TEMUTL.spad" 2059696 2059705 2060131 2060136) (-1184 "TBCMPPK.spad" 2057789 2057812 2059686 2059691) (-1183 "TBAGG.spad" 2056825 2056848 2057769 2057784) (-1182 "TBAGG.spad" 2055869 2055894 2056815 2056820) (-1181 "TANEXP.spad" 2055245 2055256 2055859 2055864) (-1180 "TABLE.spad" 2053656 2053679 2053926 2053953) (-1179 "TABLEAU.spad" 2053137 2053148 2053646 2053651) (-1178 "TABLBUMP.spad" 2049920 2049931 2053127 2053132) (-1177 "SYSTEM.spad" 2049194 2049203 2049910 2049915) (-1176 "SYSSOLP.spad" 2046667 2046678 2049184 2049189) (-1175 "SYSNNI.spad" 2045843 2045854 2046657 2046662) (-1174 "SYSINT.spad" 2045316 2045327 2045833 2045838) (-1173 "SYNTAX.spad" 2041586 2041595 2045306 2045311) (-1172 "SYMTAB.spad" 2039642 2039651 2041576 2041581) (-1171 "SYMS.spad" 2035627 2035636 2039632 2039637) (-1170 "SYMPOLY.spad" 2034634 2034645 2034716 2034843) (-1169 "SYMFUNC.spad" 2034109 2034120 2034624 2034629) (-1168 "SYMBOL.spad" 2031536 2031545 2034099 2034104) (-1167 "SWITCH.spad" 2028293 2028302 2031526 2031531) (-1166 "SUTS.spad" 2025192 2025220 2026760 2026857) (-1165 "SUPXS.spad" 2022327 2022355 2023324 2023473) (-1164 "SUP.spad" 2019096 2019107 2019877 2020030) (-1163 "SUPFRACF.spad" 2018201 2018219 2019086 2019091) (-1162 "SUP2.spad" 2017591 2017604 2018191 2018196) (-1161 "SUMRF.spad" 2016557 2016568 2017581 2017586) (-1160 "SUMFS.spad" 2016190 2016207 2016547 2016552) (-1159 "SULS.spad" 2006729 2006757 2007835 2008264) (-1158 "SUCHTAST.spad" 2006498 2006507 2006719 2006724) (-1157 "SUCH.spad" 2006178 2006193 2006488 2006493) (-1156 "SUBSPACE.spad" 1998185 1998200 2006168 2006173) (-1155 "SUBRESP.spad" 1997345 1997359 1998141 1998146) (-1154 "STTF.spad" 1993444 1993460 1997335 1997340) (-1153 "STTFNC.spad" 1989912 1989928 1993434 1993439) (-1152 "STTAYLOR.spad" 1982310 1982321 1989793 1989798) (-1151 "STRTBL.spad" 1980815 1980832 1980964 1980991) (-1150 "STRING.spad" 1980224 1980233 1980238 1980265) (-1149 "STRICAT.spad" 1980012 1980021 1980192 1980219) (-1148 "STREAM.spad" 1976870 1976881 1979537 1979552) (-1147 "STREAM3.spad" 1976415 1976430 1976860 1976865) (-1146 "STREAM2.spad" 1975483 1975496 1976405 1976410) (-1145 "STREAM1.spad" 1975187 1975198 1975473 1975478) (-1144 "STINPROD.spad" 1974093 1974109 1975177 1975182) (-1143 "STEP.spad" 1973294 1973303 1974083 1974088) (-1142 "STBL.spad" 1971820 1971848 1971987 1972002) (-1141 "STAGG.spad" 1970895 1970906 1971810 1971815) (-1140 "STAGG.spad" 1969968 1969981 1970885 1970890) (-1139 "STACK.spad" 1969319 1969330 1969575 1969602) (-1138 "SREGSET.spad" 1967023 1967040 1968965 1968992) (-1137 "SRDCMPK.spad" 1965568 1965588 1967013 1967018) (-1136 "SRAGG.spad" 1960665 1960674 1965536 1965563) (-1135 "SRAGG.spad" 1955782 1955793 1960655 1960660) (-1134 "SQMATRIX.spad" 1953398 1953416 1954314 1954401) (-1133 "SPLTREE.spad" 1947950 1947963 1952834 1952861) (-1132 "SPLNODE.spad" 1944538 1944551 1947940 1947945) (-1131 "SPFCAT.spad" 1943315 1943324 1944528 1944533) (-1130 "SPECOUT.spad" 1941865 1941874 1943305 1943310) (-1129 "SPADXPT.spad" 1934004 1934013 1941855 1941860) (-1128 "spad-parser.spad" 1933469 1933478 1933994 1933999) (-1127 "SPADAST.spad" 1933170 1933179 1933459 1933464) (-1126 "SPACEC.spad" 1917183 1917194 1933160 1933165) (-1125 "SPACE3.spad" 1916959 1916970 1917173 1917178) (-1124 "SORTPAK.spad" 1916504 1916517 1916915 1916920) (-1123 "SOLVETRA.spad" 1914261 1914272 1916494 1916499) (-1122 "SOLVESER.spad" 1912781 1912792 1914251 1914256) (-1121 "SOLVERAD.spad" 1908791 1908802 1912771 1912776) (-1120 "SOLVEFOR.spad" 1907211 1907229 1908781 1908786) (-1119 "SNTSCAT.spad" 1906811 1906828 1907179 1907206) (-1118 "SMTS.spad" 1905071 1905097 1906376 1906473) (-1117 "SMP.spad" 1902510 1902530 1902900 1903027) (-1116 "SMITH.spad" 1901353 1901378 1902500 1902505) (-1115 "SMATCAT.spad" 1899463 1899493 1901297 1901348) (-1114 "SMATCAT.spad" 1897505 1897537 1899341 1899346) (-1113 "SKAGG.spad" 1896466 1896477 1897473 1897500) (-1112 "SINT.spad" 1895292 1895301 1896332 1896461) (-1111 "SIMPAN.spad" 1895020 1895029 1895282 1895287) (-1110 "SIG.spad" 1894348 1894357 1895010 1895015) (-1109 "SIGNRF.spad" 1893456 1893467 1894338 1894343) (-1108 "SIGNEF.spad" 1892725 1892742 1893446 1893451) (-1107 "SIGAST.spad" 1892106 1892115 1892715 1892720) (-1106 "SHP.spad" 1890024 1890039 1892062 1892067) (-1105 "SHDP.spad" 1879735 1879762 1880244 1880375) (-1104 "SGROUP.spad" 1879343 1879352 1879725 1879730) (-1103 "SGROUP.spad" 1878949 1878960 1879333 1879338) (-1102 "SGCF.spad" 1871830 1871839 1878939 1878944) (-1101 "SFRTCAT.spad" 1870758 1870775 1871798 1871825) (-1100 "SFRGCD.spad" 1869821 1869841 1870748 1870753) (-1099 "SFQCMPK.spad" 1864458 1864478 1869811 1869816) (-1098 "SFORT.spad" 1863893 1863907 1864448 1864453) (-1097 "SEXOF.spad" 1863736 1863776 1863883 1863888) (-1096 "SEX.spad" 1863628 1863637 1863726 1863731) (-1095 "SEXCAT.spad" 1861179 1861219 1863618 1863623) (-1094 "SET.spad" 1859479 1859490 1860600 1860639) (-1093 "SETMN.spad" 1857913 1857930 1859469 1859474) (-1092 "SETCAT.spad" 1857398 1857407 1857903 1857908) (-1091 "SETCAT.spad" 1856881 1856892 1857388 1857393) (-1090 "SETAGG.spad" 1853402 1853413 1856861 1856876) (-1089 "SETAGG.spad" 1849931 1849944 1853392 1853397) (-1088 "SEQAST.spad" 1849634 1849643 1849921 1849926) (-1087 "SEGXCAT.spad" 1848756 1848769 1849624 1849629) (-1086 "SEG.spad" 1848569 1848580 1848675 1848680) (-1085 "SEGCAT.spad" 1847476 1847487 1848559 1848564) (-1084 "SEGBIND.spad" 1846548 1846559 1847431 1847436) (-1083 "SEGBIND2.spad" 1846244 1846257 1846538 1846543) (-1082 "SEGAST.spad" 1845958 1845967 1846234 1846239) (-1081 "SEG2.spad" 1845383 1845396 1845914 1845919) (-1080 "SDVAR.spad" 1844659 1844670 1845373 1845378) (-1079 "SDPOL.spad" 1842049 1842060 1842340 1842467) (-1078 "SCPKG.spad" 1840128 1840139 1842039 1842044) (-1077 "SCOPE.spad" 1839273 1839282 1840118 1840123) (-1076 "SCACHE.spad" 1837955 1837966 1839263 1839268) (-1075 "SASTCAT.spad" 1837864 1837873 1837945 1837950) (-1074 "SAOS.spad" 1837736 1837745 1837854 1837859) (-1073 "SAERFFC.spad" 1837449 1837469 1837726 1837731) (-1072 "SAE.spad" 1835624 1835640 1836235 1836370) (-1071 "SAEFACT.spad" 1835325 1835345 1835614 1835619) (-1070 "RURPK.spad" 1832966 1832982 1835315 1835320) (-1069 "RULESET.spad" 1832407 1832431 1832956 1832961) (-1068 "RULE.spad" 1830611 1830635 1832397 1832402) (-1067 "RULECOLD.spad" 1830463 1830476 1830601 1830606) (-1066 "RSTRCAST.spad" 1830180 1830189 1830453 1830458) (-1065 "RSETGCD.spad" 1826558 1826578 1830170 1830175) (-1064 "RSETCAT.spad" 1816342 1816359 1826526 1826553) (-1063 "RSETCAT.spad" 1806146 1806165 1816332 1816337) (-1062 "RSDCMPK.spad" 1804598 1804618 1806136 1806141) (-1061 "RRCC.spad" 1802982 1803012 1804588 1804593) (-1060 "RRCC.spad" 1801364 1801396 1802972 1802977) (-1059 "RPTAST.spad" 1801066 1801075 1801354 1801359) (-1058 "RPOLCAT.spad" 1780426 1780441 1800934 1801061) (-1057 "RPOLCAT.spad" 1759500 1759517 1780010 1780015) (-1056 "ROUTINE.spad" 1755363 1755372 1758147 1758174) (-1055 "ROMAN.spad" 1754691 1754700 1755229 1755358) (-1054 "ROIRC.spad" 1753771 1753803 1754681 1754686) (-1053 "RNS.spad" 1752674 1752683 1753673 1753766) (-1052 "RNS.spad" 1751663 1751674 1752664 1752669) (-1051 "RNG.spad" 1751398 1751407 1751653 1751658) (-1050 "RMODULE.spad" 1751036 1751047 1751388 1751393) (-1049 "RMCAT2.spad" 1750444 1750501 1751026 1751031) (-1048 "RMATRIX.spad" 