aboutsummaryrefslogtreecommitdiff
path: root/src/share/algebra/browse.daase
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2010-06-16 03:19:56 +0000
committerdos-reis <gdr@axiomatics.org>2010-06-16 03:19:56 +0000
commit2bbc83eac50582a5ffab2860f4279aac28f9c429 (patch)
treeb52e3554cb835b9bdea7b380c054283a0d1b3247 /src/share/algebra/browse.daase
parent5da51971d3bd899bb327021730a528de9107329d (diff)
downloadopen-axiom-2bbc83eac50582a5ffab2860f4279aac28f9c429.tar.gz
* algebra/dpolcat.spad.pamphlet (DifferentialVariableCategory):
Extend DifferentialSpace.
Diffstat (limited to 'src/share/algebra/browse.daase')
-rw-r--r--src/share/algebra/browse.daase114
1 files changed, 57 insertions, 57 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index 53ab59f1..85de97e3 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,5 +1,5 @@
-(2268331 . 3485633349)
+(2267929 . 3485644666)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
@@ -88,7 +88,7 @@ NIL
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-40 -1386 UP UPUP -3201)
+(-40 -1386 UP UPUP -2089)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
((-4449 |has| (-417 |#2|) (-372)) (-4454 |has| (-417 |#2|) (-372)) (-4448 |has| (-417 |#2|) (-372)) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
((|HasCategory| (-417 |#2|) (QUOTE (-146))) (|HasCategory| (-417 |#2|) (QUOTE (-148))) (|HasCategory| (-417 |#2|) (QUOTE (-358))) (-2818 (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-377))) (-2818 (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (-2818 (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| (-417 |#2|) (QUOTE (-358))))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -649) (QUOTE (-574)))) (-2818 (|HasCategory| (-417 |#2|) (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))))
@@ -111,7 +111,7 @@ NIL
(-45 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
((-4456 . T) (-4457 . T))
-((-2818 (-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1909) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1909) (|devaluate| |#2|))))))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1909) (|devaluate| |#2|)))))))
+((-2818 (-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1908) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1908) (|devaluate| |#2|))))))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1908) (|devaluate| |#2|)))))))
(-46 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
@@ -472,11 +472,11 @@ NIL
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")))
(((-4458 "*") . T))
NIL
-(-136 |minix| -4129 S T$)
+(-136 |minix| -4132 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-137 |minix| -4129 R)
+(-137 |minix| -4132 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
@@ -900,19 +900,19 @@ NIL
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-243 S -4129 R)
+(-243 S -4132 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
((|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-858))) (|HasAttribute| |#3| (QUOTE -4453)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (QUOTE (-1113))))
-(-244 -4129 R)
+(-244 -4132 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
((-4450 |has| |#2| (-1062)) (-4451 |has| |#2| (-1062)) (-4453 |has| |#2| (-6 -4453)) ((-4458 "*") |has| |#2| (-174)) (-4456 . T))
NIL
-(-245 -4129 A B)
+(-245 -4132 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-246 -4129 R)
+(-246 -4132 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
((-4450 |has| |#2| (-1062)) (-4451 |has| |#2| (-1062)) (-4453 |has| |#2| (-6 -4453)) ((-4458 "*") |has| |#2| (-174)) (-4456 . T))
((-2818 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1113)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1062)))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-372))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-803))) (-2818 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-736))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1062)))) (|HasCategory| |#2| (QUOTE (-377))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1062)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-377)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-858)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1113))))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1062)))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-2818 (|HasCategory| |#2| (QUOTE (-1062))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1113)))) (|HasAttribute| |#2| (QUOTE -4453)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))))
@@ -958,11 +958,11 @@ NIL
NIL
(-257 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4453 -2818 (-2088 (|has| |#4| (-1062)) (|has| |#4| (-239))) (|has| |#4| (-6 -4453)) (-2088 (|has| |#4| (-1062)) (|has| |#4| (-911 (-1190))))) (-4450 |has| |#4| (-1062)) (-4451 |has| |#4| (-1062)) ((-4458 "*") |has| |#4| (-174)) (-4456 . T))
+((-4453 -2818 (-2087 (|has| |#4| (-1062)) (|has| |#4| (-239))) (|has| |#4| (-6 -4453)) (-2087 (|has| |#4| (-1062)) (|has| |#4| (-911 (-1190))))) (-4450 |has| |#4| (-1062)) (-4451 |has| |#4| (-1062)) ((-4458 "*") |has| |#4| (-174)) (-4456 . T))
((-2818 (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-736))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-858))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1062))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-1190)))))) (|HasCategory| |#4| (QUOTE (-372))) (-2818 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (QUOTE (-1062)))) (-2818 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-372)))) (|HasCategory| |#4| (QUOTE (-1062))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-803))) (-2818 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (QUOTE (-858)))) (|HasCategory| |#4| (QUOTE (-858))) (|HasCategory| |#4| (QUOTE (-736))) (-2818 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-1062)))) (|HasCategory| |#4| (QUOTE (-377))) (-2818 (-12 (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-858))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1062))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-1190)))) (-2818 (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1062)))) (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#4| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-239)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-372)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-377)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-736)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-803)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-858)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1062)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1113))))) (-2818 (-12 (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-736))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-858))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1062))) (-12 (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-736))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-858))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1062))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#4| (QUOTE (-1062))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1062))) (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1062)))) (-2818 (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1062)))) (|HasCategory| |#4| (QUOTE (-736))) (-12 (|HasCategory| |#4| (QUOTE (-1062))) (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-1190)))))) (-12 (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-2818 (|HasCategory| |#4| (QUOTE (-1062))) (-12 (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1113)))) (-2818 (|HasAttribute| |#4| (QUOTE -4453)) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1062)))) (-12 (|HasCategory| |#4| (QUOTE (-1062))) (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-1190)))))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))))
(-258 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4453 -2818 (-2088 (|has| |#3| (-1062)) (|has| |#3| (-239))) (|has| |#3| (-6 -4453)) (-2088 (|has| |#3| (-1062)) (|has| |#3| (-911 (-1190))))) (-4450 |has| |#3| (-1062)) (-4451 |has| |#3| (-1062)) ((-4458 "*") |has| |#3| (-174)) (-4456 . T))
+((-4453 -2818 (-2087 (|has| |#3| (-1062)) (|has| |#3| (-239))) (|has| |#3| (-6 -4453)) (-2087 (|has| |#3| (-1062)) (|has| |#3| (-911 (-1190))))) (-4450 |has| |#3| (-1062)) (-4451 |has| |#3| (-1062)) ((-4458 "*") |has| |#3| (-174)) (-4456 . T))
((-2818 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))))) (|HasCategory| |#3| (QUOTE (-372))) (-2818 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1062)))) (-2818 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372)))) (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-803))) (-2818 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-858)))) (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (QUOTE (-736))) (-2818 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1062)))) (|HasCategory| |#3| (QUOTE (-377))) (-2818 (-12 (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))) (-2818 (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1062)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-372)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-377)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-736)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-803)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-858)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1062)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1113))))) (-2818 (-12 (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1062))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1062)))) (-2818 (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1062)))) (|HasCategory| |#3| (QUOTE (-736))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-2818 (|HasCategory| |#3| (QUOTE (-1062))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1113)))) (-2818 (|HasAttribute| |#3| (QUOTE -4453)) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1062)))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))))
(-259 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
@@ -1017,11 +1017,11 @@ NIL
(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T))
((|HasCategory| |#1| (QUOTE (-920))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#3| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#3| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4454)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-146)))))
(-272 A S)
-((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v, n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
+((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
NIL
(-273 S)
-((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v, n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
+((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
NIL
(-274)
@@ -1116,7 +1116,7 @@ NIL
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-297 S R |Mod| -2348 -2130 |exactQuo|)
+(-297 S R |Mod| -2666 -4430 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
((-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
@@ -1143,7 +1143,7 @@ NIL
(-303 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
((-4456 . T) (-4457 . T))
-((-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1909) (|devaluate| |#2|)))))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1113))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))))
+((-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1908) (|devaluate| |#2|)))))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1113))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))))
(-304)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
@@ -1239,7 +1239,7 @@ NIL
(-327 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-372))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2968) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-372))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2379) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))))
(-328 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1560,7 +1560,7 @@ NIL
((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}")))
NIL
NIL
-(-408 -2032 |returnType| -1565 |symbols|)
+(-408 -2032 |returnType| -1564 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
@@ -1867,11 +1867,11 @@ NIL
(-484 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-372))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2968) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-372))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2379) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))))
(-485 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
((-4457 . T))
-((-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1909) (|devaluate| |#2|)))))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-860))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))))
+((-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1908) (|devaluate| |#2|)))))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-860))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))))
(-486 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
((-4457 . T) (-4456 . T))
@@ -1887,7 +1887,7 @@ NIL
(-489 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
((-4456 . T) (-4457 . T))
-((-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1909) (|devaluate| |#2|)))))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1113))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))))
+((-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1908) (|devaluate| |#2|)))))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1113))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))))
(-490)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
@@ -1896,7 +1896,7 @@ NIL
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
(((-4458 "*") |has| |#2| (-174)) (-4449 |has| |#2| (-566)) (-4454 |has| |#2| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T))
((|HasCategory| |#2| (QUOTE (-920))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-920)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4454)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-920)))) (|HasCategory| |#2| (QUOTE (-146)))))
-(-492 -4129 S)
+(-492 -4132 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
((-4450 |has| |#2| (-1062)) (-4451 |has| |#2| (-1062)) (-4453 |has| |#2| (-6 -4453)) ((-4458 "*") |has| |#2| (-174)) (-4456 . T))
((-2818 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1113)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1062)))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-372))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-803))) (-2818 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-736))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1062)))) (|HasCategory| |#2| (QUOTE (-377))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1062)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-377)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-858)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1113))))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1062)))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-2818 (|HasCategory| |#2| (QUOTE (-1062))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1113)))) (|HasAttribute| |#2| (QUOTE -4453)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))))
@@ -2171,7 +2171,7 @@ NIL
(-560 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
((-4456 . T) (-4457 . T))
-((-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1909) (|devaluate| |#2|)))))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1113))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))))
+((-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1908) (|devaluate| |#2|)))))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1113))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))))
(-561 R -1386)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
@@ -2398,12 +2398,12 @@ NIL
NIL
(-617 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4453 -2818 (-2088 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))) (-4451 . T) (-4450 . T))
+((-4453 -2818 (-2087 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))) (-4451 . T) (-4450 . T))
((-2818 (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|))))
(-618 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
((-4456 . T) (-4457 . T))
-((-12 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (QUOTE (-1172))) (LIST (QUOTE |:|) (QUOTE -1909) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| (-1172) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (LIST (QUOTE -623) (QUOTE (-872)))))
+((-12 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (QUOTE (-1172))) (LIST (QUOTE |:|) (QUOTE -1908) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| (-1172) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (LIST (QUOTE -623) (QUOTE (-872)))))
(-619 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
@@ -2499,7 +2499,7 @@ NIL
(-642)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
((-4457 . T))
-((-12 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (QUOTE (-1172))) (LIST (QUOTE |:|) (QUOTE -1909) (QUOTE (-52))))))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (QUOTE (-1113))) (|HasCategory| (-52) (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (QUOTE (-1113))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| (-52) (QUOTE (-1113))) (|HasCategory| (-52) (LIST (QUOTE -317) (QUOTE (-52))))) (|HasCategory| (-1172) (QUOTE (-860))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-52) (QUOTE (-1113))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 (-52))) (QUOTE (-1113))))
+((-12 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (QUOTE (-1172))) (LIST (QUOTE |:|) (QUOTE -1908) (QUOTE (-52))))))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (QUOTE (-1113))) (|HasCategory| (-52) (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (QUOTE (-1113))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| (-52) (QUOTE (-1113))) (|HasCategory| (-52) (LIST (QUOTE -317) (QUOTE (-52))))) (|HasCategory| (-1172) (QUOTE (-860))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-52) (QUOTE (-1113))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (QUOTE (-1113))))
(-643 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
@@ -2510,7 +2510,7 @@ NIL
NIL
(-645 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4453 -2818 (-2088 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))) (-4451 . T) (-4450 . T))
+((-4453 -2818 (-2087 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))) (-4451 . T) (-4450 . T))
((-2818 (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|))))
(-646 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}.")))
@@ -2523,7 +2523,7 @@ NIL
(-648 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-2077 (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-372))))
+((-2076 (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-372))))
(-649 R)
((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{reducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}.")))
NIL
@@ -2600,7 +2600,7 @@ NIL
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-668 A -3000)
+(-668 A -2727)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
((-4450 . T) (-4451 . T) (-4453 . T))
((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372))))
@@ -2792,7 +2792,7 @@ NIL
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-716 S -3611 I)
+(-716 S -3610 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
@@ -2812,7 +2812,7 @@ NIL
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-721 R |Mod| -2348 -2130 |exactQuo|)
+(-721 R |Mod| -2666 -4430 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T))
NIL
@@ -2828,7 +2828,7 @@ NIL
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
((-4451 |has| |#1| (-174)) (-4450 |has| |#1| (-174)) (-4453 . T))
((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))))
-(-725 R |Mod| -2348 -2130 |exactQuo|)
+(-725 R |Mod| -2666 -4430 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
((-4453 . T))
NIL
@@ -3091,7 +3091,7 @@ NIL
(-790 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T))
-((|HasCategory| |#1| (QUOTE (-920))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1190))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1190))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1190)))) (-2077 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1190)))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1190)))) (-2077 (|HasCategory| |#1| (QUOTE (-555)))) (-2077 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1190)))) (-2077 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-574))))) (-2077 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1190)))) (-2077 (|HasCategory| |#1| (LIST (QUOTE -1005) (QUOTE (-574))))))) (|HasAttribute| |#1| (QUOTE -4454)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-146)))))
+((|HasCategory| |#1| (QUOTE (-920))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1190))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1190))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1190)))) (-2076 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1190)))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1190)))) (-2076 (|HasCategory| |#1| (QUOTE (-555)))) (-2076 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1190)))) (-2076 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-574))))) (-2076 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1190)))) (-2076 (|HasCategory| |#1| (LIST (QUOTE -1005) (QUOTE (-574))))))) (|HasAttribute| |#1| (QUOTE -4454)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-146)))))
(-791 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
@@ -3228,7 +3228,7 @@ NIL
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.")))
NIL
NIL
-(-825 -4129 S |f|)
+(-825 -4132 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
((-4450 |has| |#2| (-1062)) (-4451 |has| |#2| (-1062)) (-4453 |has| |#2| (-6 -4453)) ((-4458 "*") |has| |#2| (-174)) (-4456 . T))
((-2818 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1113)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1062)))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-372))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-803))) (-2818 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-736))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1062)))) (|HasCategory| |#2| (QUOTE (-377))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1062)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-377)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-858)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1113))))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1062)))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-2818 (|HasCategory| |#2| (QUOTE (-1062))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1113)))) (|HasAttribute| |#2| (QUOTE -4453)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))))
@@ -3348,7 +3348,7 @@ NIL
((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%.")))
NIL
NIL
-(-855 -4129 S)
+(-855 -4132 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
@@ -3384,11 +3384,11 @@ NIL
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
((|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566))))
-(-864 R |sigma| -2076)
+(-864 R |sigma| -2075)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
((-4450 . T) (-4451 . T) (-4453 . T))
((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372))))
-(-865 |x| R |sigma| -2076)
+(-865 |x| R |sigma| -2075)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")))
((-4450 . T) (-4451 . T) (-4453 . T))
((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-372))))
@@ -3523,7 +3523,7 @@ NIL
(-898 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-2077 (|HasCategory| |#2| (QUOTE (-1062)))) (-2077 (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-1190)))))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (-2077 (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-1190)))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-1190)))))
+((-12 (-2076 (|HasCategory| |#2| (QUOTE (-1062)))) (-2076 (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-1190)))))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (-2076 (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-1190)))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-1190)))))
(-899 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
@@ -3532,7 +3532,7 @@ NIL
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-901 R -3611)
+(-901 R -3610)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
@@ -3720,11 +3720,11 @@ NIL
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -897) (|devaluate| |#1|))))
-(-948 R -1386 -3611)
+(-948 R -1386 -3610)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-949 -3611)
+(-949 -3610)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
@@ -4123,7 +4123,7 @@ NIL
(-1048)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
((-4456 . T) (-4457 . T))
-((-12 (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (QUOTE (-1190))) (LIST (QUOTE |:|) (QUOTE -1909) (QUOTE (-52))))))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (QUOTE (-1113))) (|HasCategory| (-52) (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (QUOTE (-1113))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| (-52) (QUOTE (-1113))) (|HasCategory| (-52) (LIST (QUOTE -317) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (QUOTE (-1113))) (|HasCategory| (-1190) (QUOTE (-860))) (|HasCategory| (-52) (QUOTE (-1113))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))))
+((-12 (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (QUOTE (-1190))) (LIST (QUOTE |:|) (QUOTE -1908) (QUOTE (-52))))))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (QUOTE (-1113))) (|HasCategory| (-52) (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (QUOTE (-1113))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| (-52) (QUOTE (-1113))) (|HasCategory| (-52) (LIST (QUOTE -317) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (QUOTE (-1113))) (|HasCategory| (-1190) (QUOTE (-860))) (|HasCategory| (-52) (QUOTE (-1113))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))))
(-1049)
((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'.")))
NIL
@@ -4235,7 +4235,7 @@ NIL
(-1076)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}")))
((-4456 . T) (-4457 . T))
-((-12 (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (QUOTE (-1190))) (LIST (QUOTE |:|) (QUOTE -1909) (QUOTE (-52))))))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (QUOTE (-1113))) (|HasCategory| (-52) (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (QUOTE (-1113))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| (-52) (QUOTE (-1113))) (|HasCategory| (-52) (LIST (QUOTE -317) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (QUOTE (-1113))) (|HasCategory| (-1190) (QUOTE (-860))) (|HasCategory| (-52) (QUOTE (-1113))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1909 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))))
+((-12 (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (QUOTE (-1190))) (LIST (QUOTE |:|) (QUOTE -1908) (QUOTE (-52))))))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (QUOTE (-1113))) (|HasCategory| (-52) (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (QUOTE (-1113))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| (-52) (QUOTE (-1113))) (|HasCategory| (-52) (LIST (QUOTE -317) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (QUOTE (-1113))) (|HasCategory| (-1190) (QUOTE (-860))) (|HasCategory| (-52) (QUOTE (-1113))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))))
(-1077 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
@@ -4583,7 +4583,7 @@ NIL
(-1163 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
((-4457 . T))
-((-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1909) (|devaluate| |#2|)))))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-860))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))))
+((-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1908) (|devaluate| |#2|)))))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-860))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))))
(-1164)
((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}.")))
NIL
@@ -4623,7 +4623,7 @@ NIL
(-1173 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
((-4456 . T) (-4457 . T))
-((-12 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (QUOTE (-1172))) (LIST (QUOTE |:|) (QUOTE -1909) (|devaluate| |#1|)))))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (QUOTE (-1113))) (|HasCategory| (-1172) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1909 |#1|)) (LIST (QUOTE -623) (QUOTE (-872)))))
+((-12 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (QUOTE (-1172))) (LIST (QUOTE |:|) (QUOTE -1908) (|devaluate| |#1|)))))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (QUOTE (-1113))) (|HasCategory| (-1172) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (LIST (QUOTE -623) (QUOTE (-872)))))
(-1174 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}")))
NIL
@@ -4654,8 +4654,8 @@ NIL
NIL
(-1181 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4458 "*") -2818 (-2088 (|has| |#1| (-372)) (|has| (-1188 |#1| |#2| |#3|) (-830))) (|has| |#1| (-174)) (-2088 (|has| |#1| (-372)) (|has| (-1188 |#1| |#2| |#3|) (-920)))) (-4449 -2818 (-2088 (|has| |#1| (-372)) (|has| (-1188 |#1| |#2| |#3|) (-830))) (|has| |#1| (-566)) (-2088 (|has| |#1| (-372)) (|has| (-1188 |#1| |#2| |#3|) (-920)))) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T))
-((-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-1035))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-1165))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1188) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1188) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1188) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1190)) (LIST (QUOTE -1188) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|)))))) (-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1125))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-1035))) (|HasCategory| |#1| (QUOTE (-372)))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372))))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-1165))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1188) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1188) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1188) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1190)) (LIST (QUOTE -1188) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2968) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(((-4458 "*") -2818 (-2087 (|has| |#1| (-372)) (|has| (-1188 |#1| |#2| |#3|) (-830))) (|has| |#1| (-174)) (-2087 (|has| |#1| (-372)) (|has| (-1188 |#1| |#2| |#3|) (-920)))) (-4449 -2818 (-2087 (|has| |#1| (-372)) (|has| (-1188 |#1| |#2| |#3|) (-830))) (|has| |#1| (-566)) (-2087 (|has| |#1| (-372)) (|has| (-1188 |#1| |#2| |#3|) (-920)))) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T))
+((-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-1035))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-1165))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1188) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1188) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1188) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1190)) (LIST (QUOTE -1188) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|)))))) (-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1125))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-1035))) (|HasCategory| |#1| (QUOTE (-372)))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372))))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-1165))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1188) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1188) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1188) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1190)) (LIST (QUOTE -1188) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2379) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))))
(-1182 R -1386)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
@@ -4679,11 +4679,11 @@ NIL
(-1187 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-372))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2968) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-372))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2379) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))))
(-1188 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4450 . T) (-4451 . T) (-4453 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|)))) (|HasCategory| (-781) (QUOTE (-1125))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasCategory| |#1| (QUOTE (-372))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2968) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|)))) (|HasCategory| (-781) (QUOTE (-1125))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasCategory| |#1| (QUOTE (-372))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2379) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))))
(-1189)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
@@ -4743,7 +4743,7 @@ NIL
(-1203 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
((-4456 . T) (-4457 . T))
-((-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1909) (|devaluate| |#2|)))))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1113))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1909 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))))
+((-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1908) (|devaluate| |#2|)))))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1113))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))))
(-1204 S)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}.")))
NIL
@@ -4907,11 +4907,11 @@ NIL
(-1244 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T))
-((-2818 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1190)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-920)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1035)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1165)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-1190)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-146))))) (-2818 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-148))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1125))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-920)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-1190))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1035)))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860))))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1190)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-920)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1035)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1165)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-1190)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1165)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1190)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2968) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-920))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-315)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-146))))))
+((-2818 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1190)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-920)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1035)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1165)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-1190)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-146))))) (-2818 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-148))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1125))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-920)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-1190))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1035)))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860))))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1190)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-920)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1035)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1165)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-1190)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1165)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1190)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2379) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-920))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-315)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-146))))))
(-1245 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4458 "*") -2818 (-2088 (|has| |#1| (-372)) (|has| (-1273 |#1| |#2| |#3|) (-830))) (|has| |#1| (-174)) (-2088 (|has| |#1| (-372)) (|has| (-1273 |#1| |#2| |#3|) (-920)))) (-4449 -2818 (-2088 (|has| |#1| (-372)) (|has| (-1273 |#1| |#2| |#3|) (-830))) (|has| |#1| (-566)) (-2088 (|has| |#1| (-372)) (|has| (-1273 |#1| |#2| |#3|) (-920)))) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T))
-((-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-1035))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-1165))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1190)) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|)))))) (-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1125))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-1035))) (|HasCategory| |#1| (QUOTE (-372)))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372))))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-1165))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1190)) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2968) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(((-4458 "*") -2818 (-2087 (|has| |#1| (-372)) (|has| (-1273 |#1| |#2| |#3|) (-830))) (|has| |#1| (-174)) (-2087 (|has| |#1| (-372)) (|has| (-1273 |#1| |#2| |#3|) (-920)))) (-4449 -2818 (-2087 (|has| |#1| (-372)) (|has| (-1273 |#1| |#2| |#3|) (-830))) (|has| |#1| (-566)) (-2087 (|has| |#1| (-372)) (|has| (-1273 |#1| |#2| |#3|) (-920)))) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T))
+((-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-1035))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-1165))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1190)) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|)))))) (-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1125))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-1035))) (|HasCategory| |#1| (QUOTE (-372)))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372))))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-1165))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1190)) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2379) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))))
(-1246 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
@@ -4991,11 +4991,11 @@ NIL
(-1265 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T))
-((|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-372))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2968) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))
+((|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-372))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2379) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))
(-1266 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-372))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2968) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-372))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2379) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))))
(-1267 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}.")))
