aboutsummaryrefslogtreecommitdiff
path: root/src/share/algebra/browse.daase
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2010-06-17 03:51:01 +0000
committerdos-reis <gdr@axiomatics.org>2010-06-17 03:51:01 +0000
commit1bfecf3e58163305cb5753caab462ed57d0d67fc (patch)
treeb62b1860cc2a57a60c5a78efc22d72b5e025c22e /src/share/algebra/browse.daase
parent4c62f989b0c11eb9d3e6c04d966d108fd842fe5d (diff)
downloadopen-axiom-1bfecf3e58163305cb5753caab462ed57d0d67fc.tar.gz
* algebra/vector.spad.pamphlet (DirectProductCategory): Extend
LinearSet if the coefficient type satifies Monoid. Remove previous bogus extension of Monoid. Similarly, extend OrderedSet if the element type satisfies OrderedSet. Remove previous bogus extension of OrderedRing.
Diffstat (limited to 'src/share/algebra/browse.daase')
-rw-r--r--src/share/algebra/browse.daase118
1 files changed, 59 insertions, 59 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index 0ca16cc9..cb342eef 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,5 +1,5 @@
-(2268415 . 3485728182)
+(2266091 . 3485733144)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
@@ -88,7 +88,7 @@ NIL
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-40 -1395 UP UPUP -4418)
+(-40 -1395 UP UPUP -2078)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
((-4451 |has| (-417 |#2|) (-372)) (-4456 |has| (-417 |#2|) (-372)) (-4450 |has| (-417 |#2|) (-372)) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
((|HasCategory| (-417 |#2|) (QUOTE (-146))) (|HasCategory| (-417 |#2|) (QUOTE (-148))) (|HasCategory| (-417 |#2|) (QUOTE (-358))) (-2832 (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-377))) (-2832 (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (-2832 (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-417 |#2|) (QUOTE (-358))))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -649) (QUOTE (-574)))) (-2832 (|HasCategory| (-417 |#2|) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))))
@@ -172,59 +172,59 @@ NIL
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
((-4458 . T) (-4459 . T))
((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
-(-61 -2039)
+(-61 -2040)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-62 -2039)
+(-62 -2040)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-63 -2039)
+(-63 -2040)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -2039)
+(-64 -2040)
((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-65 -2039)
+(-65 -2040)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -2039)
+(-66 -2040)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-67 -2039)
+(-67 -2040)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-68 -2039)
+(-68 -2040)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -2039)
+(-69 -2040)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-70 -2039)
+(-70 -2040)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-71 -2039)
+(-71 -2040)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-72 -2039)
+(-72 -2040)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-73 -2039)
+(-73 -2040)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-74 -2039)
+(-74 -2040)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
@@ -236,55 +236,55 @@ NIL
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-77 -2039)
+(-77 -2040)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-78 -2039)
+(-78 -2040)
((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-79 -2039)
+(-79 -2040)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -2039)
+(-80 -2040)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -2039)
+(-81 -2040)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")))
NIL
NIL
-(-82 -2039)
+(-82 -2040)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -2039)
+(-83 -2040)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -2039)
+(-84 -2040)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -2039)
+(-85 -2040)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -2039)
+(-86 -2040)
((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-87 -2039)
+(-87 -2040)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-88 -2039)
+(-88 -2040)
((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-89 -2039)
+(-89 -2040)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
@@ -901,11 +901,11 @@ NIL
NIL
NIL
(-243 S -4105 R)
-((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
+((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-858))) (|HasAttribute| |#3| (QUOTE -4455)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (QUOTE (-1115))))
+((|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-860))) (|HasAttribute| |#3| (QUOTE -4455)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (QUOTE (-1115))))
(-244 -4105 R)
-((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
+((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
((-4452 |has| |#2| (-1064)) (-4453 |has| |#2| (-1064)) (-4455 |has| |#2| (-6 -4455)) ((-4460 "*") |has| |#2| (-174)) (-4458 . T))
NIL
(-245 -4105 A B)
@@ -915,7 +915,7 @@ NIL
(-246 -4105 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
((-4452 |has| |#2| (-1064)) (-4453 |has| |#2| (-1064)) (-4455 |has| |#2| (-6 -4455)) ((-4460 "*") |has| |#2| (-174)) (-4458 . T))
-((-2832 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-372))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-803))) (-2832 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-736))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1064)))) (|HasCategory| |#2| (QUOTE (-377))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-1115)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-377)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-858)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-2832 (|HasCategory| |#2| (QUOTE (-1064))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115)))) (|HasAttribute| |#2| (QUOTE -4455)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))))
+((-2832 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-372))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (-2832 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-174))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1064)))) (|HasCategory| |#2| (QUOTE (-377))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-1115)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-377)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-2832 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-736)))) (-2832 (|HasCategory| |#2| (QUOTE (-1064))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115)))) (|HasAttribute| |#2| (QUOTE -4455)) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))))
(-247)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
@@ -959,11 +959,11 @@ NIL
(-257 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
((-4455 -2832 (-2096 (|has| |#4| (-1064)) (|has| |#4| (-239))) (|has| |#4| (-6 -4455)) (-2096 (|has| |#4| (-1064)) (|has| |#4| (-913 (-1192))))) (-4452 |has| |#4| (-1064)) (-4453 |has| |#4| (-1064)) ((-4460 "*") |has| |#4| (-174)) (-4458 . T))
-((-2832 (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-736))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-858))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1064))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192)))))) (|HasCategory| |#4| (QUOTE (-372))) (-2832 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (QUOTE (-1064)))) (-2832 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-372)))) (|HasCategory| |#4| (QUOTE (-1064))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-803))) (-2832 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (QUOTE (-858)))) (|HasCategory| |#4| (QUOTE (-858))) (|HasCategory| |#4| (QUOTE (-736))) (-2832 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-1064)))) (|HasCategory| |#4| (QUOTE (-377))) (-2832 (-12 (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-858))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1064))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192)))) (-2832 (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1064)))) (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-239)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-372)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-377)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-736)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-803)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-858)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1064)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1115))))) (-2832 (-12 (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-736))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-858))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1064))) (-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-736))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-858))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1064))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#4| (QUOTE (-1064))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1064))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1064)))) (-2832 (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1064)))) (|HasCategory| |#4| (QUOTE (-736))) (-12 (|HasCategory| |#4| (QUOTE (-1064))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192)))))) (-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-2832 (|HasCategory| |#4| (QUOTE (-1064))) (-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1115)))) (-2832 (|HasAttribute| |#4| (QUOTE -4455)) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1064)))) (-12 (|HasCategory| |#4| (QUOTE (-1064))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192)))))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))))
+((-2832 (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-736))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-860))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1064))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192)))))) (|HasCategory| |#4| (QUOTE (-372))) (-2832 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (QUOTE (-1064)))) (-2832 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-372)))) (|HasCategory| |#4| (QUOTE (-1064))) (|HasCategory| |#4| (QUOTE (-736))) (|HasCategory| |#4| (QUOTE (-803))) (-2832 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (QUOTE (-860)))) (|HasCategory| |#4| (QUOTE (-174))) (-2832 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-1064)))) (|HasCategory| |#4| (QUOTE (-377))) (-2832 (-12 (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1064))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192)))) (-2832 (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1064)))) (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-239)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-372)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-377)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-736)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-803)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-860)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1064)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1115))))) (-2832 (-12 (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-736))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-860))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1064))) (-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-736))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-860))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1064))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#4| (QUOTE (-1064))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1064))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1064)))) (-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-2832 (|HasCategory| |#4| (QUOTE (-1064))) (-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1115)))) (-2832 (|HasAttribute| |#4| (QUOTE -4455)) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1064)))) (-12 (|HasCategory| |#4| (QUOTE (-1064))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192)))))) (|HasCategory| |#4| (QUOTE (-860))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))))
(-258 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
((-4455 -2832 (-2096 (|has| |#3| (-1064)) (|has| |#3| (-239))) (|has| |#3| (-6 -4455)) (-2096 (|has| |#3| (-1064)) (|has| |#3| (-913 (-1192))))) (-4452 |has| |#3| (-1064)) (-4453 |has| |#3| (-1064)) ((-4460 "*") |has| |#3| (-174)) (-4458 . T))
-((-2832 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))))) (|HasCategory| |#3| (QUOTE (-372))) (-2832 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1064)))) (-2832 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372)))) (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-803))) (-2832 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-858)))) (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (QUOTE (-736))) (-2832 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1064)))) (|HasCategory| |#3| (QUOTE (-377))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (-2832 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1064)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-372)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-377)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-736)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-803)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-858)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1064)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1115))))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1064))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1064)))) (-2832 (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1064)))) (|HasCategory| |#3| (QUOTE (-736))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-2832 (|HasCategory| |#3| (QUOTE (-1064))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1115)))) (-2832 (|HasAttribute| |#3| (QUOTE -4455)) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1064)))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))))
+((-2832 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))))) (|HasCategory| |#3| (QUOTE (-372))) (-2832 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1064)))) (-2832 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372)))) (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (QUOTE (-803))) (-2832 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-860)))) (|HasCategory| |#3| (QUOTE (-174))) (-2832 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1064)))) (|HasCategory| |#3| (QUOTE (-377))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (-2832 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1064)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-372)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-377)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-736)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-803)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-860)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1064)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1115))))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1064))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1064)))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-2832 (|HasCategory| |#3| (QUOTE (-1064))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1115)))) (-2832 (|HasAttribute| |#3| (QUOTE -4455)) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1064)))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))))) (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))))
(-259 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
@@ -1116,7 +1116,7 @@ NIL
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-297 S R |Mod| -2967 -2452 |exactQuo|)
+(-297 S R |Mod| -2432 -4297 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
NIL
@@ -1239,7 +1239,7 @@ NIL
(-327 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3874) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))))
(-328 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1560,7 +1560,7 @@ NIL
((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}")))
NIL
NIL
-(-408 -2039 |returnType| -1573 |symbols|)
+(-408 -2040 |returnType| -1573 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
@@ -1867,7 +1867,7 @@ NIL
(-484 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3874) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))))
(-485 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
((-4459 . T))
@@ -1899,7 +1899,7 @@ NIL
(-492 -4105 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
((-4452 |has| |#2| (-1064)) (-4453 |has| |#2| (-1064)) (-4455 |has| |#2| (-6 -4455)) ((-4460 "*") |has| |#2| (-174)) (-4458 . T))
-((-2832 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-372))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-803))) (-2832 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-736))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1064)))) (|HasCategory| |#2| (QUOTE (-377))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-1115)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-377)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-858)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-2832 (|HasCategory| |#2| (QUOTE (-1064))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115)))) (|HasAttribute| |#2| (QUOTE -4455)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))))
+((-2832 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-372))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (-2832 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-174))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1064)))) (|HasCategory| |#2| (QUOTE (-377))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-1115)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-377)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-2832 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-736)))) (-2832 (|HasCategory| |#2| (QUOTE (-1064))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115)))) (|HasAttribute| |#2| (QUOTE -4455)) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))))
(-493)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header.")))
NIL
@@ -2600,7 +2600,7 @@ NIL
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-668 A -2884)
+(-668 A -4129)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
((-4452 . T) (-4453 . T) (-4455 . T))
((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372))))
@@ -2792,7 +2792,7 @@ NIL
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-716 S -3584 I)
+(-716 S -3583 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
@@ -2812,7 +2812,7 @@ NIL
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-721 R |Mod| -2967 -2452 |exactQuo|)
+(-721 R |Mod| -2432 -4297 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T))
NIL
@@ -2828,7 +2828,7 @@ NIL
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
((-4453 |has| |#1| (-174)) (-4452 |has| |#1| (-174)) (-4455 . T))
((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))))
-(-725 R |Mod| -2967 -2452 |exactQuo|)
+(-725 R |Mod| -2432 -4297 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
((-4455 . T))
NIL
@@ -3231,7 +3231,7 @@ NIL
(-825 -4105 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
((-4452 |has| |#2| (-1064)) (-4453 |has| |#2| (-1064)) (-4455 |has| |#2| (-6 -4455)) ((-4460 "*") |has| |#2| (-174)) (-4458 . T))
-((-2832 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-372))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-803))) (-2832 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-736))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1064)))) (|HasCategory| |#2| (QUOTE (-377))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-1115)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-377)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-858)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-2832 (|HasCategory| |#2| (QUOTE (-1064))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115)))) (|HasAttribute| |#2| (QUOTE -4455)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))))
+((-2832 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-372))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (-2832 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-174))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1064)))) (|HasCategory| |#2| (QUOTE (-377))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-1115)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-377)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-2832 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-736)))) (-2832 (|HasCategory| |#2| (QUOTE (-1064))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115)))) (|HasAttribute| |#2| (QUOTE -4455)) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))))
(-826 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T))
@@ -3532,7 +3532,7 @@ NIL
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-901 R -3584)
+(-901 R -3583)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
@@ -3728,11 +3728,11 @@ NIL
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -897) (|devaluate| |#1|))))
-(-950 R -1395 -3584)
+(-950 R -1395 -3583)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-951 -3584)
+(-951 -3583)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
@@ -4443,7 +4443,7 @@ NIL
(-1128 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
((-4452 |has| |#3| (-1064)) (-4453 |has| |#3| (-1064)) (-4455 |has| |#3| (-6 -4455)) ((-4460 "*") |has| |#3| (-174)) (-4458 . T))
-((-2832 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1115)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1064)))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#3| (QUOTE (-372))) (-2832 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1064)))) (-2832 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372)))) (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-803))) (-2832 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-858)))) (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (QUOTE (-736))) (-2832 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1064)))) (|HasCategory| |#3| (QUOTE (-377))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (-2832 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (QUOTE (-1115)))) (-2832 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1064)))) (-2832 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1064)))) (-2832 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1064)))) (-2832 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1064)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-372)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-377)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-736)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-803)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-858)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1064)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1115))))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1064))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1064)))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192))))) (-2832 (|HasCategory| |#3| (QUOTE (-1064))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1115)))) (|HasAttribute| |#3| (QUOTE -4455)) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))))
+((-2832 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1115)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1064)))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#3| (QUOTE (-372))) (-2832 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1064)))) (-2832 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372)))) (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (QUOTE (-803))) (-2832 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-860)))) (|HasCategory| |#3| (QUOTE (-174))) (-2832 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1064)))) (|HasCategory| |#3| (QUOTE (-377))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (-2832 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (QUOTE (-1115)))) (-2832 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1064)))) (-2832 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1064)))) (-2832 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1064)))) (-2832 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1064)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-372)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-377)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-736)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-803)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-860)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1064)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1115))))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1064))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1064)))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192))))) (-2832 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-736)))) (-2832 (|HasCategory| |#3| (QUOTE (-1064))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1115)))) (|HasAttribute| |#3| (QUOTE -4455)) (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))))
(-1129 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
@@ -4663,7 +4663,7 @@ NIL
(-1183 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
(((-4460 "*") -2832 (-2096 (|has| |#1| (-372)) (|has| (-1190 |#1| |#2| |#3|) (-830))) (|has| |#1| (-174)) (-2096 (|has| |#1| (-372)) (|has| (-1190 |#1| |#2| |#3|) (-922)))) (-4451 -2832 (-2096 (|has| |#1| (-372)) (|has| (-1190 |#1| |#2| |#3|) (-830))) (|has| |#1| (-566)) (-2096 (|has| |#1| (-372)) (|has| (-1190 |#1| |#2| |#3|) (-922)))) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T))
-((-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-1037))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-1167))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1192)) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|)))))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1127))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-1037))) (|HasCategory| |#1| (QUOTE (-372)))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372))))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-1167))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1192)) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3874) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))))
+((-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-1037))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-1167))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1192)) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|)))))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1127))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-1037))) (|HasCategory| |#1| (QUOTE (-372)))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372))))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-1167))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1192)) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))))
(-1184 R -1395)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
@@ -4687,11 +4687,11 @@ NIL
(-1189 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3874) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))))
(-1190 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|)))) (|HasCategory| (-781) (QUOTE (-1127))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3874) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|)))) (|HasCategory| (-781) (QUOTE (-1127))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))))
(-1191)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
@@ -4915,11 +4915,11 @@ NIL
(-1246 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T))
-((-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-922)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1037)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1167)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-1192)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-146))))) (-2832 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-148))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1127))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-922)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-1192))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1037)))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860))))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-922)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1037)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1167)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-1192)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1167)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3874) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-922))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-315)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-146))))))
+((-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-922)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1037)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1167)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-1192)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-146))))) (-2832 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-148))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1127))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-922)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-1192))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1037)))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860))))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-922)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1037)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1167)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-1192)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1167)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-922))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-315)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-146))))))
(-1247 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
(((-4460 "*") -2832 (-2096 (|has| |#1| (-372)) (|has| (-1275 |#1| |#2| |#3|) (-830))) (|has| |#1| (-174)) (-2096 (|has| |#1| (-372)) (|has| (-1275 |#1| |#2| |#3|) (-922)))) (-4451 -2832 (-2096 (|has| |#1| (-372)) (|has| (-1275 |#1| |#2| |#3|) (-830))) (|has| |#1| (-566)) (-2096 (|has| |#1| (-372)) (|has| (-1275 |#1| |#2| |#3|) (-922)))) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T))
-((-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-1037))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-1167))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1192)) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|)))))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1127))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-1037))) (|HasCategory| |#1| (QUOTE (-372)))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372))))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-1167))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1192)) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3874) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))))
+((-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-1037))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-1167))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1192)) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|)))))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1127))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-1037))) (|HasCategory| |#1| (QUOTE (-372)))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372))))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-1167))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1192)) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))))
(-1248 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
@@ -4999,11 +4999,11 @@ NIL
(-1267 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3874) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))
+((|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))
(-1268 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3874) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))))
(-1269 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}.")))