1749268 1749287 1749611 1749650) (-1047 "RMATCAT.spad" 1744801 1744832 1749224 1749263) (-1046 "RMATCAT.spad" 1740224 1740257 1744649 1744654) (-1045 "RINTERP.spad" 1740112 1740132 1740214 1740219) (-1044 "RING.spad" 1739582 1739591 1740092 1740107) (-1043 "RING.spad" 1739060 1739071 1739572 1739577) (-1042 "RIDIST.spad" 1738444 1738453 1739050 1739055) (-1041 "RGCHAIN.spad" 1737023 1737039 1737929 1737956) (-1040 "RGBCSPC.spad" 1736804 1736816 1737013 1737018) (-1039 "RGBCMDL.spad" 1736334 1736346 1736794 1736799) (-1038 "RF.spad" 1733948 1733959 1736324 1736329) (-1037 "RFFACTOR.spad" 1733410 1733421 1733938 1733943) (-1036 "RFFACT.spad" 1733145 1733157 1733400 1733405) (-1035 "RFDIST.spad" 1732133 1732142 1733135 1733140) (-1034 "RETSOL.spad" 1731550 1731563 1732123 1732128) (-1033 "RETRACT.spad" 1730978 1730989 1731540 1731545) (-1032 "RETRACT.spad" 1730404 1730417 1730968 1730973) (-1031 "RETAST.spad" 1730216 1730225 1730394 1730399) (-1030 "RESULT.spad" 1728276 1728285 1728863 1728890) (-1029 "RESRING.spad" 1727623 1727670 1728214 1728271) (-1028 "RESLATC.spad" 1726947 1726958 1727613 1727618) (-1027 "REPSQ.spad" 1726676 1726687 1726937 1726942) (-1026 "REP.spad" 1724228 1724237 1726666 1726671) (-1025 "REPDB.spad" 1723933 1723944 1724218 1724223) (-1024 "REP2.spad" 1713505 1713516 1723775 1723780) (-1023 "REP1.spad" 1707495 1707506 1713455 1713460) (-1022 "REGSET.spad" 1705292 1705309 1707141 1707168) (-1021 "REF.spad" 1704621 1704632 1705247 1705252) (-1020 "REDORDER.spad" 1703797 1703814 1704611 1704616) (-1019 "RECLOS.spad" 1702580 1702600 1703284 1703377) (-1018 "REALSOLV.spad" 1701712 1701721 1702570 1702575) (-1017 "REAL.spad" 1701584 1701593 1701702 1701707) (-1016 "REAL0Q.spad" 1698866 1698881 1701574 1701579) (-1015 "REAL0.spad" 1695694 1695709 1698856 1698861) (-1014 "RDUCEAST.spad" 1695415 1695424 1695684 1695689) (-1013 "RDIV.spad" 1695066 1695091 1695405 1695410) (-1012 "RDIST.spad" 1694629 1694640 1695056 1695061) (-1011 "RDETRS.spad" 1693425 1693443 1694619 1694624) (-1010 "RDETR.spad" 1691532 1691550 1693415 1693420) (-1009 "RDEEFS.spad" 1690605 1690622 1691522 1691527) (-1008 "RDEEF.spad" 1689601 1689618 1690595 1690600) (-1007 "RCFIELD.spad" 1686787 1686796 1689503 1689596) (-1006 "RCFIELD.spad" 1684059 1684070 1686777 1686782) (-1005 "RCAGG.spad" 1681971 1681982 1684049 1684054) (-1004 "RCAGG.spad" 1679810 1679823 1681890 1681895) (-1003 "RATRET.spad" 1679170 1679181 1679800 1679805) (-1002 "RATFACT.spad" 1678862 1678874 1679160 1679165) (-1001 "RANDSRC.spad" 1678181 1678190 1678852 1678857) (-1000 "RADUTIL.spad" 1677935 1677944 1678171 1678176) (-999 "RADIX.spad" 1674837 1674850 1676402 1676495) (-998 "RADFF.spad" 1673251 1673287 1673369 1673525) (-997 "RADCAT.spad" 1672845 1672853 1673241 1673246) (-996 "RADCAT.spad" 1672437 1672447 1672835 1672840) (-995 "QUEUE.spad" 1671780 1671790 1672044 1672071) (-994 "QUAT.spad" 1670362 1670372 1670704 1670769) (-993 "QUATCT2.spad" 1669981 1669999 1670352 1670357) (-992 "QUATCAT.spad" 1668146 1668156 1669911 1669976) (-991 "QUATCAT.spad" 1666062 1666074 1667829 1667834) (-990 "QUAGG.spad" 1664888 1664898 1666030 1666057) (-989 "QQUTAST.spad" 1664657 1664665 1664878 1664883) (-988 "QFORM.spad" 1664120 1664134 1664647 1664652) (-987 "QFCAT.spad" 1662823 1662833 1664022 1664115) (-986 "QFCAT.spad" 1661117 1661129 1662318 1662323) (-985 "QFCAT2.spad" 1660808 1660824 1661107 1661112) (-984 "QEQUAT.spad" 1660365 1660373 1660798 1660803) (-983 "QCMPACK.spad" 1655112 1655131 1660355 1660360) (-982 "QALGSET.spad" 1651187 1651219 1655026 1655031) (-981 "QALGSET2.spad" 1649183 1649201 1651177 1651182) (-980 "PWFFINTB.spad" 1646493 1646514 1649173 1649178) (-979 "PUSHVAR.spad" 1645822 1645841 1646483 1646488) (-978 "PTRANFN.spad" 1641948 1641958 1645812 1645817) (-977 "PTPACK.spad" 1639036 1639046 1641938 1641943) (-976 "PTFUNC2.spad" 1638857 1638871 1639026 1639031) (-975 "PTCAT.spad" 1638106 1638116 1638825 1638852) (-974 "PSQFR.spad" 1637413 1637437 1638096 1638101) (-973 "PSEUDLIN.spad" 1636271 1636281 1637403 1637408) (-972 "PSETPK.spad" 1621704 1621720 1636149 1636154) (-971 "PSETCAT.spad" 1615624 1615647 1621684 1621699) (-970 "PSETCAT.spad" 1609518 1609543 1615580 1615585) (-969 "PSCURVE.spad" 1608501 1608509 1609508 1609513) (-968 "PSCAT.spad" 1607268 1607297 1608399 1608496) (-967 "PSCAT.spad" 1606125 1606156 1607258 1607263) (-966 "PRTITION.spad" 1605070 1605078 1606115 1606120) (-965 "PRTDAST.spad" 1604789 1604797 1605060 1605065) (-964 "PRS.spad" 1594351 1594368 1604745 1604750) (-963 "PRQAGG.spad" 1593782 1593792 1594319 1594346) (-962 "PROPLOG.spad" 1593185 1593193 1593772 1593777) (-961 "PROPFRML.spad" 1591103 1591114 1593175 1593180) (-960 "PROPERTY.spad" 1590597 1590605 1591093 1591098) (-959 "PRODUCT.spad" 1588277 1588289 1588563 1588618) (-958 "PR.spad" 1586663 1586675 1587368 1587495) (-957 "PRINT.spad" 1586415 1586423 1586653 1586658) (-956 "PRIMES.spad" 1584666 1584676 1586405 1586410) (-955 "PRIMELT.spad" 1582647 1582661 1584656 1584661) (-954 "PRIMCAT.spad" 1582270 1582278 1582637 1582642) (-953 "PRIMARR.spad" 1581275 1581285 1581453 1581480) (-952 "PRIMARR2.spad" 1579998 1580010 1581265 1581270) (-951 "PREASSOC.spad" 1579370 1579382 1579988 1579993) (-950 "PPCURVE.spad" 1578507 1578515 1579360 1579365) (-949 "PORTNUM.spad" 1578282 1578290 1578497 1578502) (-948 "POLYROOT.spad" 1577111 1577133 1578238 1578243) (-947 "POLY.spad" 1574408 1574418 1574925 1575052) (-946 "POLYLIFT.spad" 1573669 1573692 1574398 1574403) (-945 "POLYCATQ.spad" 1571771 1571793 1573659 1573664) (-944 "POLYCAT.spad" 1565177 1565198 1571639 1571766) (-943 "POLYCAT.spad" 1557885 1557908 1564349 1564354) (-942 "POLY2UP.spad" 1557333 1557347 1557875 1557880) (-941 "POLY2.spad" 1556928 1556940 1557323 1557328) (-940 "POLUTIL.spad" 1555869 1555898 1556884 1556889) (-939 "POLTOPOL.spad" 1554617 1554632 1555859 1555864) (-938 "POINT.spad" 1553456 1553466 1553543 1553570) (-937 "PNTHEORY.spad" 1550122 1550130 1553446 1553451) (-936 "PMTOOLS.spad" 1548879 1548893 1550112 1550117) (-935 "PMSYM.spad" 1548424 1548434 1548869 1548874) (-934 "PMQFCAT.spad" 1548011 1548025 1548414 1548419) (-933 "PMPRED.spad" 1547480 1547494 1548001 1548006) (-932 "PMPREDFS.spad" 1546924 1546946 1547470 1547475) (-931 "PMPLCAT.spad" 1545994 1546012 1546856 1546861) (-930 "PMLSAGG.spad" 1545575 1545589 1545984 1545989) (-929 "PMKERNEL.spad" 1545142 1545154 1545565 1545570) (-928 "PMINS.spad" 1544718 1544728 1545132 1545137) (-927 "PMFS.spad" 1544291 1544309 1544708 1544713) (-926 "PMDOWN.spad" 1543577 1543591 1544281 1544286) (-925 "PMASS.spad" 1542589 1542597 1543567 1543572) (-924 "PMASSFS.spad" 1541558 1541574 1542579 1542584) (-923 "PLOTTOOL.spad" 1541338 1541346 1541548 1541553) (-922 "PLOT.spad" 1536169 1536177 1541328 1541333) (-921 "PLOT3D.spad" 1532589 1532597 1536159 1536164) (-920 "PLOT1.spad" 1531730 1531740 1532579 1532584) (-919 "PLEQN.spad" 1518946 1518973 1531720 1531725) (-918 "PINTERP.spad" 1518562 1518581 1518936 1518941) (-917 "PINTERPA.spad" 1518344 1518360 1518552 1518557) (-916 "PI.spad" 1517951 1517959 1518318 1518339) (-915 "PID.spad" 1516907 1516915 1517877 1517946) (-914 "PICOERCE.spad" 1516564 1516574 1516897 1516902) (-913 "PGROEB.spad" 1515161 1515175 1516554 1516559) (-912 "PGE.spad" 1506414 1506422 1515151 1515156) (-911 "PGCD.spad" 1505296 1505313 1506404 1506409) (-910 "PFRPAC.spad" 1504439 