(((-4458 "*") |has| (-1266 |#2| |#3| |#4|) (-174)) (-4449 |has| (-1266 |#2| |#3| |#4|) (-566)) (-4450 . T) (-4451 . T) (-4453 . T))
@@ -5015,7 +5015,7 @@ NIL
(-1271 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (QUOTE (-1216))) (|HasSignature| |#2| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2968) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1190))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))))
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (QUOTE (-1216))) (|HasSignature| |#2| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2379) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1190))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))))
(-1272 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4450 . T) (-4451 . T) (-4453 . T))
@@ -5023,7 +5023,7 @@ NIL
(-1273 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4450 . T) (-4451 . T) (-4453 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|)))) (|HasCategory| (-781) (QUOTE (-1125))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasCategory| |#1| (QUOTE (-372))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2968) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|)))) (|HasCategory| (-781) (QUOTE (-1125))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasCategory| |#1| (QUOTE (-372))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2379) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))))
(-1274 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
@@ -5188,4 +5188,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2268311 2268316 2268321 2268326) (-2 NIL 2268291 2268296 2268301 2268306) (-1 NIL 2268271 2268276 2268281 2268286) (0 NIL 2268251 2268256 2268261 2268266) (-1310 "ZMOD.spad" 2268060 2268073 2268189 2268246) (-1309 "ZLINDEP.spad" 2267126 2267137 2268050 2268055) (-1308 "ZDSOLVE.spad" 2257071 2257093 2267116 2267121) (-1307 "YSTREAM.spad" 2256566 2256577 2257061 2257066) (-1306 "YDIAGRAM.spad" 2256200 2256209 2256556 2256561) (-1305 "XRPOLY.spad" 2255420 2255440 2256056 2256125) (-1304 "XPR.spad" 2253215 2253228 2255138 2255237) (-1303 "XPOLY.spad" 2252770 2252781 2253071 2253140) (-1302 "XPOLYC.spad" 2252089 2252105 2252696 2252765) (-1301 "XPBWPOLY.spad" 2250526 2250546 2251869 2251938) (-1300 "XF.spad" 2248989 2249004 2250428 2250521) (-1299 "XF.spad" 2247432 2247449 2248873 2248878) (-1298 "XFALG.spad" 2244480 2244496 2247358 2247427) (-1297 "XEXPPKG.spad" 2243731 2243757 2244470 2244475) (-1296 "XDPOLY.spad" 2243345 2243361 2243587 2243656) (-1295 "XALG.spad" 2243005 2243016 2243301 2243340) (-1294 "WUTSET.spad" 2238844 2238861 2242651 2242678) (-1293 "WP.spad" 2238043 2238087 2238702 2238769) (-1292 "WHILEAST.spad" 2237841 2237850 2238033 2238038) (-1291 "WHEREAST.spad" 2237512 2237521 2237831 2237836) (-1290 "WFFINTBS.spad" 2235175 2235197 2237502 2237507) (-1289 "WEIER.spad" 2233397 2233408 2235165 2235170) (-1288 "VSPACE.spad" 2233070 2233081 2233365 2233392) (-1287 "VSPACE.spad" 2232763 2232776 2233060 2233065) (-1286 "VOID.spad" 2232440 2232449 2232753 2232758) (-1285 "VIEW.spad" 2230120 2230129 2232430 2232435) (-1284 "VIEWDEF.spad" 2225321 2225330 2230110 2230115) (-1283 "VIEW3D.spad" 2209282 2209291 2225311 2225316) (-1282 "VIEW2D.spad" 2197173 2197182 2209272 2209277) (-1281 "VECTOR.spad" 2195847 2195858 2196098 2196125) (-1280 "VECTOR2.spad" 2194486 2194499 2195837 2195842) (-1279 "VECTCAT.spad" 2192390 2192401 2194454 2194481) (-1278 "VECTCAT.spad" 2190101 2190114 2192167 2192172) (-1277 "VARIABLE.spad" 2189881 2189896 2190091 2190096) (-1276 "UTYPE.spad" 2189525 2189534 2189871 2189876) (-1275 "UTSODETL.spad" 2188820 2188844 2189481 2189486) (-1274 "UTSODE.spad" 2187036 2187056 2188810 2188815) (-1273 "UTS.spad" 2181840 2181868 2185503 2185600) (-1272 "UTSCAT.spad" 2179319 2179335 2181738 2181835) (-1271 "UTSCAT.spad" 2176442 2176460 2178863 2178868) (-1270 "UTS2.spad" 2176037 2176072 2176432 2176437) (-1269 "URAGG.spad" 2170710 2170721 2176027 2176032) (-1268 "URAGG.spad" 2165347 2165360 2170666 2170671) (-1267 "UPXSSING.spad" 2162992 2163018 2164428 2164561) (-1266 "UPXS.spad" 2160146 2160174 2161124 2161273) (-1265 "UPXSCONS.spad" 2157905 2157925 2158278 2158427) (-1264 "UPXSCCA.spad" 2156476 2156496 2157751 2157900) (-1263 "UPXSCCA.spad" 2155189 2155211 2156466 2156471) (-1262 "UPXSCAT.spad" 2153778 2153794 2155035 2155184) (-1261 "UPXS2.spad" 2153321 2153374 2153768 2153773) (-1260 "UPSQFREE.spad" 2151735 2151749 2153311 2153316) (-1259 "UPSCAT.spad" 2149522 2149546 2151633 2151730) (-1258 "UPSCAT.spad" 2147015 2147041 2149128 2149133) (-1257 "UPOLYC.spad" 2142055 2142066 2146857 2147010) (-1256 "UPOLYC.spad" 2136987 2137000 2141791 2141796) (-1255 "UPOLYC2.spad" 2136458 2136477 2136977 2136982) (-1254 "UP.spad" 2133657 2133672 2134044 2134197) (-1253 "UPMP.spad" 2132557 2132570 2133647 2133652) (-1252 "UPDIVP.spad" 2132122 2132136 2132547 2132552) (-1251 "UPDECOMP.spad" 2130367 2130381 2132112 2132117) (-1250 "UPCDEN.spad" 2129576 2129592 2130357 2130362) (-1249 "UP2.spad" 2128940 2128961 2129566 2129571) (-1248 "UNISEG.spad" 2128293 2128304 2128859 2128864) (-1247 "UNISEG2.spad" 2127790 2127803 2128249 2128254) (-1246 "UNIFACT.spad" 2126893 2126905 2127780 2127785) (-1245 "ULS.spad" 2117451 2117479 2118538 2118967) (-1244 "ULSCONS.spad" 2109847 2109867 2110217 2110366) (-1243 "ULSCCAT.spad" 2107584 2107604 2109693 2109842) (-1242 "ULSCCAT.spad" 2105429 2105451 2107540 2107545) (-1241 "ULSCAT.spad" 2103661 2103677 2105275 2105424) (-1240 "ULS2.spad" 2103175 2103228 2103651 2103656) (-1239 "UINT8.spad" 2103052 2103061 2103165 2103170) (-1238 "UINT64.spad" 2102928 2102937 2103042 2103047) (-1237 "UINT32.spad" 2102804 2102813 2102918 2102923) (-1236 "UINT16.spad" 2102680 2102689 2102794 2102799) (-1235 "UFD.spad" 2101745 2101754 2102606 2102675) (-1234 "UFD.spad" 2100872 2100883 2101735 2101740) (-1233 "UDVO.spad" 2099753 2099762 2100862 2100867) (-1232 "UDPO.spad" 2097246 2097257 2099709 2099714) (-1231 "TYPE.spad" 2097178 2097187 2097236 2097241) (-1230 "TYPEAST.spad" 2097097 2097106 2097168 2097173) (-1229 "TWOFACT.spad" 2095749 2095764 2097087 2097092) (-1228 "TUPLE.spad" 2095235 2095246 2095648 2095653) (-1227 "TUBETOOL.spad" 2092102 2092111 2095225 2095230) (-1226 "TUBE.spad" 2090749 2090766 2092092 2092097) (-1225 "TS.spad" 2089348 2089364 2090314 2090411) (-1224 "TSETCAT.spad" 2076475 2076492 2089316 2089343) (-1223 "TSETCAT.spad" 2063588 2063607 2076431 2076436) (-1222 "TRMANIP.spad" 2057954 2057971 2063294 2063299) (-1221 "TRIMAT.spad" 2056917 2056942 2057944 2057949) (-1220 "TRIGMNIP.spad" 2055444 2055461 2056907 2056912) (-1219 "TRIGCAT.spad" 2054956 2054965 2055434 2055439) (-1218 "TRIGCAT.spad" 2054466 2054477 2054946 2054951) (-1217 "TREE.spad" 2053041 2053052 2054073 2054100) (-1216 "TRANFUN.spad" 2052880 2052889 2053031 2053036) (-1215 "TRANFUN.spad" 2052717 2052728 2052870 2052875) (-1214 "TOPSP.spad" 2052391 2052400 2052707 2052712) (-1213 "TOOLSIGN.spad" 2052054 2052065 2052381 2052386) (-1212 "TEXTFILE.spad" 2050615 2050624 2052044 2052049) (-1211 "TEX.spad" 2047761 2047770 2050605 2050610) (-1210 "TEX1.spad" 2047317 2047328 2047751 2047756) (-1209 "TEMUTL.spad" 2046872 2046881 2047307 2047312) (-1208 "TBCMPPK.spad" 2044965 2044988 2046862 2046867) (-1207 "TBAGG.spad" 2044015 2044038 2044945 2044960) (-1206 "TBAGG.spad" 2043073 2043098 2044005 2044010) (-1205 "TANEXP.spad" 2042481 2042492 2043063 2043068) (-1204 "TALGOP.spad" 2042205 2042216 2042471 2042476) (-1203 "TABLE.spad" 2040616 2040639 2040886 2040913) (-1202 "TABLEAU.spad" 2040097 2040108 2040606 2040611) (-1201 "TABLBUMP.spad" 2036900 2036911 2040087 2040092) (-1200 "SYSTEM.spad" 2036128 2036137 2036890 2036895) (-1199 "SYSSOLP.spad" 2033611 2033622 2036118 2036123) (-1198 "SYSPTR.spad" 2033510 2033519 2033601 2033606) (-1197 "SYSNNI.spad" 2032692 2032703 2033500 2033505) (-1196 "SYSINT.spad" 2032096 2032107 2032682 2032687) (-1195 "SYNTAX.spad" 2028302 2028311 2032086 2032091) (-1194 "SYMTAB.spad" 2026370 2026379 2028292 2028297) (-1193 "SYMS.spad" 2022393 2022402 2026360 2026365) (-1192 "SYMPOLY.spad" 2021400 2021411 2021482 2021609) (-1191 "SYMFUNC.spad" 2020901 2020912 2021390 2021395) (-1190 "SYMBOL.spad" 2018404 2018413 2020891 2020896) (-1189 "SWITCH.spad" 2015175 2015184 2018394 2018399) (-1188 "SUTS.spad" 2012080 2012108 2013642 2013739) (-1187 "SUPXS.spad" 2009221 2009249 2010212 2010361) (-1186 "SUP.spad" 2006034 2006045 2006807 2006960) (-1185 "SUPFRACF.spad" 2005139 2005157 2006024 2006029) (-1184 "SUP2.spad" 2004531 2004544 2005129 2005134) (-1183 "SUMRF.spad" 2003505 2003516 2004521 2004526) (-1182 "SUMFS.spad" 2003142 2003159 2003495 2003500) (-1181 "SULS.spad" 1993687 1993715 1994787 1995216) (-1180 "SUCHTAST.spad" 1993456 1993465 1993677 1993682) (-1179 "SUCH.spad" 1993138 1993153 1993446 1993451) (-1178 "SUBSPACE.spad" 1985253 1985268 1993128 1993133) (-1177 "SUBRESP.spad" 1984423 1984437 1985209 1985214) (-1176 "STTF.spad" 1980522 1980538 1984413 1984418) (-1175 "STTFNC.spad" 1976990 1977006 1980512 1980517) (-1174 "STTAYLOR.spad" 1969625 1969636 1976871 1976876) (-1173 "STRTBL.spad" 1968130 1968147 1968279 1968306) (-1172 "STRING.spad" 1967539 1967548 1967553 1967580) (-1171 "STRICAT.spad" 1967327 1967336 1967507 1967534) (-1170 "STREAM.spad" 1964245 1964256 1966852 1966867) (-1169 "STREAM3.spad" 1963818 1963833 1964235 1964240) (-1168 "STREAM2.spad" 1962946 1962959 1963808 1963813) (-1167 "STREAM1.spad" 1962652 1962663 1962936 1962941) (-1166 "STINPROD.spad" 1961588 1961604 1962642 1962647) (-1165 "STEP.spad" 1960789 1960798 1961578 1961583) (-1164 "STEPAST.spad" 1960023 1960032 1960779 1960784) (-1163 "STBL.spad" 1958549 1958577 1958716 1958731) (-1162 "STAGG.spad" 1957624 1957635 1958539 1958544) (-1161 "STAGG.spad" 1956697 1956710 1957614 1957619) (-1160 "STACK.spad" 1956054 1956065 1956304 1956331) (-1159 "SREGSET.spad" 1953758 1953775 1955700 1955727) (-1158 "SRDCMPK.spad" 1952319 1952339 1953748 1953753) (-1157 "SRAGG.spad" 1947462 1947471 1952287 1952314) (-1156 "SRAGG.spad" 1942625 1942636 1947452 1947457) (-1155 "SQMATRIX.spad" 1940297 1940315 1941213 1941300) (-1154 "SPLTREE.spad" 1934849 1934862 1939733 1939760) (-1153 "SPLNODE.spad" 1931437 1931450 1934839 1934844) (-1152 "SPFCAT.spad" 1930246 1930255 1931427 1931432) (-1151 "SPECOUT.spad" 1928798 1928807 1930236 1930241) (-1150 "SPADXPT.spad" 1920393 1920402 1928788 1928793) (-1149 "spad-parser.spad" 1919858 1919867 1920383 1920388) (-1148 "SPADAST.spad" 1919559 1919568 1919848 1919853) (-1147 "SPACEC.spad" 1903758 1903769 1919549 1919554) (-1146 "SPACE3.spad" 1903534 1903545 1903748 1903753) (-1145 "SORTPAK.spad" 1903083 1903096 1903490 1903495) (-1144 "SOLVETRA.spad" 1900846 1900857 1903073 1903078) (-1143 "SOLVESER.spad" 1899374 1899385 1900836 1900841) (-1142 "SOLVERAD.spad" 1895400 1895411 1899364 1899369) (-1141 "SOLVEFOR.spad" 1893862 1893880 1895390 1895395) (-1140 "SNTSCAT.spad" 1893462 1893479 1893830 1893857) (-1139 "SMTS.spad" 1891734 1891760 1893027 1893124) (-1138 "SMP.spad" 1889209 1889229 1889599 1889726) (-1137 "SMITH.spad" 1888054 1888079 1889199 1889204) (-1136 "SMATCAT.spad" 1886164 1886194 1887998 1888049) (-1135 "SMATCAT.spad" 1884206 1884238 1886042 1886047) (-1134 "SKAGG.spad" 1883169 1883180 1884174 1884201) (-1133 "SINT.spad" 1882109 1882118 1883035 1883164) (-1132 "SIMPAN.spad" 1881837 1881846 1882099 1882104) (-1131 "SIG.spad" 1881167 1881176 1881827 1881832) (-1130 "SIGNRF.spad" 1880285 1880296 1881157 1881162) (-1129 "SIGNEF.spad" 1879564 1879581 1880275 1880280) (-1128 "SIGAST.spad" 1878949 1878958 1879554 1879559) (-1127 "SHP.spad" 1876877 1876892 1878905 1878910) (-1126 "SHDP.spad" 1866511 1866538 1867020 1867151) (-1125 "SGROUP.spad" 1866119 1866128 1866501 1866506) (-1124 "SGROUP.spad" 1865725 1865736 1866109 1866114) (-1123 "SGCF.spad" 1858864 1858873 1865715 1865720) (-1122 "SFRTCAT.spad" 1857794 1857811 1858832 1858859) (-1121 "SFRGCD.spad" 1856857 1856877 1857784 1857789) (-1120 "SFQCMPK.spad" 1851494 1851514 1856847 1856852) (-1119 "SFORT.spad" 1850933 1850947 1851484 1851489) (-1118 "SEXOF.spad" 1850776 1850816 1850923 1850928) (-1117 "SEX.spad" 1850668 1850677 1850766 1850771) (-1116 "SEXCAT.spad" 1848449 1848489 1850658 1850663) (-1115 "SET.spad" 1846773 1846784 1847870 1847909) (-1114 "SETMN.spad" 1845223 1845240 1846763 1846768) (-1113 "SETCAT.spad" 1844545 1844554 1845213 1845218) (-1112 "SETCAT.spad" 1843865 1843876 1844535 1844540) (-1111 "SETAGG.spad" 1840414 1840425 1843845 1843860) (-1110 "SETAGG.spad" 1836971 1836984 1840404 1840409) (-1109 "SEQAST.spad" 1836674 1836683 1836961 1836966) (-1108 "SEGXCAT.spad" 1835830 1835843 1836664 1836669) (-1107 "SEG.spad" 1835643 1835654 1835749 1835754) (-1106 "SEGCAT.spad" 1834568 1834579 1835633 1835638) (-1105 "SEGBIND.spad" 1834326 1834337 1834515 1834520) (-1104 "SEGBIND2.spad" 1834024 1834037 1834316 1834321) (-1103 "SEGAST.spad" 1833738 1833747 1834014 1834019) (-1102 "SEG2.spad" 1833173 1833186 1833694 1833699) (-1101 "SDVAR.spad" 1832449 1832460 1833163 1833168) (-1100 "SDPOL.spad" 1829875 1829886 1830166 1830293) (-1099 "SCPKG.spad" 1827964 1827975 1829865 1829870) (-1098 "SCOPE.spad" 1827117 1827126 1827954 1827959) (-1097 "SCACHE.spad" 1825813 1825824 1827107 1827112) (-1096 "SASTCAT.spad" 1825722 1825731 1825803 1825808) (-1095 "SAOS.spad" 1825594 1825603 1825712 1825717) (-1094 "SAERFFC.spad" 1825307 1825327 1825584 1825589) (-1093 "SAE.spad" 1823482 1823498 1824093 1824228) (-1092 "SAEFACT.spad" 1823183 1823203 1823472 1823477) (-1091 "RURPK.spad" 1820842 1820858 1823173 1823178) (-1090 "RULESET.spad" 1820295 1820319 1820832 1820837) (-1089 "RULE.spad" 1818535 1818559 1820285 1820290) (-1088 "RULECOLD.spad" 1818387 1818400 1818525 1818530) (-1087 "RTVALUE.spad" 1818122 1818131 1818377 1818382) (-1086 "RSTRCAST.spad" 1817839 1817848 1818112 1818117) (-1085 "RSETGCD.spad" 1814217 1814237 1817829 1817834) (-1084 "RSETCAT.spad" 1804153 1804170 1814185 1814212) (-1083 "RSETCAT.spad" 1794109 1794128 1804143 1804148) (-1082 "RSDCMPK.spad" 1792561 1792581 1794099 1794104) (-1081 "RRCC.spad" 1790945 1790975 1792551 1792556) (-1080 "RRCC.spad" 1789327 1789359 1790935 1790940) (-1079 "RPTAST.spad" 1789029 1789038 1789317 1789322) (-1078 "RPOLCAT.spad" 1768389 1768404 1788897 1789024) (-1077 "RPOLCAT.spad" 1747462 1747479 1767972 1767977) (-1076 "ROUTINE.spad" 1743345 1743354 1746109 1746136) (-1075 "ROMAN.spad" 1742673 1742682 1743211 1743340) (-1074 "ROIRC.spad" 1741753 1741785 1742663 1742668) (-1073 "RNS.spad" 1740656 1740665 1741655 1741748) (-1072 "RNS.spad" 1739645 1739656 1740646 1740651) (-1071 "RNG.spad" 1739380 1739389 1739635 1739640) (-1070 "RNGBIND.spad" 1738540 1738554 1739335 1739340) (-1069 "RMODULE.spad" 1738305 1738316 1738530 1738535) (-1068 "RMCAT2.spad" 1737725 1737782 1738295 1738300) (-1067 "RMATRIX.spad" 1736549 1736568 1736892 1736931) (-1066 "RMATCAT.spad" 1732128 1732159 1736505 1736544) (-1065 "RMATCAT.spad" 1727597 1727630 1731976 1731981) (-1064 "RLINSET.spad" 1726991 1727002 1727587 1727592) (-1063 "RINTERP.spad" 1726879 1726899 1726981 1726986) (-1062 "RING.spad" 1726349 1726358 1726859 1726874) (-1061 "RING.spad" 1725827 1725838 1726339 1726344) (-1060 "RIDIST.spad" 1725219 1725228 1725817 1725822) (-1059 "RGCHAIN.spad" 1723802 1723818 1724704 1724731) (-1058 "RGBCSPC.spad" 1723583 1723595 1723792 1723797) (-1057 "RGBCMDL.spad" 1723113 1723125 1723573 1723578) (-1056 "RF.spad" 1720755 1720766 1723103 1723108) (-1055 "RFFACTOR.spad" 1720217 1720228 1720745 1720750) (-1054 "RFFACT.spad" 1719952 1719964 1720207 1720212) (-1053 "RFDIST.spad" 1718948 1718957 1719942 1719947) (-1052 "RETSOL.spad" 1718367 1718380 1718938 1718943) (-1051 "RETRACT.spad" 1717795 1717806 1718357 1718362) (-1050 "RETRACT.spad" 1717221 1717234 1717785 1717790) (-1049 "RETAST.spad" 1717033 1717042 1717211 1717216) (-1048 "RESULT.spad" 1715093 1715102 1715680 1715707) (-1047 "RESRING.spad" 1714440 1714487 1715031 1715088) (-1046 "RESLATC.spad" 1713764 1713775 1714430 1714435) (-1045 "REPSQ.spad" 1713495 1713506 1713754 1713759) (-1044 "REP.spad" 1711049 1711058 1713485 1713490) (-1043 "REPDB.spad" 1710756 1710767 1711039 1711044) (-1042 "REP2.spad" 1700414 1700425 1710598 1710603) (-1041 "REP1.spad" 1694610 1694621 1700364 1700369) (-1040 "REGSET.spad" 1692407 1692424 1694256 1694283) (-1039 "REF.spad" 1691742 1691753 1692362 1692367) (-1038 "REDORDER.spad" 1690948 1690965 1691732 1691737) (-1037 "RECLOS.spad" 1689731 1689751 1690435 1690528) (-1036 "REALSOLV.spad" 1688871 1688880 1689721 1689726) (-1035 "REAL.spad" 1688743 1688752 1688861 1688866) (-1034 "REAL0Q.spad" 1686041 1686056 1688733 1688738) (-1033 "REAL0.spad" 1682885 1682900 1686031 1686036) (-1032 "RDUCEAST.spad" 1682606 1682615 1682875 1682880) (-1031 "RDIV.spad" 1682261 1682286 1682596 1682601) (-1030 "RDIST.spad" 1681828 1681839 1682251 1682256) (-1029 "RDETRS.spad" 1680692 1680710 1681818 1681823) (-1028 "RDETR.spad" 1678831 1678849 1680682 1680687) (-1027 "RDEEFS.spad" 1677930 1677947 1678821 1678826) (-1026 "RDEEF.spad" 1676940 1676957 1677920 1677925) (-1025 "RCFIELD.spad" 1674126 1674135 1676842 1676935) (-1024 "RCFIELD.spad" 1671398 1671409 1674116 1674121) (-1023 "RCAGG.spad" 1669326 1669337 1671388 1671393) (-1022 "RCAGG.spad" 1667181 1667194 1669245 1669250) (-1021 "RATRET.spad" 1666541 1666552 1667171 1667176) (-1020 "RATFACT.spad" 1666233 1666245 1666531 1666536) (-1019 "RANDSRC.spad" 1665552 1665561 1666223 1666228) (-1018 "RADUTIL.spad" 1665308 1665317 1665542 1665547) (-1017 "RADIX.spad" 1662229 1662243 1663775 1663868) (-1016 "RADFF.spad" 1660642 1660679 1660761 1660917) (-1015 "RADCAT.spad" 1660237 1660246 1660632 1660637) (-1014 "RADCAT.spad" 1659830 1659841 1660227 1660232) (-1013 "QUEUE.spad" 1659178 1659189 1659437 1659464) (-1012 "QUAT.spad" 1657636 1657647 1657979 1658044) (-1011 "QUATCT2.spad" 1657256 1657275 1657626 1657631) (-1010 "QUATCAT.spad" 