(((-4460 "*") |has| (-1268 |#2| |#3| |#4|) (-174)) (-4451 |has| (-1268 |#2| |#3| |#4|) (-566)) (-4452 . T) (-4453 . T) (-4455 . T))
@@ -5023,7 +5023,7 @@ NIL
(-1273 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-972))) (|HasCategory| |#2| (QUOTE (-1218))) (|HasSignature| |#2| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3874) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1192))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))))
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-972))) (|HasCategory| |#2| (QUOTE (-1218))) (|HasSignature| |#2| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1578) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1192))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))))
(-1274 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4452 . T) (-4453 . T) (-4455 . T))
@@ -5031,7 +5031,7 @@ NIL
(-1275 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4452 . T) (-4453 . T) (-4455 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|)))) (|HasCategory| (-781) (QUOTE (-1127))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3874) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|)))) (|HasCategory| (-781) (QUOTE (-1127))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))))
(-1276 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
@@ -5196,4 +5196,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2268395 2268400 2268405 2268410) (-2 NIL 2268375 2268380 2268385 2268390) (-1 NIL 2268355 2268360 2268365 2268370) (0 NIL 2268335 2268340 2268345 2268350) (-1312 "ZMOD.spad" 2268144 2268157 2268273 2268330) (-1311 "ZLINDEP.spad" 2267210 2267221 2268134 2268139) (-1310 "ZDSOLVE.spad" 2257155 2257177 2267200 2267205) (-1309 "YSTREAM.spad" 2256650 2256661 2257145 2257150) (-1308 "YDIAGRAM.spad" 2256284 2256293 2256640 2256645) (-1307 "XRPOLY.spad" 2255504 2255524 2256140 2256209) (-1306 "XPR.spad" 2253299 2253312 2255222 2255321) (-1305 "XPOLY.spad" 2252854 2252865 2253155 2253224) (-1304 "XPOLYC.spad" 2252173 2252189 2252780 2252849) (-1303 "XPBWPOLY.spad" 2250610 2250630 2251953 2252022) (-1302 "XF.spad" 2249073 2249088 2250512 2250605) (-1301 "XF.spad" 2247516 2247533 2248957 2248962) (-1300 "XFALG.spad" 2244564 2244580 2247442 2247511) (-1299 "XEXPPKG.spad" 2243815 2243841 2244554 2244559) (-1298 "XDPOLY.spad" 2243429 2243445 2243671 2243740) (-1297 "XALG.spad" 2243089 2243100 2243385 2243424) (-1296 "WUTSET.spad" 2238928 2238945 2242735 2242762) (-1295 "WP.spad" 2238127 2238171 2238786 2238853) (-1294 "WHILEAST.spad" 2237925 2237934 2238117 2238122) (-1293 "WHEREAST.spad" 2237596 2237605 2237915 2237920) (-1292 "WFFINTBS.spad" 2235259 2235281 2237586 2237591) (-1291 "WEIER.spad" 2233481 2233492 2235249 2235254) (-1290 "VSPACE.spad" 2233154 2233165 2233449 2233476) (-1289 "VSPACE.spad" 2232847 2232860 2233144 2233149) (-1288 "VOID.spad" 2232524 2232533 2232837 2232842) (-1287 "VIEW.spad" 2230204 2230213 2232514 2232519) (-1286 "VIEWDEF.spad" 2225405 2225414 2230194 2230199) (-1285 "VIEW3D.spad" 2209366 2209375 2225395 2225400) (-1284 "VIEW2D.spad" 2197257 2197266 2209356 2209361) (-1283 "VECTOR.spad" 2195931 2195942 2196182 2196209) (-1282 "VECTOR2.spad" 2194570 2194583 2195921 2195926) (-1281 "VECTCAT.spad" 2192474 2192485 2194538 2194565) (-1280 "VECTCAT.spad" 2190185 2190198 2192251 2192256) (-1279 "VARIABLE.spad" 2189965 2189980 2190175 2190180) (-1278 "UTYPE.spad" 2189609 2189618 2189955 2189960) (-1277 "UTSODETL.spad" 2188904 2188928 2189565 2189570) (-1276 "UTSODE.spad" 2187120 2187140 2188894 2188899) (-1275 "UTS.spad" 2181924 2181952 2185587 2185684) (-1274 "UTSCAT.spad" 2179403 2179419 2181822 2181919) (-1273 "UTSCAT.spad" 2176526 2176544 2178947 2178952) (-1272 "UTS2.spad" 2176121 2176156 2176516 2176521) (-1271 "URAGG.spad" 2170794 2170805 2176111 2176116) (-1270 "URAGG.spad" 2165431 2165444 2170750 2170755) (-1269 "UPXSSING.spad" 2163076 2163102 2164512 2164645) (-1268 "UPXS.spad" 2160230 2160258 2161208 2161357) (-1267 "UPXSCONS.spad" 2157989 2158009 2158362 2158511) (-1266 "UPXSCCA.spad" 2156560 2156580 2157835 2157984) (-1265 "UPXSCCA.spad" 2155273 2155295 2156550 2156555) (-1264 "UPXSCAT.spad" 2153862 2153878 2155119 2155268) (-1263 "UPXS2.spad" 2153405 2153458 2153852 2153857) (-1262 "UPSQFREE.spad" 2151819 2151833 2153395 2153400) (-1261 "UPSCAT.spad" 2149606 2149630 2151717 2151814) (-1260 "UPSCAT.spad" 2147099 2147125 2149212 2149217) (-1259 "UPOLYC.spad" 2142139 2142150 2146941 2147094) (-1258 "UPOLYC.spad" 2137071 2137084 2141875 2141880) (-1257 "UPOLYC2.spad" 2136542 2136561 2137061 2137066) (-1256 "UP.spad" 2133741 2133756 2134128 2134281) (-1255 "UPMP.spad" 2132641 2132654 2133731 2133736) (-1254 "UPDIVP.spad" 2132206 2132220 2132631 2132636) (-1253 "UPDECOMP.spad" 2130451 2130465 2132196 2132201) (-1252 "UPCDEN.spad" 2129660 2129676 2130441 2130446) (-1251 "UP2.spad" 2129024 2129045 2129650 2129655) (-1250 "UNISEG.spad" 2128377 2128388 2128943 2128948) (-1249 "UNISEG2.spad" 2127874 2127887 2128333 2128338) (-1248 "UNIFACT.spad" 2126977 2126989 2127864 2127869) (-1247 "ULS.spad" 2117535 2117563 2118622 2119051) (-1246 "ULSCONS.spad" 2109931 2109951 2110301 2110450) (-1245 "ULSCCAT.spad" 2107668 2107688 2109777 2109926) (-1244 "ULSCCAT.spad" 2105513 2105535 2107624 2107629) (-1243 "ULSCAT.spad" 2103745 2103761 2105359 2105508) (-1242 "ULS2.spad" 2103259 2103312 2103735 2103740) (-1241 "UINT8.spad" 2103136 2103145 2103249 2103254) (-1240 "UINT64.spad" 2103012 2103021 2103126 2103131) (-1239 "UINT32.spad" 2102888 2102897 2103002 2103007) (-1238 "UINT16.spad" 2102764 2102773 2102878 2102883) (-1237 "UFD.spad" 2101829 2101838 2102690 2102759) (-1236 "UFD.spad" 2100956 2100967 2101819 2101824) (-1235 "UDVO.spad" 2099837 2099846 2100946 2100951) (-1234 "UDPO.spad" 2097330 2097341 2099793 2099798) (-1233 "TYPE.spad" 2097262 2097271 2097320 2097325) (-1232 "TYPEAST.spad" 2097181 2097190 2097252 2097257) (-1231 "TWOFACT.spad" 2095833 2095848 2097171 2097176) (-1230 "TUPLE.spad" 2095319 2095330 2095732 2095737) (-1229 "TUBETOOL.spad" 2092186 2092195 2095309 2095314) (-1228 "TUBE.spad" 2090833 2090850 2092176 2092181) (-1227 "TS.spad" 2089432 2089448 2090398 2090495) (-1226 "TSETCAT.spad" 2076559 2076576 2089400 2089427) (-1225 "TSETCAT.spad" 2063672 2063691 2076515 2076520) (-1224 "TRMANIP.spad" 2058038 2058055 2063378 2063383) (-1223 "TRIMAT.spad" 2057001 2057026 2058028 2058033) (-1222 "TRIGMNIP.spad" 2055528 2055545 2056991 2056996) (-1221 "TRIGCAT.spad" 2055040 2055049 2055518 2055523) (-1220 "TRIGCAT.spad" 2054550 2054561 2055030 2055035) (-1219 "TREE.spad" 2053125 2053136 2054157 2054184) (-1218 "TRANFUN.spad" 2052964 2052973 2053115 2053120) (-1217 "TRANFUN.spad" 2052801 2052812 2052954 2052959) (-1216 "TOPSP.spad" 2052475 2052484 2052791 2052796) (-1215 "TOOLSIGN.spad" 2052138 2052149 2052465 2052470) (-1214 "TEXTFILE.spad" 2050699 2050708 2052128 2052133) (-1213 "TEX.spad" 2047845 2047854 2050689 2050694) (-1212 "TEX1.spad" 2047401 2047412 2047835 2047840) (-1211 "TEMUTL.spad" 2046956 2046965 2047391 2047396) (-1210 "TBCMPPK.spad" 2045049 2045072 2046946 2046951) (-1209 "TBAGG.spad" 2044099 2044122 2045029 2045044) (-1208 "TBAGG.spad" 2043157 2043182 2044089 2044094) (-1207 "TANEXP.spad" 2042565 2042576 2043147 2043152) (-1206 "TALGOP.spad" 2042289 2042300 2042555 2042560) (-1205 "TABLE.spad" 2040700 2040723 2040970 2040997) (-1204 "TABLEAU.spad" 2040181 2040192 2040690 2040695) (-1203 "TABLBUMP.spad" 2036984 2036995 2040171 2040176) (-1202 "SYSTEM.spad" 2036212 2036221 2036974 2036979) (-1201 "SYSSOLP.spad" 2033695 2033706 2036202 2036207) (-1200 "SYSPTR.spad" 2033594 2033603 2033685 2033690) (-1199 "SYSNNI.spad" 2032776 2032787 2033584 2033589) (-1198 "SYSINT.spad" 2032180 2032191 2032766 2032771) (-1197 "SYNTAX.spad" 2028386 2028395 2032170 2032175) (-1196 "SYMTAB.spad" 2026454 2026463 2028376 2028381) (-1195 "SYMS.spad" 2022477 2022486 2026444 2026449) (-1194 "SYMPOLY.spad" 2021484 2021495 2021566 2021693) (-1193 "SYMFUNC.spad" 2020985 2020996 2021474 2021479) (-1192 "SYMBOL.spad" 2018488 2018497 2020975 2020980) (-1191 "SWITCH.spad" 2015259 2015268 2018478 2018483) (-1190 "SUTS.spad" 2012164 2012192 2013726 2013823) (-1189 "SUPXS.spad" 2009305 2009333 2010296 2010445) (-1188 "SUP.spad" 2006118 2006129 2006891 2007044) (-1187 "SUPFRACF.spad" 2005223 2005241 2006108 2006113) (-1186 "SUP2.spad" 2004615 2004628 2005213 2005218) (-1185 "SUMRF.spad" 2003589 2003600 2004605 2004610) (-1184 "SUMFS.spad" 2003226 2003243 2003579 2003584) (-1183 "SULS.spad" 1993771 1993799 1994871 1995300) (-1182 "SUCHTAST.spad" 1993540 1993549 1993761 1993766) (-1181 "SUCH.spad" 1993222 1993237 1993530 1993535) (-1180 "SUBSPACE.spad" 1985337 1985352 1993212 1993217) (-1179 "SUBRESP.spad" 1984507 1984521 1985293 1985298) (-1178 "STTF.spad" 1980606 1980622 1984497 1984502) (-1177 "STTFNC.spad" 1977074 1977090 1980596 1980601) (-1176 "STTAYLOR.spad" 1969709 1969720 1976955 1976960) (-1175 "STRTBL.spad" 1968214 1968231 1968363 1968390) (-1174 "STRING.spad" 1967623 1967632 1967637 1967664) (-1173 "STRICAT.spad" 1967411 1967420 1967591 1967618) (-1172 "STREAM.spad" 1964329 1964340 1966936 1966951) (-1171 "STREAM3.spad" 1963902 1963917 1964319 1964324) (-1170 "STREAM2.spad" 1963030 1963043 1963892 1963897) (-1169 "STREAM1.spad" 1962736 1962747 1963020 1963025) (-1168 "STINPROD.spad" 1961672 1961688 1962726 1962731) (-1167 "STEP.spad" 1960873 1960882 1961662 1961667) (-1166 "STEPAST.spad" 1960107 1960116 1960863 1960868) (-1165 "STBL.spad" 1958633 1958661 1958800 1958815) (-1164 "STAGG.spad" 1957708 1957719 1958623 1958628) (-1163 "STAGG.spad" 1956781 1956794 1957698 1957703) (-1162 "STACK.spad" 1956138 1956149 1956388 1956415) (-1161 "SREGSET.spad" 1953842 1953859 1955784 1955811) (-1160 "SRDCMPK.spad" 1952403 1952423 1953832 1953837) (-1159 "SRAGG.spad" 1947546 1947555 1952371 1952398) (-1158 "SRAGG.spad" 1942709 1942720 1947536 1947541) (-1157 "SQMATRIX.spad" 1940381 1940399 1941297 1941384) (-1156 "SPLTREE.spad" 1934933 1934946 1939817 1939844) (-1155 "SPLNODE.spad" 1931521 1931534 1934923 1934928) (-1154 "SPFCAT.spad" 1930330 1930339 1931511 1931516) (-1153 "SPECOUT.spad" 1928882 1928891 1930320 1930325) (-1152 "SPADXPT.spad" 1920477 1920486 1928872 1928877) (-1151 "spad-parser.spad" 1919942 1919951 1920467 1920472) (-1150 "SPADAST.spad" 1919643 1919652 1919932 1919937) (-1149 "SPACEC.spad" 1903842 1903853 1919633 1919638) (-1148 "SPACE3.spad" 1903618 1903629 1903832 1903837) (-1147 "SORTPAK.spad" 1903167 1903180 1903574 1903579) (-1146 "SOLVETRA.spad" 1900930 1900941 1903157 1903162) (-1145 "SOLVESER.spad" 1899458 1899469 1900920 1900925) (-1144 "SOLVERAD.spad" 1895484 1895495 1899448 1899453) (-1143 "SOLVEFOR.spad" 1893946 1893964 1895474 1895479) (-1142 "SNTSCAT.spad" 1893546 1893563 1893914 1893941) (-1141 "SMTS.spad" 1891818 1891844 1893111 1893208) (-1140 "SMP.spad" 1889293 1889313 1889683 1889810) (-1139 "SMITH.spad" 1888138 1888163 1889283 1889288) (-1138 "SMATCAT.spad" 1886248 1886278 1888082 1888133) (-1137 "SMATCAT.spad" 1884290 1884322 1886126 1886131) (-1136 "SKAGG.spad" 1883253 1883264 1884258 1884285) (-1135 "SINT.spad" 1882193 1882202 1883119 1883248) (-1134 "SIMPAN.spad" 1881921 1881930 1882183 1882188) (-1133 "SIG.spad" 1881251 1881260 1881911 1881916) (-1132 "SIGNRF.spad" 1880369 1880380 1881241 1881246) (-1131 "SIGNEF.spad" 1879648 1879665 1880359 1880364) (-1130 "SIGAST.spad" 1879033 1879042 1879638 1879643) (-1129 "SHP.spad" 1876961 1876976 1878989 1878994) (-1128 "SHDP.spad" 1866595 1866622 1867104 1867235) (-1127 "SGROUP.spad" 1866203 1866212 1866585 1866590) (-1126 "SGROUP.spad" 1865809 1865820 1866193 1866198) (-1125 "SGCF.spad" 1858948 1858957 1865799 1865804) (-1124 "SFRTCAT.spad" 1857878 1857895 1858916 1858943) (-1123 "SFRGCD.spad" 1856941 1856961 1857868 1857873) (-1122 "SFQCMPK.spad" 1851578 1851598 1856931 1856936) (-1121 "SFORT.spad" 1851017 1851031 1851568 1851573) (-1120 "SEXOF.spad" 1850860 1850900 1851007 1851012) (-1119 "SEX.spad" 1850752 1850761 1850850 1850855) (-1118 "SEXCAT.spad" 1848533 1848573 1850742 1850747) (-1117 "SET.spad" 1846857 1846868 1847954 1847993) (-1116 "SETMN.spad" 1845307 1845324 1846847 1846852) (-1115 "SETCAT.spad" 1844629 1844638 1845297 1845302) (-1114 "SETCAT.spad" 1843949 1843960 1844619 1844624) (-1113 "SETAGG.spad" 1840498 1840509 1843929 1843944) (-1112 "SETAGG.spad" 1837055 1837068 1840488 1840493) (-1111 "SEQAST.spad" 1836758 1836767 1837045 1837050) (-1110 "SEGXCAT.spad" 1835914 1835927 1836748 1836753) (-1109 "SEG.spad" 1835727 1835738 1835833 1835838) (-1108 "SEGCAT.spad" 1834652 1834663 1835717 1835722) (-1107 "SEGBIND.spad" 1834410 1834421 1834599 1834604) (-1106 "SEGBIND2.spad" 1834108 1834121 1834400 1834405) (-1105 "SEGAST.spad" 1833822 1833831 1834098 1834103) (-1104 "SEG2.spad" 1833257 1833270 1833778 1833783) (-1103 "SDVAR.spad" 1832533 1832544 1833247 1833252) (-1102 "SDPOL.spad" 1829959 1829970 1830250 1830377) (-1101 "SCPKG.spad" 1828048 1828059 1829949 1829954) (-1100 "SCOPE.spad" 1827201 1827210 1828038 1828043) (-1099 "SCACHE.spad" 1825897 