1504449 1505286 1505291) (-909 "PFR.spad" 1501096 1501106 1504341 1504434) (-908 "PFOTOOLS.spad" 1500354 1500370 1501086 1501091) (-907 "PFOQ.spad" 1499724 1499742 1500344 1500349) (-906 "PFO.spad" 1499143 1499170 1499714 1499719) (-905 "PF.spad" 1498717 1498729 1498948 1499041) (-904 "PFECAT.spad" 1496383 1496391 1498643 1498712) (-903 "PFECAT.spad" 1494077 1494087 1496339 1496344) (-902 "PFBRU.spad" 1491947 1491959 1494067 1494072) (-901 "PFBR.spad" 1489485 1489508 1491937 1491942) (-900 "PERM.spad" 1485166 1485176 1489315 1489330) (-899 "PERMGRP.spad" 1479902 1479912 1485156 1485161) (-898 "PERMCAT.spad" 1478454 1478464 1479882 1479897) (-897 "PERMAN.spad" 1476986 1477000 1478444 1478449) (-896 "PENDTREE.spad" 1476325 1476335 1476615 1476620) (-895 "PDRING.spad" 1474816 1474826 1476305 1476320) (-894 "PDRING.spad" 1473315 1473327 1474806 1474811) (-893 "PDEPROB.spad" 1472330 1472338 1473305 1473310) (-892 "PDEPACK.spad" 1466332 1466340 1472320 1472325) (-891 "PDECOMP.spad" 1465794 1465811 1466322 1466327) (-890 "PDECAT.spad" 1464148 1464156 1465784 1465789) (-889 "PCOMP.spad" 1463999 1464012 1464138 1464143) (-888 "PBWLB.spad" 1462581 1462598 1463989 1463994) (-887 "PATTERN.spad" 1457012 1457022 1462571 1462576) (-886 "PATTERN2.spad" 1456748 1456760 1457002 1457007) (-885 "PATTERN1.spad" 1455050 1455066 1456738 1456743) (-884 "PATRES.spad" 1452597 1452609 1455040 1455045) (-883 "PATRES2.spad" 1452259 1452273 1452587 1452592) (-882 "PATMATCH.spad" 1450416 1450447 1451967 1451972) (-881 "PATMAB.spad" 1449841 1449851 1450406 1450411) (-880 "PATLRES.spad" 1448925 1448939 1449831 1449836) (-879 "PATAB.spad" 1448689 1448699 1448915 1448920) (-878 "PARTPERM.spad" 1446051 1446059 1448679 1448684) (-877 "PARSURF.spad" 1445479 1445507 1446041 1446046) (-876 "PARSU2.spad" 1445274 1445290 1445469 1445474) (-875 "script-parser.spad" 1444794 1444802 1445264 1445269) (-874 "PARSCURV.spad" 1444222 1444250 1444784 1444789) (-873 "PARSC2.spad" 1444011 1444027 1444212 1444217) (-872 "PARPCURV.spad" 1443469 1443497 1444001 1444006) (-871 "PARPC2.spad" 1443258 1443274 1443459 1443464) (-870 "PAN2EXPR.spad" 1442670 1442678 1443248 1443253) (-869 "PALETTE.spad" 1441640 1441648 1442660 1442665) (-868 "PAIR.spad" 1440623 1440636 1441228 1441233) (-867 "PADICRC.spad" 1437953 1437971 1439128 1439221) (-866 "PADICRAT.spad" 1435968 1435980 1436189 1436282) (-865 "PADIC.spad" 1435663 1435675 1435894 1435963) (-864 "PADICCT.spad" 1434204 1434216 1435589 1435658) (-863 "PADEPAC.spad" 1432883 1432902 1434194 1434199) (-862 "PADE.spad" 1431623 1431639 1432873 1432878) (-861 "OWP.spad" 1430863 1430893 1431481 1431548) (-860 "OVERSET.spad" 1430436 1430444 1430853 1430858) (-859 "OVAR.spad" 1430217 1430240 1430426 1430431) (-858 "OUT.spad" 1429301 1429309 1430207 1430212) (-857 "OUTFORM.spad" 1418597 1418605 1429291 1429296) (-856 "OUTBFILE.spad" 1418015 1418023 1418587 1418592) (-855 "OUTBCON.spad" 1417013 1417021 1418005 1418010) (-854 "OUTBCON.spad" 1416009 1416019 1417003 1417008) (-853 "OSI.spad" 1415484 1415492 1415999 1416004) (-852 "OSGROUP.spad" 1415402 1415410 1415474 1415479) (-851 "ORTHPOL.spad" 1413863 1413873 1415319 1415324) (-850 "OREUP.spad" 1413316 1413344 1413543 1413582) (-849 "ORESUP.spad" 1412615 1412639 1412996 1413035) (-848 "OREPCTO.spad" 1410434 1410446 1412535 1412540) (-847 "OREPCAT.spad" 1404491 1404501 1410390 1410429) (-846 "OREPCAT.spad" 1398438 1398450 1404339 1404344) (-845 "ORDSET.spad" 1397604 1397612 1398428 1398433) (-844 "ORDSET.spad" 1396768 1396778 1397594 1397599) (-843 "ORDRING.spad" 1396158 1396166 1396748 1396763) (-842 "ORDRING.spad" 1395556 1395566 1396148 1396153) (-841 "ORDMON.spad" 1395411 1395419 1395546 1395551) (-840 "ORDFUNS.spad" 1394537 1394553 1395401 1395406) (-839 "ORDFIN.spad" 1394357 1394365 1394527 1394532) (-838 "ORDCOMP.spad" 1392822 1392832 1393904 1393933) (-837 "ORDCOMP2.spad" 1392107 1392119 1392812 1392817) (-836 "OPTPROB.spad" 1390745 1390753 1392097 1392102) (-835 "OPTPACK.spad" 1383130 1383138 1390735 1390740) (-834 "OPTCAT.spad" 1380805 1380813 1383120 1383125) (-833 "OPSIG.spad" 1380457 1380465 1380795 1380800) (-832 "OPQUERY.spad" 1380006 1380014 1380447 1380452) (-831 "OP.spad" 1379748 1379758 1379828 1379895) (-830 "OPERCAT.spad" 1379336 1379346 1379738 1379743) (-829 "OPERCAT.spad" 1378922 1378934 1379326 1379331) (-828 "ONECOMP.spad" 1377667 1377677 1378469 1378498) (-827 "ONECOMP2.spad" 1377085 1377097 1377657 1377662) (-826 "OMSERVER.spad" 1376087 1376095 1377075 1377080) (-825 "OMSAGG.spad" 1375875 1375885 1376043 1376082) (-824 "OMPKG.spad" 1374487 1374495 1375865 1375870) (-823 "OM.spad" 1373452 1373460 1374477 1374482) (-822 "OMLO.spad" 1372877 1372889 1373338 1373377) (-821 "OMEXPR.spad" 1372711 1372721 1372867 1372872) (-820 "OMERR.spad" 1372254 1372262 1372701 1372706) (-819 "OMERRK.spad" 1371288 1371296 1372244 1372249) (-818 "OMENC.spad" 1370632 1370640 1371278 1371283) (-817 "OMDEV.spad" 1364921 1364929 1370622 1370627) (-816 "OMCONN.spad" 1364330 1364338 1364911 1364916) (-815 "OINTDOM.spad" 1364093 1364101 1364256 1364325) (-814 "OFMONOID.spad" 1360280 1360290 1364083 1364088) (-813 "ODVAR.spad" 1359541 1359551 1360270 1360275) (-812 "ODR.spad" 1359185 1359211 1359353 1359502) (-811 "ODPOL.spad" 1356531 1356541 1356871 1356998) (-810 "ODP.spad" 1346378 1346398 1346751 1346882) (-809 "ODETOOLS.spad" 1344961 1344980 1346368 1346373) (-808 "ODESYS.spad" 1342611 1342628 1344951 1344956) (-807 "ODERTRIC.spad" 1338552 1338569 1342568 1342573) (-806 "ODERED.spad" 1337939 1337963 1338542 1338547) (-805 "ODERAT.spad" 1335490 1335507 1337929 1337934) (-804 "ODEPRRIC.spad" 1332381 1332403 1335480 1335485) (-803 "ODEPROB.spad" 1331638 1331646 1332371 1332376) (-802 "ODEPRIM.spad" 1328912 1328934 1331628 1331633) (-801 "ODEPAL.spad" 1328288 1328312 1328902 1328907) (-800 "ODEPACK.spad" 1314890 1314898 1328278 1328283) (-799 "ODEINT.spad" 1314321 1314337 1314880 1314885) (-798 "ODEIFTBL.spad" 1311716 1311724 1314311 1314316) (-797 "ODEEF.spad" 1307083 1307099 1311706 1311711) (-796 "ODECONST.spad" 1306602 1306620 1307073 1307078) (-795 "ODECAT.spad" 1305198 1305206 1306592 1306597) (-794 "OCT.spad" 1303336 1303346 1304052 1304091) (-793 "OCTCT2.spad" 1302980 1303001 1303326 1303331) (-792 "OC.spad" 1300754 1300764 1302936 1302975) (-791 "OC.spad" 1298253 1298265 1300437 1300442) (-790 "OCAMON.spad" 1298101 1298109 1298243 1298248) (-789 "OASGP.spad" 1297916 1297924 1298091 1298096) (-788 "OAMONS.spad" 1297436 1297444 1297906 1297911) (-787 "OAMON.spad" 1297297 1297305 1297426 1297431) (-786 "OAGROUP.spad" 1297159 1297167 1297287 1297292) (-785 "NUMTUBE.spad" 1296746 1296762 1297149 1297154) (-784 "NUMQUAD.spad" 1284608 1284616 1296736 1296741) (-783 "NUMODE.spad" 1275744 1275752 1284598 1284603) (-782 "NUMINT.spad" 1273302 1273310 1275734 1275739) (-781 "NUMFMT.spad" 1272142 1272150 1273292 1273297) (-780 "NUMERIC.spad" 1264214 1264224 1271947 1271952) (-779 "NTSCAT.spad" 1262716 1262732 1264182 1264209) (-778 "NTPOLFN.spad" 1262261 1262271 1262633 1262638) (-777 "NSUP.spad" 1255271 1255281 1259811 1259964) (-776 "NSUP2.spad" 1254663 1254675 1255261 1255266) (-775 "NSMP.spad" 1250858 1250877 1251166 1251293) (-774 "NREP.spad" 1249230 1249244 1250848 1250853) (-773 "NPCOEF.spad" 1248476 1248496 1249220 1249225) (-772 "NORMRETR.spad" 1248074 1248113 1248466 1248471) (-771 "NORMPK.spad" 1245976 1245995 1248064 