1655426 1655437 1657186 1657251) (-1009 "QUATCAT.spad" 1653347 1653360 1655109 1655114) (-1008 "QUAGG.spad" 1652174 1652185 1653315 1653342) (-1007 "QQUTAST.spad" 1651942 1651951 1652164 1652169) (-1006 "QFORM.spad" 1651560 1651575 1651932 1651937) (-1005 "QFCAT.spad" 1650262 1650273 1651462 1651555) (-1004 "QFCAT.spad" 1648555 1648568 1649757 1649762) (-1003 "QFCAT2.spad" 1648247 1648264 1648545 1648550) (-1002 "QEQUAT.spad" 1647805 1647814 1648237 1648242) (-1001 "QCMPACK.spad" 1642551 1642571 1647795 1647800) (-1000 "QALGSET.spad" 1638629 1638662 1642465 1642470) (-999 "QALGSET2.spad" 1636625 1636643 1638619 1638624) (-998 "PWFFINTB.spad" 1634041 1634062 1636615 1636620) (-997 "PUSHVAR.spad" 1633380 1633399 1634031 1634036) (-996 "PTRANFN.spad" 1629508 1629518 1633370 1633375) (-995 "PTPACK.spad" 1626596 1626606 1629498 1629503) (-994 "PTFUNC2.spad" 1626419 1626433 1626586 1626591) (-993 "PTCAT.spad" 1625674 1625684 1626387 1626414) (-992 "PSQFR.spad" 1624981 1625005 1625664 1625669) (-991 "PSEUDLIN.spad" 1623867 1623877 1624971 1624976) (-990 "PSETPK.spad" 1609300 1609316 1623745 1623750) (-989 "PSETCAT.spad" 1603220 1603243 1609280 1609295) (-988 "PSETCAT.spad" 1597114 1597139 1603176 1603181) (-987 "PSCURVE.spad" 1596097 1596105 1597104 1597109) (-986 "PSCAT.spad" 1594880 1594909 1595995 1596092) (-985 "PSCAT.spad" 1593753 1593784 1594870 1594875) (-984 "PRTITION.spad" 1592451 1592459 1593743 1593748) (-983 "PRTDAST.spad" 1592170 1592178 1592441 1592446) (-982 "PRS.spad" 1581732 1581749 1592126 1592131) (-981 "PRQAGG.spad" 1581167 1581177 1581700 1581727) (-980 "PROPLOG.spad" 1580739 1580747 1581157 1581162) (-979 "PROPFUN2.spad" 1580362 1580375 1580729 1580734) (-978 "PROPFUN1.spad" 1579760 1579771 1580352 1580357) (-977 "PROPFRML.spad" 1578328 1578339 1579750 1579755) (-976 "PROPERTY.spad" 1577816 1577824 1578318 1578323) (-975 "PRODUCT.spad" 1575498 1575510 1575782 1575837) (-974 "PR.spad" 1573890 1573902 1574589 1574716) (-973 "PRINT.spad" 1573642 1573650 1573880 1573885) (-972 "PRIMES.spad" 1571895 1571905 1573632 1573637) (-971 "PRIMELT.spad" 1569976 1569990 1571885 1571890) (-970 "PRIMCAT.spad" 1569603 1569611 1569966 1569971) (-969 "PRIMARR.spad" 1568608 1568618 1568786 1568813) (-968 "PRIMARR2.spad" 1567375 1567387 1568598 1568603) (-967 "PREASSOC.spad" 1566757 1566769 1567365 1567370) (-966 "PPCURVE.spad" 1565894 1565902 1566747 1566752) (-965 "PORTNUM.spad" 1565669 1565677 1565884 1565889) (-964 "POLYROOT.spad" 1564518 1564540 1565625 1565630) (-963 "POLY.spad" 1561853 1561863 1562368 1562495) (-962 "POLYLIFT.spad" 1561118 1561141 1561843 1561848) (-961 "POLYCATQ.spad" 1559236 1559258 1561108 1561113) (-960 "POLYCAT.spad" 1552706 1552727 1559104 1559231) (-959 "POLYCAT.spad" 1545514 1545537 1551914 1551919) (-958 "POLY2UP.spad" 1544966 1544980 1545504 1545509) (-957 "POLY2.spad" 1544563 1544575 1544956 1544961) (-956 "POLUTIL.spad" 1543504 1543533 1544519 1544524) (-955 "POLTOPOL.spad" 1542252 1542267 1543494 1543499) (-954 "POINT.spad" 1541090 1541100 1541177 1541204) (-953 "PNTHEORY.spad" 1537792 1537800 1541080 1541085) (-952 "PMTOOLS.spad" 1536567 1536581 1537782 1537787) (-951 "PMSYM.spad" 1536116 1536126 1536557 1536562) (-950 "PMQFCAT.spad" 1535707 1535721 1536106 1536111) (-949 "PMPRED.spad" 1535186 1535200 1535697 1535702) (-948 "PMPREDFS.spad" 1534640 1534662 1535176 1535181) (-947 "PMPLCAT.spad" 1533720 1533738 1534572 1534577) (-946 "PMLSAGG.spad" 1533305 1533319 1533710 1533715) (-945 "PMKERNEL.spad" 1532884 1532896 1533295 1533300) (-944 "PMINS.spad" 1532464 1532474 1532874 1532879) (-943 "PMFS.spad" 1532041 1532059 1532454 1532459) (-942 "PMDOWN.spad" 1531331 1531345 1532031 1532036) (-941 "PMASS.spad" 1530341 1530349 1531321 1531326) (-940 "PMASSFS.spad" 1529308 1529324 1530331 1530336) (-939 "PLOTTOOL.spad" 1529088 1529096 1529298 1529303) (-938 "PLOT.spad" 1524011 1524019 1529078 1529083) (-937 "PLOT3D.spad" 1520475 1520483 1524001 1524006) (-936 "PLOT1.spad" 1519632 1519642 1520465 1520470) (-935 "PLEQN.spad" 1506922 1506949 1519622 1519627) (-934 "PINTERP.spad" 1506544 1506563 1506912 1506917) (-933 "PINTERPA.spad" 1506328 1506344 1506534 1506539) (-932 "PI.spad" 1505937 1505945 1506302 1506323) (-931 "PID.spad" 1504907 1504915 1505863 1505932) (-930 "PICOERCE.spad" 1504564 1504574 1504897 1504902) (-929 "PGROEB.spad" 1503165 1503179 1504554 1504559) (-928 "PGE.spad" 1494782 1494790 1503155 1503160) (-927 "PGCD.spad" 1493672 1493689 1494772 1494777) (-926 "PFRPAC.spad" 1492821 1492831 1493662 1493667) (-925 "PFR.spad" 1489484 1489494 1492723 1492816) (-924 "PFOTOOLS.spad" 1488742 1488758 1489474 1489479) (-923 "PFOQ.spad" 1488112 1488130 1488732 1488737) (-922 "PFO.spad" 1487531 1487558 1488102 1488107) (-921 "PF.spad" 1487105 1487117 1487336 1487429) (-920 "PFECAT.spad" 1484787 1484795 1487031 1487100) (-919 "PFECAT.spad" 1482497 1482507 1484743 1484748) (-918 "PFBRU.spad" 1480385 1480397 1482487 1482492) (-917 "PFBR.spad" 1477945 1477968 1480375 1480380) (-916 "PERM.spad" 1473752 1473762 1477775 1477790) (-915 "PERMGRP.spad" 1468522 1468532 1473742 1473747) (-914 "PERMCAT.spad" 1467183 1467193 1468502 1468517) (-913 "PERMAN.spad" 1465715 1465729 1467173 1467178) (-912 "PENDTREE.spad" 1465056 1465066 1465344 1465349) (-911 "PDRING.spad" 1463607 1463617 1465036 1465051) (-910 "PDRING.spad" 1462166 1462178 1463597 1463602) (-909 "PDEPROB.spad" 1461181 1461189 1462156 1462161) (-908 "PDEPACK.spad" 1455221 1455229 1461171 1461176) (-907 "PDECOMP.spad" 1454691 1454708 1455211 1455216) (-906 "PDECAT.spad" 1453047 1453055 1454681 1454686) (-905 "PCOMP.spad" 1452900 1452913 1453037 1453042) (-904 "PBWLB.spad" 1451488 1451505 1452890 1452895) (-903 "PATTERN.spad" 1446027 1446037 1451478 1451483) (-902 "PATTERN2.spad" 1445765 1445777 1446017 1446022) (-901 "PATTERN1.spad" 1444101 1444117 1445755 1445760) (-900 "PATRES.spad" 1441676 1441688 1444091 1444096) (-899 "PATRES2.spad" 1441348 1441362 1441666 1441671) (-898 "PATMATCH.spad" 1439545 1439576 1441056 1441061) (-897 "PATMAB.spad" 1438974 1438984 1439535 1439540) (-896 "PATLRES.spad" 1438060 1438074 1438964 1438969) (-895 "PATAB.spad" 1437824 1437834 1438050 1438055) (-894 "PARTPERM.spad" 1435832 1435840 1437814 1437819) (-893 "PARSURF.spad" 1435266 1435294 1435822 1435827) (-892 "PARSU2.spad" 1435063 1435079 1435256 1435261) (-891 "script-parser.spad" 1434583 1434591 1435053 1435058) (-890 "PARSCURV.spad" 1434017 1434045 1434573 1434578) (-889 "PARSC2.spad" 1433808 1433824 1434007 1434012) (-888 "PARPCURV.spad" 1433270 1433298 1433798 1433803) (-887 "PARPC2.spad" 1433061 1433077 1433260 1433265) (-886 "PARAMAST.spad" 1432189 1432197 1433051 1433056) (-885 "PAN2EXPR.spad" 1431601 1431609 1432179 1432184) (-884 "PALETTE.spad" 1430571 1430579 1431591 1431596) (-883 "PAIR.spad" 1429558 1429571 1430159 1430164) (-882 "PADICRC.spad" 1426892 1426910 1428063 1428156) (-881 "PADICRAT.spad" 1424907 1424919 1425128 1425221) (-880 "PADIC.spad" 1424602 1424614 1424833 1424902) (-879 "PADICCT.spad" 1423151 1423163 1424528 1424597) (-878 "PADEPAC.spad" 1421840 1421859 1423141 1423146) (-877 "PADE.spad" 1420592 1420608 1421830 1421835) (-876 "OWP.spad" 1419832 1419862 1420450 1420517) (-875 "OVERSET.spad" 1419405 1419413 1419822 1419827) (-874 "OVAR.spad" 1419186 1419209 1419395 1419400) (-873 "OUT.spad" 1418272 1418280 1419176 1419181) (-872 "OUTFORM.spad" 1407664 1407672 1418262 1418267) (-871 "OUTBFILE.spad" 1407082 1407090 1407654 1407659) (-870 "OUTBCON.spad" 1406088 1406096 1407072 1407077) (-869 "OUTBCON.spad" 1405092 1405102 1406078 1406083) (-868 "OSI.spad" 1404567 1404575 1405082 1405087) (-867 "OSGROUP.spad" 1404485 1404493 1404557 1404562) (-866 "ORTHPOL.spad" 1402970 1402980 1404402 1404407) (-865 "OREUP.spad" 1402423 1402451 1402650 1402689) (-864 "ORESUP.spad" 1401724 1401748 1402103 1402142) (-863 "OREPCTO.spad" 1399581 1399593 1401644 1401649) (-862 "OREPCAT.spad" 1393728 1393738 1399537 1399576) (-861 "OREPCAT.spad" 1387765 1387777 1393576 1393581) (-860 "ORDSET.spad" 1386937 1386945 1387755 1387760) (-859 "ORDSET.spad" 1386107 1386117 1386927 1386932) (-858 "ORDRING.spad" 1385497 1385505 1386087 1386102) (-857 "ORDRING.spad" 1384895 1384905 1385487 1385492) (-856 "ORDMON.spad" 1384750 1384758 1384885 1384890) (-855 "ORDFUNS.spad" 1383882 1383898 1384740 1384745) (-854 "ORDFIN.spad" 1383702 1383710 1383872 1383877) (-853 "ORDCOMP.spad" 1382167 1382177 1383249 1383278) (-852 "ORDCOMP2.spad" 1381460 1381472 1382157 1382162) (-851 "OPTPROB.spad" 1380098 1380106 1381450 1381455) (-850 "OPTPACK.spad" 1372507 1372515 1380088 1380093) (-849 "OPTCAT.spad" 1370186 1370194 1372497 1372502) (-848 "OPSIG.spad" 1369840 1369848 1370176 1370181) (-847 "OPQUERY.spad" 1369389 1369397 1369830 1369835) (-846 "OP.spad" 1369131 1369141 1369211 1369278) (-845 "OPERCAT.spad" 1368597 1368607 1369121 1369126) (-844 "OPERCAT.spad" 1368061 1368073 1368587 1368592) (-843 "ONECOMP.spad" 1366806 1366816 1367608 1367637) (-842 "ONECOMP2.spad" 1366230 1366242 1366796 1366801) (-841 "OMSERVER.spad" 1365236 1365244 1366220 1366225) (-840 "OMSAGG.spad" 1365024 1365034 1365192 1365231) (-839 "OMPKG.spad" 1363640 1363648 1365014 1365019) (-838 "OM.spad" 1362613 1362621 1363630 1363635) (-837 "OMLO.spad" 1362038 1362050 1362499 1362538) (-836 "OMEXPR.spad" 1361872 1361882 1362028 1362033) (-835 "OMERR.spad" 1361417 1361425 1361862 1361867) (-834 "OMERRK.spad" 1360451 1360459 1361407 1361412) (-833 "OMENC.spad" 1359795 1359803 1360441 1360446) (-832 "OMDEV.spad" 1354104 1354112 1359785 1359790) (-831 "OMCONN.spad" 1353513 1353521 1354094 1354099) (-830 "OINTDOM.spad" 1353276 1353284 1353439 1353508) (-829 "OFMONOID.spad" 1351399 1351409 1353232 1353237) (-828 "ODVAR.spad" 1350660 1350670 1351389 1351394) (-827 "ODR.spad" 1350304 1350330 1350472 1350621) (-826 "ODPOL.spad" 1347686 1347696 1348026 1348153) (-825 "ODP.spad" 1337456 1337476 1337829 1337960) (-824 "ODETOOLS.spad" 1336105 1336124 1337446 1337451) (-823 "ODESYS.spad" 1333799 1333816 1336095 1336100) (-822 "ODERTRIC.spad" 1329808 1329825 1333756 1333761) (-821 "ODERED.spad" 1329207 1329231 1329798 1329803) (-820 "ODERAT.spad" 1326822 1326839 1329197 1329202) (-819 "ODEPRRIC.spad" 1323859 1323881 1326812 1326817) (-818 "ODEPROB.spad" 1323116 1323124 1323849 1323854) (-817 "ODEPRIM.spad" 1320450 1320472 1323106 1323111) (-816 "ODEPAL.spad" 1319836 1319860 1320440 1320445) (-815 "ODEPACK.spad" 1306502 1306510 1319826 1319831) (-814 "ODEINT.spad" 1305937 1305953 1306492 1306497) (-813 "ODEIFTBL.spad" 1303332 1303340 1305927 1305932) (-812 "ODEEF.spad" 1298823 1298839 1303322 1303327) (-811 "ODECONST.spad" 1298360 1298378 1298813 1298818) (-810 "ODECAT.spad" 1296958 1296966 1298350 1298355) (-809 "OCT.spad" 1295094 1295104 1295808 1295847) (-808 "OCTCT2.spad" 1294740 1294761 1295084 1295089) (-807 "OC.spad" 1292536 1292546 1294696 1294735) (-806 "OC.spad" 1290057 1290069 1292219 1292224) (-805 "OCAMON.spad" 1289905 1289913 1290047 1290052) (-804 "OASGP.spad" 1289720 1289728 1289895 1289900) (-803 "OAMONS.spad" 1289242 1289250 1289710 1289715) (-802 "OAMON.spad" 1289103 1289111 1289232 1289237) (-801 "OAGROUP.spad" 1288965 1288973 1289093 1289098) (-800 "NUMTUBE.spad" 1288556 1288572 1288955 1288960) (-799 "NUMQUAD.spad" 1276532 1276540 1288546 1288551) (-798 "NUMODE.spad" 1267886 1267894 1276522 1276527) (-797 "NUMINT.spad" 1265452 1265460 1267876 1267881) (-796 "NUMFMT.spad" 1264292 1264300 1265442 1265447) (-795 "NUMERIC.spad" 1256406 1256416 1264097 1264102) (-794 "NTSCAT.spad" 1254914 1254930 1256374 1256401) (-793 "NTPOLFN.spad" 1254465 1254475 1254831 1254836) (-792 "NSUP.spad" 1247511 1247521 1252051 1252204) (-791 "NSUP2.spad" 1246903 1246915 1247501 1247506) (-790 "NSMP.spad" 1243133 1243152 1243441 1243568) (-789 "NREP.spad" 1241511 1241525 1243123 1243128) (-788 "NPCOEF.spad" 1240757 1240777 1241501 1241506) (-787 "NORMRETR.spad" 1240355 1240394 1240747 1240752) (-786 "NORMPK.spad" 1238257 1238276 1240345 1240350) (-785 "NORMMA.spad" 1237945 1237971 1238247 1238252) (-784 "NONE.spad" 1237686 1237694 1237935 1237940) (-783 "NONE1.spad" 1237362 1237372 1237676 1237681) (-782 "NODE1.spad" 1236849 1236865 1237352 1237357) (-781 "NNI.spad" 1235744 1235752 1236823 1236844) (-780 "NLINSOL.spad" 1234370 1234380 1235734 1235739) (-779 "NIPROB.spad" 1232911 1232919 1234360 1234365) (-778 "NFINTBAS.spad" 1230471 1230488 1232901 1232906) (-777 "NETCLT.spad" 1230445 1230456 1230461 1230466) (-776 "NCODIV.spad" 1228661 1228677 1230435 1230440) (-775 "NCNTFRAC.spad" 1228303 1228317 1228651 1228656) (-774 "NCEP.spad" 1226469 1226483 1228293 1228298) (-773 "NASRING.spad" 1226065 1226073 1226459 1226464) (-772 "NASRING.spad" 1225659 1225669 1226055 1226060) (-771 "NARNG.spad" 1225011 1225019 1225649 1225654) (-770 "NARNG.spad" 1224361 1224371 1225001 1225006) (-769 "NAGSP.spad" 1223438 1223446 1224351 1224356) (-768 "NAGS.spad" 1213099 1213107 1223428 1223433) (-767 "NAGF07.spad" 1211530 1211538 1213089 1213094) (-766 "NAGF04.spad" 1205932 1205940 1211520 1211525) (-765 "NAGF02.spad" 1200001 1200009 1205922 1205927) (-764 "NAGF01.spad" 1195762 1195770 1199991 1199996) (-763 "NAGE04.spad" 1189462 1189470 1195752 1195757) (-762 "NAGE02.spad" 1180122 1180130 1189452 1189457) (-761 "NAGE01.spad" 1176124 1176132 1180112 1180117) (-760 "NAGD03.spad" 1174128 1174136 1176114 1176119) (-759 "NAGD02.spad" 1166875 1166883 1174118 1174123) (-758 "NAGD01.spad" 1161168 1161176 1166865 1166870) (-757 "NAGC06.spad" 1157043 1157051 1161158 1161163) (-756 "NAGC05.spad" 1155544 1155552 1157033 1157038) (-755 "NAGC02.spad" 1154811 1154819 1155534 1155539) (-754 "NAALG.spad" 1154352 1154362 1154779 1154806) (-753 "NAALG.spad" 1153913 1153925 1154342 1154347) (-752 "MULTSQFR.spad" 1150871 1150888 1153903 1153908) (-751 "MULTFACT.spad" 1150254 1150271 1150861 1150866) (-750 "MTSCAT.spad" 1148348 1148369 1150152 1150249) (-749 "MTHING.spad" 1148007 1148017 1148338 1148343) (-748 "MSYSCMD.spad" 1147441 1147449 1147997 1148002) (-747 "MSET.spad" 1145399 1145409 1147147 1147186) (-746 "MSETAGG.spad" 1145244 1145254 1145367 1145394) (-745 "MRING.spad" 1142221 1142233 1144952 1145019) (-744 "MRF2.spad" 1141791 1141805 1142211 1142216) (-743 "MRATFAC.spad" 1141337 1141354 1141781 1141786) (-742 "MPRFF.spad" 1139377 1139396 1141327 1141332) (-741 "MPOLY.spad" 1136848 1136863 1137207 1137334) (-740 "MPCPF.spad" 1136112 1136131 1136838 1136843) (-739 "MPC3.spad" 1135929 1135969 1136102 1136107) (-738 "MPC2.spad" 1135575 1135608 1135919 1135924) (-737 "MONOTOOL.spad" 1133926 1133943 1135565 1135570) (-736 "MONOID.spad" 1133245 1133253 1133916 1133921) (-735 "MONOID.spad" 1132562 1132572 1133235 1133240) (-734 "MONOGEN.spad" 1131310 1131323 1132422 1132557) (-733 "MONOGEN.spad" 1130080 1130095 1131194 1131199) (-732 "MONADWU.spad" 1128110 1128118 1130070 1130075) (-731 "MONADWU.spad" 1126138 1126148 1128100 1128105) (-730 "MONAD.spad" 1125298 1125306 1126128 1126133) (-729 "MONAD.spad" 1124456 1124466 1125288 1125293) (-728 "MOEBIUS.spad" 1123192 1123206 1124436 1124451) (-727 "MODULE.spad" 1123062 1123072 1123160 1123187) (-726 "MODULE.spad" 1122952 1122964 1123052 1123057) (-725 "MODRING.spad" 1122287 1122326 1122932 1122947) (-724 "MODOP.spad" 1120952 1120964 1122109 1122176) (-723 "MODMONOM.spad" 1120683 1120701 1120942 1120947) (-722 "MODMON.spad" 1117478 1117494 1118197 1118350) (-721 "MODFIELD.spad" 1116840 1116879 1117380 1117473) (-720 "MMLFORM.spad" 1115700 1115708 1116830 1116835) (-719 "MMAP.spad" 1115442 1115476 1115690 1115695) (-718 "MLO.spad" 1113901 1113911 1115398 1115437) (-717 "MLIFT.spad" 1112513 1112530 1113891 1113896) (-716 "MKUCFUNC.spad" 1112048 1112066 1112503 1112508) (-715 "MKRECORD.spad" 1111652 1111665 1112038 1112043) (-714 "MKFUNC.spad" 1111059 1111069 1111642 1111647) (-713 "MKFLCFN.spad" 1110027 1110037 1111049 1111054) (-712 "MKBCFUNC.spad" 1109522 1109540 1110017 1110022) (-711 "MINT.spad" 1108961 1108969 1109424 1109517) (-710 "MHROWRED.spad" 1107472 1107482 1108951 1108956) (-709 "MFLOAT.spad" 1105992 1106000 1107362 1107467) (-708 "MFINFACT.spad" 1105392 1105414 1105982 1105987) (-707 "MESH.spad" 1103174 1103182 1105382 1105387) (-706 "MDDFACT.spad" 1101385 1101395 1103164 1103169) (-705 "MDAGG.spad" 1100676 1100686 1101365 1101380) (-704 "MCMPLX.spad" 1096687 1096695 1097301 1097502) (-703 "MCDEN.spad" 1095897 1095909 1096677 1096682) (-702 "MCALCFN.spad" 1093019 1093045 1095887 1095892) (-701 "MAYBE.spad" 1092303 1092314 1093009 1093014) (-700 "MATSTOR.spad" 1089611 1089621 1092293 1092298) (-699 "MATRIX.spad" 1088315 1088325 1088799 1088826) (-698 "MATLIN.spad" 1085659 1085683 1088199 1088204) (-697 "MATCAT.spad" 1077388 1077410 1085627 1085654) (-696 "MATCAT.spad" 1068989 1069013 1077230 1077235) (-695 "MATCAT2.spad" 1068271 1068319 1068979 1068984) (-694 "MAPPKG3.spad" 1067186 1067200 1068261 1068266) (-693 "MAPPKG2.spad" 1066524 1066536 1067176 1067181) (-692 "MAPPKG1.spad" 1065352 1065362 1066514 1066519) (-691 "MAPPAST.spad" 1064667 1064675 1065342 1065347) (-690 "MAPHACK3.spad" 1064479 1064493 1064657 1064662) (-689 "MAPHACK2.spad" 1064248 1064260 1064469 1064474) (-688 "MAPHACK1.spad" 1063892 1063902 1064238 1064243) (-687 "MAGMA.spad" 1061682 1061699 1063882 1063887) (-686 "MACROAST.spad" 1061261 1061269 1061672 1061677) (-685 "M3D.spad" 1058981 1058991 1060639 1060644) (-684 "LZSTAGG.spad" 1056219 1056229 1058971 1058976) (-683 "LZSTAGG.spad" 1053455 1053467 1056209 1056214) (-682 "LWORD.spad" 1050160 1050177 1053445 1053450) (-681 "LSTAST.spad" 1049944 1049952 1050150 1050155) (-680 "LSQM.spad" 1048230 1048244 1048624 1048675) (-679 "LSPP.spad" 1047765 1047782 1048220 1048225) (-678 "LSMP.spad" 1046615 1046643 1047755 1047760) (-677 "LSMP1.spad" 1044433 1044447 1046605 1046610) (-676 "LSAGG.spad" 1044102 1044112 1044401 1044428) (-675 "LSAGG.spad" 1043791 1043803 1044092 1044097) (-674 "LPOLY.spad" 1042745 1042764 1043647 1043716) (-673 "LPEFRAC.spad" 1042016 1042026 1042735 1042740) (-672 "LO.spad" 1041417 1041431 1041950 1041977) (-671 "LOGIC.spad" 1041019 1041027 1041407 1041412) (-670 "LOGIC.spad" 1040619 1040629 1041009 1041014) (-669 "LODOOPS.spad" 1039549 1039561 1040609 1040614) (-668 "LODO.spad" 1038933 1038949 1039229 1039268) (-667 "LODOF.spad" 1037979 1037996 1038890 1038895) (-666 "LODOCAT.spad" 1036645 1036655 1037935 1037974) (-665 "LODOCAT.spad" 1035309 1035321 1036601 1036606) (-664 "LODO2.spad" 1034582 1034594 1034989 1035028) (-663 "LODO1.spad" 1033982 1033992 1034262 1034301) (-662 "LODEEF.spad" 1032784 1032802 1033972 1033977) (-661 "LNAGG.spad" 1028931 1028941 1032774 1032779) (-660 "LNAGG.spad" 1025042 1025054 1028887 1028892) (-659 "LMOPS.spad" 1021810 1021827 1025032 1025037) (-658 "LMODULE.spad" 1021578 1021588 1021800 1021805) (-657 "LMDICT.spad" 1020865 1020875 1021129 1021156) (-656 "LLINSET.spad" 1020262 1020272 1020855 1020860) (-655 "LITERAL.spad" 1020168 1020179 1020252 1020257) (-654 "LIST.spad" 1017903 1017913 1019315 1019342) (-653 "LIST3.spad" 1017214 1017228 1017893 1017898) (-652 "LIST2.spad" 1015916 1015928 1017204 1017209) (-651 "LIST2MAP.spad" 1012819 1012831 1015906 1015911) (-650 "LINSET.spad" 1012441 1012451 1012809 1012814) (-649 "LINEXP.spad" 1011579 1011589 1012431 1012436) (-648 "LINDEP.spad" 1010388 1010400 1011491 1011496) (-647 "LIMITRF.spad" 1008316 1008326 1010378 1010383) (-646 "LIMITPS.spad" 1007219 1007232 1008306 1008311) (-645 "LIE.spad" 1005235 1005247 1006509 1006654) (-644 "LIECAT.spad" 1004711 1004721 1005161 1005230) (-643 "LIECAT.spad" 1004215 1004227 1004667 1004672) (-642 "LIB.spad" 1002428 1002436 1002874 1002889) (-641 "LGROBP.spad" 999781 999800 1002418 1002423) (-640 "LF.spad" 998736 998752 999771 999776) (-639 "LFCAT.spad" 997795 997803 998726 998731) (-638 "LEXTRIPK.spad" 993298 993313 997785 997790) (-637 "LEXP.spad" 991301 991328 993278 993293) (-636 "LETAST.spad" 991000 991008 991291 991296) (-635 "LEADCDET.spad" 989398 989415 990990 990995) (-634 "LAZM3PK.spad" 988102 988124 989388 989393) (-633 "LAUPOL.spad" 986795 986808 987695 987764) (-632 "LAPLACE.spad" 986378 986394 986785 986790) (-631 "LA.spad" 985818 985832 986300 986339) (-630 "LALG.spad" 985594 985604 985798 985813) (-629 "LALG.spad" 985378 985390 985584 985589) (-628 "KVTFROM.spad" 985113 985123 985368 985373) (-627 "KTVLOGIC.spad" 984625 984633 985103 985108) (-626 "KRCFROM.spad" 984363 984373 984615 984620) (-625 "KOVACIC.spad" 983086 983103 984353 984358) (-624 "KONVERT.spad" 982808 982818 983076 983081) (-623 "KOERCE.spad" 982545 982555 982798 982803) (-622 "KERNEL.spad" 981200 981210 982329 982334) (-621 "KERNEL2.spad" 980903 980915 981190 981195) (-620 "KDAGG.spad" 980012 980034 980883 980898) (-619 "KDAGG.spad" 979129 979153 980002 980007) (-618 "KAFILE.spad" 978092 978108 978327 978354) (-617 "JORDAN.spad" 975921 975933 977382 977527) (-616 "JOINAST.spad" 975615 975623 975911 975916) (-615 "JAVACODE.spad" 975481 975489 975605 975610) (-614 "IXAGG.spad" 973614 973638 975471 975476) (-613 "IXAGG.spad" 971602 971628 973461 973466) (-612 "IVECTOR.spad" 970372 970387 970527 970554) (-611 "ITUPLE.spad" 969533 969543 970362 970367) (-610 "ITRIGMNP.spad" 968372 968391 969523 969528) (-609 "ITFUN3.spad" 967878 967892 968362 968367) (-608 "ITFUN2.spad" 967622 967634 967868 967873) (-607 "ITFORM.spad" 966977 966985 967612 967617) (-606 "ITAYLOR.spad" 964971 964986 966841 966938) (-605 "ISUPS.spad" 957408 957423 963945 964042) (-604 "ISUMP.spad" 956909 956925 957398 957403) (-603 "ISTRING.spad" 955997 956010 956078 956105) (-602 "ISAST.spad" 955716 955724 955987 955992) (-601 "IRURPK.spad" 954433 954452 955706 955711) (-600 "IRSN.spad" 952405 952413 954423 954428) (-599 "IRRF2F.spad" 950890 950900 952361 952366) (-598 "IRREDFFX.spad" 950491 950502 950880 950885) (-597 "IROOT.spad" 948830 948840 950481 950486) (-596 "IR.spad" 946631 946645 948685 948712) (-595 "IRFORM.spad" 945955 945963 946621 946626) (-594 "IR2.spad" 944983 944999 945945 945950) (-593 "IR2F.spad" 944189 944205 944973 944978) (-592 "IPRNTPK.spad" 943949 943957 944179 944184) (-591 "IPF.spad" 943514 943526 943754 943847) (-590 "IPADIC.spad" 943275 943301 943440 943509) (-589 "IP4ADDR.spad" 942832 942840 943265 943270) (-588 "IOMODE.spad" 942354 942362 942822 942827) (-587 "IOBFILE.spad" 941715 941723 942344 942349) (-586 "IOBCON.spad" 941580 941588 941705 941710) (-585 "INVLAPLA.spad" 941229 941245 941570 941575) (-584 "INTTR.spad" 934611 934628 941219 941224) (-583 "INTTOOLS.spad" 932366 932382 934185 934190) (-582 "INTSLPE.spad" 931686 931694 932356 932361) (-581 "INTRVL.spad" 931252 931262 931600 931681) (-580 "INTRF.spad" 929676 929690 931242 931247) (-579 "INTRET.spad" 929108 929118 929666 929671) (-578 "INTRAT.spad" 927835 927852 929098 929103) (-577 "INTPM.spad" 926220 926236 927478 927483) (-576 "INTPAF.spad" 924084 924102 926152 926157) (-575 "INTPACK.spad" 914458 914466 924074 924079) (-574 "INT.spad" 913906 913914 914312 914453) (-573 "INTHERTR.spad" 913180 913197 913896 913901) (-572 "INTHERAL.spad" 912850 912874 913170 913175) (-571 "INTHEORY.spad" 909289 909297 912840 912845) (-570 "INTG0.spad" 903022 903040 909221 909226) (-569 "INTFTBL.spad" 897051 897059 903012 903017) (-568 "INTFACT.spad" 896110 896120 897041 897046) (-567 "INTEF.spad" 894495 894511 896100 896105) (-566 "INTDOM.spad" 893118 893126 894421 894490) (-565 "INTDOM.spad" 891803 891813 893108 893113) (-564 "INTCAT.spad" 890062 890072 891717 891798) (-563 "INTBIT.spad" 889569 889577 890052 890057) (-562 "INTALG.spad" 888757 888784 889559 889564) (-561 "INTAF.spad" 888257 888273 888747 888752) (-560 "INTABL.spad" 886775 886806 886938 886965) (-559 "INT8.spad" 886655 886663 886765 886770) (-558 "INT64.spad" 886534 886542 886645 886650) (-557 "INT32.spad" 886413 886421 886524 886529) (-556 "INT16.spad" 886292 886300 886403 886408) (-555 "INS.spad" 883795 883803 886194 886287) (-554 "INS.spad" 881384 881394 883785 883790) (-553 "INPSIGN.spad" 880832 880845 881374 881379) (-552 "INPRODPF.spad" 879928 879947 880822 880827) (-551 "INPRODFF.spad" 879016 879040 879918 879923) (-550 "INNMFACT.spad" 877991 878008 879006 879011) (-549 "INMODGCD.spad" 877479 877509 877981 877986) (-548 "INFSP.spad" 875776 875798 877469 877474) (-547 "INFPROD0.spad" 874856 874875 875766 875771) (-546 "INFORM.spad" 872055 872063 874846 874851) (-545 "INFORM1.spad" 871680 871690 872045 872050) (-544 "INFINITY.spad" 871232 871240 871670 871675) (-543 "INETCLTS.spad" 871209 871217 871222 871227) (-542 "INEP.spad" 869747 869769 871199 871204) (-541 "INDE.spad" 869476 869493 869737 869742) (-540 "INCRMAPS.spad" 868897 868907 869466 869471) (-539 "INBFILE.spad" 867969 867977 868887 868892) (-538 "INBFF.spad" 863763 863774 867959 867964) (-537 "INBCON.spad" 862053 862061 863753 863758) (-536 "INBCON.spad" 860341 860351 862043 862048) (-535 "INAST.spad" 860002 860010 860331 860336) (-534 "IMPTAST.spad" 859710 859718 859992 859997) (-533 "IMATRIX.spad" 858655 858681 859167 859194) (-532 "IMATQF.spad" 857749 857793 858611 858616) (-531 "IMATLIN.spad" 856354 856378 857705 857710) (-530 "ILIST.spad" 855012 855027 855537 855564) (-529 "IIARRAY2.spad" 854400 854438 854619 854646) (-528 "IFF.spad" 853810 853826 854081 854174) (-527 "IFAST.spad" 853424 853432 853800 853805) (-526 "IFARRAY.spad" 850917 850932 852607 852634) (-525 "IFAMON.spad" 850779 850796 850873 850878) (-524 "IEVALAB.spad" 850184 850196 850769 850774) (-523 "IEVALAB.spad" 849587 849601 850174 850179) (-522 "IDPO.spad" 849385 849397 849577 849582) (-521 "IDPOAMS.spad" 849141 849153 849375 849380) (-520 "IDPOAM.spad" 848861 848873 849131 849136) (-519 "IDPC.spad" 847799 847811 848851 848856) (-518 "IDPAM.spad" 847544 847556 847789 847794) (-517 "IDPAG.spad" 847291 847303 847534 847539) (-516 "IDENT.spad" 846941 846949 847281 847286) (-515 "IDECOMP.spad" 844180 844198 846931 846936) (-514 "IDEAL.spad" 839129 839168 844115 844120) (-513 "ICDEN.spad" 838318 838334 839119 839124) (-512 "ICARD.spad" 837509 837517 838308 838313) (-511 "IBPTOOLS.spad" 836116 836133 837499 837504) (-510 "IBITS.spad" 835319 835332 835752 835779) (-509 "IBATOOL.spad" 832296 832315 835309 835314) (-508 "IBACHIN.spad" 830803 830818 832286 832291) (-507 "IARRAY2.spad" 829791 829817 830410 830437) (-506 "IARRAY1.spad" 828836 828851 828974 829001) (-505 "IAN.spad" 827059 827067 828652 828745) (-504 "IALGFACT.spad" 826662 826695 827049 827054) (-503 "HYPCAT.spad" 826086 826094 826652 826657) (-502 "HYPCAT.spad" 825508 825518 826076 826081) (-501 "HOSTNAME.spad" 825316 825324 825498 825503) (-500 "HOMOTOP.spad" 825059 825069 825306 825311) (-499 "HOAGG.spad" 822341 822351 825049 825054) (-498 "HOAGG.spad" 819398 819410 822108 822113) (-497 "HEXADEC.spad" 817500 817508 817865 817958) (-496 "HEUGCD.spad" 816535 816546 817490 817495) (-495 "HELLFDIV.spad" 816125 816149 816525 816530) (-494 "HEAP.spad" 815517 815527 815732 815759) (-493 "HEADAST.spad" 815050 815058 815507 815512) (-492 "HDP.spad" 804816 804832 805193 805324) (-491 "HDMP.spad" 802030 802045 802646 802773) (-490 "HB.spad" 800281 800289 802020 802025) (-489 "HASHTBL.spad" 798751 798782 798962 798989) (-488 "HASAST.spad" 798467 798475 798741 798746) (-487 "HACKPI.spad" 797958 797966 798369 798462) (-486 "GTSET.spad" 796897 796913 797604 797631) (-485 "GSTBL.spad" 795416 795451 795590 795605) (-484 "GSERIES.spad" 792587 792614 793548 793697) (-483 "GROUP.spad" 791860 791868 792567 792582) (-482 "GROUP.spad" 791141 791151 791850 791855) (-481 "GROEBSOL.spad" 789635 789656 791131 791136) (-480 "GRMOD.spad" 788206 788218 789625 789630) (-479 "GRMOD.spad" 786775 786789 788196 788201) (-478 "GRIMAGE.spad" 779664 779672 786765 786770) (-477 "GRDEF.spad" 778043 778051 779654 779659) (-476 "GRAY.spad" 776506 776514 778033 778038) (-475 "GRALG.spad" 775583 775595 776496 776501) (-474 "GRALG.spad" 774658 774672 775573 775578) (-473 "GPOLSET.spad" 774112 774135 774340 774367) (-472 "GOSPER.spad" 773381 773399 774102 774107) (-471 "GMODPOL.spad" 772529 772556 773349 773376) (-470 "GHENSEL.spad" 771612 771626 772519 772524) (-469 "GENUPS.spad" 767905 767918 771602 771607) (-468 "GENUFACT.spad" 767482 767492 767895 767900) (-467 "GENPGCD.spad" 767068 767085 767472 767477) (-466 "GENMFACT.spad" 766520 766539 767058 767063) (-465 "GENEEZ.spad" 764471 764484 766510 766515) (-464 "GDMP.spad" 761527 761544 762301 762428) (-463 "GCNAALG.spad" 755450 755477 761321 761388) (-462 "GCDDOM.spad" 754626 754634 755376 755445) (-461 "GCDDOM.spad" 753864 753874 754616 754621) (-460 "GB.spad" 751390 751428 753820 753825) (-459 "GBINTERN.spad" 747410 747448 751380 751385) (-458 "GBF.spad" 743177 743215 747400 747405) (-457 "GBEUCLID.spad" 741059 741097 743167 743172) (-456 "GAUSSFAC.spad" 740372 740380 741049 741054) (-455 "GALUTIL.spad" 738698 738708 740328 740333) (-454 "GALPOLYU.spad" 737152 737165 738688 738693) (-453 "GALFACTU.spad" 735325 735344 737142 737147) (-452 "GALFACT.spad" 725514 725525 735315 735320) (-451 "FVFUN.spad" 722537 722545 725504 725509) (-450 "FVC.spad" 721589 721597 722527 722532) (-449 "FUNDESC.spad" 721267 721275 721579 721584) (-448 "FUNCTION.spad" 721116 721128 721257 721262) (-447 "FT.spad" 719413 719421 721106 721111) (-446 "FTEM.spad" 718578 718586 719403 719408) (-445 "FSUPFACT.spad" 717478 717497 718514 718519) (-444 "FST.spad" 715564 715572 717468 717473) (-443 "FSRED.spad" 715044 715060 715554 715559) (-442 "FSPRMELT.spad" 713926 713942 715001 715006) (-441 "FSPECF.spad" 712017 712033 713916 713921) (-440 "FS.spad" 706285 706295 711792 712012) (-439 "FS.spad" 700331 700343 705840 705845) (-438 "FSINT.spad" 699991 700007 700321 700326) (-437 "FSERIES.spad" 699182 699194 699811 699910) (-436 "FSCINT.spad" 698499 698515 699172 699177) (-435 "FSAGG.spad" 697616 697626 698455 698494) (-434 "FSAGG.spad" 696695 696707 697536 697541) (-433 "FSAGG2.spad" 695438 695454 696685 696690) (-432 "FS2UPS.spad" 689929 689963 695428 695433) (-431 "FS2.spad" 689576 689592 689919 689924) (-430 "FS2EXPXP.spad" 688701 688724 689566 689571) (-429 "FRUTIL.spad" 687655 687665 688691 688696) (-428 "FR.spad" 681187 681197 686495 686564) (-427 "FRNAALG.spad" 676456 676466 681129 681182) (-426 "FRNAALG.spad" 671737 671749 676412 676417) (-425 "FRNAAF2.spad" 671193 671211 671727 671732) (-424 "FRMOD.spad" 670603 670633 671124 671129) (-423 "FRIDEAL.spad" 669828 669849 670583 670598) (-422 "FRIDEAL2.spad" 669432 669464 669818 669823) (-421 "FRETRCT.spad" 668943 668953 669422 669427) (-420 "FRETRCT.spad" 668320 668332 668801 668806) (-419 "FRAMALG.spad" 666668 666681 668276 668315) (-418 "FRAMALG.spad" 665048 665063 666658 666663) (-417 "FRAC.spad" 662147 662157 662550 662723) (-416 "FRAC2.spad" 661752 661764 662137 662142) (-415 "FR2.spad" 661088 661100 661742 661747) (-414 "FPS.spad" 657903 657911 660978 661083) (-413 "FPS.spad" 654746 654756 657823 657828) (-412 "FPC.spad" 653792 653800 654648 654741) (-411 "FPC.spad" 652924 652934 653782 653787) (-410 "FPATMAB.spad" 652686 652696 652914 652919) (-409 "FPARFRAC.spad" 651173 651190 652676 652681) (-408 "FORTRAN.spad" 649679 649722 651163 651168) (-407 "FORT.spad" 648628 648636 649669 649674) (-406 "FORTFN.spad" 645798 645806 648618 648623) (-405 "FORTCAT.spad" 645482 645490 645788 645793) (-404 "FORMULA.spad" 642956 642964 645472 645477) (-403 "FORMULA1.spad" 642435 642445 642946 642951) (-402 "FORDER.spad" 642126 642150 642425 642430) (-401 "FOP.spad" 641327 641335 642116 642121) (-400 "FNLA.spad" 640751 640773 641295 641322) (-399 "FNCAT.spad" 639346 639354 640741 640746) (-398 "FNAME.spad" 639238 639246 639336 639341) (-397 "FMTC.spad" 639036 639044 639164 639233) (-396 "FMONOID.spad" 638701 638711 638992 638997) (-395 "FMONCAT.spad" 635854 635864 638691 638696) (-394 "FM.spad" 635549 635561 635788 635815) (-393 "FMFUN.spad" 632579 632587 635539 635544) (-392 "FMC.spad" 631631 631639 632569 632574) (-391 "FMCAT.spad" 629299 629317 631599 631626) (-390 "FM1.spad" 628656 628668 629233 629260) (-389 "FLOATRP.spad" 626391 626405 628646 628651) (-388 "FLOAT.spad" 619705 619713 626257 626386) (-387 "FLOATCP.spad" 617136 617150 619695 619700) (-386 "FLINEXP.spad" 616858 616868 617126 617131) (-385 "FLINEXP.spad" 616524 616536 616794 616799) (-384 "FLASORT.spad" 615850 615862 616514 616519) (-383 "FLALG.spad" 613496 613515 615776 615845) (-382 "FLAGG.spad" 610538 610548 613476 613491) (-381 "FLAGG.spad" 607481 607493 610421 610426) (-380 "FLAGG2.spad" 606206 606222 607471 607476) (-379 "FINRALG.spad" 604267 604280 606162 606201) (-378 "FINRALG.spad" 602254 602269 604151 604156) (-377 "FINITE.spad" 601406 601414 602244 602249) (-376 "FINAALG.spad" 590527 590537 601348 601401) (-375 "FINAALG.spad" 579660 579672 590483 590488) (-374 "FILE.spad" 579243 579253 579650 579655) (-373 "FILECAT.spad" 577769 577786 579233 579238) (-372 "FIELD.spad" 577175 577183 577671 577764) (-371 "FIELD.spad" 576667 576677 577165 577170) (-370 "FGROUP.spad" 575314 575324 576647 576662) (-369 "FGLMICPK.spad" 574101 574116 575304 575309) (-368 "FFX.spad" 573476 573491 573817 573910) (-367 "FFSLPE.spad" 572979 573000 573466 573471) (-366 "FFPOLY.spad" 564241 564252 572969 572974) (-365 "FFPOLY2.spad" 563301 563318 564231 564236) (-364 "FFP.spad" 562698 562718 563017 563110) (-363 "FF.spad" 562146 562162 562379 562472) (-362 "FFNBX.spad" 560658 560678 561862 561955) (-361 "FFNBP.spad" 559171 559188 560374 560467) (-360 "FFNB.spad" 557636 557657 558852 558945) (-359 "FFINTBAS.spad" 555150 555169 557626 557631) (-358 "FFIELDC.spad" 552727 552735 555052 555145) (-357 "FFIELDC.spad" 550390 550400 552717 552722) (-356 "FFHOM.spad" 549138 549155 550380 550385) (-355 "FFF.spad" 546573 546584 549128 549133) (-354 "FFCGX.spad" 545420 545440 546289 546382) (-353 "FFCGP.spad" 544309 544329 545136 545229) (-352 "FFCG.spad" 543101 543122 543990 544083) (-351 "FFCAT.spad" 536274 536296 542940 543096) (-350 "FFCAT.spad" 529526 529550 536194 536199) (-349 "FFCAT2.spad" 529273 529313 529516 529521) (-348 "FEXPR.spad" 520990 521036 529029 529068) (-347 "FEVALAB.spad" 520698 520708 520980 520985) (-346 "FEVALAB.spad" 520191 520203 520475 520480) (-345 "FDIV.spad" 519633 519657 520181 520186) (-344 "FDIVCAT.spad" 517697 517721 519623 519628) (-343 "FDIVCAT.spad" 515759 515785 517687 517692) (-342 "FDIV2.spad" 515415 515455 515749 515754) (-341 "FCTRDATA.spad" 514423 514431 515405 515410) (-340 "FCPAK1.spad" 512990 512998 514413 514418) (-339 "FCOMP.spad" 512369 512379 512980 512985) (-338 "FC.spad" 502376 502384 512359 512364) (-337 "FAXF.spad" 495347 495361 502278 502371) (-336 "FAXF.spad" 488370 488386 495303 495308) (-335 "FARRAY.spad" 486520 486530 487553 487580) (-334 "FAMR.spad" 484656 484668 486418 486515) (-333 "FAMR.spad" 482776 482790 484540 484545) (-332 "FAMONOID.spad" 482444 482454 482730 482735) (-331 "FAMONC.spad" 480740 480752 482434 482439) (-330 "FAGROUP.spad" 480364 480374 480636 480663) (-329 "FACUTIL.spad" 478568 478585 480354 480359) (-328 "FACTFUNC.spad" 477762 477772 478558 478563) (-327 "EXPUPXS.spad" 474595 474618 475894 476043) (-326 "EXPRTUBE.spad" 471883 471891 474585 474590) (-325 "EXPRODE.spad" 469043 469059 471873 471878) (-324 "EXPR.spad" 464218 464228 464932 465227) (-323 "EXPR2UPS.spad" 460340 460353 464208 464213) (-322 "EXPR2.spad" 460045 460057 460330 460335) (-321 "EXPEXPAN.spad" 456985 457010 457617 457710) (-320 "EXIT.spad" 456656 456664 456975 456980) (-319 "EXITAST.spad" 456392 456400 456646 456651) (-318 "EVALCYC.spad" 455852 455866 456382 456387) (-317 "EVALAB.spad" 455424 455434 455842 455847) (-316 "EVALAB.spad" 454994 455006 455414 455419) (-315 "EUCDOM.spad" 452568 452576 454920 454989) (-314 "EUCDOM.spad" 450204 450214 452558 452563) (-313 "ESTOOLS.spad" 442050 442058 450194 450199) (-312 "ESTOOLS2.spad" 441653 441667 442040 442045) (-311 "ESTOOLS1.spad" 441338 441349 441643 441648) (-310 "ES.spad" 434153 434161 441328 441333) (-309 "ES.spad" 426874 426884 434051 434056) (-308 "ESCONT.spad" 423667 423675 426864 426869) (-307 "ESCONT1.spad" 423416 423428 423657 423662) (-306 "ES2.spad" 422921 422937 423406 423411) (-305 "ES1.spad" 422491 422507 422911 422916) (-304 "ERROR.spad" 419818 419826 422481 422486) (-303 "EQTBL.spad" 418290 418312 418499 418526) (-302 "EQ.spad" 413095 413105 415882 415994) (-301 "EQ2.spad" 412813 412825 413085 413090) (-300 "EP.spad" 409139 409149 412803 412808) (-299 "ENV.spad" 407817 407825 409129 409134) (-298 "ENTIRER.spad" 407485 407493 407761 407812) (-297 "EMR.spad" 406773 406814 407411 407480) (-296 "ELTAGG.spad" 405027 405046 406763 406768) (-295 "ELTAGG.spad" 403245 403266 404983 404988) (-294 "ELTAB.spad" 402720 402733 403235 403240) (-293 "ELFUTS.spad" 402107 402126 402710 402715) (-292 "ELEMFUN.spad" 401796 401804 402097 402102) (-291 "ELEMFUN.spad" 401483 401493 401786 401791) (-290 "ELAGG.spad" 399454 399464 401463 401478) (-289 "ELAGG.spad" 397362 397374 399373 399378) (-288 "ELABOR.spad" 396708 396716 397352 397357) (-287 "ELABEXPR.spad" 395640 395648 396698 396703) (-286 "EFUPXS.spad" 392416 392446 395596 395601) (-285 "EFULS.spad" 389252 389275 392372 392377) (-284 "EFSTRUC.spad" 387267 387283 389242 389247) (-283 "EF.spad" 382043 382059 387257 387262) (-282 "EAB.spad" 380319 380327 382033 382038) (-281 "E04UCFA.spad" 379855 379863 380309 380314) (-280 "E04NAFA.spad" 379432 379440 379845 379850) (-279 "E04MBFA.spad" 379012 379020 379422 379427) (-278 "E04JAFA.spad" 378548 378556 379002 379007) (-277 "E04GCFA.spad" 378084 378092 378538 378543) (-276 "E04FDFA.spad" 377620 377628 378074 378079) (-275 "E04DGFA.spad" 377156 377164 377610 377615) (-274 "E04AGNT.spad" 373006 373014 377146 377151) (-273 "DVARCAT.spad" 369695 369705 372996 373001) (-272 "DVARCAT.spad" 366382 366394 369685 369690) (-271 "DSMP.spad" 363849 363863 364154 364281) (-270 "DROPT.spad" 357808 357816 363839 363844) (-269 "DROPT1.spad" 357473 357483 357798 357803) (-268 "DROPT0.spad" 352330 352338 357463 357468) (-267 "DRAWPT.spad" 350503 350511 352320 352325) (-266 "DRAW.spad" 343379 343392 350493 350498) (-265 "DRAWHACK.spad" 342687 342697 343369 343374) (-264 "DRAWCX.spad" 340157 340165 342677 342682) (-263 "DRAWCURV.spad" 339704 339719 340147 340152) (-262 "DRAWCFUN.spad" 329236 329244 339694 339699) (-261 "DQAGG.spad" 327414 327424 329204 329231) (-260 "DPOLCAT.spad" 322763 322779 327282 327409) (-259 "DPOLCAT.spad" 318198 318216 322719 322724) (-258 "DPMO.spad" 310671 310687 310809 311054) (-257 "DPMM.spad" 303157 303175 303282 303527) (-256 "DOMTMPLT.spad" 302928 302936 303147 303152) (-255 "DOMCTOR.spad" 302683 302691 302918 302923) (-254 "DOMAIN.spad" 301770 301778 302673 302678) (-253 "DMP.spad" 299030 299045 299600 299727) (-252 "DLP.spad" 298382 298392 299020 299025) (-251 "DLIST.spad" 296961 296971 297565 297592) (-250 "DLAGG.spad" 295378 295388 296951 296956) (-249 "DIVRING.spad" 294920 294928 295322 295373) (-248 "DIVRING.spad" 294506 294516 294910 294915) (-247 "DISPLAY.spad" 292696 292704 294496 294501) (-246 "DIRPROD.spad" 282199 282215 282839 282970) (-245 "DIRPROD2.spad" 281017 281035 282189 282194) (-244 "DIRPCAT.spad" 279961 279977 280881 281012) (-243 "DIRPCAT.spad" 278634 278652 279556 279561) (-242 "DIOSP.spad" 277459 277467 278624 278629) (-241 "DIOPS.spad" 276455 276465 277439 277454) (-240 "DIOPS.spad" 275425 275437 276411 276416) (-239 "DIFRING.spad" 275031 275039 275405 275420) (-238 "DIFRING.spad" 274645 274655 275021 275026) (-237 "DIFFSPC.spad" 274224 274232 274635 274640) (-236 "DIFFSPC.spad" 273801 273811 274214 274219) (-235 "DIFFDOM.spad" 272966 272977 273791 273796) (-234 "DIFFDOM.spad" 272129 272142 272956 272961) (-233 "DIFEXT.spad" 271300 271310 272109 272124) (-232 "DIFEXT.spad" 270388 270400 271199 271204) (-231 "DIAGG.spad" 270018 270028 270368 270383) (-230 "DIAGG.spad" 269656 269668 270008 270013) (-229 "DHMATRIX.spad" 267968 267978 269113 269140) (-228 "DFSFUN.spad" 261608 261616 267958 267963) (-227 "DFLOAT.spad" 258339 258347 261498 261603) (-226 "DFINTTLS.spad" 256570 256586 258329 258334) (-225 "DERHAM.spad" 254484 254516 256550 256565) (-224 "DEQUEUE.spad" 253808 253818 254091 254118) (-223 "DEGRED.spad" 253425 253439 253798 253803) (-222 "DEFINTRF.spad" 250962 250972 253415 253420) (-221 "DEFINTEF.spad" 249472 249488 250952 250957) (-220 "DEFAST.spad" 248840 248848 249462 249467) (-219 "DECIMAL.spad" 246946 246954 247307 247400) (-218 "DDFACT.spad" 244759 244776 246936 246941) (-217 "DBLRESP.spad" 244359 244383 244749 244754) (-216 "DBASE.spad" 243023 243033 244349 244354) (-215 "DATAARY.spad" 242485 242498 243013 243018) (-214 "D03FAFA.spad" 242313 242321 242475 242480) (-213 "D03EEFA.spad" 242133 242141 242303 242308) (-212 "D03AGNT.spad" 241219 241227 242123 242128) (-211 "D02EJFA.spad" 240681 240689 241209 241214) (-210 "D02CJFA.spad" 240159 240167 240671 240676) (-209 "D02BHFA.spad" 239649 239657 240149 240154) (-208 "D02BBFA.spad" 239139 239147 239639 239644) (-207 "D02AGNT.spad" 233953 233961 239129 239134) (-206 "D01WGTS.spad" 232272 232280 233943 233948) (-205 "D01TRNS.spad" 232249 232257 232262 232267) (-204 "D01GBFA.spad" 231771 231779 232239 232244) (-203 "D01FCFA.spad" 231293 231301 231761 231766) (-202 "D01ASFA.spad" 230761 230769 231283 231288) (-201 "D01AQFA.spad" 230207 230215 230751 230756) (-200 "D01APFA.spad" 229631 229639 230197 230202) (-199 "D01ANFA.spad" 229125 229133 229621 229626) (-198 "D01AMFA.spad" 228635 228643 229115 229120) (-197 "D01ALFA.spad" 228175 228183 228625 228630) (-196 "D01AKFA.spad" 227701 227709 228165 228170) (-195 "D01AJFA.spad" 227224 227232 227691 227696) (-194 "D01AGNT.spad" 223291 223299 227214 227219) (-193 "CYCLOTOM.spad" 222797 222805 223281 223286) (-192 "CYCLES.spad" 219589 219597 222787 222792) (-191 "CVMP.spad" 219006 219016 219579 219584) (-190 "CTRIGMNP.spad" 217506 217522 218996 219001) (-189 "CTOR.spad" 217197 217205 217496 217501) (-188 "CTORKIND.spad" 216800 216808 217187 217192) (-187 "CTORCAT.spad" 216049 216057 216790 216795) (-186 "CTORCAT.spad" 215296 215306 216039 216044) (-185 "CTORCALL.spad" 214885 214895 215286 215291) (-184 "CSTTOOLS.spad" 214130 214143 214875 214880) (-183 "CRFP.spad" 207854 207867 214120 214125) (-182 "CRCEAST.spad" 207574 207582 207844 207849) (-181 "CRAPACK.spad" 206625 206635 207564 207569) (-180 "CPMATCH.spad" 206129 206144 206550 206555) (-179 "CPIMA.spad" 205834 205853 206119 206124) (-178 "COORDSYS.spad" 200843 200853 205824 205829) (-177 "CONTOUR.spad" 200254 200262 200833 200838) (-176 "CONTFRAC.spad" 196004 196014 200156 200249) (-175 "CONDUIT.spad" 195762 195770 195994 195999) (-174 "COMRING.spad" 195436 195444 195700 195757) (-173 "COMPPROP.spad" 194954 194962 195426 195431) (-172 "COMPLPAT.spad" 194721 194736 194944 194949) (-171 "COMPLEX.spad" 188858 188868 189102 189363) (-170 "COMPLEX2.spad" 188573 188585 188848 188853) (-169 "COMPILER.spad" 188122 188130 188563 188568) (-168 "COMPFACT.spad" 187724 187738 188112 188117) (-167 "COMPCAT.spad" 185796 185806 187458 187719) (-166 "COMPCAT.spad" 183596 183608 185260 185265) (-165 "COMMUPC.spad" 183344 183362 183586 183591) (-164 "COMMONOP.spad" 182877 182885 183334 183339) (-163 "COMM.spad" 182688 182696 182867 182872) (-162 "COMMAAST.spad" 182451 182459 182678 182683) (-161 "COMBOPC.spad" 181366 181374 182441 182446) (-160 "COMBINAT.spad" 180133 180143 181356 181361) (-159 "COMBF.spad" 177515 177531 180123 180128) (-158 "COLOR.spad" 176352 176360 177505 177510) (-157 "COLONAST.spad" 176018 176026 176342 176347) (-156 "CMPLXRT.spad" 175729 175746 176008 176013) (-155 "CLLCTAST.spad" 175391 175399 175719 175724) (-154 "CLIP.spad" 171499 171507 175381 175386) (-153 "CLIF.spad" 170154 170170 171455 171494) (-152 "CLAGG.spad" 166659 166669 170144 170149) (-151 "CLAGG.spad" 163035 163047 166522 166527) (-150 "CINTSLPE.spad" 162366 162379 163025 163030) (-149 "CHVAR.spad" 160504 160526 162356 162361) (-148 "CHARZ.spad" 160419 160427 160484 160499) (-147 "CHARPOL.spad" 159929 159939 160409 160414) (-146 "CHARNZ.spad" 159682 159690 159909 159924) (-145 "CHAR.spad" 157556 157564 159672 159677) (-144 "CFCAT.spad" 156884 156892 157546 157551) (-143 "CDEN.spad" 156080 156094 156874 156879) (-142 "CCLASS.spad" 154229 154237 155491 155530) (-141 "CATEGORY.spad" 153271 153279 154219 154224) (-140 "CATCTOR.spad" 153162 153170 153261 153266) (-139 "CATAST.spad" 152780 152788 153152 153157) (-138 "CASEAST.spad" 152494 152502 152770 152775) (-137 "CARTEN.spad" 147861 147885 152484 152489) (-136 "CARTEN2.spad" 147251 147278 147851 147856) (-135 "CARD.spad" 144546 144554 147225 147246) (-134 "CAPSLAST.spad" 144320 144328 144536 144541) (-133 "CACHSET.spad" 143944 143952 144310 144315) (-132 "CABMON.spad" 143499 143507 143934 143939) (-131 "BYTEORD.spad" 143174 143182 143489 143494) (-130 "BYTE.spad" 142601 142609 143164 143169) (-129 "BYTEBUF.spad" 140460 140468 141770 141797) (-128 "BTREE.spad" 139533 139543 140067 140094) (-127 "BTOURN.spad" 138538 138548 139140 139167) (-126 "BTCAT.spad" 137930 137940 138506 138533) (-125 "BTCAT.spad" 137342 137354 137920 137925) (-124 "BTAGG.spad" 136808 136816 137310 137337) (-123 "BTAGG.spad" 136294 136304 136798 136803) (-122 "BSTREE.spad" 135035 135045 135901 135928) (-121 "BRILL.spad" 133232 133243 135025 135030) (-120 "BRAGG.spad" 132172 132182 133222 133227) (-119 "BRAGG.spad" 131076 131088 132128 132133) (-118 "BPADICRT.spad" 129057 129069 129312 129405) (-117 "BPADIC.spad" 128721 128733 128983 129052) (-116 "BOUNDZRO.spad" 128377 128394 128711 128716) (-115 "BOP.spad" 123559 123567 128367 128372) (-114 "BOP1.spad" 121025 121035 123549 123554) (-113 "BOOLE.spad" 120675 120683 121015 121020) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2267909 2267914 2267919 2267924) (-2 NIL 2267889 2267894 2267899 2267904) (-1 NIL 2267869 2267874 2267879 2267884) (0 NIL 2267849 2267854 2267859 2267864) (-1310 "ZMOD.spad" 2267658 2267671 2267787 2267844) (-1309 "ZLINDEP.spad" 2266724 2266735 2267648 2267653) (-1308 "ZDSOLVE.spad" 2256669 2256691 2266714 2266719) (-1307 "YSTREAM.spad" 2256164 2256175 2256659 2256664) (-1306 "YDIAGRAM.spad" 2255798 2255807 2256154 2256159) (-1305 "XRPOLY.spad" 2255018 2255038 2255654 2255723) (-1304 "XPR.spad" 2252813 2252826 2254736 2254835) (-1303 "XPOLY.spad" 2252368 2252379 2252669 2252738) (-1302 "XPOLYC.spad" 2251687 2251703 2252294 2252363) (-1301 "XPBWPOLY.spad" 2250124 2250144 2251467 2251536) (-1300 "XF.spad" 2248587 2248602 2250026 2250119) (-1299 "XF.spad" 2247030 2247047 2248471 2248476) (-1298 "XFALG.spad" 2244078 2244094 2246956 2247025) (-1297 "XEXPPKG.spad" 2243329 2243355 2244068 2244073) (-1296 "XDPOLY.spad" 2242943 2242959 2243185 2243254) (-1295 "XALG.spad" 2242603 2242614 2242899 2242938) (-1294 "WUTSET.spad" 2238442 2238459 2242249 2242276) (-1293 "WP.spad" 2237641 2237685 2238300 2238367) (-1292 "WHILEAST.spad" 2237439 2237448 2237631 2237636) (-1291 "WHEREAST.spad" 2237110 2237119 2237429 2237434) (-1290 "WFFINTBS.spad" 2234773 2234795 2237100 2237105) (-1289 "WEIER.spad" 2232995 2233006 2234763 2234768) (-1288 "VSPACE.spad" 2232668 2232679 2232963 2232990) (-1287 "VSPACE.spad" 2232361 2232374 2232658 2232663) (-1286 "VOID.spad" 2232038 2232047 2232351 2232356) (-1285 "VIEW.spad" 2229718 2229727 2232028 2232033) (-1284 "VIEWDEF.spad" 2224919 2224928 2229708 2229713) (-1283 "VIEW3D.spad" 2208880 2208889 2224909 2224914) (-1282 "VIEW2D.spad" 2196771 2196780 2208870 2208875) (-1281 "VECTOR.spad" 2195445 2195456 2195696 2195723) (-1280 "VECTOR2.spad" 2194084 2194097 2195435 2195440) (-1279 "VECTCAT.spad" 2191988 2191999 2194052 2194079) (-1278 "VECTCAT.spad" 2189699 2189712 2191765 2191770) (-1277 "VARIABLE.spad" 2189479 2189494 2189689 2189694) (-1276 "UTYPE.spad" 2189123 2189132 2189469 2189474) (-1275 "UTSODETL.spad" 2188418 2188442 2189079 2189084) (-1274 "UTSODE.spad" 2186634 2186654 2188408 2188413) (-1273 "UTS.spad" 2181438 2181466 2185101 2185198) (-1272 "UTSCAT.spad" 2178917 2178933 2181336 2181433) (-1271 "UTSCAT.spad" 2176040 2176058 2178461 2178466) (-1270 "UTS2.spad" 2175635 2175670 2176030 2176035) (-1269 "URAGG.spad" 2170308 2170319 2175625 2175630) (-1268 "URAGG.spad" 2164945 2164958 2170264 2170269) (-1267 "UPXSSING.spad" 2162590 2162616 2164026 2164159) (-1266 "UPXS.spad" 2159744 2159772 2160722 2160871) (-1265 "UPXSCONS.spad" 2157503 2157523 2157876 2158025) (-1264 "UPXSCCA.spad" 2156074 2156094 2157349 2157498) (-1263 "UPXSCCA.spad" 2154787 2154809 2156064 2156069) (-1262 "UPXSCAT.spad" 2153376 2153392 2154633 2154782) (-1261 "UPXS2.spad" 2152919 2152972 2153366 2153371) (-1260 "UPSQFREE.spad" 2151333 2151347 2152909 2152914) (-1259 "UPSCAT.spad" 2149120 2149144 2151231 2151328) (-1258 "UPSCAT.spad" 2146613 2146639 2148726 2148731) (-1257 "UPOLYC.spad" 2141653 2141664 2146455 2146608) (-1256 "UPOLYC.spad" 2136585 2136598 2141389 2141394) (-1255 "UPOLYC2.spad" 2136056 2136075 2136575 2136580) (-1254 "UP.spad" 2133255 2133270 2133642 2133795) (-1253 "UPMP.spad" 2132155 2132168 2133245 2133250) (-1252 "UPDIVP.spad" 2131720 2131734 2132145 2132150) (-1251 "UPDECOMP.spad" 2129965 2129979 2131710 2131715) (-1250 "UPCDEN.spad" 2129174 2129190 2129955 2129960) (-1249 "UP2.spad" 2128538 2128559 2129164 2129169) (-1248 "UNISEG.spad" 2127891 2127902 2128457 2128462) (-1247 "UNISEG2.spad" 2127388 2127401 2127847 2127852) (-1246 "UNIFACT.spad" 2126491 2126503 2127378 2127383) (-1245 "ULS.spad" 2117049 2117077 2118136 2118565) (-1244 "ULSCONS.spad" 2109445 2109465 2109815 2109964) (-1243 "ULSCCAT.spad" 2107182 2107202 2109291 2109440) (-1242 "ULSCCAT.spad" 2105027 2105049 2107138 2107143) (-1241 "ULSCAT.spad" 2103259 2103275 2104873 2105022) (-1240 "ULS2.spad" 2102773 2102826 2103249 2103254) (-1239 "UINT8.spad" 2102650 2102659 2102763 2102768) (-1238 "UINT64.spad" 2102526 2102535 2102640 2102645) (-1237 "UINT32.spad" 2102402 2102411 2102516 2102521) (-1236 "UINT16.spad" 2102278 2102287 2102392 2102397) (-1235 "UFD.spad" 2101343 2101352 2102204 2102273) (-1234 "UFD.spad" 2100470 2100481 2101333 2101338) (-1233 "UDVO.spad" 2099351 2099360 2100460 2100465) (-1232 "UDPO.spad" 2096844 2096855 2099307 2099312) (-1231 "TYPE.spad" 2096776 2096785 2096834 2096839) (-1230 "TYPEAST.spad" 2096695 2096704 2096766 2096771) (-1229 "TWOFACT.spad" 2095347 2095362 2096685 2096690) (-1228 "TUPLE.spad" 2094833 2094844 2095246 2095251) (-1227 "TUBETOOL.spad" 2091700 2091709 2094823 2094828) (-1226 "TUBE.spad" 2090347 2090364 2091690 2091695) (-1225 "TS.spad" 2088946 2088962 2089912 2090009) (-1224 "TSETCAT.spad" 2076073 2076090 2088914 2088941) (-1223 "TSETCAT.spad" 2063186 2063205 2076029 2076034) (-1222 "TRMANIP.spad" 2057552 2057569 2062892 2062897) (-1221 "TRIMAT.spad" 2056515 2056540 2057542 2057547) (-1220 "TRIGMNIP.spad" 2055042 2055059 2056505 2056510) (-1219 "TRIGCAT.spad" 2054554 2054563 2055032 2055037) (-1218 "TRIGCAT.spad" 2054064 2054075 2054544 2054549) (-1217 "TREE.spad" 2052639 2052650 2053671 2053698) (-1216 "TRANFUN.spad" 2052478 2052487 2052629 2052634) (-1215 "TRANFUN.spad" 2052315 2052326 2052468 2052473) (-1214 "TOPSP.spad" 2051989 2051998 2052305 2052310) (-1213 "TOOLSIGN.spad" 2051652 2051663 2051979 2051984) (-1212 "TEXTFILE.spad" 2050213 2050222 2051642 2051647) (-1211 "TEX.spad" 2047359 2047368 2050203 2050208) (-1210 "TEX1.spad" 2046915 2046926 2047349 2047354) (-1209 "TEMUTL.spad" 2046470 2046479 2046905 2046910) (-1208 "TBCMPPK.spad" 2044563 2044586 2046460 2046465) (-1207 "TBAGG.spad" 2043613 2043636 2044543 2044558) (-1206 "TBAGG.spad" 2042671 2042696 2043603 2043608) (-1205 "TANEXP.spad" 2042079 2042090 2042661 2042666) (-1204 "TALGOP.spad" 2041803 2041814 2042069 2042074) (-1203 "TABLE.spad" 2040214 2040237 2040484 2040511) (-1202 "TABLEAU.spad" 2039695 2039706 2040204 2040209) (-1201 "TABLBUMP.spad" 2036498 2036509 2039685 2039690) (-1200 "SYSTEM.spad" 2035726 2035735 2036488 2036493) (-1199 "SYSSOLP.spad" 2033209 2033220 2035716 2035721) (-1198 "SYSPTR.spad" 2033108 2033117 2033199 2033204) (-1197 "SYSNNI.spad" 2032290 2032301 2033098 2033103) (-1196 "SYSINT.spad" 2031694 2031705 2032280 2032285) (-1195 "SYNTAX.spad" 2027900 2027909 2031684 2031689) (-1194 "SYMTAB.spad" 2025968 2025977 2027890 2027895) (-1193 "SYMS.spad" 2021991 2022000 2025958 2025963) (-1192 "SYMPOLY.spad" 2020998 2021009 2021080 2021207) (-1191 "SYMFUNC.spad" 2020499 2020510 2020988 2020993) (-1190 "SYMBOL.spad" 2018002 2018011 2020489 2020494) (-1189 "SWITCH.spad" 2014773 2014782 2017992 2017997) (-1188 "SUTS.spad" 2011678 2011706 2013240 2013337) (-1187 "SUPXS.spad" 2008819 2008847 2009810 2009959) (-1186 "SUP.spad" 2005632 2005643 2006405 2006558) (-1185 "SUPFRACF.spad" 2004737 2004755 2005622 2005627) (-1184 "SUP2.spad" 2004129 2004142 2004727 2004732) (-1183 "SUMRF.spad" 2003103 2003114 2004119 2004124) (-1182 "SUMFS.spad" 2002740 2002757 2003093 2003098) (-1181 "SULS.spad" 1993285 1993313 1994385 1994814) (-1180 "SUCHTAST.spad" 1993054 1993063 1993275 1993280) (-1179 "SUCH.spad" 1992736 1992751 1993044 1993049) (-1178 "SUBSPACE.spad" 1984851 1984866 1992726 1992731) (-1177 "SUBRESP.spad" 1984021 1984035 1984807 1984812) (-1176 "STTF.spad" 1980120 1980136 1984011 1984016) (-1175 "STTFNC.spad" 1976588 1976604 1980110 1980115) (-1174 "STTAYLOR.spad" 1969223 1969234 1976469 1976474) (-1173 "STRTBL.spad" 1967728 1967745 1967877 1967904) (-1172 "STRING.spad" 1967137 1967146 1967151 1967178) (-1171 "STRICAT.spad" 1966925 1966934 1967105 1967132) (-1170 "STREAM.spad" 1963843 1963854 1966450 1966465) (-1169 "STREAM3.spad" 1963416 1963431 1963833 1963838) (-1168 "STREAM2.spad" 1962544 1962557 1963406 1963411) (-1167 "STREAM1.spad" 1962250 1962261 1962534 1962539) (-1166 "STINPROD.spad" 1961186 1961202 1962240 1962245) (-1165 "STEP.spad" 1960387 1960396 1961176 1961181) (-1164 "STEPAST.spad" 1959621 1959630 1960377 1960382) (-1163 "STBL.spad" 1958147 1958175 1958314 1958329) (-1162 "STAGG.spad" 1957222 1957233 1958137 