1825908 1827191 1827196) (-1098 "SASTCAT.spad" 1825806 1825815 1825887 1825892) (-1097 "SAOS.spad" 1825678 1825687 1825796 1825801) (-1096 "SAERFFC.spad" 1825391 1825411 1825668 1825673) (-1095 "SAE.spad" 1823566 1823582 1824177 1824312) (-1094 "SAEFACT.spad" 1823267 1823287 1823556 1823561) (-1093 "RURPK.spad" 1820926 1820942 1823257 1823262) (-1092 "RULESET.spad" 1820379 1820403 1820916 1820921) (-1091 "RULE.spad" 1818619 1818643 1820369 1820374) (-1090 "RULECOLD.spad" 1818471 1818484 1818609 1818614) (-1089 "RTVALUE.spad" 1818206 1818215 1818461 1818466) (-1088 "RSTRCAST.spad" 1817923 1817932 1818196 1818201) (-1087 "RSETGCD.spad" 1814301 1814321 1817913 1817918) (-1086 "RSETCAT.spad" 1804237 1804254 1814269 1814296) (-1085 "RSETCAT.spad" 1794193 1794212 1804227 1804232) (-1084 "RSDCMPK.spad" 1792645 1792665 1794183 1794188) (-1083 "RRCC.spad" 1791029 1791059 1792635 1792640) (-1082 "RRCC.spad" 1789411 1789443 1791019 1791024) (-1081 "RPTAST.spad" 1789113 1789122 1789401 1789406) (-1080 "RPOLCAT.spad" 1768473 1768488 1788981 1789108) (-1079 "RPOLCAT.spad" 1747546 1747563 1768056 1768061) (-1078 "ROUTINE.spad" 1743429 1743438 1746193 1746220) (-1077 "ROMAN.spad" 1742757 1742766 1743295 1743424) (-1076 "ROIRC.spad" 1741837 1741869 1742747 1742752) (-1075 "RNS.spad" 1740740 1740749 1741739 1741832) (-1074 "RNS.spad" 1739729 1739740 1740730 1740735) (-1073 "RNG.spad" 1739464 1739473 1739719 1739724) (-1072 "RNGBIND.spad" 1738624 1738638 1739419 1739424) (-1071 "RMODULE.spad" 1738389 1738400 1738614 1738619) (-1070 "RMCAT2.spad" 1737809 1737866 1738379 1738384) (-1069 "RMATRIX.spad" 1736633 1736652 1736976 1737015) (-1068 "RMATCAT.spad" 1732212 1732243 1736589 1736628) (-1067 "RMATCAT.spad" 1727681 1727714 1732060 1732065) (-1066 "RLINSET.spad" 1727236 1727247 1727671 1727676) (-1065 "RINTERP.spad" 1727124 1727144 1727226 1727231) (-1064 "RING.spad" 1726594 1726603 1727104 1727119) (-1063 "RING.spad" 1726072 1726083 1726584 1726589) (-1062 "RIDIST.spad" 1725464 1725473 1726062 1726067) (-1061 "RGCHAIN.spad" 1724047 1724063 1724949 1724976) (-1060 "RGBCSPC.spad" 1723828 1723840 1724037 1724042) (-1059 "RGBCMDL.spad" 1723358 1723370 1723818 1723823) (-1058 "RF.spad" 1721000 1721011 1723348 1723353) (-1057 "RFFACTOR.spad" 1720462 1720473 1720990 1720995) (-1056 "RFFACT.spad" 1720197 1720209 1720452 1720457) (-1055 "RFDIST.spad" 1719193 1719202 1720187 1720192) (-1054 "RETSOL.spad" 1718612 1718625 1719183 1719188) (-1053 "RETRACT.spad" 1718040 1718051 1718602 1718607) (-1052 "RETRACT.spad" 1717466 1717479 1718030 1718035) (-1051 "RETAST.spad" 1717278 1717287 1717456 1717461) (-1050 "RESULT.spad" 1715338 1715347 1715925 1715952) (-1049 "RESRING.spad" 1714685 1714732 1715276 1715333) (-1048 "RESLATC.spad" 1714009 1714020 1714675 1714680) (-1047 "REPSQ.spad" 1713740 1713751 1713999 1714004) (-1046 "REP.spad" 1711294 1711303 1713730 1713735) (-1045 "REPDB.spad" 1711001 1711012 1711284 1711289) (-1044 "REP2.spad" 1700659 1700670 1710843 1710848) (-1043 "REP1.spad" 1694855 1694866 1700609 1700614) (-1042 "REGSET.spad" 1692652 1692669 1694501 1694528) (-1041 "REF.spad" 1691987 1691998 1692607 1692612) (-1040 "REDORDER.spad" 1691193 1691210 1691977 1691982) (-1039 "RECLOS.spad" 1689976 1689996 1690680 1690773) (-1038 "REALSOLV.spad" 1689116 1689125 1689966 1689971) (-1037 "REAL.spad" 1688988 1688997 1689106 1689111) (-1036 "REAL0Q.spad" 1686286 1686301 1688978 1688983) (-1035 "REAL0.spad" 1683130 1683145 1686276 1686281) (-1034 "RDUCEAST.spad" 1682851 1682860 1683120 1683125) (-1033 "RDIV.spad" 1682506 1682531 1682841 1682846) (-1032 "RDIST.spad" 1682073 1682084 1682496 1682501) (-1031 "RDETRS.spad" 1680937 1680955 1682063 1682068) (-1030 "RDETR.spad" 1679076 1679094 1680927 1680932) (-1029 "RDEEFS.spad" 1678175 1678192 1679066 1679071) (-1028 "RDEEF.spad" 1677185 1677202 1678165 1678170) (-1027 "RCFIELD.spad" 1674371 1674380 1677087 1677180) (-1026 "RCFIELD.spad" 1671643 1671654 1674361 1674366) (-1025 "RCAGG.spad" 1669571 1669582 1671633 1671638) (-1024 "RCAGG.spad" 1667426 1667439 1669490 1669495) (-1023 "RATRET.spad" 1666786 1666797 1667416 1667421) (-1022 "RATFACT.spad" 1666478 1666490 1666776 1666781) (-1021 "RANDSRC.spad" 1665797 1665806 1666468 1666473) (-1020 "RADUTIL.spad" 1665553 1665562 1665787 1665792) (-1019 "RADIX.spad" 1662474 1662488 1664020 1664113) (-1018 "RADFF.spad" 1660887 1660924 1661006 1661162) (-1017 "RADCAT.spad" 1660482 1660491 1660877 1660882) (-1016 "RADCAT.spad" 1660075 1660086 1660472 1660477) (-1015 "QUEUE.spad" 1659423 1659434 1659682 1659709) (-1014 "QUAT.spad" 1657881 1657892 1658224 1658289) (-1013 "QUATCT2.spad" 1657501 1657520 1657871 1657876) (-1012 "QUATCAT.spad" 1655671 1655682 1657431 1657496) (-1011 "QUATCAT.spad" 1653592 1653605 1655354 1655359) (-1010 "QUAGG.spad" 1652419 1652430 1653560 1653587) (-1009 "QQUTAST.spad" 1652187 1652196 1652409 1652414) (-1008 "QFORM.spad" 1651805 1651820 1652177 1652182) (-1007 "QFCAT.spad" 1650507 1650518 1651707 1651800) (-1006 "QFCAT.spad" 1648800 1648813 1650002 1650007) (-1005 "QFCAT2.spad" 1648492 1648509 1648790 1648795) (-1004 "QEQUAT.spad" 1648050 1648059 1648482 1648487) (-1003 "QCMPACK.spad" 1642796 1642816 1648040 1648045) (-1002 "QALGSET.spad" 1638874 1638907 1642710 1642715) (-1001 "QALGSET2.spad" 1636869 1636888 1638864 1638869) (-1000 "PWFFINTB.spad" 1634284 1634306 1636859 1636864) (-999 "PUSHVAR.spad" 1633623 1633642 1634274 1634279) (-998 "PTRANFN.spad" 1629751 1629761 1633613 1633618) (-997 "PTPACK.spad" 1626839 1626849 1629741 1629746) (-996 "PTFUNC2.spad" 1626662 1626676 1626829 1626834) (-995 "PTCAT.spad" 1625917 1625927 1626630 1626657) (-994 "PSQFR.spad" 1625224 1625248 1625907 1625912) (-993 "PSEUDLIN.spad" 1624110 1624120 1625214 1625219) (-992 "PSETPK.spad" 1609543 1609559 1623988 1623993) (-991 "PSETCAT.spad" 1603463 1603486 1609523 1609538) (-990 "PSETCAT.spad" 1597357 1597382 1603419 1603424) (-989 "PSCURVE.spad" 1596340 1596348 1597347 1597352) (-988 "PSCAT.spad" 1595123 1595152 1596238 1596335) (-987 "PSCAT.spad" 1593996 1594027 1595113 1595118) (-986 "PRTITION.spad" 1592694 1592702 1593986 1593991) (-985 "PRTDAST.spad" 1592413 1592421 1592684 1592689) (-984 "PRS.spad" 1581975 1581992 1592369 1592374) (-983 "PRQAGG.spad" 1581410 1581420 1581943 1581970) (-982 "PROPLOG.spad" 1580982 1580990 1581400 1581405) (-981 "PROPFUN2.spad" 1580605 1580618 1580972 1580977) (-980 "PROPFUN1.spad" 1580003 1580014 1580595 1580600) (-979 "PROPFRML.spad" 1578571 1578582 1579993 1579998) (-978 "PROPERTY.spad" 1578059 1578067 1578561 1578566) (-977 "PRODUCT.spad" 1575741 1575753 1576025 1576080) (-976 "PR.spad" 1574133 1574145 1574832 1574959) (-975 "PRINT.spad" 1573885 1573893 1574123 1574128) (-974 "PRIMES.spad" 1572138 1572148 1573875 1573880) (-973 "PRIMELT.spad" 1570219 1570233 1572128 1572133) (-972 "PRIMCAT.spad" 1569846 1569854 1570209 1570214) (-971 "PRIMARR.spad" 1568851 1568861 1569029 1569056) (-970 "PRIMARR2.spad" 1567618 1567630 1568841 1568846) (-969 "PREASSOC.spad" 1567000 1567012 1567608 1567613) (-968 "PPCURVE.spad" 1566137 1566145 1566990 1566995) (-967 "PORTNUM.spad" 1565912 1565920 1566127 1566132) (-966 "POLYROOT.spad" 1564761 1564783 1565868 1565873) (-965 "POLY.spad" 1562096 1562106 1562611 1562738) (-964 "POLYLIFT.spad" 1561361 1561384 1562086 1562091) (-963 "POLYCATQ.spad" 1559479 1559501 1561351 1561356) (-962 "POLYCAT.spad" 1552949 1552970 1559347 1559474) (-961 "POLYCAT.spad" 1545757 1545780 1552157 1552162) (-960 "POLY2UP.spad" 1545209 1545223 1545747 1545752) (-959 "POLY2.spad" 1544806 1544818 1545199 1545204) (-958 "POLUTIL.spad" 1543747 1543776 1544762 1544767) (-957 "POLTOPOL.spad" 1542495 1542510 1543737 1543742) (-956 "POINT.spad" 1541333 1541343 1541420 1541447) (-955 "PNTHEORY.spad" 1538035 1538043 1541323 1541328) (-954 "PMTOOLS.spad" 1536810 1536824 1538025 1538030) (-953 "PMSYM.spad" 1536359 1536369 1536800 1536805) (-952 "PMQFCAT.spad" 1535950 1535964 1536349 1536354) (-951 "PMPRED.spad" 1535429 1535443 1535940 1535945) (-950 "PMPREDFS.spad" 1534883 1534905 1535419 1535424) (-949 "PMPLCAT.spad" 1533963 1533981 1534815 1534820) (-948 "PMLSAGG.spad" 1533548 1533562 1533953 1533958) (-947 "PMKERNEL.spad" 1533127 1533139 1533538 1533543) (-946 "PMINS.spad" 1532707 1532717 1533117 1533122) (-945 "PMFS.spad" 1532284 1532302 1532697 1532702) (-944 "PMDOWN.spad" 1531574 1531588 1532274 1532279) (-943 "PMASS.spad" 1530584 1530592 1531564 1531569) (-942 "PMASSFS.spad" 1529551 1529567 1530574 1530579) (-941 "PLOTTOOL.spad" 1529331 1529339 1529541 1529546) (-940 "PLOT.spad" 1524254 1524262 1529321 1529326) (-939 "PLOT3D.spad" 1520718 1520726 1524244 1524249) (-938 "PLOT1.spad" 1519875 1519885 1520708 1520713) (-937 "PLEQN.spad" 1507165 1507192 1519865 1519870) (-936 "PINTERP.spad" 1506787 1506806 1507155 1507160) (-935 "PINTERPA.spad" 1506571 1506587 1506777 1506782) (-934 "PI.spad" 1506180 1506188 1506545 1506566) (-933 "PID.spad" 1505150 1505158 1506106 1506175) (-932 "PICOERCE.spad" 1504807 1504817 1505140 1505145) (-931 "PGROEB.spad" 1503408 1503422 1504797 1504802) (-930 "PGE.spad" 1495025 1495033 1503398 1503403) (-929 "PGCD.spad" 1493915 1493932 1495015 1495020) (-928 "PFRPAC.spad" 1493064 1493074 1493905 1493910) (-927 "PFR.spad" 1489727 1489737 1492966 1493059) (-926 "PFOTOOLS.spad" 1488985 1489001 1489717 1489722) (-925 "PFOQ.spad" 1488355 1488373 1488975 1488980) (-924 "PFO.spad" 1487774 1487801 1488345 1488350) (-923 "PF.spad" 1487348 1487360 1487579 1487672) (-922 "PFECAT.spad" 1485030 1485038 1487274 1487343) (-921 "PFECAT.spad" 1482740 1482750 1484986 1484991) (-920 "PFBRU.spad" 1480628 1480640 1482730 1482735) (-919 "PFBR.spad" 1478188 1478211 1480618 1480623) (-918 "PERM.spad" 1473995 1474005 1478018 1478033) (-917 "PERMGRP.spad" 1468765 1468775 1473985 1473990) (-916 "PERMCAT.spad" 1467426 1467436 1468745 1468760) (-915 "PERMAN.spad" 1465958 1465972 1467416 1467421) (-914 "PENDTREE.spad" 1465299 1465309 1465587 1465592) (-913 "PDRING.spad" 1463850 1463860 1465279 1465294) (-912 "PDRING.spad" 1462409 1462421 1463840 1463845) (-911 "PDEPROB.spad" 1461424 1461432 1462399 1462404) (-910 "PDEPACK.spad" 1455464 1455472 1461414 1461419) (-909 "PDECOMP.spad" 1454934 1454951 1455454 1455459) (-908 "PDECAT.spad" 1453290 1453298 1454924 1454929) (-907 "PDDOM.spad" 1452756 1452769 1453280 1453285) (-906 "PDDOM.spad" 1452220 1452235 1452746 1452751) (-905 "PCOMP.spad" 1452073 1452086 1452210 1452215) (-904 "PBWLB.spad" 1450661 1450678 1452063 1452068) (-903 "PATTERN.spad" 1445200 1445210 1450651 1450656) (-902 "PATTERN2.spad" 1444938 1444950 1445190 1445195) (-901 "PATTERN1.spad" 1443274 1443290 1444928 1444933) (-900 "PATRES.spad" 1440849 1440861 1443264 1443269) (-899 "PATRES2.spad" 1440521 1440535 1440839 1440844) (-898 "PATMATCH.spad" 1438718 1438749 1440229 1440234) (-897 "PATMAB.spad" 1438147 1438157 1438708 1438713) (-896 "PATLRES.spad" 1437233 1437247 1438137 1438142) (-895 "PATAB.spad" 1436997 1437007 1437223 1437228) (-894 "PARTPERM.spad" 1435005 1435013 1436987 1436992) (-893 "PARSURF.spad" 1434439 1434467 1434995 1435000) (-892 "PARSU2.spad" 1434236 1434252 1434429 1434434) (-891 "script-parser.spad" 1433756 1433764 1434226 1434231) (-890 "PARSCURV.spad" 1433190 1433218 1433746 1433751) (-889 "PARSC2.spad" 1432981 1432997 1433180 1433185) (-888 "PARPCURV.spad" 1432443 1432471 1432971 1432976) (-887 "PARPC2.spad" 1432234 1432250 1432433 1432438) (-886 "PARAMAST.spad" 1431362 1431370 1432224 1432229) (-885 "PAN2EXPR.spad" 1430774 1430782 1431352 1431357) (-884 "PALETTE.spad" 1429744 1429752 1430764 1430769) (-883 "PAIR.spad" 1428731 1428744 1429332 1429337) (-882 "PADICRC.spad" 1426065 1426083 1427236 1427329) (-881 "PADICRAT.spad" 1424080 1424092 1424301 1424394) (-880 "PADIC.spad" 1423775 1423787 1424006 1424075) (-879 "PADICCT.spad" 1422324 1422336 1423701 1423770) (-878 "PADEPAC.spad" 1421013 1421032 1422314 1422319) (-877 "PADE.spad" 1419765 1419781 1421003 1421008) (-876 "OWP.spad" 1419005 1419035 1419623 1419690) (-875 "OVERSET.spad" 1418578 1418586 1418995 1419000) (-874 "OVAR.spad" 1418359 1418382 1418568 1418573) (-873 "OUT.spad" 1417445 1417453 1418349 1418354) (-872 "OUTFORM.spad" 1406837 1406845 1417435 1417440) (-871 "OUTBFILE.spad" 1406255 1406263 1406827 1406832) (-870 "OUTBCON.spad" 1405261 1405269 1406245 1406250) (-869 "OUTBCON.spad" 1404265 1404275 1405251 1405256) (-868 "OSI.spad" 1403740 1403748 1404255 1404260) (-867 "OSGROUP.spad" 1403658 1403666 1403730 1403735) (-866 "ORTHPOL.spad" 1402143 1402153 1403575 1403580) (-865 "OREUP.spad" 1401596 1401624 1401823 1401862) (-864 "ORESUP.spad" 1400897 1400921 1401276 1401315) (-863 "OREPCTO.spad" 1398754 1398766 1400817 1400822) (-862 "OREPCAT.spad" 1392901 1392911 1398710 1398749) (-861 "OREPCAT.spad" 1386938 1386950 1392749 1392754) (-860 "ORDSET.spad" 1386110 1386118 1386928 1386933) (-859 "ORDSET.spad" 1385280 1385290 1386100 1386105) (-858 "ORDRING.spad" 1384670 1384678 1385260 1385275) (-857 "ORDRING.spad" 1384068 1384078 1384660 1384665) (-856 "ORDMON.spad" 1383923 1383931 1384058 1384063) (-855 "ORDFUNS.spad" 