1248069) (-770 "NORMMA.spad" 1245664 1245690 1245966 1245971) (-769 "NONE.spad" 1245405 1245413 1245654 1245659) (-768 "NONE1.spad" 1245081 1245091 1245395 1245400) (-767 "NODE1.spad" 1244550 1244566 1245071 1245076) (-766 "NNI.spad" 1243437 1243445 1244524 1244545) (-765 "NLINSOL.spad" 1242059 1242069 1243427 1243432) (-764 "NIPROB.spad" 1240600 1240608 1242049 1242054) (-763 "NFINTBAS.spad" 1238060 1238077 1240590 1240595) (-762 "NETCLT.spad" 1238034 1238045 1238050 1238055) (-761 "NCODIV.spad" 1236232 1236248 1238024 1238029) (-760 "NCNTFRAC.spad" 1235874 1235888 1236222 1236227) (-759 "NCEP.spad" 1234034 1234048 1235864 1235869) (-758 "NASRING.spad" 1233630 1233638 1234024 1234029) (-757 "NASRING.spad" 1233224 1233234 1233620 1233625) (-756 "NARNG.spad" 1232568 1232576 1233214 1233219) (-755 "NARNG.spad" 1231910 1231920 1232558 1232563) (-754 "NAGSP.spad" 1230983 1230991 1231900 1231905) (-753 "NAGS.spad" 1220508 1220516 1230973 1230978) (-752 "NAGF07.spad" 1218901 1218909 1220498 1220503) (-751 "NAGF04.spad" 1213133 1213141 1218891 1218896) (-750 "NAGF02.spad" 1206942 1206950 1213123 1213128) (-749 "NAGF01.spad" 1202545 1202553 1206932 1206937) (-748 "NAGE04.spad" 1196005 1196013 1202535 1202540) (-747 "NAGE02.spad" 1186347 1186355 1195995 1196000) (-746 "NAGE01.spad" 1182231 1182239 1186337 1186342) (-745 "NAGD03.spad" 1180151 1180159 1182221 1182226) (-744 "NAGD02.spad" 1172682 1172690 1180141 1180146) (-743 "NAGD01.spad" 1166795 1166803 1172672 1172677) (-742 "NAGC06.spad" 1162582 1162590 1166785 1166790) (-741 "NAGC05.spad" 1161051 1161059 1162572 1162577) (-740 "NAGC02.spad" 1160306 1160314 1161041 1161046) (-739 "NAALG.spad" 1159841 1159851 1160274 1160301) (-738 "NAALG.spad" 1159396 1159408 1159831 1159836) (-737 "MULTSQFR.spad" 1156354 1156371 1159386 1159391) (-736 "MULTFACT.spad" 1155737 1155754 1156344 1156349) (-735 "MTSCAT.spad" 1153771 1153792 1155635 1155732) (-734 "MTHING.spad" 1153428 1153438 1153761 1153766) (-733 "MSYSCMD.spad" 1152862 1152870 1153418 1153423) (-732 "MSET.spad" 1150804 1150814 1152568 1152607) (-731 "MSETAGG.spad" 1150649 1150659 1150772 1150799) (-730 "MRING.spad" 1147620 1147632 1150357 1150424) (-729 "MRF2.spad" 1147188 1147202 1147610 1147615) (-728 "MRATFAC.spad" 1146734 1146751 1147178 1147183) (-727 "MPRFF.spad" 1144764 1144783 1146724 1146729) (-726 "MPOLY.spad" 1142199 1142214 1142558 1142685) (-725 "MPCPF.spad" 1141463 1141482 1142189 1142194) (-724 "MPC3.spad" 1141278 1141318 1141453 1141458) (-723 "MPC2.spad" 1140920 1140953 1141268 1141273) (-722 "MONOTOOL.spad" 1139255 1139272 1140910 1140915) (-721 "MONOID.spad" 1138574 1138582 1139245 1139250) (-720 "MONOID.spad" 1137891 1137901 1138564 1138569) (-719 "MONOGEN.spad" 1136637 1136650 1137751 1137886) (-718 "MONOGEN.spad" 1135405 1135420 1136521 1136526) (-717 "MONADWU.spad" 1133419 1133427 1135395 1135400) (-716 "MONADWU.spad" 1131431 1131441 1133409 1133414) (-715 "MONAD.spad" 1130575 1130583 1131421 1131426) (-714 "MONAD.spad" 1129717 1129727 1130565 1130570) (-713 "MOEBIUS.spad" 1128403 1128417 1129697 1129712) (-712 "MODULE.spad" 1128273 1128283 1128371 1128398) (-711 "MODULE.spad" 1128163 1128175 1128263 1128268) (-710 "MODRING.spad" 1127494 1127533 1128143 1128158) (-709 "MODOP.spad" 1126153 1126165 1127316 1127383) (-708 "MODMONOM.spad" 1125882 1125900 1126143 1126148) (-707 "MODMON.spad" 1122641 1122657 1123360 1123513) (-706 "MODFIELD.spad" 1121999 1122038 1122543 1122636) (-705 "MMLFORM.spad" 1120859 1120867 1121989 1121994) (-704 "MMAP.spad" 1120599 1120633 1120849 1120854) (-703 "MLO.spad" 1119026 1119036 1120555 1120594) (-702 "MLIFT.spad" 1117598 1117615 1119016 1119021) (-701 "MKUCFUNC.spad" 1117131 1117149 1117588 1117593) (-700 "MKRECORD.spad" 1116733 1116746 1117121 1117126) (-699 "MKFUNC.spad" 1116114 1116124 1116723 1116728) (-698 "MKFLCFN.spad" 1115070 1115080 1116104 1116109) (-697 "MKCHSET.spad" 1114935 1114945 1115060 1115065) (-696 "MKBCFUNC.spad" 1114420 1114438 1114925 1114930) (-695 "MINT.spad" 1113859 1113867 1114322 1114415) (-694 "MHROWRED.spad" 1112360 1112370 1113849 1113854) (-693 "MFLOAT.spad" 1110876 1110884 1112250 1112355) (-692 "MFINFACT.spad" 1110276 1110298 1110866 1110871) (-691 "MESH.spad" 1108008 1108016 1110266 1110271) (-690 "MDDFACT.spad" 1106201 1106211 1107998 1108003) (-689 "MDAGG.spad" 1105488 1105498 1106181 1106196) (-688 "MCMPLX.spad" 1101474 1101482 1102088 1102277) (-687 "MCDEN.spad" 1100682 1100694 1101464 1101469) (-686 "MCALCFN.spad" 1097784 1097810 1100672 1100677) (-685 "MAYBE.spad" 1097068 1097079 1097774 1097779) (-684 "MATSTOR.spad" 1094344 1094354 1097058 1097063) (-683 "MATRIX.spad" 1093048 1093058 1093532 1093559) (-682 "MATLIN.spad" 1090374 1090398 1092932 1092937) (-681 "MATCAT.spad" 1081959 1081981 1090342 1090369) (-680 "MATCAT.spad" 1073416 1073440 1081801 1081806) (-679 "MATCAT2.spad" 1072684 1072732 1073406 1073411) (-678 "MAPPKG3.spad" 1071583 1071597 1072674 1072679) (-677 "MAPPKG2.spad" 1070917 1070929 1071573 1071578) (-676 "MAPPKG1.spad" 1069735 1069745 1070907 1070912) (-675 "MAPPAST.spad" 1069048 1069056 1069725 1069730) (-674 "MAPHACK3.spad" 1068856 1068870 1069038 1069043) (-673 "MAPHACK2.spad" 1068621 1068633 1068846 1068851) (-672 "MAPHACK1.spad" 1068251 1068261 1068611 1068616) (-671 "MAGMA.spad" 1066041 1066058 1068241 1068246) (-670 "MACROAST.spad" 1065620 1065628 1066031 1066036) (-669 "M3D.spad" 1063316 1063326 1064998 1065003) (-668 "LZSTAGG.spad" 1060544 1060554 1063306 1063311) (-667 "LZSTAGG.spad" 1057770 1057782 1060534 1060539) (-666 "LWORD.spad" 1054475 1054492 1057760 1057765) (-665 "LSTAST.spad" 1054259 1054267 1054465 1054470) (-664 "LSQM.spad" 1052485 1052499 1052883 1052934) (-663 "LSPP.spad" 1052018 1052035 1052475 1052480) (-662 "LSMP.spad" 1050858 1050886 1052008 1052013) (-661 "LSMP1.spad" 1048662 1048676 1050848 1050853) (-660 "LSAGG.spad" 1048331 1048341 1048630 1048657) (-659 "LSAGG.spad" 1048020 1048032 1048321 1048326) (-658 "LPOLY.spad" 1046974 1046993 1047876 1047945) (-657 "LPEFRAC.spad" 1046231 1046241 1046964 1046969) (-656 "LO.spad" 1045632 1045646 1046165 1046192) (-655 "LOGIC.spad" 1045234 1045242 1045622 1045627) (-654 "LOGIC.spad" 1044834 1044844 1045224 1045229) (-653 "LODOOPS.spad" 1043752 1043764 1044824 1044829) (-652 "LODO.spad" 1043136 1043152 1043432 1043471) (-651 "LODOF.spad" 1042180 1042197 1043093 1043098) (-650 "LODOCAT.spad" 1040838 1040848 1042136 1042175) (-649 "LODOCAT.spad" 1039494 1039506 1040794 1040799) (-648 "LODO2.spad" 1038767 1038779 1039174 1039213) (-647 "LODO1.spad" 1038167 1038177 1038447 1038486) (-646 "LODEEF.spad" 1036939 1036957 1038157 1038162) (-645 "LNAGG.spad" 1032741 1032751 1036929 1036934) (-644 "LNAGG.spad" 1028507 1028519 1032697 1032702) (-643 "LMOPS.spad" 1025243 1025260 1028497 1028502) (-642 "LMODULE.spad" 1024885 1024895 1025233 1025238) (-641 "LMDICT.spad" 1024168 1024178 1024436 1024463) (-640 "LITERAL.spad" 1024074 1024085 1024158 1024163) (-639 "LIST.spad" 1021792 1021802 1023221 1023248) (-638 "LIST3.spad" 1021083 1021097 1021782 1021787) (-637 "LIST2.spad" 1019723 1019735 1021073 1021078) (-636 "LIST2MAP.spad" 1016600 1016612 1019713 1019718) (-635 "LINEXP.spad" 1016032 1016042 1016580 1016595) (-634 "LINDEP.spad" 1014809 1014821 1015944 1015949) (-633 "LIMITRF.spad" 1012723 1012733 1014799 1014804) (-632 "LIMITPS.spad" 1011606 1011619 1012713 1012718) (-631 "LIE.spad" 1009620 