1958142) (-1161 "STAGG.spad" 1956295 1956308 1957212 1957217) (-1160 "STACK.spad" 1955652 1955663 1955902 1955929) (-1159 "SREGSET.spad" 1953356 1953373 1955298 1955325) (-1158 "SRDCMPK.spad" 1951917 1951937 1953346 1953351) (-1157 "SRAGG.spad" 1947060 1947069 1951885 1951912) (-1156 "SRAGG.spad" 1942223 1942234 1947050 1947055) (-1155 "SQMATRIX.spad" 1939895 1939913 1940811 1940898) (-1154 "SPLTREE.spad" 1934447 1934460 1939331 1939358) (-1153 "SPLNODE.spad" 1931035 1931048 1934437 1934442) (-1152 "SPFCAT.spad" 1929844 1929853 1931025 1931030) (-1151 "SPECOUT.spad" 1928396 1928405 1929834 1929839) (-1150 "SPADXPT.spad" 1919991 1920000 1928386 1928391) (-1149 "spad-parser.spad" 1919456 1919465 1919981 1919986) (-1148 "SPADAST.spad" 1919157 1919166 1919446 1919451) (-1147 "SPACEC.spad" 1903356 1903367 1919147 1919152) (-1146 "SPACE3.spad" 1903132 1903143 1903346 1903351) (-1145 "SORTPAK.spad" 1902681 1902694 1903088 1903093) (-1144 "SOLVETRA.spad" 1900444 1900455 1902671 1902676) (-1143 "SOLVESER.spad" 1898972 1898983 1900434 1900439) (-1142 "SOLVERAD.spad" 1894998 1895009 1898962 1898967) (-1141 "SOLVEFOR.spad" 1893460 1893478 1894988 1894993) (-1140 "SNTSCAT.spad" 1893060 1893077 1893428 1893455) (-1139 "SMTS.spad" 1891332 1891358 1892625 1892722) (-1138 "SMP.spad" 1888807 1888827 1889197 1889324) (-1137 "SMITH.spad" 1887652 1887677 1888797 1888802) (-1136 "SMATCAT.spad" 1885762 1885792 1887596 1887647) (-1135 "SMATCAT.spad" 1883804 1883836 1885640 1885645) (-1134 "SKAGG.spad" 1882767 1882778 1883772 1883799) (-1133 "SINT.spad" 1881707 1881716 1882633 1882762) (-1132 "SIMPAN.spad" 1881435 1881444 1881697 1881702) (-1131 "SIG.spad" 1880765 1880774 1881425 1881430) (-1130 "SIGNRF.spad" 1879883 1879894 1880755 1880760) (-1129 "SIGNEF.spad" 1879162 1879179 1879873 1879878) (-1128 "SIGAST.spad" 1878547 1878556 1879152 1879157) (-1127 "SHP.spad" 1876475 1876490 1878503 1878508) (-1126 "SHDP.spad" 1866109 1866136 1866618 1866749) (-1125 "SGROUP.spad" 1865717 1865726 1866099 1866104) (-1124 "SGROUP.spad" 1865323 1865334 1865707 1865712) (-1123 "SGCF.spad" 1858462 1858471 1865313 1865318) (-1122 "SFRTCAT.spad" 1857392 1857409 1858430 1858457) (-1121 "SFRGCD.spad" 1856455 1856475 1857382 1857387) (-1120 "SFQCMPK.spad" 1851092 1851112 1856445 1856450) (-1119 "SFORT.spad" 1850531 1850545 1851082 1851087) (-1118 "SEXOF.spad" 1850374 1850414 1850521 1850526) (-1117 "SEX.spad" 1850266 1850275 1850364 1850369) (-1116 "SEXCAT.spad" 1848047 1848087 1850256 1850261) (-1115 "SET.spad" 1846371 1846382 1847468 1847507) (-1114 "SETMN.spad" 1844821 1844838 1846361 1846366) (-1113 "SETCAT.spad" 1844143 1844152 1844811 1844816) (-1112 "SETCAT.spad" 1843463 1843474 1844133 1844138) (-1111 "SETAGG.spad" 1840012 1840023 1843443 1843458) (-1110 "SETAGG.spad" 1836569 1836582 1840002 1840007) (-1109 "SEQAST.spad" 1836272 1836281 1836559 1836564) (-1108 "SEGXCAT.spad" 1835428 1835441 1836262 1836267) (-1107 "SEG.spad" 1835241 1835252 1835347 1835352) (-1106 "SEGCAT.spad" 1834166 1834177 1835231 1835236) (-1105 "SEGBIND.spad" 1833924 1833935 1834113 1834118) (-1104 "SEGBIND2.spad" 1833622 1833635 1833914 1833919) (-1103 "SEGAST.spad" 1833336 1833345 1833612 1833617) (-1102 "SEG2.spad" 1832771 1832784 1833292 1833297) (-1101 "SDVAR.spad" 1832047 1832058 1832761 1832766) (-1100 "SDPOL.spad" 1829473 1829484 1829764 1829891) (-1099 "SCPKG.spad" 1827562 1827573 1829463 1829468) (-1098 "SCOPE.spad" 1826715 1826724 1827552 1827557) (-1097 "SCACHE.spad" 1825411 1825422 1826705 1826710) (-1096 "SASTCAT.spad" 1825320 1825329 1825401 1825406) (-1095 "SAOS.spad" 1825192 1825201 1825310 1825315) (-1094 "SAERFFC.spad" 1824905 1824925 1825182 1825187) (-1093 "SAE.spad" 1823080 1823096 1823691 1823826) (-1092 "SAEFACT.spad" 1822781 1822801 1823070 1823075) (-1091 "RURPK.spad" 1820440 1820456 1822771 1822776) (-1090 "RULESET.spad" 1819893 1819917 1820430 1820435) (-1089 "RULE.spad" 1818133 1818157 1819883 1819888) (-1088 "RULECOLD.spad" 1817985 1817998 1818123 1818128) (-1087 "RTVALUE.spad" 1817720 1817729 1817975 1817980) (-1086 "RSTRCAST.spad" 1817437 1817446 1817710 1817715) (-1085 "RSETGCD.spad" 1813815 1813835 1817427 1817432) (-1084 "RSETCAT.spad" 1803751 1803768 1813783 1813810) (-1083 "RSETCAT.spad" 1793707 1793726 1803741 1803746) (-1082 "RSDCMPK.spad" 1792159 1792179 1793697 1793702) (-1081 "RRCC.spad" 1790543 1790573 1792149 1792154) (-1080 "RRCC.spad" 1788925 1788957 1790533 1790538) (-1079 "RPTAST.spad" 1788627 1788636 1788915 1788920) (-1078 "RPOLCAT.spad" 1767987 1768002 1788495 1788622) (-1077 "RPOLCAT.spad" 1747060 1747077 1767570 1767575) (-1076 "ROUTINE.spad" 1742943 1742952 1745707 1745734) (-1075 "ROMAN.spad" 1742271 1742280 1742809 1742938) (-1074 "ROIRC.spad" 1741351 1741383 1742261 1742266) (-1073 "RNS.spad" 1740254 1740263 1741253 1741346) (-1072 "RNS.spad" 1739243 1739254 1740244 1740249) (-1071 "RNG.spad" 1738978 1738987 1739233 1739238) (-1070 "RNGBIND.spad" 1738138 1738152 1738933 1738938) (-1069 "RMODULE.spad" 1737903 1737914 1738128 1738133) (-1068 "RMCAT2.spad" 1737323 1737380 1737893 1737898) (-1067 "RMATRIX.spad" 1736147 1736166 1736490 1736529) (-1066 "RMATCAT.spad" 1731726 1731757 1736103 1736142) (-1065 "RMATCAT.spad" 1727195 1727228 1731574 1731579) (-1064 "RLINSET.spad" 1726589 1726600 1727185 1727190) (-1063 "RINTERP.spad" 1726477 1726497 1726579 1726584) (-1062 "RING.spad" 1725947 1725956 1726457 1726472) (-1061 "RING.spad" 1725425 1725436 1725937 1725942) (-1060 "RIDIST.spad" 1724817 1724826 1725415 1725420) (-1059 "RGCHAIN.spad" 1723400 1723416 1724302 1724329) (-1058 "RGBCSPC.spad" 1723181 1723193 1723390 1723395) (-1057 "RGBCMDL.spad" 1722711 1722723 1723171 1723176) (-1056 "RF.spad" 1720353 1720364 1722701 1722706) (-1055 "RFFACTOR.spad" 1719815 1719826 1720343 1720348) (-1054 "RFFACT.spad" 1719550 1719562 1719805 1719810) (-1053 "RFDIST.spad" 1718546 1718555 1719540 1719545) (-1052 "RETSOL.spad" 1717965 1717978 1718536 1718541) (-1051 "RETRACT.spad" 1717393 1717404 1717955 1717960) (-1050 "RETRACT.spad" 1716819 1716832 1717383 1717388) (-1049 "RETAST.spad" 1716631 1716640 1716809 1716814) (-1048 "RESULT.spad" 1714691 1714700 1715278 1715305) (-1047 "RESRING.spad" 1714038 1714085 1714629 1714686) (-1046 "RESLATC.spad" 1713362 1713373 1714028 1714033) (-1045 "REPSQ.spad" 1713093 1713104 1713352 1713357) (-1044 "REP.spad" 1710647 1710656 1713083 1713088) (-1043 "REPDB.spad" 1710354 1710365 1710637 1710642) (-1042 "REP2.spad" 1700012 1700023 1710196 1710201) (-1041 "REP1.spad" 1694208 1694219 1699962 1699967) (-1040 "REGSET.spad" 1692005 1692022 1693854 1693881) (-1039 "REF.spad" 1691340 1691351 1691960 1691965) (-1038 "REDORDER.spad" 1690546 1690563 1691330 1691335) (-1037 "RECLOS.spad" 1689329 1689349 1690033 1690126) (-1036 "REALSOLV.spad" 1688469 1688478 1689319 1689324) (-1035 "REAL.spad" 1688341 1688350 1688459 1688464) (-1034 "REAL0Q.spad" 1685639 1685654 1688331 1688336) (-1033 "REAL0.spad" 1682483 1682498 1685629 1685634) (-1032 "RDUCEAST.spad" 1682204 1682213 1682473 1682478) (-1031 "RDIV.spad" 1681859 1681884 1682194 1682199) (-1030 "RDIST.spad" 1681426 1681437 1681849 1681854) (-1029 "RDETRS.spad" 1680290 1680308 1681416 1681421) (-1028 "RDETR.spad" 1678429 1678447 1680280 1680285) (-1027 "RDEEFS.spad" 1677528 1677545 1678419 1678424) (-1026 "RDEEF.spad" 1676538 1676555 1677518 1677523) (-1025 "RCFIELD.spad" 1673724 1673733 1676440 1676533) (-1024 "RCFIELD.spad" 1670996 1671007 1673714 1673719) (-1023 "RCAGG.spad" 1668924 1668935 1670986 1670991) (-1022 "RCAGG.spad" 1666779 1666792 1668843 1668848) (-1021 "RATRET.spad" 1666139 1666150 1666769 1666774) (-1020 "RATFACT.spad" 1665831 1665843 1666129 1666134) (-1019 "RANDSRC.spad" 1665150 1665159 1665821 1665826) (-1018 "RADUTIL.spad" 1664906 1664915 1665140 1665145) (-1017 "RADIX.spad" 1661827 1661841 1663373 1663466) (-1016 "RADFF.spad" 1660240 1660277 1660359 1660515) (-1015 "RADCAT.spad" 1659835 1659844 1660230 1660235) (-1014 "RADCAT.spad" 1659428 1659439 1659825 1659830) (-1013 "QUEUE.spad" 1658776 1658787 1659035 1659062) (-1012 "QUAT.spad" 1657234 1657245 1657577 1657642) (-1011 "QUATCT2.spad" 1656854 1656873 1657224 1657229) (-1010 "QUATCAT.spad" 1655024 1655035 1656784 1656849) (-1009 "QUATCAT.spad" 1652945 1652958 1654707 1654712) (-1008 "QUAGG.spad" 1651772 1651783 1652913 1652940) (-1007 "QQUTAST.spad" 1651540 1651549 1651762 1651767) (-1006 "QFORM.spad" 1651158 1651173 1651530 1651535) (-1005 "QFCAT.spad" 1649860 1649871 1651060 1651153) (-1004 "QFCAT.spad" 1648153 1648166 1649355 1649360) (-1003 "QFCAT2.spad" 1647845 1647862 1648143 1648148) (-1002 "QEQUAT.spad" 1647403 1647412 1647835 1647840) (-1001 "QCMPACK.spad" 1642149 1642169 1647393 1647398) (-1000 "QALGSET.spad" 1638227 1638260 1642063 1642068) (-999 "QALGSET2.spad" 1636223 1636241 1638217 1638222) (-998 "PWFFINTB.spad" 1633639 1633660 1636213 1636218) (-997 "PUSHVAR.spad" 1632978 1632997 1633629 1633634) (-996 "PTRANFN.spad" 1629106 1629116 1632968 1632973) (-995 "PTPACK.spad" 1626194 1626204 1629096 1629101) (-994 "PTFUNC2.spad" 1626017 1626031 1626184 1626189) (-993 "PTCAT.spad" 1625272 1625282 1625985 1626012) (-992 "PSQFR.spad" 1624579 1624603 1625262 1625267) (-991 "PSEUDLIN.spad" 1623465 1623475 1624569 1624574) (-990 "PSETPK.spad" 1608898 1608914 1623343 1623348) (-989 "PSETCAT.spad" 1602818 1602841 1608878 1608893) (-988 "PSETCAT.spad" 1596712 1596737 1602774 1602779) (-987 "PSCURVE.spad" 1595695 1595703 1596702 1596707) (-986 "PSCAT.spad" 1594478 1594507 1595593 1595690) (-985 "PSCAT.spad" 1593351 1593382 1594468 1594473) (-984 "PRTITION.spad" 1592049 1592057 1593341 1593346) (-983 "PRTDAST.spad" 1591768 1591776 1592039 1592044) (-982 "PRS.spad" 1581330 1581347 1591724 1591729) (-981 "PRQAGG.spad" 1580765 1580775 1581298 1581325) (-980 "PROPLOG.spad" 1580337 1580345 1580755 1580760) (-979 "PROPFUN2.spad" 1579960 1579973 1580327 1580332) (-978 "PROPFUN1.spad" 1579358 1579369 1579950 1579955) (-977 "PROPFRML.spad" 1577926 1577937 1579348 1579353) (-976 "PROPERTY.spad" 1577414 1577422 1577916 1577921) (-975 "PRODUCT.spad" 1575096 1575108 1575380 1575435) (-974 "PR.spad" 1573488 1573500 1574187 1574314) (-973 "PRINT.spad" 1573240 1573248 1573478 1573483) (-972 "PRIMES.spad" 1571493 1571503 1573230 1573235) (-971 "PRIMELT.spad" 1569574 1569588 1571483 1571488) (-970 "PRIMCAT.spad" 1569201 1569209 1569564 1569569) (-969 "PRIMARR.spad" 1568206 1568216 1568384 1568411) (-968 "PRIMARR2.spad" 1566973 1566985 1568196 1568201) (-967 "PREASSOC.spad" 1566355 1566367 1566963 1566968) (-966 "PPCURVE.spad" 1565492 1565500 1566345 1566350) (-965 "PORTNUM.spad" 1565267 1565275 1565482 1565487) (-964 "POLYROOT.spad" 1564116 1564138 1565223 1565228) (-963 "POLY.spad" 1561451 1561461 1561966 1562093) (-962 "POLYLIFT.spad" 1560716 1560739 1561441 1561446) (-961 "POLYCATQ.spad" 1558834 1558856 1560706 1560711) (-960 "POLYCAT.spad" 1552304 1552325 1558702 1558829) (-959 "POLYCAT.spad" 1545112 1545135 1551512 1551517) (-958 "POLY2UP.spad" 1544564 1544578 1545102 1545107) (-957 "POLY2.spad" 1544161 1544173 1544554 1544559) (-956 "POLUTIL.spad" 1543102 1543131 1544117 1544122) (-955 "POLTOPOL.spad" 1541850 1541865 1543092 1543097) (-954 "POINT.spad" 1540688 1540698 1540775 1540802) (-953 "PNTHEORY.spad" 1537390 1537398 1540678 1540683) (-952 "PMTOOLS.spad" 1536165 1536179 1537380 1537385) (-951 "PMSYM.spad" 1535714 1535724 1536155 1536160) (-950 "PMQFCAT.spad" 1535305 1535319 1535704 1535709) (-949 "PMPRED.spad" 1534784 1534798 1535295 1535300) (-948 "PMPREDFS.spad" 1534238 1534260 1534774 1534779) (-947 "PMPLCAT.spad" 1533318 1533336 1534170 1534175) (-946 "PMLSAGG.spad" 1532903 1532917 1533308 1533313) (-945 "PMKERNEL.spad" 1532482 1532494 1532893 1532898) (-944 "PMINS.spad" 1532062 1532072 1532472 1532477) (-943 "PMFS.spad" 1531639 1531657 1532052 1532057) (-942 "PMDOWN.spad" 1530929 1530943 1531629 1531634) (-941 "PMASS.spad" 1529939 1529947 1530919 1530924) (-940 "PMASSFS.spad" 1528906 1528922 1529929 1529934) (-939 "PLOTTOOL.spad" 1528686 1528694 1528896 1528901) (-938 "PLOT.spad" 1523609 1523617 1528676 1528681) (-937 "PLOT3D.spad" 1520073 1520081 1523599 1523604) (-936 "PLOT1.spad" 1519230 1519240 1520063 1520068) (-935 "PLEQN.spad" 1506520 1506547 1519220 1519225) (-934 "PINTERP.spad" 1506142 1506161 1506510 1506515) (-933 "PINTERPA.spad" 1505926 1505942 1506132 1506137) (-932 "PI.spad" 1505535 1505543 1505900 1505921) (-931 "PID.spad" 1504505 1504513 1505461 1505530) (-930 "PICOERCE.spad" 1504162 1504172 1504495 1504500) (-929 "PGROEB.spad" 1502763 1502777 1504152 1504157) (-928 "PGE.spad" 1494380 1494388 1502753 1502758) (-927 "PGCD.spad" 1493270 1493287 1494370 1494375) (-926 "PFRPAC.spad" 1492419 1492429 1493260 1493265) (-925 "PFR.spad" 1489082 1489092 1492321 1492414) (-924 "PFOTOOLS.spad" 1488340 1488356 1489072 1489077) (-923 "PFOQ.spad" 1487710 1487728 1488330 1488335) (-922 "PFO.spad" 1487129 1487156 1487700 1487705) (-921 "PF.spad" 1486703 1486715 1486934 1487027) (-920 "PFECAT.spad" 1484385 1484393 1486629 1486698) (-919 "PFECAT.spad" 1482095 1482105 1484341 1484346) (-918 "PFBRU.spad" 1479983 1479995 1482085 1482090) (-917 "PFBR.spad" 1477543 1477566 1479973 1479978) (-916 "PERM.spad" 1473350 1473360 1477373 1477388) (-915 "PERMGRP.spad" 1468120 1468130 1473340 1473345) (-914 "PERMCAT.spad" 1466781 1466791 1468100 1468115) (-913 "PERMAN.spad" 1465313 1465327 1466771 1466776) (-912 "PENDTREE.spad" 1464654 1464664 1464942 1464947) (-911 "PDRING.spad" 1463205 1463215 1464634 1464649) (-910 "PDRING.spad" 1461764 1461776 1463195 1463200) (-909 "PDEPROB.spad" 1460779 1460787 1461754 1461759) (-908 "PDEPACK.spad" 1454819 1454827 1460769 1460774) (-907 "PDECOMP.spad" 1454289 1454306 1454809 1454814) (-906 "PDECAT.spad" 1452645 1452653 1454279 1454284) (-905 "PCOMP.spad" 1452498 1452511 1452635 1452640) (-904 "PBWLB.spad" 1451086 1451103 1452488 1452493) (-903 "PATTERN.spad" 1445625 1445635 1451076 1451081) (-902 "PATTERN2.spad" 1445363 1445375 1445615 1445620) (-901 "PATTERN1.spad" 1443699 1443715 1445353 1445358) (-900 "PATRES.spad" 1441274 1441286 1443689 1443694) (-899 "PATRES2.spad" 1440946 1440960 1441264 1441269) (-898 "PATMATCH.spad" 1439143 1439174 1440654 1440659) (-897 "PATMAB.spad" 1438572 1438582 1439133 1439138) (-896 "PATLRES.spad" 1437658 1437672 1438562 1438567) (-895 "PATAB.spad" 1437422 1437432 1437648 1437653) (-894 "PARTPERM.spad" 1435430 1435438 1437412 1437417) (-893 "PARSURF.spad" 1434864 1434892 1435420 1435425) (-892 "PARSU2.spad" 1434661 1434677 1434854 1434859) (-891 "script-parser.spad" 1434181 1434189 1434651 1434656) (-890 "PARSCURV.spad" 1433615 1433643 1434171 1434176) (-889 "PARSC2.spad" 1433406 1433422 1433605 1433610) (-888 "PARPCURV.spad" 1432868 1432896 1433396 1433401) (-887 "PARPC2.spad" 1432659 1432675 1432858 1432863) (-886 "PARAMAST.spad" 1431787 1431795 1432649 1432654) (-885 "PAN2EXPR.spad" 1431199 1431207 1431777 1431782) (-884 "PALETTE.spad" 1430169 1430177 1431189 1431194) (-883 "PAIR.spad" 1429156 1429169 1429757 1429762) (-882 "PADICRC.spad" 1426490 1426508 1427661 1427754) (-881 "PADICRAT.spad" 1424505 1424517 1424726 1424819) (-880 "PADIC.spad" 1424200 1424212 1424431 1424500) (-879 "PADICCT.spad" 1422749 1422761 1424126 1424195) (-878 "PADEPAC.spad" 1421438 1421457 1422739 1422744) (-877 "PADE.spad" 1420190 1420206 1421428 1421433) (-876 "OWP.spad" 1419430 1419460 1420048 1420115) (-875 "OVERSET.spad" 1419003 1419011 1419420 1419425) (-874 "OVAR.spad" 1418784 1418807 1418993 1418998) (-873 "OUT.spad" 1417870 1417878 1418774 1418779) (-872 "OUTFORM.spad" 1407262 1407270 1417860 1417865) (-871 "OUTBFILE.spad" 1406680 1406688 1407252 1407257) (-870 "OUTBCON.spad" 1405686 1405694 1406670 1406675) (-869 "OUTBCON.spad" 1404690 1404700 1405676 1405681) (-868 "OSI.spad" 1404165 1404173 1404680 1404685) (-867 "OSGROUP.spad" 1404083 1404091 1404155 1404160) (-866 "ORTHPOL.spad" 1402568 1402578 1404000 1404005) (-865 "OREUP.spad" 1402021 1402049 1402248 1402287) (-864 "ORESUP.spad" 1401322 1401346 1401701 1401740) (-863 "OREPCTO.spad" 1399179 1399191 1401242 1401247) (-862 "OREPCAT.spad" 1393326 1393336 1399135 1399174) (-861 "OREPCAT.spad" 1387363 1387375 1393174 1393179) (-860 "ORDSET.spad" 1386535 1386543 1387353 1387358) (-859 "ORDSET.spad" 1385705 1385715 1386525 1386530) (-858 "ORDRING.spad" 1385095 1385103 1385685 1385700) (-857 "ORDRING.spad" 1384493 1384503 1385085 1385090) (-856 "ORDMON.spad" 1384348 1384356 1384483 1384488) (-855 "ORDFUNS.spad" 1383480 1383496 1384338 1384343) (-854 "ORDFIN.spad" 1383300 1383308 1383470 1383475) (-853 "ORDCOMP.spad" 1381765 1381775 1382847 1382876) (-852 "ORDCOMP2.spad" 1381058 1381070 1381755 1381760) (-851 "OPTPROB.spad" 1379696 1379704 1381048 1381053) (-850 "OPTPACK.spad" 1372105 1372113 1379686 1379691) (-849 "OPTCAT.spad" 1369784 1369792 1372095 1372100) (-848 "OPSIG.spad" 1369438 1369446 1369774 1369779) (-847 "OPQUERY.spad" 1368987 1368995 1369428 1369433) (-846 "OP.spad" 1368729 1368739 1368809 1368876) (-845 "OPERCAT.spad" 1368195 1368205 1368719 1368724) (-844 "OPERCAT.spad" 1367659 1367671 1368185 1368190) (-843 "ONECOMP.spad" 1366404 1366414 1367206 1367235) (-842 "ONECOMP2.spad" 1365828 1365840 1366394 1366399) (-841 "OMSERVER.spad" 1364834 1364842 1365818 1365823) (-840 "OMSAGG.spad" 1364622 1364632 1364790 1364829) (-839 "OMPKG.spad" 1363238 1363246 1364612 1364617) (-838 "OM.spad" 1362211 1362219 1363228 1363233) (-837 "OMLO.spad" 1361636 1361648 1362097 1362136) (-836 "OMEXPR.spad" 1361470 1361480 1361626 1361631) (-835 "OMERR.spad" 1361015 1361023 1361460 1361465) (-834 "OMERRK.spad" 1360049 1360057 1361005 1361010) (-833 "OMENC.spad" 1359393 1359401 1360039 1360044) (-832 "OMDEV.spad" 1353702 1353710 1359383 1359388) (-831 "OMCONN.spad" 1353111 1353119 1353692 1353697) (-830 "OINTDOM.spad" 1352874 1352882 1353037 1353106) (-829 "OFMONOID.spad" 1350997 1351007 1352830 1352835) (-828 "ODVAR.spad" 1350258 1350268 1350987 