1383055 1383071 1383913 1383918) (-854 "ORDFIN.spad" 1382875 1382883 1383045 1383050) (-853 "ORDCOMP.spad" 1381340 1381350 1382422 1382451) (-852 "ORDCOMP2.spad" 1380633 1380645 1381330 1381335) (-851 "OPTPROB.spad" 1379271 1379279 1380623 1380628) (-850 "OPTPACK.spad" 1371680 1371688 1379261 1379266) (-849 "OPTCAT.spad" 1369359 1369367 1371670 1371675) (-848 "OPSIG.spad" 1369013 1369021 1369349 1369354) (-847 "OPQUERY.spad" 1368562 1368570 1369003 1369008) (-846 "OP.spad" 1368304 1368314 1368384 1368451) (-845 "OPERCAT.spad" 1367770 1367780 1368294 1368299) (-844 "OPERCAT.spad" 1367234 1367246 1367760 1367765) (-843 "ONECOMP.spad" 1365979 1365989 1366781 1366810) (-842 "ONECOMP2.spad" 1365403 1365415 1365969 1365974) (-841 "OMSERVER.spad" 1364409 1364417 1365393 1365398) (-840 "OMSAGG.spad" 1364197 1364207 1364365 1364404) (-839 "OMPKG.spad" 1362813 1362821 1364187 1364192) (-838 "OM.spad" 1361786 1361794 1362803 1362808) (-837 "OMLO.spad" 1361211 1361223 1361672 1361711) (-836 "OMEXPR.spad" 1361045 1361055 1361201 1361206) (-835 "OMERR.spad" 1360590 1360598 1361035 1361040) (-834 "OMERRK.spad" 1359624 1359632 1360580 1360585) (-833 "OMENC.spad" 1358968 1358976 1359614 1359619) (-832 "OMDEV.spad" 1353277 1353285 1358958 1358963) (-831 "OMCONN.spad" 1352686 1352694 1353267 1353272) (-830 "OINTDOM.spad" 1352449 1352457 1352612 1352681) (-829 "OFMONOID.spad" 1350572 1350582 1352405 1352410) (-828 "ODVAR.spad" 1349833 1349843 1350562 1350567) (-827 "ODR.spad" 1349477 1349503 1349645 1349794) (-826 "ODPOL.spad" 1346859 1346869 1347199 1347326) (-825 "ODP.spad" 1336629 1336649 1337002 1337133) (-824 "ODETOOLS.spad" 1335278 1335297 1336619 1336624) (-823 "ODESYS.spad" 1332972 1332989 1335268 1335273) (-822 "ODERTRIC.spad" 1328981 1328998 1332929 1332934) (-821 "ODERED.spad" 1328380 1328404 1328971 1328976) (-820 "ODERAT.spad" 1325995 1326012 1328370 1328375) (-819 "ODEPRRIC.spad" 1323032 1323054 1325985 1325990) (-818 "ODEPROB.spad" 1322289 1322297 1323022 1323027) (-817 "ODEPRIM.spad" 1319623 1319645 1322279 1322284) (-816 "ODEPAL.spad" 1319009 1319033 1319613 1319618) (-815 "ODEPACK.spad" 1305675 1305683 1318999 1319004) (-814 "ODEINT.spad" 1305110 1305126 1305665 1305670) (-813 "ODEIFTBL.spad" 1302505 1302513 1305100 1305105) (-812 "ODEEF.spad" 1297996 1298012 1302495 1302500) (-811 "ODECONST.spad" 1297533 1297551 1297986 1297991) (-810 "ODECAT.spad" 1296131 1296139 1297523 1297528) (-809 "OCT.spad" 1294267 1294277 1294981 1295020) (-808 "OCTCT2.spad" 1293913 1293934 1294257 1294262) (-807 "OC.spad" 1291709 1291719 1293869 1293908) (-806 "OC.spad" 1289230 1289242 1291392 1291397) (-805 "OCAMON.spad" 1289078 1289086 1289220 1289225) (-804 "OASGP.spad" 1288893 1288901 1289068 1289073) (-803 "OAMONS.spad" 1288415 1288423 1288883 1288888) (-802 "OAMON.spad" 1288276 1288284 1288405 1288410) (-801 "OAGROUP.spad" 1288138 1288146 1288266 1288271) (-800 "NUMTUBE.spad" 1287729 1287745 1288128 1288133) (-799 "NUMQUAD.spad" 1275705 1275713 1287719 1287724) (-798 "NUMODE.spad" 1267059 1267067 1275695 1275700) (-797 "NUMINT.spad" 1264625 1264633 1267049 1267054) (-796 "NUMFMT.spad" 1263465 1263473 1264615 1264620) (-795 "NUMERIC.spad" 1255579 1255589 1263270 1263275) (-794 "NTSCAT.spad" 1254087 1254103 1255547 1255574) (-793 "NTPOLFN.spad" 1253638 1253648 1254004 1254009) (-792 "NSUP.spad" 1246684 1246694 1251224 1251377) (-791 "NSUP2.spad" 1246076 1246088 1246674 1246679) (-790 "NSMP.spad" 1242306 1242325 1242614 1242741) (-789 "NREP.spad" 1240684 1240698 1242296 1242301) (-788 "NPCOEF.spad" 1239930 1239950 1240674 1240679) (-787 "NORMRETR.spad" 1239528 1239567 1239920 1239925) (-786 "NORMPK.spad" 1237430 1237449 1239518 1239523) (-785 "NORMMA.spad" 1237118 1237144 1237420 1237425) (-784 "NONE.spad" 1236859 1236867 1237108 1237113) (-783 "NONE1.spad" 1236535 1236545 1236849 1236854) (-782 "NODE1.spad" 1236022 1236038 1236525 1236530) (-781 "NNI.spad" 1234917 1234925 1235996 1236017) (-780 "NLINSOL.spad" 1233543 1233553 1234907 1234912) (-779 "NIPROB.spad" 1232084 1232092 1233533 1233538) (-778 "NFINTBAS.spad" 1229644 1229661 1232074 1232079) (-777 "NETCLT.spad" 1229618 1229629 1229634 1229639) (-776 "NCODIV.spad" 1227834 1227850 1229608 1229613) (-775 "NCNTFRAC.spad" 1227476 1227490 1227824 1227829) (-774 "NCEP.spad" 1225642 1225656 1227466 1227471) (-773 "NASRING.spad" 1225238 1225246 1225632 1225637) (-772 "NASRING.spad" 1224832 1224842 1225228 1225233) (-771 "NARNG.spad" 1224184 1224192 1224822 1224827) (-770 "NARNG.spad" 1223534 1223544 1224174 1224179) (-769 "NAGSP.spad" 1222611 1222619 1223524 1223529) (-768 "NAGS.spad" 1212272 1212280 1222601 1222606) (-767 "NAGF07.spad" 1210703 1210711 1212262 1212267) (-766 "NAGF04.spad" 1205105 1205113 1210693 1210698) (-765 "NAGF02.spad" 1199174 1199182 1205095 1205100) (-764 "NAGF01.spad" 1194935 1194943 1199164 1199169) (-763 "NAGE04.spad" 1188635 1188643 1194925 1194930) (-762 "NAGE02.spad" 1179295 1179303 1188625 1188630) (-761 "NAGE01.spad" 1175297 1175305 1179285 1179290) (-760 "NAGD03.spad" 1173301 1173309 1175287 1175292) (-759 "NAGD02.spad" 1166048 1166056 1173291 1173296) (-758 "NAGD01.spad" 1160341 1160349 1166038 1166043) (-757 "NAGC06.spad" 1156216 1156224 1160331 1160336) (-756 "NAGC05.spad" 1154717 1154725 1156206 1156211) (-755 "NAGC02.spad" 1153984 1153992 1154707 1154712) (-754 "NAALG.spad" 1153525 1153535 1153952 1153979) (-753 "NAALG.spad" 1153086 1153098 1153515 1153520) (-752 "MULTSQFR.spad" 1150044 1150061 1153076 1153081) (-751 "MULTFACT.spad" 1149427 1149444 1150034 1150039) (-750 "MTSCAT.spad" 1147521 1147542 1149325 1149422) (-749 "MTHING.spad" 1147180 1147190 1147511 1147516) (-748 "MSYSCMD.spad" 1146614 1146622 1147170 1147175) (-747 "MSET.spad" 1144572 1144582 1146320 1146359) (-746 "MSETAGG.spad" 1144417 1144427 1144540 1144567) (-745 "MRING.spad" 1141394 1141406 1144125 1144192) (-744 "MRF2.spad" 1140964 1140978 1141384 1141389) (-743 "MRATFAC.spad" 1140510 1140527 1140954 1140959) (-742 "MPRFF.spad" 1138550 1138569 1140500 1140505) (-741 "MPOLY.spad" 1136021 1136036 1136380 1136507) (-740 "MPCPF.spad" 1135285 1135304 1136011 1136016) (-739 "MPC3.spad" 1135102 1135142 1135275 1135280) (-738 "MPC2.spad" 1134748 1134781 1135092 1135097) (-737 "MONOTOOL.spad" 1133099 1133116 1134738 1134743) (-736 "MONOID.spad" 1132418 1132426 1133089 1133094) (-735 "MONOID.spad" 1131735 1131745 1132408 1132413) (-734 "MONOGEN.spad" 1130483 1130496 1131595 1131730) (-733 "MONOGEN.spad" 1129253 1129268 1130367 1130372) (-732 "MONADWU.spad" 1127283 1127291 1129243 1129248) (-731 "MONADWU.spad" 1125311 1125321 1127273 1127278) (-730 "MONAD.spad" 1124471 1124479 1125301 1125306) (-729 "MONAD.spad" 1123629 1123639 1124461 1124466) (-728 "MOEBIUS.spad" 1122365 1122379 1123609 1123624) (-727 "MODULE.spad" 1122235 1122245 1122333 1122360) (-726 "MODULE.spad" 1122125 1122137 1122225 1122230) (-725 "MODRING.spad" 1121460 1121499 1122105 1122120) (-724 "MODOP.spad" 1120125 1120137 1121282 1121349) (-723 "MODMONOM.spad" 1119856 1119874 1120115 1120120) (-722 "MODMON.spad" 1116651 1116667 1117370 1117523) (-721 "MODFIELD.spad" 1116013 1116052 1116553 1116646) (-720 "MMLFORM.spad" 1114873 1114881 1116003 1116008) (-719 "MMAP.spad" 1114615 1114649 1114863 1114868) (-718 "MLO.spad" 1113074 1113084 1114571 1114610) (-717 "MLIFT.spad" 1111686 1111703 1113064 1113069) (-716 "MKUCFUNC.spad" 1111221 1111239 1111676 1111681) (-715 "MKRECORD.spad" 1110825 1110838 1111211 1111216) (-714 "MKFUNC.spad" 1110232 1110242 1110815 1110820) (-713 "MKFLCFN.spad" 1109200 1109210 1110222 1110227) (-712 "MKBCFUNC.spad" 1108695 1108713 1109190 1109195) (-711 "MINT.spad" 1108134 1108142 1108597 1108690) (-710 "MHROWRED.spad" 1106645 1106655 1108124 1108129) (-709 "MFLOAT.spad" 1105165 1105173 1106535 1106640) (-708 "MFINFACT.spad" 1104565 1104587 1105155 1105160) (-707 "MESH.spad" 1102347 1102355 1104555 1104560) (-706 "MDDFACT.spad" 1100558 1100568 1102337 1102342) (-705 "MDAGG.spad" 1099849 1099859 1100538 1100553) (-704 "MCMPLX.spad" 1095860 1095868 1096474 1096675) (-703 "MCDEN.spad" 1095070 1095082 1095850 1095855) (-702 "MCALCFN.spad" 1092192 1092218 1095060 1095065) (-701 "MAYBE.spad" 1091476 1091487 1092182 1092187) (-700 "MATSTOR.spad" 1088784 1088794 1091466 1091471) (-699 "MATRIX.spad" 1087488 1087498 1087972 1087999) (-698 "MATLIN.spad" 1084832 1084856 1087372 1087377) (-697 "MATCAT.spad" 1076561 1076583 1084800 1084827) (-696 "MATCAT.spad" 1068162 1068186 1076403 1076408) (-695 "MATCAT2.spad" 1067444 1067492 1068152 1068157) (-694 "MAPPKG3.spad" 1066359 1066373 1067434 1067439) (-693 "MAPPKG2.spad" 1065697 1065709 1066349 1066354) (-692 "MAPPKG1.spad" 1064525 1064535 1065687 1065692) (-691 "MAPPAST.spad" 1063840 1063848 1064515 1064520) (-690 "MAPHACK3.spad" 1063652 1063666 1063830 1063835) (-689 "MAPHACK2.spad" 1063421 1063433 1063642 1063647) (-688 "MAPHACK1.spad" 1063065 1063075 1063411 1063416) (-687 "MAGMA.spad" 1060855 1060872 1063055 1063060) (-686 "MACROAST.spad" 1060434 1060442 1060845 1060850) (-685 "M3D.spad" 1058154 1058164 1059812 1059817) (-684 "LZSTAGG.spad" 1055392 1055402 1058144 1058149) (-683 "LZSTAGG.spad" 1052628 1052640 1055382 1055387) (-682 "LWORD.spad" 1049333 1049350 1052618 1052623) (-681 "LSTAST.spad" 1049117 1049125 1049323 1049328) (-680 "LSQM.spad" 1047403 1047417 1047797 1047848) (-679 "LSPP.spad" 1046938 1046955 1047393 1047398) (-678 "LSMP.spad" 1045788 1045816 1046928 1046933) (-677 "LSMP1.spad" 1043606 1043620 1045778 1045783) (-676 "LSAGG.spad" 1043275 1043285 1043574 1043601) (-675 "LSAGG.spad" 1042964 1042976 1043265 1043270) (-674 "LPOLY.spad" 1041918 1041937 1042820 1042889) (-673 "LPEFRAC.spad" 1041189 1041199 1041908 1041913) (-672 "LO.spad" 1040590 1040604 1041123 1041150) (-671 "LOGIC.spad" 1040192 1040200 1040580 1040585) (-670 "LOGIC.spad" 1039792 1039802 1040182 1040187) (-669 "LODOOPS.spad" 1038722 1038734 1039782 1039787) (-668 "LODO.spad" 1038106 1038122 1038402 1038441) (-667 "LODOF.spad" 1037152 1037169 1038063 1038068) (-666 "LODOCAT.spad" 1035818 1035828 1037108 1037147) (-665 "LODOCAT.spad" 1034482 1034494 1035774 1035779) (-664 "LODO2.spad" 1033755 1033767 1034162 1034201) (-663 "LODO1.spad" 1033155 1033165 1033435 1033474) (-662 "LODEEF.spad" 1031957 1031975 1033145 1033150) (-661 "LNAGG.spad" 1028104 1028114 1031947 1031952) (-660 "LNAGG.spad" 1024215 1024227 1028060 1028065) (-659 "LMOPS.spad" 1020983 1021000 1024205 1024210) (-658 "LMODULE.spad" 1020751 1020761 1020973 1020978) (-657 "LMDICT.spad" 1020038 1020048 1020302 1020329) (-656 "LLINSET.spad" 1019596 1019606 1020028 1020033) (-655 "LITERAL.spad" 1019502 1019513 1019586 1019591) (-654 "LIST.spad" 1017237 1017247 1018649 1018676) (-653 "LIST3.spad" 1016548 1016562 1017227 1017232) (-652 "LIST2.spad" 1015250 1015262 1016538 1016543) (-651 "LIST2MAP.spad" 1012153 1012165 1015240 1015245) (-650 "LINSET.spad" 1011932 1011942 1012143 1012148) (-649 "LINEXP.spad" 1011070 1011080 1011922 1011927) (-648 "LINDEP.spad" 1009879 1009891 1010982 1010987) (-647 "LIMITRF.spad" 1007807 1007817 1009869 1009874) (-646 "LIMITPS.spad" 1006710 1006723 1007797 1007802) (-645 "LIE.spad" 1004726 1004738 1006000 1006145) (-644 "LIECAT.spad" 1004202 1004212 1004652 1004721) (-643 "LIECAT.spad" 1003706 1003718 1004158 1004163) (-642 "LIB.spad" 1001919 1001927 1002365 1002380) (-641 "LGROBP.spad" 999272 999291 1001909 1001914) (-640 "LF.spad" 998227 998243 999262 999267) (-639 "LFCAT.spad" 997286 997294 998217 998222) (-638 "LEXTRIPK.spad" 992789 992804 997276 997281) (-637 "LEXP.spad" 990792 990819 992769 992784) (-636 "LETAST.spad" 990491 990499 990782 990787) (-635 "LEADCDET.spad" 988889 988906 990481 990486) (-634 "LAZM3PK.spad" 987593 987615 988879 988884) (-633 "LAUPOL.spad" 986286 986299 987186 987255) (-632 "LAPLACE.spad" 985869 985885 986276 986281) (-631 "LA.spad" 985309 985323 985791 985830) (-630 "LALG.spad" 985085 985095 985289 985304) (-629 "LALG.spad" 984869 984881 985075 985080) (-628 "KVTFROM.spad" 984604 984614 984859 984864) (-627 "KTVLOGIC.spad" 984116 984124 984594 984599) (-626 "KRCFROM.spad" 983854 983864 984106 984111) (-625 "KOVACIC.spad" 982577 982594 983844 983849) (-624 "KONVERT.spad" 982299 982309 982567 982572) (-623 "KOERCE.spad" 982036 982046 982289 982294) (-622 "KERNEL.spad" 980691 980701 981820 981825) (-621 "KERNEL2.spad" 980394 980406 980681 980686) (-620 "KDAGG.spad" 979503 979525 980374 980389) (-619 "KDAGG.spad" 978620 978644 979493 979498) (-618 "KAFILE.spad" 977583 977599 977818 977845) (-617 "JORDAN.spad" 975412 975424 976873 977018) (-616 "JOINAST.spad" 975106 975114 975402 975407) (-615 "JAVACODE.spad" 974972 974980 975096 975101) (-614 "IXAGG.spad" 973105 973129 974962 974967) (-613 "IXAGG.spad" 971093 971119 972952 972957) (-612 "IVECTOR.spad" 969863 969878 970018 970045) (-611 "ITUPLE.spad" 969024 969034 969853 969858) (-610 "ITRIGMNP.spad" 967863 967882 969014 969019) (-609 "ITFUN3.spad" 967369 967383 967853 967858) (-608 "ITFUN2.spad" 967113 967125 967359 967364) (-607 "ITFORM.spad" 966468 966476 967103 967108) (-606 "ITAYLOR.spad" 964462 964477 966332 