1009632 1010896 1011041) (-630 "LIECAT.spad" 1009096 1009106 1009546 1009615) (-629 "LIECAT.spad" 1008600 1008612 1009052 1009057) (-628 "LIB.spad" 1006648 1006656 1007259 1007274) (-627 "LGROBP.spad" 1004001 1004020 1006638 1006643) (-626 "LF.spad" 1002920 1002936 1003991 1003996) (-625 "LFCAT.spad" 1001939 1001947 1002910 1002915) (-624 "LEXTRIPK.spad" 997442 997457 1001929 1001934) (-623 "LEXP.spad" 995445 995472 997422 997437) (-622 "LETAST.spad" 995144 995152 995435 995440) (-621 "LEADCDET.spad" 993528 993545 995134 995139) (-620 "LAZM3PK.spad" 992232 992254 993518 993523) (-619 "LAUPOL.spad" 990921 990934 991825 991894) (-618 "LAPLACE.spad" 990494 990510 990911 990916) (-617 "LA.spad" 989934 989948 990416 990455) (-616 "LALG.spad" 989710 989720 989914 989929) (-615 "LALG.spad" 989494 989506 989700 989705) (-614 "KVTFROM.spad" 989229 989239 989484 989489) (-613 "KTVLOGIC.spad" 988652 988660 989219 989224) (-612 "KRCFROM.spad" 988390 988400 988642 988647) (-611 "KOVACIC.spad" 987103 987120 988380 988385) (-610 "KONVERT.spad" 986825 986835 987093 987098) (-609 "KOERCE.spad" 986562 986572 986815 986820) (-608 "KERNEL.spad" 985097 985107 986346 986351) (-607 "KERNEL2.spad" 984800 984812 985087 985092) (-606 "KDAGG.spad" 983903 983925 984780 984795) (-605 "KDAGG.spad" 983014 983038 983893 983898) (-604 "KAFILE.spad" 981977 981993 982212 982239) (-603 "JORDAN.spad" 979804 979816 981267 981412) (-602 "JOINAST.spad" 979498 979506 979794 979799) (-601 "JAVACODE.spad" 979364 979372 979488 979493) (-600 "IXAGG.spad" 977487 977511 979354 979359) (-599 "IXAGG.spad" 975465 975491 977334 977339) (-598 "IVECTOR.spad" 974236 974251 974391 974418) (-597 "ITUPLE.spad" 973381 973391 974226 974231) (-596 "ITRIGMNP.spad" 972192 972211 973371 973376) (-595 "ITFUN3.spad" 971686 971700 972182 972187) (-594 "ITFUN2.spad" 971416 971428 971676 971681) (-593 "ITAYLOR.spad" 969208 969223 971252 971377) (-592 "ISUPS.spad" 961619 961634 968182 968279) (-591 "ISUMP.spad" 961116 961132 961609 961614) (-590 "ISTRING.spad" 960119 960132 960285 960312) (-589 "ISAST.spad" 959838 959846 960109 960114) (-588 "IRURPK.spad" 958551 958570 959828 959833) (-587 "IRSN.spad" 956511 956519 958541 958546) (-586 "IRRF2F.spad" 954986 954996 956467 956472) (-585 "IRREDFFX.spad" 954587 954598 954976 954981) (-584 "IROOT.spad" 952918 952928 954577 954582) (-583 "IR.spad" 950707 950721 952773 952800) (-582 "IR2.spad" 949727 949743 950697 950702) (-581 "IR2F.spad" 948927 948943 949717 949722) (-580 "IPRNTPK.spad" 948687 948695 948917 948922) (-579 "IPF.spad" 948252 948264 948492 948585) (-578 "IPADIC.spad" 948013 948039 948178 948247) (-577 "IP4ADDR.spad" 947570 947578 948003 948008) (-576 "IOMODE.spad" 947191 947199 947560 947565) (-575 "IOBFILE.spad" 946552 946560 947181 947186) (-574 "IOBCON.spad" 946417 946425 946542 946547) (-573 "INVLAPLA.spad" 946062 946078 946407 946412) (-572 "INTTR.spad" 939308 939325 946052 946057) (-571 "INTTOOLS.spad" 937019 937035 938882 938887) (-570 "INTSLPE.spad" 936325 936333 937009 937014) (-569 "INTRVL.spad" 935891 935901 936239 936320) (-568 "INTRF.spad" 934255 934269 935881 935886) (-567 "INTRET.spad" 933687 933697 934245 934250) (-566 "INTRAT.spad" 932362 932379 933677 933682) (-565 "INTPM.spad" 930725 930741 932005 932010) (-564 "INTPAF.spad" 928493 928511 930657 930662) (-563 "INTPACK.spad" 918803 918811 928483 928488) (-562 "INT.spad" 918164 918172 918657 918798) (-561 "INTHERTR.spad" 917430 917447 918154 918159) (-560 "INTHERAL.spad" 917096 917120 917420 917425) (-559 "INTHEORY.spad" 913509 913517 917086 917091) (-558 "INTG0.spad" 906972 906990 913441 913446) (-557 "INTFTBL.spad" 901001 901009 906962 906967) (-556 "INTFACT.spad" 900060 900070 900991 900996) (-555 "INTEF.spad" 898375 898391 900050 900055) (-554 "INTDOM.spad" 896990 896998 898301 898370) (-553 "INTDOM.spad" 895667 895677 896980 896985) (-552 "INTCAT.spad" 893920 893930 895581 895662) (-551 "INTBIT.spad" 893423 893431 893910 893915) (-550 "INTALG.spad" 892605 892632 893413 893418) (-549 "INTAF.spad" 892097 892113 892595 892600) (-548 "INTABL.spad" 890615 890646 890778 890805) (-547 "INT8.spad" 890495 890503 890605 890610) (-546 "INT32.spad" 890374 890382 890485 890490) (-545 "INT16.spad" 890253 890261 890364 890369) (-544 "INS.spad" 887720 887728 890155 890248) (-543 "INS.spad" 885273 885283 887710 887715) (-542 "INPSIGN.spad" 884707 884720 885263 885268) (-541 "INPRODPF.spad" 883773 883792 884697 884702) (-540 "INPRODFF.spad" 882831 882855 883763 883768) (-539 "INNMFACT.spad" 881802 881819 882821 882826) (-538 "INMODGCD.spad" 881286 881316 881792 881797) (-537 "INFSP.spad" 879571 879593 881276 881281) (-536 "INFPROD0.spad" 878621 878640 879561 879566) (-535 "INFORM.spad" 875782 875790 878611 878616) (-534 "INFORM1.spad" 875407 875417 875772 875777) (-533 "INFINITY.spad" 874959 874967 875397 875402) (-532 "INETCLTS.spad" 874936 874944 874949 874954) (-531 "INEP.spad" 873468 873490 874926 874931) (-530 "INDE.spad" 873197 873214 873458 873463) (-529 "INCRMAPS.spad" 872618 872628 873187 873192) (-528 "INBFILE.spad" 871690 871698 872608 872613) (-527 "INBFF.spad" 867460 867471 871680 871685) (-526 "INBCON.spad" 865748 865756 867450 867455) (-525 "INBCON.spad" 864034 864044 865738 865743) (-524 "INAST.spad" 863699 863707 864024 864029) (-523 "IMPTAST.spad" 863407 863415 863689 863694) (-522 "IMATRIX.spad" 862352 862378 862864 862891) (-521 "IMATQF.spad" 861446 861490 862308 862313) (-520 "IMATLIN.spad" 860051 860075 861402 861407) (-519 "ILIST.spad" 858707 858722 859234 859261) (-518 "IIARRAY2.spad" 858095 858133 858314 858341) (-517 "IFF.spad" 857505 857521 857776 857869) (-516 "IFAST.spad" 857119 857127 857495 857500) (-515 "IFARRAY.spad" 854606 854621 856302 856329) (-514 "IFAMON.spad" 854468 854485 854562 854567) (-513 "IEVALAB.spad" 853857 853869 854458 854463) (-512 "IEVALAB.spad" 853244 853258 853847 853852) (-511 "IDPO.spad" 853042 853054 853234 853239) (-510 "IDPOAMS.spad" 852798 852810 853032 853037) (-509 "IDPOAM.spad" 852518 852530 852788 852793) (-508 "IDPC.spad" 851452 851464 852508 852513) (-507 "IDPAM.spad" 851197 851209 851442 851447) (-506 "IDPAG.spad" 850944 850956 851187 851192) (-505 "IDENT.spad" 850716 850724 850934 850939) (-504 "IDECOMP.spad" 847953 847971 850706 850711) (-503 "IDEAL.spad" 842876 842915 847888 847893) (-502 "ICDEN.spad" 842027 842043 842866 842871) (-501 "ICARD.spad" 841216 841224 842017 842022) (-500 "IBPTOOLS.spad" 839809 839826 841206 841211) (-499 "IBITS.spad" 839008 839021 839445 839472) (-498 "IBATOOL.spad" 835883 835902 838998 839003) (-497 "IBACHIN.spad" 834370 834385 835873 835878) (-496 "IARRAY2.spad" 833358 833384 833977 834004) (-495 "IARRAY1.spad" 832403 832418 832541 832568) (-494 "IAN.spad" 830616 830624 832219 832312) (-493 "IALGFACT.spad" 830217 830250 830606 830611) (-492 "HYPCAT.spad" 829641 829649 830207 830212) (-491 "HYPCAT.spad" 829063 829073 829631 829636) (-490 "HOSTNAME.spad" 828871 828879 829053 829058) (-489 "HOMOTOP.spad" 828614 828624 828861 828866) (-488 "HOAGG.spad" 825882 825892 828604 828609) (-487 "HOAGG.spad" 822925 822937 825649 825654) (-486 "HEXADEC.spad" 821027 821035 821392 821485) (-485 "HEUGCD.spad" 820042 820053 821017 821022) (-484 "HELLFDIV.spad" 819632 819656 820032 820037) (-483 "HEAP.spad" 819024 819034 819239 819266) (-482 "HEADAST.spad" 818555 818563 819014 819019) (-481 "HDP.spad" 808398 808414 808775 