1350992) (-827 "ODR.spad" 1349902 1349928 1350070 1350219) (-826 "ODPOL.spad" 1347284 1347294 1347624 1347751) (-825 "ODP.spad" 1337054 1337074 1337427 1337558) (-824 "ODETOOLS.spad" 1335703 1335722 1337044 1337049) (-823 "ODESYS.spad" 1333397 1333414 1335693 1335698) (-822 "ODERTRIC.spad" 1329406 1329423 1333354 1333359) (-821 "ODERED.spad" 1328805 1328829 1329396 1329401) (-820 "ODERAT.spad" 1326420 1326437 1328795 1328800) (-819 "ODEPRRIC.spad" 1323457 1323479 1326410 1326415) (-818 "ODEPROB.spad" 1322714 1322722 1323447 1323452) (-817 "ODEPRIM.spad" 1320048 1320070 1322704 1322709) (-816 "ODEPAL.spad" 1319434 1319458 1320038 1320043) (-815 "ODEPACK.spad" 1306100 1306108 1319424 1319429) (-814 "ODEINT.spad" 1305535 1305551 1306090 1306095) (-813 "ODEIFTBL.spad" 1302930 1302938 1305525 1305530) (-812 "ODEEF.spad" 1298421 1298437 1302920 1302925) (-811 "ODECONST.spad" 1297958 1297976 1298411 1298416) (-810 "ODECAT.spad" 1296556 1296564 1297948 1297953) (-809 "OCT.spad" 1294692 1294702 1295406 1295445) (-808 "OCTCT2.spad" 1294338 1294359 1294682 1294687) (-807 "OC.spad" 1292134 1292144 1294294 1294333) (-806 "OC.spad" 1289655 1289667 1291817 1291822) (-805 "OCAMON.spad" 1289503 1289511 1289645 1289650) (-804 "OASGP.spad" 1289318 1289326 1289493 1289498) (-803 "OAMONS.spad" 1288840 1288848 1289308 1289313) (-802 "OAMON.spad" 1288701 1288709 1288830 1288835) (-801 "OAGROUP.spad" 1288563 1288571 1288691 1288696) (-800 "NUMTUBE.spad" 1288154 1288170 1288553 1288558) (-799 "NUMQUAD.spad" 1276130 1276138 1288144 1288149) (-798 "NUMODE.spad" 1267484 1267492 1276120 1276125) (-797 "NUMINT.spad" 1265050 1265058 1267474 1267479) (-796 "NUMFMT.spad" 1263890 1263898 1265040 1265045) (-795 "NUMERIC.spad" 1256004 1256014 1263695 1263700) (-794 "NTSCAT.spad" 1254512 1254528 1255972 1255999) (-793 "NTPOLFN.spad" 1254063 1254073 1254429 1254434) (-792 "NSUP.spad" 1247109 1247119 1251649 1251802) (-791 "NSUP2.spad" 1246501 1246513 1247099 1247104) (-790 "NSMP.spad" 1242731 1242750 1243039 1243166) (-789 "NREP.spad" 1241109 1241123 1242721 1242726) (-788 "NPCOEF.spad" 1240355 1240375 1241099 1241104) (-787 "NORMRETR.spad" 1239953 1239992 1240345 1240350) (-786 "NORMPK.spad" 1237855 1237874 1239943 1239948) (-785 "NORMMA.spad" 1237543 1237569 1237845 1237850) (-784 "NONE.spad" 1237284 1237292 1237533 1237538) (-783 "NONE1.spad" 1236960 1236970 1237274 1237279) (-782 "NODE1.spad" 1236447 1236463 1236950 1236955) (-781 "NNI.spad" 1235342 1235350 1236421 1236442) (-780 "NLINSOL.spad" 1233968 1233978 1235332 1235337) (-779 "NIPROB.spad" 1232509 1232517 1233958 1233963) (-778 "NFINTBAS.spad" 1230069 1230086 1232499 1232504) (-777 "NETCLT.spad" 1230043 1230054 1230059 1230064) (-776 "NCODIV.spad" 1228259 1228275 1230033 1230038) (-775 "NCNTFRAC.spad" 1227901 1227915 1228249 1228254) (-774 "NCEP.spad" 1226067 1226081 1227891 1227896) (-773 "NASRING.spad" 1225663 1225671 1226057 1226062) (-772 "NASRING.spad" 1225257 1225267 1225653 1225658) (-771 "NARNG.spad" 1224609 1224617 1225247 1225252) (-770 "NARNG.spad" 1223959 1223969 1224599 1224604) (-769 "NAGSP.spad" 1223036 1223044 1223949 1223954) (-768 "NAGS.spad" 1212697 1212705 1223026 1223031) (-767 "NAGF07.spad" 1211128 1211136 1212687 1212692) (-766 "NAGF04.spad" 1205530 1205538 1211118 1211123) (-765 "NAGF02.spad" 1199599 1199607 1205520 1205525) (-764 "NAGF01.spad" 1195360 1195368 1199589 1199594) (-763 "NAGE04.spad" 1189060 1189068 1195350 1195355) (-762 "NAGE02.spad" 1179720 1179728 1189050 1189055) (-761 "NAGE01.spad" 1175722 1175730 1179710 1179715) (-760 "NAGD03.spad" 1173726 1173734 1175712 1175717) (-759 "NAGD02.spad" 1166473 1166481 1173716 1173721) (-758 "NAGD01.spad" 1160766 1160774 1166463 1166468) (-757 "NAGC06.spad" 1156641 1156649 1160756 1160761) (-756 "NAGC05.spad" 1155142 1155150 1156631 1156636) (-755 "NAGC02.spad" 1154409 1154417 1155132 1155137) (-754 "NAALG.spad" 1153950 1153960 1154377 1154404) (-753 "NAALG.spad" 1153511 1153523 1153940 1153945) (-752 "MULTSQFR.spad" 1150469 1150486 1153501 1153506) (-751 "MULTFACT.spad" 1149852 1149869 1150459 1150464) (-750 "MTSCAT.spad" 1147946 1147967 1149750 1149847) (-749 "MTHING.spad" 1147605 1147615 1147936 1147941) (-748 "MSYSCMD.spad" 1147039 1147047 1147595 1147600) (-747 "MSET.spad" 1144997 1145007 1146745 1146784) (-746 "MSETAGG.spad" 1144842 1144852 1144965 1144992) (-745 "MRING.spad" 1141819 1141831 1144550 1144617) (-744 "MRF2.spad" 1141389 1141403 1141809 1141814) (-743 "MRATFAC.spad" 1140935 1140952 1141379 1141384) (-742 "MPRFF.spad" 1138975 1138994 1140925 1140930) (-741 "MPOLY.spad" 1136446 1136461 1136805 1136932) (-740 "MPCPF.spad" 1135710 1135729 1136436 1136441) (-739 "MPC3.spad" 1135527 1135567 1135700 1135705) (-738 "MPC2.spad" 1135173 1135206 1135517 1135522) (-737 "MONOTOOL.spad" 1133524 1133541 1135163 1135168) (-736 "MONOID.spad" 1132843 1132851 1133514 1133519) (-735 "MONOID.spad" 1132160 1132170 1132833 1132838) (-734 "MONOGEN.spad" 1130908 1130921 1132020 1132155) (-733 "MONOGEN.spad" 1129678 1129693 1130792 1130797) (-732 "MONADWU.spad" 1127708 1127716 1129668 1129673) (-731 "MONADWU.spad" 1125736 1125746 1127698 1127703) (-730 "MONAD.spad" 1124896 1124904 1125726 1125731) (-729 "MONAD.spad" 1124054 1124064 1124886 1124891) (-728 "MOEBIUS.spad" 1122790 1122804 1124034 1124049) (-727 "MODULE.spad" 1122660 1122670 1122758 1122785) (-726 "MODULE.spad" 1122550 1122562 1122650 1122655) (-725 "MODRING.spad" 1121885 1121924 1122530 1122545) (-724 "MODOP.spad" 1120550 1120562 1121707 1121774) (-723 "MODMONOM.spad" 1120281 1120299 1120540 1120545) (-722 "MODMON.spad" 1117076 1117092 1117795 1117948) (-721 "MODFIELD.spad" 1116438 1116477 1116978 1117071) (-720 "MMLFORM.spad" 1115298 1115306 1116428 1116433) (-719 "MMAP.spad" 1115040 1115074 1115288 1115293) (-718 "MLO.spad" 1113499 1113509 1114996 1115035) (-717 "MLIFT.spad" 1112111 1112128 1113489 1113494) (-716 "MKUCFUNC.spad" 1111646 1111664 1112101 1112106) (-715 "MKRECORD.spad" 1111250 1111263 1111636 1111641) (-714 "MKFUNC.spad" 1110657 1110667 1111240 1111245) (-713 "MKFLCFN.spad" 1109625 1109635 1110647 1110652) (-712 "MKBCFUNC.spad" 1109120 1109138 1109615 1109620) (-711 "MINT.spad" 1108559 1108567 1109022 1109115) (-710 "MHROWRED.spad" 1107070 1107080 1108549 1108554) (-709 "MFLOAT.spad" 1105590 1105598 1106960 1107065) (-708 "MFINFACT.spad" 1104990 1105012 1105580 1105585) (-707 "MESH.spad" 1102772 1102780 1104980 1104985) (-706 "MDDFACT.spad" 1100983 1100993 1102762 1102767) (-705 "MDAGG.spad" 1100274 1100284 1100963 1100978) (-704 "MCMPLX.spad" 1096285 1096293 1096899 1097100) (-703 "MCDEN.spad" 1095495 1095507 1096275 1096280) (-702 "MCALCFN.spad" 1092617 1092643 1095485 1095490) (-701 "MAYBE.spad" 1091901 1091912 1092607 1092612) (-700 "MATSTOR.spad" 1089209 1089219 1091891 1091896) (-699 "MATRIX.spad" 1087913 1087923 1088397 1088424) (-698 "MATLIN.spad" 1085257 1085281 1087797 1087802) (-697 "MATCAT.spad" 1076986 1077008 1085225 1085252) (-696 "MATCAT.spad" 1068587 1068611 1076828 1076833) (-695 "MATCAT2.spad" 1067869 1067917 1068577 1068582) (-694 "MAPPKG3.spad" 1066784 1066798 1067859 1067864) (-693 "MAPPKG2.spad" 1066122 1066134 1066774 1066779) (-692 "MAPPKG1.spad" 1064950 1064960 1066112 1066117) (-691 "MAPPAST.spad" 1064265 1064273 1064940 1064945) (-690 "MAPHACK3.spad" 1064077 1064091 1064255 1064260) (-689 "MAPHACK2.spad" 1063846 1063858 1064067 1064072) (-688 "MAPHACK1.spad" 1063490 1063500 1063836 1063841) (-687 "MAGMA.spad" 1061280 1061297 1063480 1063485) (-686 "MACROAST.spad" 1060859 1060867 1061270 1061275) (-685 "M3D.spad" 1058579 1058589 1060237 1060242) (-684 "LZSTAGG.spad" 1055817 1055827 1058569 1058574) (-683 "LZSTAGG.spad" 1053053 1053065 1055807 1055812) (-682 "LWORD.spad" 1049758 1049775 1053043 1053048) (-681 "LSTAST.spad" 1049542 1049550 1049748 1049753) (-680 "LSQM.spad" 1047828 1047842 1048222 1048273) (-679 "LSPP.spad" 1047363 1047380 1047818 1047823) (-678 "LSMP.spad" 1046213 1046241 1047353 1047358) (-677 "LSMP1.spad" 1044031 1044045 1046203 1046208) (-676 "LSAGG.spad" 1043700 1043710 1043999 1044026) (-675 "LSAGG.spad" 1043389 1043401 1043690 1043695) (-674 "LPOLY.spad" 1042343 1042362 1043245 1043314) (-673 "LPEFRAC.spad" 1041614 1041624 1042333 1042338) (-672 "LO.spad" 1041015 1041029 1041548 1041575) (-671 "LOGIC.spad" 1040617 1040625 1041005 1041010) (-670 "LOGIC.spad" 1040217 1040227 1040607 1040612) (-669 "LODOOPS.spad" 1039147 1039159 1040207 1040212) (-668 "LODO.spad" 1038531 1038547 1038827 1038866) (-667 "LODOF.spad" 1037577 1037594 1038488 1038493) (-666 "LODOCAT.spad" 1036243 1036253 1037533 1037572) (-665 "LODOCAT.spad" 1034907 1034919 1036199 1036204) (-664 "LODO2.spad" 1034180 1034192 1034587 1034626) (-663 "LODO1.spad" 1033580 1033590 1033860 1033899) (-662 "LODEEF.spad" 1032382 1032400 1033570 1033575) (-661 "LNAGG.spad" 1028529 1028539 1032372 1032377) (-660 "LNAGG.spad" 1024640 1024652 1028485 1028490) (-659 "LMOPS.spad" 1021408 1021425 1024630 1024635) (-658 "LMODULE.spad" 1021176 1021186 1021398 1021403) (-657 "LMDICT.spad" 1020463 1020473 1020727 1020754) (-656 "LLINSET.spad" 1019860 1019870 1020453 1020458) (-655 "LITERAL.spad" 1019766 1019777 1019850 1019855) (-654 "LIST.spad" 1017501 1017511 1018913 1018940) (-653 "LIST3.spad" 1016812 1016826 1017491 1017496) (-652 "LIST2.spad" 1015514 1015526 1016802 1016807) (-651 "LIST2MAP.spad" 1012417 1012429 1015504 1015509) (-650 "LINSET.spad" 1012039 1012049 1012407 1012412) (-649 "LINEXP.spad" 1011177 1011187 1012029 1012034) (-648 "LINDEP.spad" 1009986 1009998 1011089 1011094) (-647 "LIMITRF.spad" 1007914 1007924 1009976 1009981) (-646 "LIMITPS.spad" 1006817 1006830 1007904 1007909) (-645 "LIE.spad" 1004833 1004845 1006107 1006252) (-644 "LIECAT.spad" 1004309 1004319 1004759 1004828) (-643 "LIECAT.spad" 1003813 1003825 1004265 1004270) (-642 "LIB.spad" 1002026 1002034 1002472 1002487) (-641 "LGROBP.spad" 999379 999398 1002016 1002021) (-640 "LF.spad" 998334 998350 999369 999374) (-639 "LFCAT.spad" 997393 997401 998324 998329) (-638 "LEXTRIPK.spad" 992896 992911 997383 997388) (-637 "LEXP.spad" 990899 990926 992876 992891) (-636 "LETAST.spad" 990598 990606 990889 990894) (-635 "LEADCDET.spad" 988996 989013 990588 990593) (-634 "LAZM3PK.spad" 987700 987722 988986 988991) (-633 "LAUPOL.spad" 986393 986406 987293 987362) (-632 "LAPLACE.spad" 985976 985992 986383 986388) (-631 "LA.spad" 985416 985430 985898 985937) (-630 "LALG.spad" 985192 985202 985396 985411) (-629 "LALG.spad" 984976 984988 985182 985187) (-628 "KVTFROM.spad" 984711 984721 984966 984971) (-627 "KTVLOGIC.spad" 984223 984231 984701 984706) (-626 "KRCFROM.spad" 983961 983971 984213 984218) (-625 "KOVACIC.spad" 982684 982701 983951 983956) (-624 "KONVERT.spad" 982406 982416 982674 982679) (-623 "KOERCE.spad" 982143 982153 982396 982401) (-622 "KERNEL.spad" 980798 980808 981927 981932) (-621 "KERNEL2.spad" 980501 980513 980788 980793) (-620 "KDAGG.spad" 979610 979632 980481 980496) (-619 "KDAGG.spad" 978727 978751 979600 979605) (-618 "KAFILE.spad" 977690 977706 977925 977952) (-617 "JORDAN.spad" 975519 975531 976980 977125) (-616 "JOINAST.spad" 975213 975221 975509 975514) (-615 "JAVACODE.spad" 975079 975087 975203 975208) (-614 "IXAGG.spad" 973212 973236 975069 975074) (-613 "IXAGG.spad" 971200 971226 973059 973064) (-612 "IVECTOR.spad" 969970 969985 970125 970152) (-611 "ITUPLE.spad" 969131 969141 969960 969965) (-610 "ITRIGMNP.spad" 967970 967989 969121 969126) (-609 "ITFUN3.spad" 967476 967490 967960 967965) (-608 "ITFUN2.spad" 967220 967232 967466 967471) (-607 "ITFORM.spad" 966575 966583 967210 967215) (-606 "ITAYLOR.spad" 964569 964584 966439 966536) (-605 "ISUPS.spad" 957006 957021 963543 963640) (-604 "ISUMP.spad" 956507 956523 956996 957001) (-603 "ISTRING.spad" 955595 955608 955676 955703) (-602 "ISAST.spad" 955314 955322 955585 955590) (-601 "IRURPK.spad" 954031 954050 955304 955309) (-600 "IRSN.spad" 952003 952011 954021 954026) (-599 "IRRF2F.spad" 950488 950498 951959 951964) (-598 "IRREDFFX.spad" 950089 950100 950478 950483) (-597 "IROOT.spad" 948428 948438 950079 950084) (-596 "IR.spad" 946229 946243 948283 948310) (-595 "IRFORM.spad" 945553 945561 946219 946224) (-594 "IR2.spad" 944581 944597 945543 945548) (-593 "IR2F.spad" 943787 943803 944571 944576) (-592 "IPRNTPK.spad" 943547 943555 943777 943782) (-591 "IPF.spad" 943112 943124 943352 943445) (-590 "IPADIC.spad" 942873 942899 943038 943107) (-589 "IP4ADDR.spad" 942430 942438 942863 942868) (-588 "IOMODE.spad" 941952 941960 942420 942425) (-587 "IOBFILE.spad" 941313 941321 941942 941947) (-586 "IOBCON.spad" 941178 941186 941303 941308) (-585 "INVLAPLA.spad" 940827 940843 941168 941173) (-584 "INTTR.spad" 934209 934226 940817 940822) (-583 "INTTOOLS.spad" 931964 931980 933783 933788) (-582 "INTSLPE.spad" 931284 931292 931954 931959) (-581 "INTRVL.spad" 930850 930860 931198 931279) (-580 "INTRF.spad" 929274 929288 930840 930845) (-579 "INTRET.spad" 928706 928716 929264 929269) (-578 "INTRAT.spad" 927433 927450 928696 928701) (-577 "INTPM.spad" 925818 925834 927076 927081) (-576 "INTPAF.spad" 923682 923700 925750 925755) (-575 "INTPACK.spad" 914056 914064 923672 923677) (-574 "INT.spad" 913504 913512 913910 914051) (-573 "INTHERTR.spad" 912778 912795 913494 913499) (-572 "INTHERAL.spad" 912448 912472 912768 912773) (-571 "INTHEORY.spad" 908887 908895 912438 912443) (-570 "INTG0.spad" 902620 902638 908819 908824) (-569 "INTFTBL.spad" 896649 896657 902610 902615) (-568 "INTFACT.spad" 895708 895718 896639 896644) (-567 "INTEF.spad" 894093 894109 895698 895703) (-566 "INTDOM.spad" 892716 892724 894019 894088) (-565 "INTDOM.spad" 891401 891411 892706 892711) (-564 "INTCAT.spad" 889660 889670 891315 891396) (-563 "INTBIT.spad" 889167 889175 889650 889655) (-562 "INTALG.spad" 888355 888382 889157 889162) (-561 "INTAF.spad" 887855 887871 888345 888350) (-560 "INTABL.spad" 886373 886404 886536 886563) (-559 "INT8.spad" 886253 886261 886363 886368) (-558 "INT64.spad" 886132 886140 886243 886248) (-557 "INT32.spad" 886011 886019 886122 886127) (-556 "INT16.spad" 885890 885898 886001 886006) (-555 "INS.spad" 883393 883401 885792 885885) (-554 "INS.spad" 880982 880992 883383 883388) (-553 "INPSIGN.spad" 880430 880443 880972 880977) (-552 "INPRODPF.spad" 879526 879545 880420 880425) (-551 "INPRODFF.spad" 878614 878638 879516 879521) (-550 "INNMFACT.spad" 877589 877606 878604 878609) (-549 "INMODGCD.spad" 877077 877107 877579 877584) (-548 "INFSP.spad" 875374 875396 877067 877072) (-547 "INFPROD0.spad" 874454 874473 875364 875369) (-546 "INFORM.spad" 871653 871661 874444 874449) (-545 "INFORM1.spad" 871278 871288 871643 871648) (-544 "INFINITY.spad" 870830 870838 871268 871273) (-543 "INETCLTS.spad" 870807 870815 870820 870825) (-542 "INEP.spad" 869345 869367 870797 870802) (-541 "INDE.spad" 869074 869091 869335 869340) (-540 "INCRMAPS.spad" 868495 868505 869064 869069) (-539 "INBFILE.spad" 867567 867575 868485 868490) (-538 "INBFF.spad" 863361 863372 867557 867562) (-537 "INBCON.spad" 861651 861659 863351 863356) (-536 "INBCON.spad" 859939 859949 861641 861646) (-535 "INAST.spad" 859600 859608 859929 859934) (-534 "IMPTAST.spad" 859308 859316 859590 859595) (-533 "IMATRIX.spad" 858253 858279 858765 858792) (-532 "IMATQF.spad" 857347 857391 858209 858214) (-531 "IMATLIN.spad" 855952 855976 857303 857308) (-530 "ILIST.spad" 854610 854625 855135 855162) (-529 "IIARRAY2.spad" 853998 854036 854217 854244) (-528 "IFF.spad" 853408 853424 853679 853772) (-527 "IFAST.spad" 853022 853030 853398 853403) (-526 "IFARRAY.spad" 850515 850530 852205 852232) (-525 "IFAMON.spad" 850377 850394 850471 850476) (-524 "IEVALAB.spad" 849782 849794 850367 850372) (-523 "IEVALAB.spad" 849185 849199 849772 849777) (-522 "IDPO.spad" 848983 848995 849175 849180) (-521 "IDPOAMS.spad" 848739 848751 848973 848978) (-520 "IDPOAM.spad" 848459 848471 848729 848734) (-519 "IDPC.spad" 847397 847409 848449 848454) (-518 "IDPAM.spad" 847142 847154 847387 847392) (-517 "IDPAG.spad" 846889 846901 847132 847137) (-516 "IDENT.spad" 846539 846547 846879 846884) (-515 "IDECOMP.spad" 843778 843796 846529 846534) (-514 "IDEAL.spad" 838727 838766 843713 843718) (-513 "ICDEN.spad" 837916 837932 838717 838722) (-512 "ICARD.spad" 837107 837115 837906 837911) (-511 "IBPTOOLS.spad" 835714 835731 837097 837102) (-510 "IBITS.spad" 834917 834930 835350 835377) (-509 "IBATOOL.spad" 831894 831913 834907 834912) (-508 "IBACHIN.spad" 830401 830416 831884 831889) (-507 "IARRAY2.spad" 829389 829415 830008 830035) (-506 "IARRAY1.spad" 828434 828449 828572 828599) (-505 "IAN.spad" 826657 826665 828250 828343) (-504 "IALGFACT.spad" 826260 826293 826647 826652) (-503 "HYPCAT.spad" 825684 825692 826250 826255) (-502 "HYPCAT.spad" 825106 825116 825674 825679) (-501 "HOSTNAME.spad" 824914 824922 825096 825101) (-500 "HOMOTOP.spad" 824657 824667 824904 824909) (-499 "HOAGG.spad" 821939 821949 824647 824652) (-498 "HOAGG.spad" 818996 819008 821706 821711) (-497 "HEXADEC.spad" 817098 817106 817463 817556) (-496 "HEUGCD.spad" 816133 816144 817088 817093) (-495 "HELLFDIV.spad" 815723 815747 816123 816128) (-494 "HEAP.spad" 815115 815125 815330 815357) (-493 "HEADAST.spad" 814648 814656 815105 815110) (-492 "HDP.spad" 804414 804430 804791 804922) (-491 "HDMP.spad" 801628 801643 802244 802371) (-490 "HB.spad" 799879 799887 801618 801623) (-489 "HASHTBL.spad" 798349 798380 798560 798587) (-488 "HASAST.spad" 798065 798073 798339 798344) (-487 "HACKPI.spad" 797556 797564 797967 798060) (-486 "GTSET.spad" 796495 796511 797202 797229) (-485 "GSTBL.spad" 795014 795049 795188 795203) (-484 "GSERIES.spad" 792185 792212 793146 793295) (-483 "GROUP.spad" 791458 791466 792165 792180) (-482 "GROUP.spad" 790739 790749 791448 791453) (-481 "GROEBSOL.spad" 789233 789254 790729 790734) (-480 "GRMOD.spad" 787804 787816 789223 789228) (-479 "GRMOD.spad" 786373 786387 787794 787799) (-478 "GRIMAGE.spad" 779262 779270 786363 786368) (-477 "GRDEF.spad" 777641 777649 