966429) (-605 "ISUPS.spad" 956899 956914 963436 963533) (-604 "ISUMP.spad" 956400 956416 956889 956894) (-603 "ISTRING.spad" 955488 955501 955569 955596) (-602 "ISAST.spad" 955207 955215 955478 955483) (-601 "IRURPK.spad" 953924 953943 955197 955202) (-600 "IRSN.spad" 951896 951904 953914 953919) (-599 "IRRF2F.spad" 950381 950391 951852 951857) (-598 "IRREDFFX.spad" 949982 949993 950371 950376) (-597 "IROOT.spad" 948321 948331 949972 949977) (-596 "IR.spad" 946122 946136 948176 948203) (-595 "IRFORM.spad" 945446 945454 946112 946117) (-594 "IR2.spad" 944474 944490 945436 945441) (-593 "IR2F.spad" 943680 943696 944464 944469) (-592 "IPRNTPK.spad" 943440 943448 943670 943675) (-591 "IPF.spad" 943005 943017 943245 943338) (-590 "IPADIC.spad" 942766 942792 942931 943000) (-589 "IP4ADDR.spad" 942323 942331 942756 942761) (-588 "IOMODE.spad" 941845 941853 942313 942318) (-587 "IOBFILE.spad" 941206 941214 941835 941840) (-586 "IOBCON.spad" 941071 941079 941196 941201) (-585 "INVLAPLA.spad" 940720 940736 941061 941066) (-584 "INTTR.spad" 934102 934119 940710 940715) (-583 "INTTOOLS.spad" 931857 931873 933676 933681) (-582 "INTSLPE.spad" 931177 931185 931847 931852) (-581 "INTRVL.spad" 930743 930753 931091 931172) (-580 "INTRF.spad" 929167 929181 930733 930738) (-579 "INTRET.spad" 928599 928609 929157 929162) (-578 "INTRAT.spad" 927326 927343 928589 928594) (-577 "INTPM.spad" 925711 925727 926969 926974) (-576 "INTPAF.spad" 923575 923593 925643 925648) (-575 "INTPACK.spad" 913949 913957 923565 923570) (-574 "INT.spad" 913397 913405 913803 913944) (-573 "INTHERTR.spad" 912671 912688 913387 913392) (-572 "INTHERAL.spad" 912341 912365 912661 912666) (-571 "INTHEORY.spad" 908780 908788 912331 912336) (-570 "INTG0.spad" 902513 902531 908712 908717) (-569 "INTFTBL.spad" 896542 896550 902503 902508) (-568 "INTFACT.spad" 895601 895611 896532 896537) (-567 "INTEF.spad" 893986 894002 895591 895596) (-566 "INTDOM.spad" 892609 892617 893912 893981) (-565 "INTDOM.spad" 891294 891304 892599 892604) (-564 "INTCAT.spad" 889553 889563 891208 891289) (-563 "INTBIT.spad" 889060 889068 889543 889548) (-562 "INTALG.spad" 888248 888275 889050 889055) (-561 "INTAF.spad" 887748 887764 888238 888243) (-560 "INTABL.spad" 886266 886297 886429 886456) (-559 "INT8.spad" 886146 886154 886256 886261) (-558 "INT64.spad" 886025 886033 886136 886141) (-557 "INT32.spad" 885904 885912 886015 886020) (-556 "INT16.spad" 885783 885791 885894 885899) (-555 "INS.spad" 883286 883294 885685 885778) (-554 "INS.spad" 880875 880885 883276 883281) (-553 "INPSIGN.spad" 880323 880336 880865 880870) (-552 "INPRODPF.spad" 879419 879438 880313 880318) (-551 "INPRODFF.spad" 878507 878531 879409 879414) (-550 "INNMFACT.spad" 877482 877499 878497 878502) (-549 "INMODGCD.spad" 876970 877000 877472 877477) (-548 "INFSP.spad" 875267 875289 876960 876965) (-547 "INFPROD0.spad" 874347 874366 875257 875262) (-546 "INFORM.spad" 871546 871554 874337 874342) (-545 "INFORM1.spad" 871171 871181 871536 871541) (-544 "INFINITY.spad" 870723 870731 871161 871166) (-543 "INETCLTS.spad" 870700 870708 870713 870718) (-542 "INEP.spad" 869238 869260 870690 870695) (-541 "INDE.spad" 868967 868984 869228 869233) (-540 "INCRMAPS.spad" 868388 868398 868957 868962) (-539 "INBFILE.spad" 867460 867468 868378 868383) (-538 "INBFF.spad" 863254 863265 867450 867455) (-537 "INBCON.spad" 861544 861552 863244 863249) (-536 "INBCON.spad" 859832 859842 861534 861539) (-535 "INAST.spad" 859493 859501 859822 859827) (-534 "IMPTAST.spad" 859201 859209 859483 859488) (-533 "IMATRIX.spad" 858146 858172 858658 858685) (-532 "IMATQF.spad" 857240 857284 858102 858107) (-531 "IMATLIN.spad" 855845 855869 857196 857201) (-530 "ILIST.spad" 854503 854518 855028 855055) (-529 "IIARRAY2.spad" 853891 853929 854110 854137) (-528 "IFF.spad" 853301 853317 853572 853665) (-527 "IFAST.spad" 852915 852923 853291 853296) (-526 "IFARRAY.spad" 850408 850423 852098 852125) (-525 "IFAMON.spad" 850270 850287 850364 850369) (-524 "IEVALAB.spad" 849675 849687 850260 850265) (-523 "IEVALAB.spad" 849078 849092 849665 849670) (-522 "IDPO.spad" 848876 848888 849068 849073) (-521 "IDPOAMS.spad" 848632 848644 848866 848871) (-520 "IDPOAM.spad" 848352 848364 848622 848627) (-519 "IDPC.spad" 847290 847302 848342 848347) (-518 "IDPAM.spad" 847035 847047 847280 847285) (-517 "IDPAG.spad" 846782 846794 847025 847030) (-516 "IDENT.spad" 846432 846440 846772 846777) (-515 "IDECOMP.spad" 843671 843689 846422 846427) (-514 "IDEAL.spad" 838620 838659 843606 843611) (-513 "ICDEN.spad" 837809 837825 838610 838615) (-512 "ICARD.spad" 837000 837008 837799 837804) (-511 "IBPTOOLS.spad" 835607 835624 836990 836995) (-510 "IBITS.spad" 834810 834823 835243 835270) (-509 "IBATOOL.spad" 831787 831806 834800 834805) (-508 "IBACHIN.spad" 830294 830309 831777 831782) (-507 "IARRAY2.spad" 829282 829308 829901 829928) (-506 "IARRAY1.spad" 828327 828342 828465 828492) (-505 "IAN.spad" 826550 826558 828143 828236) (-504 "IALGFACT.spad" 826153 826186 826540 826545) (-503 "HYPCAT.spad" 825577 825585 826143 826148) (-502 "HYPCAT.spad" 824999 825009 825567 825572) (-501 "HOSTNAME.spad" 824807 824815 824989 824994) (-500 "HOMOTOP.spad" 824550 824560 824797 824802) (-499 "HOAGG.spad" 821832 821842 824540 824545) (-498 "HOAGG.spad" 818889 818901 821599 821604) (-497 "HEXADEC.spad" 816991 816999 817356 817449) (-496 "HEUGCD.spad" 816026 816037 816981 816986) (-495 "HELLFDIV.spad" 815616 815640 816016 816021) (-494 "HEAP.spad" 815008 815018 815223 815250) (-493 "HEADAST.spad" 814541 814549 814998 815003) (-492 "HDP.spad" 804307 804323 804684 804815) (-491 "HDMP.spad" 801521 801536 802137 802264) (-490 "HB.spad" 799772 799780 801511 801516) (-489 "HASHTBL.spad" 798242 798273 798453 798480) (-488 "HASAST.spad" 797958 797966 798232 798237) (-487 "HACKPI.spad" 797449 797457 797860 797953) (-486 "GTSET.spad" 796388 796404 797095 797122) (-485 "GSTBL.spad" 794907 794942 795081 795096) (-484 "GSERIES.spad" 792078 792105 793039 793188) (-483 "GROUP.spad" 791351 791359 792058 792073) (-482 "GROUP.spad" 790632 790642 791341 791346) (-481 "GROEBSOL.spad" 789126 789147 790622 790627) (-480 "GRMOD.spad" 787697 787709 789116 789121) (-479 "GRMOD.spad" 786266 786280 787687 787692) (-478 "GRIMAGE.spad" 779155 779163 786256 786261) (-477 "GRDEF.spad" 777534 777542 779145 779150) (-476 "GRAY.spad" 775997 776005 777524 777529) (-475 "GRALG.spad" 775074 775086 775987 775992) (-474 "GRALG.spad" 774149 774163 775064 775069) (-473 "GPOLSET.spad" 773603 773626 773831 773858) (-472 "GOSPER.spad" 772872 772890 773593 773598) (-471 "GMODPOL.spad" 772020 772047 772840 772867) (-470 "GHENSEL.spad" 771103 771117 772010 772015) (-469 "GENUPS.spad" 767396 767409 771093 771098) (-468 "GENUFACT.spad" 766973 766983 767386 767391) (-467 "GENPGCD.spad" 766559 766576 766963 766968) (-466 "GENMFACT.spad" 766011 766030 766549 766554) (-465 "GENEEZ.spad" 763962 763975 766001 766006) (-464 "GDMP.spad" 761018 761035 761792 761919) (-463 "GCNAALG.spad" 754941 754968 760812 760879) (-462 "GCDDOM.spad" 754117 754125 754867 754936) (-461 "GCDDOM.spad" 753355 753365 754107 754112) (-460 "GB.spad" 750881 750919 753311 753316) (-459 "GBINTERN.spad" 746901 746939 750871 750876) (-458 "GBF.spad" 742668 742706 746891 746896) (-457 "GBEUCLID.spad" 740550 740588 742658 742663) (-456 "GAUSSFAC.spad" 739863 739871 740540 740545) (-455 "GALUTIL.spad" 738189 738199 739819 739824) (-454 "GALPOLYU.spad" 736643 736656 738179 738184) (-453 "GALFACTU.spad" 734816 734835 736633 736638) (-452 "GALFACT.spad" 725005 725016 734806 734811) (-451 "FVFUN.spad" 722028 722036 724995 725000) (-450 "FVC.spad" 721080 721088 722018 722023) (-449 "FUNDESC.spad" 720758 720766 721070 721075) (-448 "FUNCTION.spad" 720607 720619 720748 720753) (-447 "FT.spad" 718904 718912 720597 720602) (-446 "FTEM.spad" 718069 718077 718894 718899) (-445 "FSUPFACT.spad" 716969 716988 718005 718010) (-444 "FST.spad" 715055 715063 716959 716964) (-443 "FSRED.spad" 714535 714551 715045 715050) (-442 "FSPRMELT.spad" 713417 713433 714492 714497) (-441 "FSPECF.spad" 711508 711524 713407 713412) (-440 "FS.spad" 705776 705786 711283 711503) (-439 "FS.spad" 699822 699834 705331 705336) (-438 "FSINT.spad" 699482 699498 699812 699817) (-437 "FSERIES.spad" 698673 698685 699302 699401) (-436 "FSCINT.spad" 697990 698006 698663 698668) (-435 "FSAGG.spad" 697107 697117 697946 697985) (-434 "FSAGG.spad" 696186 696198 697027 697032) (-433 "FSAGG2.spad" 694929 694945 696176 696181) (-432 "FS2UPS.spad" 689420 689454 694919 694924) (-431 "FS2.spad" 689067 689083 689410 689415) (-430 "FS2EXPXP.spad" 688192 688215 689057 689062) (-429 "FRUTIL.spad" 687146 687156 688182 688187) (-428 "FR.spad" 680678 680688 685986 686055) (-427 "FRNAALG.spad" 675947 675957 680620 680673) (-426 "FRNAALG.spad" 671228 671240 675903 675908) (-425 "FRNAAF2.spad" 670684 670702 671218 671223) (-424 "FRMOD.spad" 670094 670124 670615 670620) (-423 "FRIDEAL.spad" 669319 669340 670074 670089) (-422 "FRIDEAL2.spad" 668923 668955 669309 669314) (-421 "FRETRCT.spad" 668434 668444 668913 668918) (-420 "FRETRCT.spad" 667811 667823 668292 668297) (-419 "FRAMALG.spad" 666159 666172 667767 667806) (-418 "FRAMALG.spad" 664539 664554 666149 666154) (-417 "FRAC.spad" 661638 661648 662041 662214) (-416 "FRAC2.spad" 661243 661255 661628 661633) (-415 "FR2.spad" 660579 660591 661233 661238) (-414 "FPS.spad" 657394 657402 660469 660574) (-413 "FPS.spad" 654237 654247 657314 657319) (-412 "FPC.spad" 653283 653291 654139 654232) (-411 "FPC.spad" 652415 652425 653273 653278) (-410 "FPATMAB.spad" 652177 652187 652405 652410) (-409 "FPARFRAC.spad" 650664 650681 652167 652172) (-408 "FORTRAN.spad" 649170 649213 650654 650659) (-407 "FORT.spad" 648119 648127 649160 649165) (-406 "FORTFN.spad" 645289 645297 648109 648114) (-405 "FORTCAT.spad" 644973 644981 645279 645284) (-404 "FORMULA.spad" 642447 642455 644963 644968) (-403 "FORMULA1.spad" 641926 641936 642437 642442) (-402 "FORDER.spad" 641617 641641 641916 641921) (-401 "FOP.spad" 640818 640826 641607 641612) (-400 "FNLA.spad" 640242 640264 640786 640813) (-399 "FNCAT.spad" 638837 638845 640232 640237) (-398 "FNAME.spad" 638729 638737 638827 638832) (-397 "FMTC.spad" 638527 638535 638655 638724) (-396 "FMONOID.spad" 638192 638202 638483 638488) (-395 "FMONCAT.spad" 635345 635355 638182 638187) (-394 "FM.spad" 635040 635052 635279 635306) (-393 "FMFUN.spad" 632070 632078 635030 635035) (-392 "FMC.spad" 631122 631130 632060 632065) (-391 "FMCAT.spad" 628790 628808 631090 631117) (-390 "FM1.spad" 628147 628159 628724 628751) (-389 "FLOATRP.spad" 625882 625896 628137 628142) (-388 "FLOAT.spad" 619196 619204 625748 625877) (-387 "FLOATCP.spad" 616627 616641 619186 619191) (-386 "FLINEXP.spad" 616349 616359 616617 616622) (-385 "FLINEXP.spad" 616015 616027 616285 616290) (-384 "FLASORT.spad" 615341 615353 616005 616010) (-383 "FLALG.spad" 612987 613006 615267 615336) (-382 "FLAGG.spad" 610029 610039 612967 612982) (-381 "FLAGG.spad" 606972 606984 609912 609917) (-380 "FLAGG2.spad" 605697 605713 606962 606967) (-379 "FINRALG.spad" 603758 603771 605653 605692) (-378 "FINRALG.spad" 601745 601760 603642 603647) (-377 "FINITE.spad" 600897 600905 601735 601740) (-376 "FINAALG.spad" 590018 590028 600839 600892) (-375 "FINAALG.spad" 579151 579163 589974 589979) (-374 "FILE.spad" 578734 578744 579141 579146) (-373 "FILECAT.spad" 577260 577277 578724 578729) (-372 "FIELD.spad" 576666 576674 577162 577255) (-371 "FIELD.spad" 576158 576168 576656 576661) (-370 "FGROUP.spad" 574805 574815 576138 576153) (-369 "FGLMICPK.spad" 573592 573607 574795 574800) (-368 "FFX.spad" 572967 572982 573308 573401) (-367 "FFSLPE.spad" 572470 572491 572957 572962) (-366 "FFPOLY.spad" 563732 563743 572460 572465) (-365 "FFPOLY2.spad" 562792 562809 563722 563727) (-364 "FFP.spad" 562189 562209 562508 562601) (-363 "FF.spad" 561637 561653 561870 561963) (-362 "FFNBX.spad" 560149 560169 561353 561446) (-361 "FFNBP.spad" 558662 558679 559865 559958) (-360 "FFNB.spad" 557127 557148 558343 558436) (-359 "FFINTBAS.spad" 554641 554660 557117 557122) (-358 "FFIELDC.spad" 552218 552226 554543 554636) (-357 "FFIELDC.spad" 549881 549891 552208 552213) (-356 "FFHOM.spad" 548629 548646 549871 549876) (-355 "FFF.spad" 546064 546075 548619 548624) (-354 "FFCGX.spad" 544911 544931 545780 545873) (-353 "FFCGP.spad" 543800 543820 544627 544720) (-352 "FFCG.spad" 542592 542613 543481 543574) (-351 "FFCAT.spad" 535765 535787 542431 542587) (-350 "FFCAT.spad" 529017 529041 535685 535690) (-349 "FFCAT2.spad" 528764 528804 529007 529012) (-348 "FEXPR.spad" 520481 520527 528520 528559) (-347 "FEVALAB.spad" 520189 520199 520471 520476) (-346 "FEVALAB.spad" 519682 519694 519966 519971) (-345 "FDIV.spad" 519124 519148 519672 519677) (-344 "FDIVCAT.spad" 517188 517212 519114 519119) (-343 "FDIVCAT.spad" 515250 515276 517178 517183) (-342 "FDIV2.spad" 514906 514946 515240 515245) (-341 "FCTRDATA.spad" 513914 513922 514896 514901) (-340 "FCPAK1.spad" 512481 512489 513904 513909) (-339 "FCOMP.spad" 511860 511870 512471 512476) (-338 "FC.spad" 501867 