808906) (-480 "HDMP.spad" 805574 805589 806192 806319) (-479 "HB.spad" 803811 803819 805564 805569) (-478 "HASHTBL.spad" 802281 802312 802492 802519) (-477 "HASAST.spad" 801997 802005 802271 802276) (-476 "HACKPI.spad" 801480 801488 801899 801992) (-475 "GTSET.spad" 800419 800435 801126 801153) (-474 "GSTBL.spad" 798938 798973 799112 799127) (-473 "GSERIES.spad" 796105 796132 797070 797219) (-472 "GROUP.spad" 795374 795382 796085 796100) (-471 "GROUP.spad" 794651 794661 795364 795369) (-470 "GROEBSOL.spad" 793139 793160 794641 794646) (-469 "GRMOD.spad" 791710 791722 793129 793134) (-468 "GRMOD.spad" 790279 790293 791700 791705) (-467 "GRIMAGE.spad" 782884 782892 790269 790274) (-466 "GRDEF.spad" 781263 781271 782874 782879) (-465 "GRAY.spad" 779722 779730 781253 781258) (-464 "GRALG.spad" 778769 778781 779712 779717) (-463 "GRALG.spad" 777814 777828 778759 778764) (-462 "GPOLSET.spad" 777268 777291 777496 777523) (-461 "GOSPER.spad" 776533 776551 777258 777263) (-460 "GMODPOL.spad" 775671 775698 776501 776528) (-459 "GHENSEL.spad" 774740 774754 775661 775666) (-458 "GENUPS.spad" 770841 770854 774730 774735) (-457 "GENUFACT.spad" 770418 770428 770831 770836) (-456 "GENPGCD.spad" 770002 770019 770408 770413) (-455 "GENMFACT.spad" 769454 769473 769992 769997) (-454 "GENEEZ.spad" 767393 767406 769444 769449) (-453 "GDMP.spad" 764411 764428 765187 765314) (-452 "GCNAALG.spad" 758306 758333 764205 764272) (-451 "GCDDOM.spad" 757478 757486 758232 758301) (-450 "GCDDOM.spad" 756712 756722 757468 757473) (-449 "GB.spad" 754230 754268 756668 756673) (-448 "GBINTERN.spad" 750250 750288 754220 754225) (-447 "GBF.spad" 746007 746045 750240 750245) (-446 "GBEUCLID.spad" 743881 743919 745997 746002) (-445 "GAUSSFAC.spad" 743178 743186 743871 743876) (-444 "GALUTIL.spad" 741500 741510 743134 743139) (-443 "GALPOLYU.spad" 739946 739959 741490 741495) (-442 "GALFACTU.spad" 738111 738130 739936 739941) (-441 "GALFACT.spad" 728244 728255 738101 738106) (-440 "FVFUN.spad" 725267 725275 728234 728239) (-439 "FVC.spad" 724319 724327 725257 725262) (-438 "FUNDESC.spad" 723997 724005 724309 724314) (-437 "FUNCTION.spad" 723846 723858 723987 723992) (-436 "FT.spad" 722139 722147 723836 723841) (-435 "FTEM.spad" 721302 721310 722129 722134) (-434 "FSUPFACT.spad" 720202 720221 721238 721243) (-433 "FST.spad" 718288 718296 720192 720197) (-432 "FSRED.spad" 717766 717782 718278 718283) (-431 "FSPRMELT.spad" 716590 716606 717723 717728) (-430 "FSPECF.spad" 714667 714683 716580 716585) (-429 "FS.spad" 708729 708739 714442 714662) (-428 "FS.spad" 702569 702581 708284 708289) (-427 "FSINT.spad" 702227 702243 702559 702564) (-426 "FSERIES.spad" 701414 701426 702047 702146) (-425 "FSCINT.spad" 700727 700743 701404 701409) (-424 "FSAGG.spad" 699844 699854 700683 700722) (-423 "FSAGG.spad" 698923 698935 699764 699769) (-422 "FSAGG2.spad" 697622 697638 698913 698918) (-421 "FS2UPS.spad" 692105 692139 697612 697617) (-420 "FS2.spad" 691750 691766 692095 692100) (-419 "FS2EXPXP.spad" 690873 690896 691740 691745) (-418 "FRUTIL.spad" 689815 689825 690863 690868) (-417 "FR.spad" 683509 683519 688839 688908) (-416 "FRNAALG.spad" 678596 678606 683451 683504) (-415 "FRNAALG.spad" 673695 673707 678552 678557) (-414 "FRNAAF2.spad" 673149 673167 673685 673690) (-413 "FRMOD.spad" 672543 672573 673080 673085) (-412 "FRIDEAL.spad" 671738 671759 672523 672538) (-411 "FRIDEAL2.spad" 671340 671372 671728 671733) (-410 "FRETRCT.spad" 670851 670861 671330 671335) (-409 "FRETRCT.spad" 670228 670240 670709 670714) (-408 "FRAMALG.spad" 668556 668569 670184 670223) (-407 "FRAMALG.spad" 666916 666931 668546 668551) (-406 "FRAC.spad" 664015 664025 664418 664591) (-405 "FRAC2.spad" 663618 663630 664005 664010) (-404 "FR2.spad" 662952 662964 663608 663613) (-403 "FPS.spad" 659761 659769 662842 662947) (-402 "FPS.spad" 656598 656608 659681 659686) (-401 "FPC.spad" 655640 655648 656500 656593) (-400 "FPC.spad" 654768 654778 655630 655635) (-399 "FPATMAB.spad" 654530 654540 654758 654763) (-398 "FPARFRAC.spad" 653003 653020 654520 654525) (-397 "FORTRAN.spad" 651509 651552 652993 652998) (-396 "FORT.spad" 650438 650446 651499 651504) (-395 "FORTFN.spad" 647608 647616 650428 650433) (-394 "FORTCAT.spad" 647292 647300 647598 647603) (-393 "FORMULA.spad" 644756 644764 647282 647287) (-392 "FORMULA1.spad" 644235 644245 644746 644751) (-391 "FORDER.spad" 643926 643950 644225 644230) (-390 "FOP.spad" 643127 643135 643916 643921) (-389 "FNLA.spad" 642551 642573 643095 643122) (-388 "FNCAT.spad" 641138 641146 642541 642546) (-387 "FNAME.spad" 641030 641038 641128 641133) (-386 "FMTC.spad" 640828 640836 640956 641025) (-385 "FMONOID.spad" 637883 637893 640784 640789) (-384 "FM.spad" 637578 637590 637817 637844) (-383 "FMFUN.spad" 634608 634616 637568 637573) (-382 "FMC.spad" 633660 633668 634598 634603) (-381 "FMCAT.spad" 631314 631332 633628 633655) (-380 "FM1.spad" 630671 630683 631248 631275) (-379 "FLOATRP.spad" 628392 628406 630661 630666) (-378 "FLOAT.spad" 621680 621688 628258 628387) (-377 "FLOATCP.spad" 619097 619111 621670 621675) (-376 "FLINEXP.spad" 618809 618819 619077 619092) (-375 "FLINEXP.spad" 618475 618487 618745 618750) (-374 "FLASORT.spad" 617795 617807 618465 618470) (-373 "FLALG.spad" 615441 615460 617721 617790) (-372 "FLAGG.spad" 612459 612469 615421 615436) (-371 "FLAGG.spad" 609378 609390 612342 612347) (-370 "FLAGG2.spad" 608059 608075 609368 609373) (-369 "FINRALG.spad" 606088 606101 608015 608054) (-368 "FINRALG.spad" 604043 604058 605972 605977) (-367 "FINITE.spad" 603195 603203 604033 604038) (-366 "FINAALG.spad" 592176 592186 603137 603190) (-365 "FINAALG.spad" 581169 581181 592132 592137) (-364 "FILE.spad" 580752 580762 581159 581164) (-363 "FILECAT.spad" 579270 579287 580742 580747) (-362 "FIELD.spad" 578676 578684 579172 579265) (-361 "FIELD.spad" 578168 578178 578666 578671) (-360 "FGROUP.spad" 576777 576787 578148 578163) (-359 "FGLMICPK.spad" 575564 575579 576767 576772) (-358 "FFX.spad" 574939 574954 575280 575373) (-357 "FFSLPE.spad" 574428 574449 574929 574934) (-356 "FFPOLY.spad" 565680 565691 574418 574423) (-355 "FFPOLY2.spad" 564740 564757 565670 565675) (-354 "FFP.spad" 564137 564157 564456 564549) (-353 "FF.spad" 563585 563601 563818 563911) (-352 "FFNBX.spad" 562097 562117 563301 563394) (-351 "FFNBP.spad" 560610 560627 561813 561906) (-350 "FFNB.spad" 559075 559096 560291 560384) (-349 "FFINTBAS.spad" 556489 556508 559065 559070) (-348 "FFIELDC.spad" 554064 554072 556391 556484) (-347 "FFIELDC.spad" 551725 551735 554054 554059) (-346 "FFHOM.spad" 550473 550490 551715 551720) (-345 "FFF.spad" 547908 547919 550463 550468) (-344 "FFCGX.spad" 546755 546775 547624 547717) (-343 "FFCGP.spad" 545644 545664 546471 546564) (-342 "FFCG.spad" 544436 544457 545325 545418) (-341 "FFCAT.spad" 537463 537485 544275 544431) (-340 "FFCAT.spad" 530569 530593 537383 537388) (-339 "FFCAT2.spad" 530314 530354 530559 530564) (-338 "FEXPR.spad" 522023 522069 530070 530109) (-337 "FEVALAB.spad" 521729 521739 522013 522018) (-336 "FEVALAB.spad" 521220 521232 521506 521511) (-335 "FDIV.spad" 520662 520686 521210 521215) (-334 "FDIVCAT.spad" 518704 518728 520652 520657) (-333 "FDIVCAT.spad" 516744 516770 518694 518699) (-332 "FDIV2.spad" 516398 516438 516734 516739) (-331 "FCPAK1.spad" 514951 514959 516388 516393) (-330 "FCOMP.spad" 514330 514340 514941 514946) (-329 "FC.spad" 504245 504253 514320 514325) (-328 "FAXF.spad" 497180 497194 504147 504240) (-327 "FAXF.spad" 490167 490183 497136 497141) (-326 "FARRAY.spad" 488313 488323 489350 489377) (-325 "FAMR.spad" 486433 486445 488211 488308) (-324 "FAMR.spad" 484537 484551 486317 486322) (-323 "FAMONOID.spad" 484187 484197 484491 484496) (-322 "FAMONC.spad" 482409 482421 484177 484182) (-321 "FAGROUP.spad" 482015 482025 482305 482332) (-320 "FACUTIL.spad" 480211 480228 482005 482010) (-319 "FACTFUNC.spad" 479387 479397 480201 480206) (-318 "EXPUPXS.spad" 476220 476243 477519 477668) (-317 "EXPRTUBE.spad" 473448 473456 476210 476215) (-316 "EXPRODE.spad" 470320 470336 473438 473443) (-315 "EXPR.spad" 465595 465605 466309 466716) (-314 "EXPR2UPS.spad" 461687 461700 465585 465590) (-313 "EXPR2.spad" 461390 461402 461677 461682) (-312 "EXPEXPAN.spad" 458328 458353 458962 459055) (-311 "EXIT.spad" 457999 458007 458318 458323) (-310 "EXITAST.spad" 457735 457743 457989 457994) (-309 "EVALCYC.spad" 457193 457207 457725 457730) (-308 "EVALAB.spad" 456757 456767 457183 457188) (-307 "EVALAB.spad" 456319 456331 456747 456752) (-306 "EUCDOM.spad" 453861 453869 456245 456314) (-305 "EUCDOM.spad" 451465 451475 453851 453856) (-304 "ESTOOLS.spad" 443305 443313 451455 451460) (-303 "ESTOOLS2.spad" 442906 442920 443295 443300) (-302 "ESTOOLS1.spad" 442591 442602 442896 442901) (-301 "ES.spad" 435138 435146 442581 442586) (-300 "ES.spad" 427591 427601 435036 435041) (-299 "ESCONT.spad" 424364 424372 427581 427586) (-298 "ESCONT1.spad" 424113 424125 424354 424359) (-297 "ES2.spad" 423608 423624 424103 424108) (-296 "ES1.spad" 423174 423190 423598 423603) (-295 "ERROR.spad" 420495 420503 423164 423169) (-294 "EQTBL.spad" 418967 418989 419176 419203) (-293 "EQ.spad" 413841 413851 416640 416752) (-292 "EQ2.spad" 413557 413569 413831 413836) (-291 "EP.spad" 409871 409881 413547 413552) (-290 "ENV.spad" 408573 408581 409861 409866) (-289 "ENTIRER.spad" 408241 408249 408517 408568) (-288 "EMR.spad" 407442 407483 408167 408236) (-287 "ELTAGG.spad" 405682 405701 407432 407437) (-286 "ELTAGG.spad" 403886 403907 405638 405643) (-285 "ELTAB.spad" 403333 403351 403876 403881) (-284 "ELFUTS.spad" 402712 402731 403323 403328) (-283 "ELEMFUN.spad" 402401 402409 402702 402707) (-282 "ELEMFUN.spad" 402088 402098 402391 402396) (-281 "ELAGG.spad" 400031 400041 402068 402083) (-280 "ELAGG.spad" 397911 397923 399950 399955) (-279 "ELABEXPR.spad" 396842 396850 397901 397906) (-278 "EFUPXS.spad" 393618 393648 396798 396803) (-277 "EFULS.spad" 390454 390477 393574 393579) (-276 "EFSTRUC.spad" 388409 388425 390444 390449) (-275 "EF.spad" 383175 383191 388399 388404) (-274 "EAB.spad" 381451 381459 383165 383170) (-273 "E04UCFA.spad" 380987 380995 381441 381446) (-272 "E04NAFA.spad" 380564 380572 380977 380982) (-271 "E04MBFA.spad" 380144 380152 380554 380559) (-270 "E04JAFA.spad" 379680 379688 380134 380139) (-269 "E04GCFA.spad" 379216 379224 379670 379675) (-268 "E04FDFA.spad" 378752 378760 379206 379211) (-267 "E04DGFA.spad" 378288 378296 378742 378747) (-266 "E04AGNT.spad" 374130 374138 378278 378283) (-265 "DVARCAT.spad" 370815 370825 374120 374125) (-264 "DVARCAT.spad" 367498 367510 370805 370810) (-263 "DSMP.spad" 364929 364943 365234 365361) (-262 "DROPT.spad" 358874 358882 364919 364924) (-261 "DROPT1.spad" 358537 358547 358864 358869) (-260 "DROPT0.spad" 353364 353372 358527 358532) (-259 "DRAWPT.spad" 351519 351527 353354 353359) (-258 "DRAW.spad" 344119 344132 351509 351514) (-257 "DRAWHACK.spad" 343427 343437 344109 344114) (-256 "DRAWCX.spad" 340869 340877 343417 343422) (-255 "DRAWCURV.spad" 340406 340421 340859 340864) (-254 "DRAWCFUN.spad" 329578 329586 340396 340401) (-253 "DQAGG.spad" 327746 327756 329546 329573) (-252 "DPOLCAT.spad" 323087 323103 327614 327741) (-251 "DPOLCAT.spad" 318514 318532 323043 323048) (-250 "DPMO.spad" 310740 310756 310878 311179) (-249 "DPMM.spad" 302979 302997 303104 303405) (-248 "DOMCTOR.spad" 302871 302879 302969 302974) (-247 "DOMAIN.spad" 302002 302010 302861 302866) (-246 "DMP.spad" 299224 299239 299796 299923) (-245 "DLP.spad" 298572 298582 299214 299219) (-244 "DLIST.spad" 297151 297161 297755 297782) (-243 "DLAGG.spad" 295562 295572 297141 297146) (-242 "DIVRING.spad" 295104 295112 295506 295557) (-241 "DIVRING.spad" 294690 294700 295094 295099) (-240 "DISPLAY.spad" 292870 292878 294680 294685) (-239 "DIRPROD.spad" 282450 282466 283090 283221) (-238 "DIRPROD2.spad" 281258 281276 282440 282445) (-237 "DIRPCAT.spad" 280200 280216 281122 281253) (-236 "DIRPCAT.spad" 278871 278889 279795 279800) (-235 "DIOSP.spad" 277696 277704 278861 278866) (-234 "DIOPS.spad" 276680 276690 277676 277691) (-233 "DIOPS.spad" 275638 275650 276636 276641) (-232 "DIFRING.spad" 274930 274938 275618 275633) (-231 "DIFRING.spad" 274230 274240 274920 274925) (-230 "DIFEXT.spad" 273389 273399 274210 274225) (-229 "DIFEXT.spad" 272465 272477 273288 273293) (-228 "DIAGG.spad" 272095 272105 272445 272460) (-227 "DIAGG.spad" 271733 271745 272085 272090) (-226 "DHMATRIX.spad" 270037 270047 271190 271217) (-225 "DFSFUN.spad" 263445 263453 270027 270032) (-224 "DFLOAT.spad" 260166 260174 263335 263440) (-223 "DFINTTLS.spad" 258375 258391 260156 260161) (-222 "DERHAM.spad" 256285 256317 258355 258370) (-221 "DEQUEUE.spad" 255603 255613 255892 255919) (-220 "DEGRED.spad" 255218 255232 255593 255598) (-219 "DEFINTRF.spad" 252743 252753 255208 255213) (-218 "DEFINTEF.spad" 251239 251255 252733 252738) (-217 "DEFAST.spad" 250607 250615 251229 251234) (-216 "DECIMAL.spad" 248713 248721 249074 249167) (-215 "DDFACT.spad" 246512 246529 248703 248708) (-214 "DBLRESP.spad" 246110 246134 246502 246507) (-213 "DBASE.spad" 244764 244774 246100 246105) (-212 "DATAARY.spad" 244226 244239 244754 244759) (-211 "D03FAFA.spad" 244054 244062 244216 244221) (-210 "D03EEFA.spad" 243874 243882 244044 244049) (-209 "D03AGNT.spad" 242954 242962 243864 243869) (-208 "D02EJFA.spad" 242416 242424 242944 242949) (-207 "D02CJFA.spad" 241894 241902 242406 242411) (-206 "D02BHFA.spad" 241384 241392 241884 241889) (-205 "D02BBFA.spad" 240874 240882 241374 241379) (-204 "D02AGNT.spad" 235678 235686 240864 240869) (-203 "D01WGTS.spad" 233997 234005 235668 235673) (-202 "D01TRNS.spad" 233974 233982 233987 233992) (-201 "D01GBFA.spad" 233496 233504 233964 233969) (-200 "D01FCFA.spad" 233018 233026 233486 233491) (-199 "D01ASFA.spad" 232486 232494 233008 233013) (-198 "D01AQFA.spad" 231932 231940 232476 232481) (-197 "D01APFA.spad" 231356 231364 231922 231927) (-196 "D01ANFA.spad" 230850 230858 231346 231351) (-195 "D01AMFA.spad" 230360 230368 230840 230845) (-194 "D01ALFA.spad" 229900 229908 230350 230355) (-193 "D01AKFA.spad" 229426 229434 229890 229895) (-192 "D01AJFA.spad" 228949 228957 229416 229421) (-191 "D01AGNT.spad" 225008 225016 228939 228944) (-190 "CYCLOTOM.spad" 224514 224522 224998 225003) (-189 "CYCLES.spad" 221346 221354 224504 224509) (-188 "CVMP.spad" 220763 220773 221336 221341) (-187 "CTRIGMNP.spad" 219253 219269 220753 220758) (-186 "CTOR.spad" 218948 218956 219243 219248) (-185 "CTORKIND.spad" 218551 218559 218938 218943) (-184 "CTORCAT.spad" 217800 217808 218541 218546) (-183 "CTORCAT.spad" 217047 217057 217790 217795) (-182 "CTORCALL.spad" 216627 216635 217037 217042) (-181 "CSTTOOLS.spad" 215870 215883 216617 216622) (-180 "CRFP.spad" 209574 209587 215860 215865) (-179 "CRCEAST.spad" 209294 209302 209564 209569) (-178 "CRAPACK.spad" 208337 