779252 779257) (-476 "GRAY.spad" 776104 776112 777631 777636) (-475 "GRALG.spad" 775181 775193 776094 776099) (-474 "GRALG.spad" 774256 774270 775171 775176) (-473 "GPOLSET.spad" 773710 773733 773938 773965) (-472 "GOSPER.spad" 772979 772997 773700 773705) (-471 "GMODPOL.spad" 772127 772154 772947 772974) (-470 "GHENSEL.spad" 771210 771224 772117 772122) (-469 "GENUPS.spad" 767503 767516 771200 771205) (-468 "GENUFACT.spad" 767080 767090 767493 767498) (-467 "GENPGCD.spad" 766666 766683 767070 767075) (-466 "GENMFACT.spad" 766118 766137 766656 766661) (-465 "GENEEZ.spad" 764069 764082 766108 766113) (-464 "GDMP.spad" 761125 761142 761899 762026) (-463 "GCNAALG.spad" 755048 755075 760919 760986) (-462 "GCDDOM.spad" 754224 754232 754974 755043) (-461 "GCDDOM.spad" 753462 753472 754214 754219) (-460 "GB.spad" 750988 751026 753418 753423) (-459 "GBINTERN.spad" 747008 747046 750978 750983) (-458 "GBF.spad" 742775 742813 746998 747003) (-457 "GBEUCLID.spad" 740657 740695 742765 742770) (-456 "GAUSSFAC.spad" 739970 739978 740647 740652) (-455 "GALUTIL.spad" 738296 738306 739926 739931) (-454 "GALPOLYU.spad" 736750 736763 738286 738291) (-453 "GALFACTU.spad" 734923 734942 736740 736745) (-452 "GALFACT.spad" 725112 725123 734913 734918) (-451 "FVFUN.spad" 722135 722143 725102 725107) (-450 "FVC.spad" 721187 721195 722125 722130) (-449 "FUNDESC.spad" 720865 720873 721177 721182) (-448 "FUNCTION.spad" 720714 720726 720855 720860) (-447 "FT.spad" 719011 719019 720704 720709) (-446 "FTEM.spad" 718176 718184 719001 719006) (-445 "FSUPFACT.spad" 717076 717095 718112 718117) (-444 "FST.spad" 715162 715170 717066 717071) (-443 "FSRED.spad" 714642 714658 715152 715157) (-442 "FSPRMELT.spad" 713524 713540 714599 714604) (-441 "FSPECF.spad" 711615 711631 713514 713519) (-440 "FS.spad" 705883 705893 711390 711610) (-439 "FS.spad" 699929 699941 705438 705443) (-438 "FSINT.spad" 699589 699605 699919 699924) (-437 "FSERIES.spad" 698780 698792 699409 699508) (-436 "FSCINT.spad" 698097 698113 698770 698775) (-435 "FSAGG.spad" 697214 697224 698053 698092) (-434 "FSAGG.spad" 696293 696305 697134 697139) (-433 "FSAGG2.spad" 695036 695052 696283 696288) (-432 "FS2UPS.spad" 689527 689561 695026 695031) (-431 "FS2.spad" 689174 689190 689517 689522) (-430 "FS2EXPXP.spad" 688299 688322 689164 689169) (-429 "FRUTIL.spad" 687253 687263 688289 688294) (-428 "FR.spad" 680785 680795 686093 686162) (-427 "FRNAALG.spad" 676054 676064 680727 680780) (-426 "FRNAALG.spad" 671335 671347 676010 676015) (-425 "FRNAAF2.spad" 670791 670809 671325 671330) (-424 "FRMOD.spad" 670201 670231 670722 670727) (-423 "FRIDEAL.spad" 669426 669447 670181 670196) (-422 "FRIDEAL2.spad" 669030 669062 669416 669421) (-421 "FRETRCT.spad" 668541 668551 669020 669025) (-420 "FRETRCT.spad" 667918 667930 668399 668404) (-419 "FRAMALG.spad" 666266 666279 667874 667913) (-418 "FRAMALG.spad" 664646 664661 666256 666261) (-417 "FRAC.spad" 661745 661755 662148 662321) (-416 "FRAC2.spad" 661350 661362 661735 661740) (-415 "FR2.spad" 660686 660698 661340 661345) (-414 "FPS.spad" 657501 657509 660576 660681) (-413 "FPS.spad" 654344 654354 657421 657426) (-412 "FPC.spad" 653390 653398 654246 654339) (-411 "FPC.spad" 652522 652532 653380 653385) (-410 "FPATMAB.spad" 652284 652294 652512 652517) (-409 "FPARFRAC.spad" 650771 650788 652274 652279) (-408 "FORTRAN.spad" 649277 649320 650761 650766) (-407 "FORT.spad" 648226 648234 649267 649272) (-406 "FORTFN.spad" 645396 645404 648216 648221) (-405 "FORTCAT.spad" 645080 645088 645386 645391) (-404 "FORMULA.spad" 642554 642562 645070 645075) (-403 "FORMULA1.spad" 642033 642043 642544 642549) (-402 "FORDER.spad" 641724 641748 642023 642028) (-401 "FOP.spad" 640925 640933 641714 641719) (-400 "FNLA.spad" 640349 640371 640893 640920) (-399 "FNCAT.spad" 638944 638952 640339 640344) (-398 "FNAME.spad" 638836 638844 638934 638939) (-397 "FMTC.spad" 638634 638642 638762 638831) (-396 "FMONOID.spad" 638299 638309 638590 638595) (-395 "FMONCAT.spad" 635452 635462 638289 638294) (-394 "FM.spad" 635147 635159 635386 635413) (-393 "FMFUN.spad" 632177 632185 635137 635142) (-392 "FMC.spad" 631229 631237 632167 632172) (-391 "FMCAT.spad" 628897 628915 631197 631224) (-390 "FM1.spad" 628254 628266 628831 628858) (-389 "FLOATRP.spad" 625989 626003 628244 628249) (-388 "FLOAT.spad" 619303 619311 625855 625984) (-387 "FLOATCP.spad" 616734 616748 619293 619298) (-386 "FLINEXP.spad" 616456 616466 616724 616729) (-385 "FLINEXP.spad" 616122 616134 616392 616397) (-384 "FLASORT.spad" 615448 615460 616112 616117) (-383 "FLALG.spad" 613094 613113 615374 615443) (-382 "FLAGG.spad" 610136 610146 613074 613089) (-381 "FLAGG.spad" 607079 607091 610019 610024) (-380 "FLAGG2.spad" 605804 605820 607069 607074) (-379 "FINRALG.spad" 603865 603878 605760 605799) (-378 "FINRALG.spad" 601852 601867 603749 603754) (-377 "FINITE.spad" 601004 601012 601842 601847) (-376 "FINAALG.spad" 590125 590135 600946 600999) (-375 "FINAALG.spad" 579258 579270 590081 590086) (-374 "FILE.spad" 578841 578851 579248 579253) (-373 "FILECAT.spad" 577367 577384 578831 578836) (-372 "FIELD.spad" 576773 576781 577269 577362) (-371 "FIELD.spad" 576265 576275 576763 576768) (-370 "FGROUP.spad" 574912 574922 576245 576260) (-369 "FGLMICPK.spad" 573699 573714 574902 574907) (-368 "FFX.spad" 573074 573089 573415 573508) (-367 "FFSLPE.spad" 572577 572598 573064 573069) (-366 "FFPOLY.spad" 563839 563850 572567 572572) (-365 "FFPOLY2.spad" 562899 562916 563829 563834) (-364 "FFP.spad" 562296 562316 562615 562708) (-363 "FF.spad" 561744 561760 561977 562070) (-362 "FFNBX.spad" 560256 560276 561460 561553) (-361 "FFNBP.spad" 558769 558786 559972 560065) (-360 "FFNB.spad" 557234 557255 558450 558543) (-359 "FFINTBAS.spad" 554748 554767 557224 557229) (-358 "FFIELDC.spad" 552325 552333 554650 554743) (-357 "FFIELDC.spad" 549988 549998 552315 552320) (-356 "FFHOM.spad" 548736 548753 549978 549983) (-355 "FFF.spad" 546171 546182 548726 548731) (-354 "FFCGX.spad" 545018 545038 545887 545980) (-353 "FFCGP.spad" 543907 543927 544734 544827) (-352 "FFCG.spad" 542699 542720 543588 543681) (-351 "FFCAT.spad" 535872 535894 542538 542694) (-350 "FFCAT.spad" 529124 529148 535792 535797) (-349 "FFCAT2.spad" 528871 528911 529114 529119) (-348 "FEXPR.spad" 520588 520634 528627 528666) (-347 "FEVALAB.spad" 520296 520306 520578 520583) (-346 "FEVALAB.spad" 519789 519801 520073 520078) (-345 "FDIV.spad" 519231 519255 519779 519784) (-344 "FDIVCAT.spad" 517295 517319 519221 519226) (-343 "FDIVCAT.spad" 515357 515383 517285 517290) (-342 "FDIV2.spad" 515013 515053 515347 515352) (-341 "FCTRDATA.spad" 514021 514029 515003 515008) (-340 "FCPAK1.spad" 512588 512596 514011 514016) (-339 "FCOMP.spad" 511967 511977 512578 512583) (-338 "FC.spad" 501974 501982 511957 511962) (-337 "FAXF.spad" 494945 494959 501876 501969) (-336 "FAXF.spad" 487968 487984 494901 494906) (-335 "FARRAY.spad" 486118 486128 487151 487178) (-334 "FAMR.spad" 484254 484266 486016 486113) (-333 "FAMR.spad" 482374 482388 484138 484143) (-332 "FAMONOID.spad" 482042 482052 482328 482333) (-331 "FAMONC.spad" 480338 480350 482032 482037) (-330 "FAGROUP.spad" 479962 479972 480234 480261) (-329 "FACUTIL.spad" 478166 478183 479952 479957) (-328 "FACTFUNC.spad" 477360 477370 478156 478161) (-327 "EXPUPXS.spad" 474193 474216 475492 475641) (-326 "EXPRTUBE.spad" 471481 471489 474183 474188) (-325 "EXPRODE.spad" 468641 468657 471471 471476) (-324 "EXPR.spad" 463816 463826 464530 464825) (-323 "EXPR2UPS.spad" 459938 459951 463806 463811) (-322 "EXPR2.spad" 459643 459655 459928 459933) (-321 "EXPEXPAN.spad" 456583 456608 457215 457308) (-320 "EXIT.spad" 456254 456262 456573 456578) (-319 "EXITAST.spad" 455990 455998 456244 456249) (-318 "EVALCYC.spad" 455450 455464 455980 455985) (-317 "EVALAB.spad" 455022 455032 455440 455445) (-316 "EVALAB.spad" 454592 454604 455012 455017) (-315 "EUCDOM.spad" 452166 452174 454518 454587) (-314 "EUCDOM.spad" 449802 449812 452156 452161) (-313 "ESTOOLS.spad" 441648 441656 449792 449797) (-312 "ESTOOLS2.spad" 441251 441265 441638 441643) (-311 "ESTOOLS1.spad" 440936 440947 441241 441246) (-310 "ES.spad" 433751 433759 440926 440931) (-309 "ES.spad" 426472 426482 433649 433654) (-308 "ESCONT.spad" 423265 423273 426462 426467) (-307 "ESCONT1.spad" 423014 423026 423255 423260) (-306 "ES2.spad" 422519 422535 423004 423009) (-305 "ES1.spad" 422089 422105 422509 422514) (-304 "ERROR.spad" 419416 419424 422079 422084) (-303 "EQTBL.spad" 417888 417910 418097 418124) (-302 "EQ.spad" 412693 412703 415480 415592) (-301 "EQ2.spad" 412411 412423 412683 412688) (-300 "EP.spad" 408737 408747 412401 412406) (-299 "ENV.spad" 407415 407423 408727 408732) (-298 "ENTIRER.spad" 407083 407091 407359 407410) (-297 "EMR.spad" 406371 406412 407009 407078) (-296 "ELTAGG.spad" 404625 404644 406361 406366) (-295 "ELTAGG.spad" 402843 402864 404581 404586) (-294 "ELTAB.spad" 402318 402331 402833 402838) (-293 "ELFUTS.spad" 401705 401724 402308 402313) (-292 "ELEMFUN.spad" 401394 401402 401695 401700) (-291 "ELEMFUN.spad" 401081 401091 401384 401389) (-290 "ELAGG.spad" 399052 399062 401061 401076) (-289 "ELAGG.spad" 396960 396972 398971 398976) (-288 "ELABOR.spad" 396306 396314 396950 396955) (-287 "ELABEXPR.spad" 395238 395246 396296 396301) (-286 "EFUPXS.spad" 392014 392044 395194 395199) (-285 "EFULS.spad" 388850 388873 391970 391975) (-284 "EFSTRUC.spad" 386865 386881 388840 388845) (-283 "EF.spad" 381641 381657 386855 386860) (-282 "EAB.spad" 379917 379925 381631 381636) (-281 "E04UCFA.spad" 379453 379461 379907 379912) (-280 "E04NAFA.spad" 379030 379038 379443 379448) (-279 "E04MBFA.spad" 378610 378618 379020 379025) (-278 "E04JAFA.spad" 378146 378154 378600 378605) (-277 "E04GCFA.spad" 377682 377690 378136 378141) (-276 "E04FDFA.spad" 377218 377226 377672 377677) (-275 "E04DGFA.spad" 376754 376762 377208 377213) (-274 "E04AGNT.spad" 372604 372612 376744 376749) (-273 "DVARCAT.spad" 369494 369504 372594 372599) (-272 "DVARCAT.spad" 366382 366394 369484 369489) (-271 "DSMP.spad" 363849 363863 364154 364281) (-270 "DROPT.spad" 357808 357816 363839 363844) (-269 "DROPT1.spad" 357473 357483 357798 357803) (-268 "DROPT0.spad" 352330 352338 357463 357468) (-267 "DRAWPT.spad" 350503 350511 352320 352325) (-266 "DRAW.spad" 343379 343392 350493 350498) (-265 "DRAWHACK.spad" 342687 342697 343369 343374) (-264 "DRAWCX.spad" 340157 340165 342677 342682) (-263 "DRAWCURV.spad" 339704 339719 340147 340152) (-262 "DRAWCFUN.spad" 329236 329244 339694 339699) (-261 "DQAGG.spad" 327414 327424 329204 329231) (-260 "DPOLCAT.spad" 322763 322779 327282 327409) (-259 "DPOLCAT.spad" 318198 318216 322719 322724) (-258 "DPMO.spad" 310671 310687 310809 311054) (-257 "DPMM.spad" 303157 303175 303282 303527) (-256 "DOMTMPLT.spad" 302928 302936 303147 303152) (-255 "DOMCTOR.spad" 302683 302691 302918 302923) (-254 "DOMAIN.spad" 301770 301778 302673 302678) (-253 "DMP.spad" 299030 299045 299600 299727) (-252 "DLP.spad" 298382 298392 299020 299025) (-251 "DLIST.spad" 296961 296971 297565 297592) (-250 "DLAGG.spad" 295378 295388 296951 296956) (-249 "DIVRING.spad" 294920 294928 295322 295373) (-248 "DIVRING.spad" 294506 294516 294910 294915) (-247 "DISPLAY.spad" 292696 292704 294496 294501) (-246 "DIRPROD.spad" 282199 282215 282839 282970) (-245 "DIRPROD2.spad" 281017 281035 282189 282194) (-244 "DIRPCAT.spad" 279961 279977 280881 281012) (-243 "DIRPCAT.spad" 278634 278652 279556 279561) (-242 "DIOSP.spad" 277459 277467 278624 278629) (-241 "DIOPS.spad" 276455 276465 277439 277454) (-240 "DIOPS.spad" 275425 275437 276411 276416) (-239 "DIFRING.spad" 275031 275039 275405 275420) (-238 "DIFRING.spad" 274645 274655 275021 275026) (-237 "DIFFSPC.spad" 274224 274232 274635 274640) (-236 "DIFFSPC.spad" 273801 273811 274214 274219) (-235 "DIFFDOM.spad" 272966 272977 273791 273796) (-234 "DIFFDOM.spad" 272129 272142 272956 272961) (-233 "DIFEXT.spad" 271300 271310 272109 272124) (-232 "DIFEXT.spad" 270388 270400 271199 271204) (-231 "DIAGG.spad" 270018 270028 270368 270383) (-230 "DIAGG.spad" 269656 269668 270008 270013) (-229 "DHMATRIX.spad" 267968 267978 269113 269140) (-228 "DFSFUN.spad" 261608 261616 267958 267963) (-227 "DFLOAT.spad" 258339 258347 261498 261603) (-226 "DFINTTLS.spad" 256570 256586 258329 258334) (-225 "DERHAM.spad" 254484 254516 256550 256565) (-224 "DEQUEUE.spad" 253808 253818 254091 254118) (-223 "DEGRED.spad" 253425 253439 253798 253803) (-222 "DEFINTRF.spad" 250962 250972 253415 253420) (-221 "DEFINTEF.spad" 249472 249488 250952 250957) (-220 "DEFAST.spad" 248840 248848 249462 249467) (-219 "DECIMAL.spad" 246946 246954 247307 247400) (-218 "DDFACT.spad" 244759 244776 246936 246941) (-217 "DBLRESP.spad" 244359 244383 244749 244754) (-216 "DBASE.spad" 243023 243033 244349 244354) (-215 "DATAARY.spad" 242485 242498 243013 243018) (-214 "D03FAFA.spad" 242313 242321 242475 242480) (-213 "D03EEFA.spad" 242133 242141 242303 242308) (-212 "D03AGNT.spad" 241219 241227 242123 242128) (-211 "D02EJFA.spad" 240681 240689 241209 241214) (-210 "D02CJFA.spad" 240159 240167 240671 240676) (-209 "D02BHFA.spad" 239649 239657 240149 240154) (-208 "D02BBFA.spad" 239139 239147 239639 239644) (-207 "D02AGNT.spad" 233953 233961 239129 239134) (-206 "D01WGTS.spad" 232272 232280 233943 233948) (-205 "D01TRNS.spad" 232249 232257 232262 232267) (-204 "D01GBFA.spad" 231771 231779 232239 232244) (-203 "D01FCFA.spad" 231293 231301 231761 231766) (-202 "D01ASFA.spad" 230761 230769 231283 231288) (-201 "D01AQFA.spad" 230207 230215 230751 230756) (-200 "D01APFA.spad" 229631 229639 230197 230202) (-199 "D01ANFA.spad" 229125 229133 229621 229626) (-198 "D01AMFA.spad" 228635 228643 229115 229120) (-197 "D01ALFA.spad" 228175 228183 228625 228630) (-196 "D01AKFA.spad" 227701 227709 228165 228170) (-195 "D01AJFA.spad" 227224 227232 227691 227696) (-194 "D01AGNT.spad" 223291 223299 227214 227219) (-193 "CYCLOTOM.spad" 222797 222805 223281 223286) (-192 "CYCLES.spad" 219589 219597 222787 222792) (-191 "CVMP.spad" 219006 219016 219579 219584) (-190 "CTRIGMNP.spad" 217506 217522 218996 219001) (-189 "CTOR.spad" 217197 217205 217496 217501) (-188 "CTORKIND.spad" 216800 216808 217187 217192) (-187 "CTORCAT.spad" 216049 216057 216790 216795) (-186 "CTORCAT.spad" 215296 215306 216039 216044) (-185 "CTORCALL.spad" 214885 214895 215286 215291) (-184 "CSTTOOLS.spad" 214130 214143 214875 214880) (-183 "CRFP.spad" 207854 207867 214120 214125) (-182 "CRCEAST.spad" 207574 207582 207844 207849) (-181 "CRAPACK.spad" 206625 206635 207564 207569) (-180 "CPMATCH.spad" 206129 206144 206550 206555) (-179 "CPIMA.spad" 205834 205853 206119 206124) (-178 "COORDSYS.spad" 200843 200853 205824 205829) (-177 "CONTOUR.spad" 200254 200262 200833 200838) (-176 "CONTFRAC.spad" 196004 196014 200156 200249) (-175 "CONDUIT.spad" 195762 195770 195994 195999) (-174 "COMRING.spad" 195436 195444 195700 195757) (-173 "COMPPROP.spad" 194954 194962 195426 195431) (-172 "COMPLPAT.spad" 194721 194736 194944 194949) (-171 "COMPLEX.spad" 188858 188868 189102 189363) (-170 "COMPLEX2.spad" 188573 188585 188848 188853) (-169 "COMPILER.spad" 188122 188130 188563 188568) (-168 "COMPFACT.spad" 187724 187738 188112 188117) (-167 "COMPCAT.spad" 185796 185806 187458 187719) (-166 "COMPCAT.spad" 183596 183608 185260 185265) (-165 "COMMUPC.spad" 183344 183362 183586 183591) (-164 "COMMONOP.spad" 182877 182885 183334 183339) (-163 "COMM.spad" 182688 182696 182867 182872) (-162 "COMMAAST.spad" 182451 182459 182678 182683) (-161 "COMBOPC.spad" 181366 181374 182441 182446) (-160 "COMBINAT.spad" 180133 180143 181356 181361) (-159 "COMBF.spad" 177515 177531 180123 180128) (-158 "COLOR.spad" 176352 176360 177505 177510) (-157 "COLONAST.spad" 176018 176026 176342 176347) (-156 "CMPLXRT.spad" 175729 175746 176008 176013) (-155 "CLLCTAST.spad" 175391 175399 175719 175724) (-154 "CLIP.spad" 171499 171507 175381 175386) (-153 "CLIF.spad" 170154 170170 171455 171494) (-152 "CLAGG.spad" 166659 166669 170144 170149) (-151 "CLAGG.spad" 163035 163047 166522 166527) (-150 "CINTSLPE.spad" 162366 162379 163025 163030) (-149 "CHVAR.spad" 160504 160526 162356 162361) (-148 "CHARZ.spad" 160419 160427 160484 160499) (-147 "CHARPOL.spad" 159929 159939 160409 160414) (-146 "CHARNZ.spad" 159682 159690 159909 159924) (-145 "CHAR.spad" 157556 157564 159672 159677) (-144 "CFCAT.spad" 156884 156892 157546 157551) (-143 "CDEN.spad" 156080 156094 156874 156879) (-142 "CCLASS.spad" 154229 154237 155491 155530) (-141 "CATEGORY.spad" 153271 153279 154219 154224) (-140 "CATCTOR.spad" 153162 153170 153261 153266) (-139 "CATAST.spad" 152780 152788 153152 153157) (-138 "CASEAST.spad" 152494 152502 152770 152775) (-137 "CARTEN.spad" 147861 147885 152484 152489) (-136 "CARTEN2.spad" 147251 147278 147851 147856) (-135 "CARD.spad" 144546 144554 147225 147246) (-134 "CAPSLAST.spad" 144320 144328 144536 144541) (-133 "CACHSET.spad" 143944 143952 144310 144315) (-132 "CABMON.spad" 143499 143507 143934 143939) (-131 "BYTEORD.spad" 143174 143182 143489 143494) (-130 "BYTE.spad" 142601 142609 143164 143169) (-129 "BYTEBUF.spad" 140460 140468 141770 141797) (-128 "BTREE.spad" 139533 139543 140067 140094) (-127 "BTOURN.spad" 138538 138548 139140 139167) (-126 "BTCAT.spad" 137930 137940 138506 138533) (-125 "BTCAT.spad" 137342 137354 137920 137925) (-124 "BTAGG.spad" 136808 136816 137310 137337) (-123 "BTAGG.spad" 136294 136304 136798 136803) (-122 "BSTREE.spad" 135035 135045 135901 135928) (-121 "BRILL.spad" 133232 133243 135025 135030) (-120 "BRAGG.spad" 132172 132182 133222 133227) (-119 "BRAGG.spad" 131076 131088 132128 132133) (-118 "BPADICRT.spad" 129057 129069 129312 129405) (-117 "BPADIC.spad" 128721 128733 128983 129052) (-116 "BOUNDZRO.spad" 128377 128394 128711 128716) (-115 "BOP.spad" 123559 123567 128367 128372) (-114 "BOP1.spad" 121025 121035 123549 123554) (-113 "BOOLE.spad" 120675 120683 121015 121020) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file