501875 511850 511855) (-337 "FAXF.spad" 494838 494852 501769 501862) (-336 "FAXF.spad" 487861 487877 494794 494799) (-335 "FARRAY.spad" 486011 486021 487044 487071) (-334 "FAMR.spad" 484147 484159 485909 486006) (-333 "FAMR.spad" 482267 482281 484031 484036) (-332 "FAMONOID.spad" 481935 481945 482221 482226) (-331 "FAMONC.spad" 480231 480243 481925 481930) (-330 "FAGROUP.spad" 479855 479865 480127 480154) (-329 "FACUTIL.spad" 478059 478076 479845 479850) (-328 "FACTFUNC.spad" 477253 477263 478049 478054) (-327 "EXPUPXS.spad" 474086 474109 475385 475534) (-326 "EXPRTUBE.spad" 471374 471382 474076 474081) (-325 "EXPRODE.spad" 468534 468550 471364 471369) (-324 "EXPR.spad" 463709 463719 464423 464718) (-323 "EXPR2UPS.spad" 459831 459844 463699 463704) (-322 "EXPR2.spad" 459536 459548 459821 459826) (-321 "EXPEXPAN.spad" 456476 456501 457108 457201) (-320 "EXIT.spad" 456147 456155 456466 456471) (-319 "EXITAST.spad" 455883 455891 456137 456142) (-318 "EVALCYC.spad" 455343 455357 455873 455878) (-317 "EVALAB.spad" 454915 454925 455333 455338) (-316 "EVALAB.spad" 454485 454497 454905 454910) (-315 "EUCDOM.spad" 452059 452067 454411 454480) (-314 "EUCDOM.spad" 449695 449705 452049 452054) (-313 "ESTOOLS.spad" 441541 441549 449685 449690) (-312 "ESTOOLS2.spad" 441144 441158 441531 441536) (-311 "ESTOOLS1.spad" 440829 440840 441134 441139) (-310 "ES.spad" 433644 433652 440819 440824) (-309 "ES.spad" 426365 426375 433542 433547) (-308 "ESCONT.spad" 423158 423166 426355 426360) (-307 "ESCONT1.spad" 422907 422919 423148 423153) (-306 "ES2.spad" 422412 422428 422897 422902) (-305 "ES1.spad" 421982 421998 422402 422407) (-304 "ERROR.spad" 419309 419317 421972 421977) (-303 "EQTBL.spad" 417781 417803 417990 418017) (-302 "EQ.spad" 412586 412596 415373 415485) (-301 "EQ2.spad" 412304 412316 412576 412581) (-300 "EP.spad" 408630 408640 412294 412299) (-299 "ENV.spad" 407308 407316 408620 408625) (-298 "ENTIRER.spad" 406976 406984 407252 407303) (-297 "EMR.spad" 406264 406305 406902 406971) (-296 "ELTAGG.spad" 404518 404537 406254 406259) (-295 "ELTAGG.spad" 402736 402757 404474 404479) (-294 "ELTAB.spad" 402211 402224 402726 402731) (-293 "ELFUTS.spad" 401598 401617 402201 402206) (-292 "ELEMFUN.spad" 401287 401295 401588 401593) (-291 "ELEMFUN.spad" 400974 400984 401277 401282) (-290 "ELAGG.spad" 398945 398955 400954 400969) (-289 "ELAGG.spad" 396853 396865 398864 398869) (-288 "ELABOR.spad" 396199 396207 396843 396848) (-287 "ELABEXPR.spad" 395131 395139 396189 396194) (-286 "EFUPXS.spad" 391907 391937 395087 395092) (-285 "EFULS.spad" 388743 388766 391863 391868) (-284 "EFSTRUC.spad" 386758 386774 388733 388738) (-283 "EF.spad" 381534 381550 386748 386753) (-282 "EAB.spad" 379810 379818 381524 381529) (-281 "E04UCFA.spad" 379346 379354 379800 379805) (-280 "E04NAFA.spad" 378923 378931 379336 379341) (-279 "E04MBFA.spad" 378503 378511 378913 378918) (-278 "E04JAFA.spad" 378039 378047 378493 378498) (-277 "E04GCFA.spad" 377575 377583 378029 378034) (-276 "E04FDFA.spad" 377111 377119 377565 377570) (-275 "E04DGFA.spad" 376647 376655 377101 377106) (-274 "E04AGNT.spad" 372497 372505 376637 376642) (-273 "DVARCAT.spad" 369387 369397 372487 372492) (-272 "DVARCAT.spad" 366275 366287 369377 369382) (-271 "DSMP.spad" 363742 363756 364047 364174) (-270 "DROPT.spad" 357701 357709 363732 363737) (-269 "DROPT1.spad" 357366 357376 357691 357696) (-268 "DROPT0.spad" 352223 352231 357356 357361) (-267 "DRAWPT.spad" 350396 350404 352213 352218) (-266 "DRAW.spad" 343272 343285 350386 350391) (-265 "DRAWHACK.spad" 342580 342590 343262 343267) (-264 "DRAWCX.spad" 340050 340058 342570 342575) (-263 "DRAWCURV.spad" 339597 339612 340040 340045) (-262 "DRAWCFUN.spad" 329129 329137 339587 339592) (-261 "DQAGG.spad" 327307 327317 329097 329124) (-260 "DPOLCAT.spad" 322656 322672 327175 327302) (-259 "DPOLCAT.spad" 318091 318109 322612 322617) (-258 "DPMO.spad" 310564 310580 310702 310947) (-257 "DPMM.spad" 303050 303068 303175 303420) (-256 "DOMTMPLT.spad" 302821 302829 303040 303045) (-255 "DOMCTOR.spad" 302576 302584 302811 302816) (-254 "DOMAIN.spad" 301663 301671 302566 302571) (-253 "DMP.spad" 298923 298938 299493 299620) (-252 "DLP.spad" 298275 298285 298913 298918) (-251 "DLIST.spad" 296854 296864 297458 297485) (-250 "DLAGG.spad" 295271 295281 296844 296849) (-249 "DIVRING.spad" 294813 294821 295215 295266) (-248 "DIVRING.spad" 294399 294409 294803 294808) (-247 "DISPLAY.spad" 292589 292597 294389 294394) (-246 "DIRPROD.spad" 282092 282108 282732 282863) (-245 "DIRPROD2.spad" 280910 280928 282082 282087) (-244 "DIRPCAT.spad" 279854 279870 280774 280905) (-243 "DIRPCAT.spad" 278527 278545 279449 279454) (-242 "DIOSP.spad" 277352 277360 278517 278522) (-241 "DIOPS.spad" 276348 276358 277332 277347) (-240 "DIOPS.spad" 275318 275330 276304 276309) (-239 "DIFRING.spad" 275156 275164 275298 275313) (-238 "DIFFSPC.spad" 274735 274743 275146 275151) (-237 "DIFFSPC.spad" 274312 274322 274725 274730) (-236 "DIFFMOD.spad" 273801 273811 274280 274307) (-235 "DIFFDOM.spad" 272966 272977 273791 273796) (-234 "DIFFDOM.spad" 272129 272142 272956 272961) (-233 "DIFEXT.spad" 271300 271310 272109 272124) (-232 "DIFEXT.spad" 270388 270400 271199 271204) (-231 "DIAGG.spad" 270018 270028 270368 270383) (-230 "DIAGG.spad" 269656 269668 270008 270013) (-229 "DHMATRIX.spad" 267968 267978 269113 269140) (-228 "DFSFUN.spad" 261608 261616 267958 267963) (-227 "DFLOAT.spad" 258339 258347 261498 261603) (-226 "DFINTTLS.spad" 256570 256586 258329 258334) (-225 "DERHAM.spad" 254484 254516 256550 256565) (-224 "DEQUEUE.spad" 253808 253818 254091 254118) (-223 "DEGRED.spad" 253425 253439 253798 253803) (-222 "DEFINTRF.spad" 250962 250972 253415 253420) (-221 "DEFINTEF.spad" 249472 249488 250952 250957) (-220 "DEFAST.spad" 248840 248848 249462 249467) (-219 "DECIMAL.spad" 246946 246954 247307 247400) (-218 "DDFACT.spad" 244759 244776 246936 246941) (-217 "DBLRESP.spad" 244359 244383 244749 244754) (-216 "DBASE.spad" 243023 243033 244349 244354) (-215 "DATAARY.spad" 242485 242498 243013 243018) (-214 "D03FAFA.spad" 242313 242321 242475 242480) (-213 "D03EEFA.spad" 242133 242141 242303 242308) (-212 "D03AGNT.spad" 241219 241227 242123 242128) (-211 "D02EJFA.spad" 240681 240689 241209 241214) (-210 "D02CJFA.spad" 240159 240167 240671 240676) (-209 "D02BHFA.spad" 239649 239657 240149 240154) (-208 "D02BBFA.spad" 239139 239147 239639 239644) (-207 "D02AGNT.spad" 233953 233961 239129 239134) (-206 "D01WGTS.spad" 232272 232280 233943 233948) (-205 "D01TRNS.spad" 232249 232257 232262 232267) (-204 "D01GBFA.spad" 231771 231779 232239 232244) (-203 "D01FCFA.spad" 231293 231301 231761 231766) (-202 "D01ASFA.spad" 230761 230769 231283 231288) (-201 "D01AQFA.spad" 230207 230215 230751 230756) (-200 "D01APFA.spad" 229631 229639 230197 230202) (-199 "D01ANFA.spad" 229125 229133 229621 229626) (-198 "D01AMFA.spad" 228635 228643 229115 229120) (-197 "D01ALFA.spad" 228175 228183 228625 228630) (-196 "D01AKFA.spad" 227701 227709 228165 228170) (-195 "D01AJFA.spad" 227224 227232 227691 227696) (-194 "D01AGNT.spad" 223291 223299 227214 227219) (-193 "CYCLOTOM.spad" 222797 222805 223281 223286) (-192 "CYCLES.spad" 219589 219597 222787 222792) (-191 "CVMP.spad" 219006 219016 219579 219584) (-190 "CTRIGMNP.spad" 217506 217522 218996 219001) (-189 "CTOR.spad" 217197 217205 217496 217501) (-188 "CTORKIND.spad" 216800 216808 217187 217192) (-187 "CTORCAT.spad" 216049 216057 216790 216795) (-186 "CTORCAT.spad" 215296 215306 216039 216044) (-185 "CTORCALL.spad" 214885 214895 215286 215291) (-184 "CSTTOOLS.spad" 214130 214143 214875 214880) (-183 "CRFP.spad" 207854 207867 214120 214125) (-182 "CRCEAST.spad" 207574 207582 207844 207849) (-181 "CRAPACK.spad" 206625 206635 207564 207569) (-180 "CPMATCH.spad" 206129 206144 206550 206555) (-179 "CPIMA.spad" 205834 205853 206119 206124) (-178 "COORDSYS.spad" 200843 200853 205824 205829) (-177 "CONTOUR.spad" 200254 200262 200833 200838) (-176 "CONTFRAC.spad" 196004 196014 200156 200249) (-175 "CONDUIT.spad" 195762 195770 195994 195999) (-174 "COMRING.spad" 195436 195444 195700 195757) (-173 "COMPPROP.spad" 194954 194962 195426 195431) (-172 "COMPLPAT.spad" 194721 194736 194944 194949) (-171 "COMPLEX.spad" 188858 188868 189102 189363) (-170 "COMPLEX2.spad" 188573 188585 188848 188853) (-169 "COMPILER.spad" 188122 188130 188563 188568) (-168 "COMPFACT.spad" 187724 187738 188112 188117) (-167 "COMPCAT.spad" 185796 185806 187458 187719) (-166 "COMPCAT.spad" 183596 183608 185260 185265) (-165 "COMMUPC.spad" 183344 183362 183586 183591) (-164 "COMMONOP.spad" 182877 182885 183334 183339) (-163 "COMM.spad" 182688 182696 182867 182872) (-162 "COMMAAST.spad" 182451 182459 182678 182683) (-161 "COMBOPC.spad" 181366 181374 182441 182446) (-160 "COMBINAT.spad" 180133 180143 181356 181361) (-159 "COMBF.spad" 177515 177531 180123 180128) (-158 "COLOR.spad" 176352 176360 177505 177510) (-157 "COLONAST.spad" 176018 176026 176342 176347) (-156 "CMPLXRT.spad" 175729 175746 176008 176013) (-155 "CLLCTAST.spad" 175391 175399 175719 175724) (-154 "CLIP.spad" 171499 171507 175381 175386) (-153 "CLIF.spad" 170154 170170 171455 171494) (-152 "CLAGG.spad" 166659 166669 170144 170149) (-151 "CLAGG.spad" 163035 163047 166522 166527) (-150 "CINTSLPE.spad" 162366 162379 163025 163030) (-149 "CHVAR.spad" 160504 160526 162356 162361) (-148 "CHARZ.spad" 160419 160427 160484 160499) (-147 "CHARPOL.spad" 159929 159939 160409 160414) (-146 "CHARNZ.spad" 159682 159690 159909 159924) (-145 "CHAR.spad" 157556 157564 159672 159677) (-144 "CFCAT.spad" 156884 156892 157546 157551) (-143 "CDEN.spad" 156080 156094 156874 156879) (-142 "CCLASS.spad" 154229 154237 155491 155530) (-141 "CATEGORY.spad" 153271 153279 154219 154224) (-140 "CATCTOR.spad" 153162 153170 153261 153266) (-139 "CATAST.spad" 152780 152788 153152 153157) (-138 "CASEAST.spad" 152494 152502 152770 152775) (-137 "CARTEN.spad" 147861 147885 152484 152489) (-136 "CARTEN2.spad" 147251 147278 147851 147856) (-135 "CARD.spad" 144546 144554 147225 147246) (-134 "CAPSLAST.spad" 144320 144328 144536 144541) (-133 "CACHSET.spad" 143944 143952 144310 144315) (-132 "CABMON.spad" 143499 143507 143934 143939) (-131 "BYTEORD.spad" 143174 143182 143489 143494) (-130 "BYTE.spad" 142601 142609 143164 143169) (-129 "BYTEBUF.spad" 140460 140468 141770 141797) (-128 "BTREE.spad" 139533 139543 140067 140094) (-127 "BTOURN.spad" 138538 138548 139140 139167) (-126 "BTCAT.spad" 137930 137940 138506 138533) (-125 "BTCAT.spad" 137342 137354 137920 137925) (-124 "BTAGG.spad" 136808 136816 137310 137337) (-123 "BTAGG.spad" 136294 136304 136798 136803) (-122 "BSTREE.spad" 135035 135045 135901 135928) (-121 "BRILL.spad" 133232 133243 135025 135030) (-120 "BRAGG.spad" 132172 132182 133222 133227) (-119 "BRAGG.spad" 131076 131088 132128 132133) (-118 "BPADICRT.spad" 129057 129069 129312 129405) (-117 "BPADIC.spad" 128721 128733 128983 129052) (-116 "BOUNDZRO.spad" 128377 128394 128711 128716) (-115 "BOP.spad" 123559 123567 128367 128372) (-114 "BOP1.spad" 121025 121035 123549 123554) (-113 "BOOLE.spad" 120675 120683 121015 121020) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2266071 2266076 2266081 2266086) (-2 NIL 2266051 2266056 2266061 2266066) (-1 NIL 2266031 2266036 2266041 2266046) (0 NIL 2266011 2266016 2266021 2266026) (-1312 "ZMOD.spad" 2265820 2265833 2265949 2266006) (-1311 "ZLINDEP.spad" 2264886 2264897 2265810 2265815) (-1310 "ZDSOLVE.spad" 2254831 2254853 2264876 2264881) (-1309 "YSTREAM.spad" 2254326 2254337 2254821 2254826) (-1308 "YDIAGRAM.spad" 2253960 2253969 2254316 2254321) (-1307 "XRPOLY.spad" 2253180 2253200 2253816 2253885) (-1306 "XPR.spad" 2250975 2250988 2252898 2252997) (-1305 "XPOLY.spad" 2250530 2250541 2250831 2250900) (-1304 "XPOLYC.spad" 2249849 2249865 2250456 2250525) (-1303 "XPBWPOLY.spad" 2248286 2248306 2249629 2249698) (-1302 "XF.spad" 2246749 2246764 2248188 2248281) (-1301 "XF.spad" 2245192 2245209 2246633 2246638) (-1300 "XFALG.spad" 2242240 2242256 2245118 2245187) (-1299 "XEXPPKG.spad" 2241491 2241517 2242230 2242235) (-1298 "XDPOLY.spad" 2241105 2241121 2241347 2241416) (-1297 "XALG.spad" 2240765 2240776 2241061 2241100) (-1296 "WUTSET.spad" 2236604 2236621 2240411 2240438) (-1295 "WP.spad" 2235803 2235847 2236462 2236529) (-1294 "WHILEAST.spad" 2235601 2235610 2235793 2235798) (-1293 "WHEREAST.spad" 2235272 2235281 2235591 2235596) (-1292 "WFFINTBS.spad" 2232935 2232957 2235262 2235267) (-1291 "WEIER.spad" 2231157 2231168 2232925 2232930) (-1290 "VSPACE.spad" 2230830 2230841 2231125 2231152) (-1289 "VSPACE.spad" 2230523 2230536 2230820 2230825) (-1288 "VOID.spad" 2230200 2230209 2230513 2230518) (-1287 "VIEW.spad" 2227880 2227889 2230190 2230195) (-1286 "VIEWDEF.spad" 2223081 2223090 2227870 2227875) (-1285 "VIEW3D.spad" 2207042 2207051 2223071 2223076) (-1284 "VIEW2D.spad" 2194933 2194942 2207032 2207037) (-1283 "VECTOR.spad" 2193607 2193618 2193858 2193885) (-1282 "VECTOR2.spad" 2192246 2192259 2193597 2193602) (-1281 "VECTCAT.spad" 2190150 2190161 2192214 2192241) (-1280 "VECTCAT.spad" 2187861 2187874 2189927 