208347 209284 209289) (-177 "CPMATCH.spad" 207837 207852 208262 208267) (-176 "CPIMA.spad" 207542 207561 207827 207832) (-175 "COORDSYS.spad" 202435 202445 207532 207537) (-174 "CONTOUR.spad" 201837 201845 202425 202430) (-173 "CONTFRAC.spad" 197449 197459 201739 201832) (-172 "CONDUIT.spad" 197207 197215 197439 197444) (-171 "COMRING.spad" 196881 196889 197145 197202) (-170 "COMPPROP.spad" 196395 196403 196871 196876) (-169 "COMPLPAT.spad" 196162 196177 196385 196390) (-168 "COMPLEX.spad" 190198 190208 190442 190691) (-167 "COMPLEX2.spad" 189911 189923 190188 190193) (-166 "COMPFACT.spad" 189513 189527 189901 189906) (-165 "COMPCAT.spad" 187651 187661 189259 189508) (-164 "COMPCAT.spad" 185470 185482 187080 187085) (-163 "COMMUPC.spad" 185216 185234 185460 185465) (-162 "COMMONOP.spad" 184749 184757 185206 185211) (-161 "COMM.spad" 184558 184566 184739 184744) (-160 "COMMAAST.spad" 184321 184329 184548 184553) (-159 "COMBOPC.spad" 183226 183234 184311 184316) (-158 "COMBINAT.spad" 181971 181981 183216 183221) (-157 "COMBF.spad" 179339 179355 181961 181966) (-156 "COLOR.spad" 178176 178184 179329 179334) (-155 "COLONAST.spad" 177842 177850 178166 178171) (-154 "CMPLXRT.spad" 177551 177568 177832 177837) (-153 "CLLCTAST.spad" 177213 177221 177541 177546) (-152 "CLIP.spad" 173305 173313 177203 177208) (-151 "CLIF.spad" 171944 171960 173261 173300) (-150 "CLAGG.spad" 168429 168439 171934 171939) (-149 "CLAGG.spad" 164785 164797 168292 168297) (-148 "CINTSLPE.spad" 164110 164123 164775 164780) (-147 "CHVAR.spad" 162188 162210 164100 164105) (-146 "CHARZ.spad" 162103 162111 162168 162183) (-145 "CHARPOL.spad" 161611 161621 162093 162098) (-144 "CHARNZ.spad" 161364 161372 161591 161606) (-143 "CHAR.spad" 159232 159240 161354 161359) (-142 "CFCAT.spad" 158548 158556 159222 159227) (-141 "CDEN.spad" 157706 157720 158538 158543) (-140 "CCLASS.spad" 155855 155863 157117 157156) (-139 "CATEGORY.spad" 154945 154953 155845 155850) (-138 "CATCTOR.spad" 154836 154844 154935 154940) (-137 "CATAST.spad" 154463 154471 154826 154831) (-136 "CASEAST.spad" 154177 154185 154453 154458) (-135 "CARTEN.spad" 149280 149304 154167 154172) (-134 "CARTEN2.spad" 148666 148693 149270 149275) (-133 "CARD.spad" 145955 145963 148640 148661) (-132 "CAPSLAST.spad" 145729 145737 145945 145950) (-131 "CACHSET.spad" 145351 145359 145719 145724) (-130 "CABMON.spad" 144904 144912 145341 145346) (-129 "BYTE.spad" 144325 144333 144894 144899) (-128 "BYTEBUF.spad" 142157 142165 143494 143521) (-127 "BTREE.spad" 141226 141236 141764 141791) (-126 "BTOURN.spad" 140229 140239 140833 140860) (-125 "BTCAT.spad" 139617 139627 140197 140224) (-124 "BTCAT.spad" 139025 139037 139607 139612) (-123 "BTAGG.spad" 138147 138155 138993 139020) (-122 "BTAGG.spad" 137289 137299 138137 138142) (-121 "BSTREE.spad" 136024 136034 136896 136923) (-120 "BRILL.spad" 134219 134230 136014 136019) (-119 "BRAGG.spad" 133143 133153 134209 134214) (-118 "BRAGG.spad" 132031 132043 133099 133104) (-117 "BPADICRT.spad" 130012 130024 130267 130360) (-116 "BPADIC.spad" 129676 129688 129938 130007) (-115 "BOUNDZRO.spad" 129332 129349 129666 129671) (-114 "BOP.spad" 124796 124804 129322 129327) (-113 "BOP1.spad" 122182 122192 124752 124757) (-112 "BOOLEAN.spad" 121506 121514 122172 122177) (-111 "BMODULE.spad" 121218 121230 121474 121501) (-110 "BITS.spad" 120637 120645 120854 120881) (-109 "BINDING.spad" 120056 120064 120627 120632) (-108 "BINARY.spad" 118167 118175 118523 118616) (-107 "BGAGG.spad" 117364 117374 118147 118162) (-106 "BGAGG.spad" 116569 116581 117354 117359) (-105 "BFUNCT.spad" 116133 116141 116549 116564) (-104 "BEZOUT.spad" 115267 115294 116083 116088) (-103 "BBTREE.spad" 112086 112096 114874 114901) (-102 "BASTYPE.spad" 111758 111766 112076 112081) (-101 "BASTYPE.spad" 111428 111438 111748 111753) (-100 "BALFACT.spad" 110867 110880 111418 111423) (-99 "AUTOMOR.spad" 110314 110323 110847 110862) (-98 "ATTREG.spad" 107033 107040 110066 110309) (-97 "ATTRBUT.spad" 103056 103063 107013 107028) (-96 "ATTRAST.spad" 102773 102780 103046 103051) (-95 "ATRIG.spad" 102243 102250 102763 102768) (-94 "ATRIG.spad" 101711 101720 102233 102238) (-93 "ASTCAT.spad" 101615 101622 101701 101706) (-92 "ASTCAT.spad" 101517 101526 101605 101610) (-91 "ASTACK.spad" 100850 100859 101124 101151) (-90 "ASSOCEQ.spad" 99650 99661 100806 100811) (-89 "ASP9.spad" 98731 98744 99640 99645) (-88 "ASP8.spad" 97774 97787 98721 98726) (-87 "ASP80.spad" 97096 97109 97764 97769) (-86 "ASP7.spad" 96256 96269 97086 97091) (-85 "ASP78.spad" 95707 95720 96246 96251) (-84 "ASP77.spad" 95076 95089 95697 95702) (-83 "ASP74.spad" 94168 94181 95066 95071) (-82 "ASP73.spad" 93439 93452 94158 94163) (-81 "ASP6.spad" 92306 92319 93429 93434) (-80 "ASP55.spad" 90815 90828 92296 92301) (-79 "ASP50.spad" 88632 88645 90805 90810) (-78 "ASP4.spad" 87927 87940 88622 88627) (-77 "ASP49.spad" 86926 86939 87917 87922) (-76 "ASP42.spad" 85333 85372 86916 86921) (-75 "ASP41.spad" 83912 83951 85323 85328) (-74 "ASP35.spad" 82900 82913 83902 83907) (-73 "ASP34.spad" 82201 82214 82890 82895) (-72 "ASP33.spad" 81761 81774 82191 82196) (-71 "ASP31.spad" 80901 80914 81751 81756) (-70 "ASP30.spad" 79793 79806 80891 80896) (-69 "ASP29.spad" 79259 79272 79783 79788) (-68 "ASP28.spad" 70532 70545 79249 79254) (-67 "ASP27.spad" 69429 69442 70522 70527) (-66 "ASP24.spad" 68516 68529 69419 69424) (-65 "ASP20.spad" 67980 67993 68506 68511) (-64 "ASP1.spad" 67361 67374 67970 67975) (-63 "ASP19.spad" 62047 62060 67351 67356) (-62 "ASP12.spad" 61461 61474 62037 62042) (-61 "ASP10.spad" 60732 60745 61451 61456) (-60 "ARRAY2.spad" 60092 60101 60339 60366) (-59 "ARRAY1.spad" 58927 58936 59275 59302) (-58 "ARRAY12.spad" 57596 57607 58917 58922) (-57 "ARR2CAT.spad" 53258 53279 57564 57591) (-56 "ARR2CAT.spad" 48940 48963 53248 53253) (-55 "ARITY.spad" 48508 48515 48930 48935) (-54 "APPRULE.spad" 47752 47774 48498 48503) (-53 "APPLYORE.spad" 47367 47380 47742 47747) (-52 "ANY.spad" 45709 45716 47357 47362) (-51 "ANY1.spad" 44780 44789 45699 45704) (-50 "ANTISYM.spad" 43219 43235 44760 44775) (-49 "ANON.spad" 42916 42923 43209 43214) (-48 "AN.spad" 41217 41224 42732 42825) (-47 "AMR.spad" 39396 39407 41115 41212) (-46 "AMR.spad" 37412 37425 39133 39138) (-45 "ALIST.spad" 34824 34845 35174 35201) (-44 "ALGSC.spad" 33947 33973 34696 34749) (-43 "ALGPKG.spad" 29656 29667 33903 33908) (-42 "ALGMFACT.spad" 28845 28859 29646 29651) (-41 "ALGMANIP.spad" 26265 26280 28642 28647) (-40 "ALGFF.spad" 24580 24607 24797 24953) (-39 "ALGFACT.spad" 23701 23711 24570 24575) (-38 "ALGEBRA.spad" 23534 23543 23657 23696) (-37 "ALGEBRA.spad" 23399 23410 23524 23529) (-36 "ALAGG.spad" 22909 22930 23367 23394) (-35 "AHYP.spad" 22290 22297 22899 22904) (-34 "AGG.spad" 20599 20606 22280 22285) (-33 "AGG.spad" 18872 18881 20555 20560) (-32 "AF.spad" 17297 17312 18807 18812) (-31 "ADDAST.spad" 16975 16982 17287 17292) (-30 "ACPLOT.spad" 15546 15553 16965 16970) (-29 "ACFS.spad" 13297 13306 15448 15541) (-28 "ACFS.spad" 11134 11145 13287 13292) (-27 "ACF.spad" 7736 7743 11036 11129) (-26 "ACF.spad" 4424 4433 7726 7731) (-25 "ABELSG.spad" 3965 3972 4414 4419) (-24 "ABELSG.spad" 3504 3513 3955 3960) (-23 "ABELMON.spad" 3047 3054 3494 3499) (-22 "ABELMON.spad" 2588 2597 3037 3042) (-21 "ABELGRP.spad" 2160 2167 2578 2583) (-20 "ABELGRP.spad" 1730 1739 2150 2155) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file |