2189932) (-1279 "VARIABLE.spad" 2187641 2187656 2187851 2187856) (-1278 "UTYPE.spad" 2187285 2187294 2187631 2187636) (-1277 "UTSODETL.spad" 2186580 2186604 2187241 2187246) (-1276 "UTSODE.spad" 2184796 2184816 2186570 2186575) (-1275 "UTS.spad" 2179600 2179628 2183263 2183360) (-1274 "UTSCAT.spad" 2177079 2177095 2179498 2179595) (-1273 "UTSCAT.spad" 2174202 2174220 2176623 2176628) (-1272 "UTS2.spad" 2173797 2173832 2174192 2174197) (-1271 "URAGG.spad" 2168470 2168481 2173787 2173792) (-1270 "URAGG.spad" 2163107 2163120 2168426 2168431) (-1269 "UPXSSING.spad" 2160752 2160778 2162188 2162321) (-1268 "UPXS.spad" 2157906 2157934 2158884 2159033) (-1267 "UPXSCONS.spad" 2155665 2155685 2156038 2156187) (-1266 "UPXSCCA.spad" 2154236 2154256 2155511 2155660) (-1265 "UPXSCCA.spad" 2152949 2152971 2154226 2154231) (-1264 "UPXSCAT.spad" 2151538 2151554 2152795 2152944) (-1263 "UPXS2.spad" 2151081 2151134 2151528 2151533) (-1262 "UPSQFREE.spad" 2149495 2149509 2151071 2151076) (-1261 "UPSCAT.spad" 2147282 2147306 2149393 2149490) (-1260 "UPSCAT.spad" 2144775 2144801 2146888 2146893) (-1259 "UPOLYC.spad" 2139815 2139826 2144617 2144770) (-1258 "UPOLYC.spad" 2134747 2134760 2139551 2139556) (-1257 "UPOLYC2.spad" 2134218 2134237 2134737 2134742) (-1256 "UP.spad" 2131417 2131432 2131804 2131957) (-1255 "UPMP.spad" 2130317 2130330 2131407 2131412) (-1254 "UPDIVP.spad" 2129882 2129896 2130307 2130312) (-1253 "UPDECOMP.spad" 2128127 2128141 2129872 2129877) (-1252 "UPCDEN.spad" 2127336 2127352 2128117 2128122) (-1251 "UP2.spad" 2126700 2126721 2127326 2127331) (-1250 "UNISEG.spad" 2126053 2126064 2126619 2126624) (-1249 "UNISEG2.spad" 2125550 2125563 2126009 2126014) (-1248 "UNIFACT.spad" 2124653 2124665 2125540 2125545) (-1247 "ULS.spad" 2115211 2115239 2116298 2116727) (-1246 "ULSCONS.spad" 2107607 2107627 2107977 2108126) (-1245 "ULSCCAT.spad" 2105344 2105364 2107453 2107602) (-1244 "ULSCCAT.spad" 2103189 2103211 2105300 2105305) (-1243 "ULSCAT.spad" 2101421 2101437 2103035 2103184) (-1242 "ULS2.spad" 2100935 2100988 2101411 2101416) (-1241 "UINT8.spad" 2100812 2100821 2100925 2100930) (-1240 "UINT64.spad" 2100688 2100697 2100802 2100807) (-1239 "UINT32.spad" 2100564 2100573 2100678 2100683) (-1238 "UINT16.spad" 2100440 2100449 2100554 2100559) (-1237 "UFD.spad" 2099505 2099514 2100366 2100435) (-1236 "UFD.spad" 2098632 2098643 2099495 2099500) (-1235 "UDVO.spad" 2097513 2097522 2098622 2098627) (-1234 "UDPO.spad" 2095006 2095017 2097469 2097474) (-1233 "TYPE.spad" 2094938 2094947 2094996 2095001) (-1232 "TYPEAST.spad" 2094857 2094866 2094928 2094933) (-1231 "TWOFACT.spad" 2093509 2093524 2094847 2094852) (-1230 "TUPLE.spad" 2092995 2093006 2093408 2093413) (-1229 "TUBETOOL.spad" 2089862 2089871 2092985 2092990) (-1228 "TUBE.spad" 2088509 2088526 2089852 2089857) (-1227 "TS.spad" 2087108 2087124 2088074 2088171) (-1226 "TSETCAT.spad" 2074235 2074252 2087076 2087103) (-1225 "TSETCAT.spad" 2061348 2061367 2074191 2074196) (-1224 "TRMANIP.spad" 2055714 2055731 2061054 2061059) (-1223 "TRIMAT.spad" 2054677 2054702 2055704 2055709) (-1222 "TRIGMNIP.spad" 2053204 2053221 2054667 2054672) (-1221 "TRIGCAT.spad" 2052716 2052725 2053194 2053199) (-1220 "TRIGCAT.spad" 2052226 2052237 2052706 2052711) (-1219 "TREE.spad" 2050801 2050812 2051833 2051860) (-1218 "TRANFUN.spad" 2050640 2050649 2050791 2050796) (-1217 "TRANFUN.spad" 2050477 2050488 2050630 2050635) (-1216 "TOPSP.spad" 2050151 2050160 2050467 2050472) (-1215 "TOOLSIGN.spad" 2049814 2049825 2050141 2050146) (-1214 "TEXTFILE.spad" 2048375 2048384 2049804 2049809) (-1213 "TEX.spad" 2045521 2045530 2048365 2048370) (-1212 "TEX1.spad" 2045077 2045088 2045511 2045516) (-1211 "TEMUTL.spad" 2044632 2044641 2045067 2045072) (-1210 "TBCMPPK.spad" 2042725 2042748 2044622 2044627) (-1209 "TBAGG.spad" 2041775 2041798 2042705 2042720) (-1208 "TBAGG.spad" 2040833 2040858 2041765 2041770) (-1207 "TANEXP.spad" 2040241 2040252 2040823 2040828) (-1206 "TALGOP.spad" 2039965 2039976 2040231 2040236) (-1205 "TABLE.spad" 2038376 2038399 2038646 2038673) (-1204 "TABLEAU.spad" 2037857 2037868 2038366 2038371) (-1203 "TABLBUMP.spad" 2034660 2034671 2037847 2037852) (-1202 "SYSTEM.spad" 2033888 2033897 2034650 2034655) (-1201 "SYSSOLP.spad" 2031371 2031382 2033878 2033883) (-1200 "SYSPTR.spad" 2031270 2031279 2031361 2031366) (-1199 "SYSNNI.spad" 2030452 2030463 2031260 2031265) (-1198 "SYSINT.spad" 2029856 2029867 2030442 2030447) (-1197 "SYNTAX.spad" 2026062 2026071 2029846 2029851) (-1196 "SYMTAB.spad" 2024130 2024139 2026052 2026057) (-1195 "SYMS.spad" 2020153 2020162 2024120 2024125) (-1194 "SYMPOLY.spad" 2019160 2019171 2019242 2019369) (-1193 "SYMFUNC.spad" 2018661 2018672 2019150 2019155) (-1192 "SYMBOL.spad" 2016164 2016173 2018651 2018656) (-1191 "SWITCH.spad" 2012935 2012944 2016154 2016159) (-1190 "SUTS.spad" 2009840 2009868 2011402 2011499) (-1189 "SUPXS.spad" 2006981 2007009 2007972 2008121) (-1188 "SUP.spad" 2003794 2003805 2004567 2004720) (-1187 "SUPFRACF.spad" 2002899 2002917 2003784 2003789) (-1186 "SUP2.spad" 2002291 2002304 2002889 2002894) (-1185 "SUMRF.spad" 2001265 2001276 2002281 2002286) (-1184 "SUMFS.spad" 2000902 2000919 2001255 2001260) (-1183 "SULS.spad" 1991447 1991475 1992547 1992976) (-1182 "SUCHTAST.spad" 1991216 1991225 1991437 1991442) (-1181 "SUCH.spad" 1990898 1990913 1991206 1991211) (-1180 "SUBSPACE.spad" 1983013 1983028 1990888 1990893) (-1179 "SUBRESP.spad" 1982183 1982197 1982969 1982974) (-1178 "STTF.spad" 1978282 1978298 1982173 1982178) (-1177 "STTFNC.spad" 1974750 1974766 1978272 1978277) (-1176 "STTAYLOR.spad" 1967385 1967396 1974631 1974636) (-1175 "STRTBL.spad" 1965890 1965907 1966039 1966066) (-1174 "STRING.spad" 1965299 1965308 1965313 1965340) (-1173 "STRICAT.spad" 1965087 1965096 1965267 1965294) (-1172 "STREAM.spad" 1962005 1962016 1964612 1964627) (-1171 "STREAM3.spad" 1961578 1961593 1961995 1962000) (-1170 "STREAM2.spad" 1960706 1960719 1961568 1961573) (-1169 "STREAM1.spad" 1960412 1960423 1960696 1960701) (-1168 "STINPROD.spad" 1959348 1959364 1960402 1960407) (-1167 "STEP.spad" 1958549 1958558 1959338 1959343) (-1166 "STEPAST.spad" 1957783 1957792 1958539 1958544) (-1165 "STBL.spad" 1956309 1956337 1956476 1956491) (-1164 "STAGG.spad" 1955384 1955395 1956299 1956304) (-1163 "STAGG.spad" 1954457 1954470 1955374 1955379) (-1162 "STACK.spad" 1953814 1953825 1954064 1954091) (-1161 "SREGSET.spad" 1951518 1951535 1953460 1953487) (-1160 "SRDCMPK.spad" 1950079 1950099 1951508 1951513) (-1159 "SRAGG.spad" 1945222 1945231 1950047 1950074) (-1158 "SRAGG.spad" 1940385 1940396 1945212 1945217) (-1157 "SQMATRIX.spad" 1938057 1938075 1938973 1939060) (-1156 "SPLTREE.spad" 1932609 1932622 1937493 1937520) (-1155 "SPLNODE.spad" 1929197 1929210 1932599 1932604) (-1154 "SPFCAT.spad" 1928006 1928015 1929187 1929192) (-1153 "SPECOUT.spad" 1926558 1926567 1927996 1928001) (-1152 "SPADXPT.spad" 1918153 1918162 1926548 1926553) (-1151 "spad-parser.spad" 1917618 1917627 1918143 1918148) (-1150 "SPADAST.spad" 1917319 1917328 1917608 1917613) (-1149 "SPACEC.spad" 1901518 1901529 1917309 1917314) (-1148 "SPACE3.spad" 1901294 1901305 1901508 1901513) (-1147 "SORTPAK.spad" 1900843 1900856 1901250 1901255) (-1146 "SOLVETRA.spad" 1898606 1898617 1900833 1900838) (-1145 "SOLVESER.spad" 1897134 1897145 1898596 1898601) (-1144 "SOLVERAD.spad" 1893160 1893171 1897124 1897129) (-1143 "SOLVEFOR.spad" 1891622 1891640 1893150 1893155) (-1142 "SNTSCAT.spad" 1891222 1891239 1891590 1891617) (-1141 "SMTS.spad" 1889494 1889520 1890787 1890884) (-1140 "SMP.spad" 1886969 1886989 1887359 1887486) (-1139 "SMITH.spad" 1885814 1885839 1886959 1886964) (-1138 "SMATCAT.spad" 1883924 1883954 1885758 1885809) (-1137 "SMATCAT.spad" 1881966 1881998 1883802 1883807) (-1136 "SKAGG.spad" 1880929 1880940 1881934 1881961) (-1135 "SINT.spad" 1879869 1879878 1880795 1880924) (-1134 "SIMPAN.spad" 1879597 1879606 1879859 1879864) (-1133 "SIG.spad" 1878927 1878936 1879587 1879592) (-1132 "SIGNRF.spad" 1878045 1878056 1878917 1878922) (-1131 "SIGNEF.spad" 1877324 1877341 1878035 1878040) (-1130 "SIGAST.spad" 1876709 1876718 1877314 1877319) (-1129 "SHP.spad" 1874637 1874652 1876665 1876670) (-1128 "SHDP.spad" 1864583 1864610 1865092 1865223) (-1127 "SGROUP.spad" 1864191 1864200 1864573 1864578) (-1126 "SGROUP.spad" 1863797 1863808 1864181 1864186) (-1125 "SGCF.spad" 1856936 1856945 1863787 1863792) (-1124 "SFRTCAT.spad" 1855866 1855883 1856904 1856931) (-1123 "SFRGCD.spad" 1854929 1854949 1855856 1855861) (-1122 "SFQCMPK.spad" 1849566 1849586 1854919 1854924) (-1121 "SFORT.spad" 1849005 1849019 1849556 1849561) (-1120 "SEXOF.spad" 1848848 1848888 1848995 1849000) (-1119 "SEX.spad" 1848740 1848749 1848838 1848843) (-1118 "SEXCAT.spad" 1846521 1846561 1848730 1848735) (-1117 "SET.spad" 1844845 1844856 1845942 1845981) (-1116 "SETMN.spad" 1843295 1843312 1844835 1844840) (-1115 "SETCAT.spad" 1842617 1842626 1843285 1843290) (-1114 "SETCAT.spad" 1841937 1841948 1842607 1842612) (-1113 "SETAGG.spad" 1838486 1838497 1841917 1841932) (-1112 "SETAGG.spad" 1835043 1835056 1838476 1838481) (-1111 "SEQAST.spad" 1834746 1834755 1835033 1835038) (-1110 "SEGXCAT.spad" 1833902 1833915 1834736 1834741) (-1109 "SEG.spad" 1833715 1833726 1833821 1833826) (-1108 "SEGCAT.spad" 1832640 1832651 1833705 1833710) (-1107 "SEGBIND.spad" 1832398 1832409 1832587 1832592) (-1106 "SEGBIND2.spad" 1832096 1832109 1832388 1832393) (-1105 "SEGAST.spad" 1831810 1831819 1832086 1832091) (-1104 "SEG2.spad" 1831245 1831258 1831766 1831771) (-1103 "SDVAR.spad" 1830521 1830532 1831235 1831240) (-1102 "SDPOL.spad" 1827947 1827958 1828238 1828365) (-1101 "SCPKG.spad" 1826036 1826047 1827937 1827942) (-1100 "SCOPE.spad" 1825189 1825198 1826026 1826031) (-1099 "SCACHE.spad" 1823885 1823896 1825179 1825184) (-1098 "SASTCAT.spad" 1823794 1823803 1823875 1823880) (-1097 "SAOS.spad" 1823666 1823675 1823784 1823789) (-1096 "SAERFFC.spad" 1823379 1823399 1823656 1823661) (-1095 "SAE.spad" 1821554 1821570 1822165 1822300) (-1094 "SAEFACT.spad" 1821255 1821275 1821544 1821549) (-1093 "RURPK.spad" 1818914 1818930 1821245 1821250) (-1092 "RULESET.spad" 1818367 1818391 1818904 1818909) (-1091 "RULE.spad" 1816607 1816631 1818357 1818362) (-1090 "RULECOLD.spad" 1816459 1816472 1816597 1816602) (-1089 "RTVALUE.spad" 1816194 1816203 1816449 1816454) (-1088 "RSTRCAST.spad" 1815911 1815920 1816184 1816189) (-1087 "RSETGCD.spad" 1812289 1812309 1815901 1815906) (-1086 "RSETCAT.spad" 1802225 1802242 1812257 1812284) (-1085 "RSETCAT.spad" 1792181 1792200 1802215 1802220) (-1084 "RSDCMPK.spad" 1790633 1790653 1792171 1792176) (-1083 "RRCC.spad" 1789017 1789047 1790623 1790628) (-1082 "RRCC.spad" 1787399 1787431 1789007 1789012) (-1081 "RPTAST.spad" 1787101 1787110 1787389 1787394) (-1080 "RPOLCAT.spad" 1766461 1766476 1786969 1787096) (-1079 "RPOLCAT.spad" 1745534 1745551 1766044 1766049) (-1078 "ROUTINE.spad" 1741417 1741426 1744181 1744208) (-1077 "ROMAN.spad" 1740745 1740754 1741283 1741412) (-1076 "ROIRC.spad" 1739825 1739857 1740735 1740740) (-1075 "RNS.spad" 1738728 1738737 1739727 1739820) (-1074 "RNS.spad" 1737717 1737728 1738718 1738723) (-1073 "RNG.spad" 1737452 1737461 1737707 1737712) (-1072 "RNGBIND.spad" 1736612 1736626 1737407 1737412) (-1071 "RMODULE.spad" 1736377 1736388 1736602 1736607) (-1070 "RMCAT2.spad" 1735797 1735854 1736367 1736372) (-1069 "RMATRIX.spad" 1734621 1734640 1734964 1735003) (-1068 "RMATCAT.spad" 1730200 1730231 1734577 1734616) (-1067 "RMATCAT.spad" 1725669 1725702 1730048 1730053) (-1066 "RLINSET.spad" 1725224 1725235 1725659 1725664) (-1065 "RINTERP.spad" 1725112 1725132 1725214 1725219) (-1064 "RING.spad" 1724582 1724591 1725092 1725107) (-1063 "RING.spad" 1724060 1724071 1724572 1724577) (-1062 "RIDIST.spad" 1723452 1723461 1724050 1724055) (-1061 "RGCHAIN.spad" 1722035 1722051 1722937 1722964) (-1060 "RGBCSPC.spad" 1721816 1721828 1722025 1722030) (-1059 "RGBCMDL.spad" 1721346 1721358 1721806 1721811) (-1058 "RF.spad" 1718988 1718999 1721336 1721341) (-1057 "RFFACTOR.spad" 1718450 1718461 1718978 1718983) (-1056 "RFFACT.spad" 1718185 1718197 1718440 1718445) (-1055 "RFDIST.spad" 1717181 1717190 1718175 1718180) (-1054 "RETSOL.spad" 1716600 1716613 1717171 1717176) (-1053 "RETRACT.spad" 1716028 1716039 1716590 1716595) (-1052 "RETRACT.spad" 1715454 1715467 1716018 1716023) (-1051 "RETAST.spad" 1715266 1715275 1715444 1715449) (-1050 "RESULT.spad" 1713326 1713335 1713913 1713940) (-1049 "RESRING.spad" 1712673 1712720 1713264 1713321) (-1048 "RESLATC.spad" 1711997 1712008 1712663 1712668) (-1047 "REPSQ.spad" 1711728 1711739 1711987 1711992) (-1046 "REP.spad" 1709282 1709291 1711718 1711723) (-1045 "REPDB.spad" 1708989 1709000 1709272 1709277) (-1044 "REP2.spad" 1698647 1698658 1708831 1708836) (-1043 "REP1.spad" 1692843 1692854 1698597 1698602) (-1042 "REGSET.spad" 1690640 1690657 1692489 1692516) (-1041 "REF.spad" 1689975 1689986 1690595 1690600) (-1040 "REDORDER.spad" 1689181 1689198 1689965 1689970) (-1039 "RECLOS.spad" 1687964 1687984 1688668 1688761) (-1038 "REALSOLV.spad" 1687104 1687113 1687954 1687959) (-1037 "REAL.spad" 1686976 1686985 1687094 1687099) (-1036 "REAL0Q.spad" 1684274 1684289 1686966 1686971) (-1035 "REAL0.spad" 1681118 1681133 1684264 1684269) (-1034 "RDUCEAST.spad" 1680839 1680848 1681108 1681113) (-1033 "RDIV.spad" 1680494 1680519 1680829 1680834) (-1032 "RDIST.spad" 1680061 1680072 1680484 1680489) (-1031 "RDETRS.spad" 1678925 1678943 1680051 1680056) (-1030 "RDETR.spad" 1677064 1677082 1678915 1678920) (-1029 "RDEEFS.spad" 1676163 1676180 1677054 1677059) (-1028 "RDEEF.spad" 1675173 1675190 1676153 1676158) (-1027 "RCFIELD.spad" 1672359 1672368 1675075 1675168) (-1026 "RCFIELD.spad" 1669631 1669642 1672349 1672354) (-1025 "RCAGG.spad" 1667559 1667570 1669621 1669626) (-1024 "RCAGG.spad" 1665414 1665427 1667478 1667483) (-1023 "RATRET.spad" 1664774 1664785 1665404 1665409) (-1022 "RATFACT.spad" 1664466 1664478 1664764 1664769) (-1021 "RANDSRC.spad" 1663785 1663794 1664456 1664461) (-1020 "RADUTIL.spad" 1663541 1663550 1663775 1663780) (-1019 "RADIX.spad" 1660462 1660476 1662008 1662101) (-1018 "RADFF.spad" 1658875 1658912 1658994 1659150) (-1017 "RADCAT.spad" 1658470 1658479 1658865 1658870) (-1016 "RADCAT.spad" 1658063 1658074 1658460 1658465) (-1015 "QUEUE.spad" 1657411 1657422 1657670 1657697) (-1014 "QUAT.spad" 1655869 1655880 1656212 1656277) (-1013 "QUATCT2.spad" 1655489 1655508 1655859 1655864) (-1012 "QUATCAT.spad" 1653659 1653670 1655419 1655484) (-1011 "QUATCAT.spad" 1651580 1651593 1653342 1653347) (-1010 "QUAGG.spad" 1650407 1650418 1651548 1651575) (-1009 "QQUTAST.spad" 1650175 1650184 1650397 1650402) (-1008 "QFORM.spad" 1649793 1649808 1650165 1650170) (-1007 "QFCAT.spad" 1648495 1648506 1649695 1649788) (-1006 "QFCAT.spad" 1646788 1646801 1647990 1647995) (-1005 "QFCAT2.spad" 1646480 1646497 1646778 1646783) (-1004 "QEQUAT.spad" 1646038 1646047 1646470 1646475) (-1003 "QCMPACK.spad" 1640784 1640804 1646028 1646033) (-1002 "QALGSET.spad" 1636862 1636895 1640698 1640703) (-1001 "QALGSET2.spad" 1634857 1634876 1636852 1636857) (-1000 "PWFFINTB.spad" 1632272 1632294 1634847 1634852) (-999 "PUSHVAR.spad" 1631611 1631630 1632262 1632267) (-998 "PTRANFN.spad" 1627739 1627749 1631601 1631606) (-997 "PTPACK.spad" 1624827 1624837 1627729 1627734) (-996 "PTFUNC2.spad" 1624650 1624664 1624817 1624822) (-995 "PTCAT.spad" 1623905 1623915 1624618 1624645) (-994 "PSQFR.spad" 1623212 1623236 1623895 1623900) (-993 "PSEUDLIN.spad" 1622098 1622108 1623202 1623207) (-992 "PSETPK.spad" 1607531 1607547 1621976 1621981) (-991 "PSETCAT.spad" 1601451 1601474 1607511 1607526) (-990 "PSETCAT.spad" 1595345 1595370 1601407 1601412) (-989 "PSCURVE.spad" 1594328 1594336 1595335 1595340) (-988 "PSCAT.spad" 1593111 1593140 1594226 1594323) (-987 "PSCAT.spad" 1591984 1592015 1593101 1593106) (-986 "PRTITION.spad" 1590682 1590690 1591974 1591979) (-985 "PRTDAST.spad" 1590401 1590409 1590672 1590677) (-984 "PRS.spad" 1579963 1579980 1590357 1590362) (-983 "PRQAGG.spad" 1579398 1579408 1579931 1579958) (-982 "PROPLOG.spad" 1578970 1578978 1579388 1579393) (-981 "PROPFUN2.spad" 1578593 1578606 1578960 1578965) (-980 "PROPFUN1.spad" 1577991 1578002 1578583 1578588) (-979 "PROPFRML.spad" 1576559 1576570 1577981 1577986) (-978 "PROPERTY.spad" 1576047 1576055 1576549 1576554) (-977 "PRODUCT.spad" 1573729 1573741 1574013 1574068) (-976 "PR.spad" 1572121 1572133 1572820 1572947) (-975 "PRINT.spad" 1571873 1571881 1572111 1572116) (-974 "PRIMES.spad" 1570126 1570136 1571863 1571868) (-973 "PRIMELT.spad" 1568207 1568221 1570116 1570121) (-972 "PRIMCAT.spad" 1567834 1567842 1568197 1568202) (-971 "PRIMARR.spad" 1566839 1566849 1567017 1567044) (-970 "PRIMARR2.spad" 1565606 1565618 1566829 1566834) (-969 "PREASSOC.spad" 1564988 1565000 1565596 1565601) (-968 "PPCURVE.spad" 1564125 1564133 1564978 1564983) (-967 "PORTNUM.spad" 1563900 1563908 1564115 1564120) (-966 "POLYROOT.spad" 1562749 1562771 1563856 1563861) (-965 "POLY.spad" 1560084 1560094 1560599 1560726) (-964 "POLYLIFT.spad" 1559349 1559372 1560074 1560079) (-963 "POLYCATQ.spad" 1557467 1557489 1559339 1559344) (-962 "POLYCAT.spad" 1550937 1550958 1557335 1557462) (-961 "POLYCAT.spad" 1543745 1543768 1550145 1550150) (-960 "POLY2UP.spad" 1543197 1543211 1543735 1543740) (-959 "POLY2.spad" 1542794 1542806 1543187 1543192) (-958 "POLUTIL.spad" 1541735 1541764 1542750 1542755) (-957 "POLTOPOL.spad" 1540483 1540498 1541725 1541730) (-956 "POINT.spad" 1539321 1539331 1539408 1539435) (-955 "PNTHEORY.spad" 1536023 1536031 1539311 1539316) (-954 "PMTOOLS.spad" 1534798 1534812 1536013 1536018) (-953 "PMSYM.spad" 1534347 1534357 1534788 1534793) (-952 "PMQFCAT.spad" 1533938 1533952 1534337 1534342) (-951 "PMPRED.spad" 1533417 1533431 1533928 1533933) (-950 "PMPREDFS.spad" 1532871 1532893 1533407 1533412) (-949 "PMPLCAT.spad" 1531951 1531969 1532803 1532808) (-948 "PMLSAGG.spad" 1531536 1531550 1531941 1531946) (-947 "PMKERNEL.spad" 1531115 1531127 1531526 1531531) (-946 "PMINS.spad" 1530695 1530705 1531105 1531110) (-945 "PMFS.spad" 1530272 1530290 1530685 1530690) (-944 "PMDOWN.spad" 1529562 1529576 1530262 1530267) (-943 "PMASS.spad" 1528572 1528580 1529552 1529557) (-942 "PMASSFS.spad" 1527539 1527555 1528562 1528567) (-941 "PLOTTOOL.spad" 1527319 1527327 1527529 1527534) (-940 "PLOT.spad" 1522242 1522250 1527309 1527314) (-939 "PLOT3D.spad" 1518706 1518714 1522232 1522237) (-938 "PLOT1.spad" 1517863 1517873 1518696 1518701) (-937 "PLEQN.spad" 1505153 1505180 1517853 1517858) (-936 "PINTERP.spad" 1504775 1504794 1505143 1505148) (-935 "PINTERPA.spad" 1504559 1504575 1504765 1504770) (-934 "PI.spad" 1504168 1504176 1504533 1504554) (-933 "PID.spad" 1503138 1503146 1504094 1504163) (-932 "PICOERCE.spad" 1502795 1502805 1503128 1503133) (-931 "PGROEB.spad" 1501396 1501410 1502785 1502790) (-930 "PGE.spad" 1493013 1493021 1501386 1501391) (-929 "PGCD.spad" 1491903 1491920 1493003 1493008) (-928 "PFRPAC.spad" 1491052 1491062 1491893 1491898) (-927 "PFR.spad" 1487715 1487725 1490954 1491047) (-926 "PFOTOOLS.spad" 1486973 1486989 1487705 1487710) (-925 "PFOQ.spad" 1486343 1486361 1486963 1486968) (-924 "PFO.spad" 1485762 1485789 1486333 1486338) (-923 "PF.spad" 1485336 1485348 1485567 1485660) (-922 "PFECAT.spad" 1483018 1483026 1485262 1485331) (-921 "PFECAT.spad" 1480728 1480738 1482974 1482979) (-920 "PFBRU.spad" 1478616 1478628 1480718 1480723) (-919 "PFBR.spad" 1476176 1476199 1478606 1478611) (-918 "PERM.spad" 1471983 1471993 1476006 1476021) (-917 "PERMGRP.spad" 1466753 1466763 1471973 1471978) (-916 "PERMCAT.spad" 1465414 1465424 1466733 1466748) (-915 "PERMAN.spad" 1463946 1463960 1465404 1465409) (-914 "PENDTREE.spad" 1463287 1463297 1463575 1463580) (-913 "PDRING.spad" 1461838 1461848 1463267 1463282) (-912 "PDRING.spad" 1460397 1460409 1461828 1461833) (-911 "PDEPROB.spad" 1459412 1459420 1460387 1460392) (-910 "PDEPACK.spad" 1453452 1453460 1459402 1459407) (-909 "PDECOMP.spad" 1452922 1452939 1453442 1453447) (-908 "PDECAT.spad" 1451278 1451286 1452912 1452917) (-907 "PDDOM.spad" 1450744 1450757 1451268 1451273) (-906 "PDDOM.spad" 1450208 1450223 1450734 1450739) (-905 "PCOMP.spad" 1450061 1450074 1450198 1450203) (-904 "PBWLB.spad" 1448649 1448666 1450051 1450056) (-903 "PATTERN.spad" 1443188 1443198 1448639 1448644) (-902 "PATTERN2.spad" 1442926 1442938 1443178 1443183) (-901 "PATTERN1.spad" 1441262 1441278 1442916 1442921) (-900 "PATRES.spad" 1438837 1438849 1441252 1441257) (-899 "PATRES2.spad" 1438509 1438523 1438827 1438832) (-898 "PATMATCH.spad" 1436706 1436737 1438217 1438222) (-897 "PATMAB.spad" 1436135 1436145 1436696 1436701) (-896 "PATLRES.spad" 1435221 1435235 1436125 1436130) (-895 "PATAB.spad" 1434985 1434995 1435211 1435216) (-894 "PARTPERM.spad" 1432993 1433001 1434975 1434980) (-893 "PARSURF.spad" 1432427 1432455 1432983 1432988) (-892 "PARSU2.spad" 1432224 1432240 1432417 1432422) (-891 "script-parser.spad" 1431744 1431752 1432214 1432219) (-890 "PARSCURV.spad" 1431178 1431206 1431734 1431739) (-889 "PARSC2.spad" 1430969 1430985 1431168 1431173) (-888 "PARPCURV.spad" 1430431 1430459 1430959 1430964) (-887 "PARPC2.spad" 1430222 1430238 1430421 1430426) (-886 "PARAMAST.spad" 1429350 1429358 1430212 1430217) (-885 "PAN2EXPR.spad" 1428762 1428770 1429340 1429345) (-884 "PALETTE.spad" 1427732 1427740 1428752 1428757) (-883 "PAIR.spad" 1426719 1426732 1427320 1427325) (-882 "PADICRC.spad" 1424053 1424071 1425224 1425317) (-881 "PADICRAT.spad" 1422068 1422080 1422289 1422382) (-880 "PADIC.spad" 1421763 1421775 1421994 1422063) (-879 "PADICCT.spad" 1420312 1420324 1421689 1421758) (-878 "PADEPAC.spad" 1419001 1419020 1420302 1420307) (-877 "PADE.spad" 1417753 1417769 1418991 1418996) (-876 "OWP.spad" 1416993 1417023 1417611 1417678) (-875 "OVERSET.spad" 1416566 1416574 1416983 1416988) (-874 "OVAR.spad" 1416347 1416370 1416556 1416561) (-873 "OUT.spad" 1415433 1415441 1416337 1416342) (-872 "OUTFORM.spad" 1404825 1404833 1415423 1415428) (-871 "OUTBFILE.spad" 1404243 1404251 1404815 1404820) (-870 "OUTBCON.spad" 1403249 1403257 1404233 1404238) (-869 "OUTBCON.spad" 1402253 1402263 1403239 1403244) (-868 "OSI.spad" 1401728 1401736 1402243 1402248) (-867 "OSGROUP.spad" 1401646 1401654 1401718 1401723) (-866 "ORTHPOL.spad" 1400131 1400141 1401563 1401568) (-865 "OREUP.spad" 1399584 1399612 1399811 1399850) (-864 "ORESUP.spad" 1398885 1398909 1399264 1399303) (-863 "OREPCTO.spad" 1396742 1396754 1398805 1398810) (-862 "OREPCAT.spad" 1390889 1390899 1396698 1396737) (-861 "OREPCAT.spad" 1384926 1384938 1390737 1390742) (-860 "ORDSET.spad" 1384098 1384106 1384916 1384921) (-859 "ORDSET.spad" 1383268 1383278 1384088 1384093) (-858 "ORDRING.spad" 1382658 1382666 1383248 1383263) (-857 "ORDRING.spad" 1382056 1382066 1382648 1382653) (-856 "ORDMON.spad" 1381911 1381919 1382046 1382051) (-855 "ORDFUNS.spad" 1381043 1381059 1381901 1381906) (-854 "ORDFIN.spad" 1380863 1380871 1381033 1381038) (-853 "ORDCOMP.spad" 1379328 1379338 1380410 1380439) (-852 "ORDCOMP2.spad" 1378621 1378633 1379318 1379323) (-851 "OPTPROB.spad" 1377259 1377267 1378611 1378616) (-850 "OPTPACK.spad" 1369668 1369676 1377249 1377254) (-849 "OPTCAT.spad" 1367347 1367355 1369658 1369663) (-848 "OPSIG.spad" 1367001 1367009 1367337 1367342) (-847 "OPQUERY.spad" 1366550 1366558 1366991 1366996) (-846 "OP.spad" 1366292 1366302 1366372 1366439) (-845 "OPERCAT.spad" 1365758 1365768 1366282 1366287) (-844 "OPERCAT.spad" 1365222 1365234 1365748 1365753) (-843 "ONECOMP.spad" 1363967 1363977 1364769 1364798) (-842 "ONECOMP2.spad" 1363391 1363403 1363957 1363962) (-841 "OMSERVER.spad" 1362397 1362405 1363381 1363386) (-840 "OMSAGG.spad" 1362185 1362195 1362353 1362392) (-839 "OMPKG.spad" 1360801 1360809 1362175 1362180) (-838 "OM.spad" 1359774 1359782 1360791 1360796) (-837 "OMLO.spad" 1359199 1359211 1359660 1359699) (-836 "OMEXPR.spad" 1359033 1359043 1359189 1359194) (-835 "OMERR.spad" 1358578 1358586 1359023 1359028) (-834 "OMERRK.spad" 1357612 1357620 1358568 1358573) (-833 "OMENC.spad" 1356956 1356964 1357602 1357607) (-832 "OMDEV.spad" 1351265 1351273 1356946 1356951) (-831 "OMCONN.spad" 1350674 1350682 1351255 1351260) (-830 "OINTDOM.spad" 1350437 1350445 1350600 1350669) (-829 "OFMONOID.spad" 1348560 1348570 1350393 1350398) (-828 "ODVAR.spad" 1347821 1347831 1348550 1348555) (-827 "ODR.spad" 1347465 1347491 1347633 1347782) (-826 "ODPOL.spad" 1344847 1344857 1345187 1345314) (-825 "ODP.spad" 1334929 1334949 1335302 1335433) (-824 "ODETOOLS.spad" 1333578 1333597 1334919 1334924) (-823 "ODESYS.spad" 1331272 1331289 1333568 1333573) (-822 "ODERTRIC.spad" 1327281 1327298 1331229 1331234) (-821 "ODERED.spad" 1326680 1326704 1327271 1327276) (-820 "ODERAT.spad" 1324295 1324312 1326670 1326675) (-819 "ODEPRRIC.spad" 1321332 1321354 1324285 1324290) (-818 "ODEPROB.spad" 1320589 1320597 1321322 1321327) (-817 "ODEPRIM.spad" 1317923 1317945 1320579 1320584) (-816 "ODEPAL.spad" 1317309 1317333 1317913 1317918) (-815 "ODEPACK.spad" 1303975 1303983 1317299 1317304) (-814 "ODEINT.spad" 1303410 1303426 1303965 1303970) (-813 "ODEIFTBL.spad" 1300805 1300813 1303400 1303405) (-812 "ODEEF.spad" 1296296 1296312 1300795 1300800) (-811 "ODECONST.spad" 1295833 1295851 1296286 1296291) (-810 "ODECAT.spad" 1294431 1294439 1295823 1295828) (-809 "OCT.spad" 1292567 1292577 1293281 1293320) (-808 "OCTCT2.spad" 1292213 1292234 1292557 1292562) (-807 "OC.spad" 1290009 1290019 1292169 1292208) (-806 "OC.spad" 1287530 1287542 1289692 1289697) (-805 "OCAMON.spad" 1287378 1287386 1287520 1287525) (-804 "OASGP.spad" 1287193 1287201 1287368 1287373) (-803 "OAMONS.spad" 1286715 1286723 1287183 1287188) (-802 "OAMON.spad" 1286576 1286584 1286705 1286710) (-801 "OAGROUP.spad" 1286438 1286446 1286566 1286571) (-800 "NUMTUBE.spad" 1286029 1286045 1286428 1286433) (-799 "NUMQUAD.spad" 1274005 1274013 1286019 1286024) (-798 "NUMODE.spad" 1265359 1265367 1273995 1274000) (-797 "NUMINT.spad" 1262925 1262933 1265349 1265354) (-796 "NUMFMT.spad" 1261765 1261773 1262915 1262920) (-795 "NUMERIC.spad" 1253879 1253889 1261570 1261575) (-794 "NTSCAT.spad" 1252387 1252403 1253847 1253874) (-793 "NTPOLFN.spad" 1251938 1251948 1252304 1252309) (-792 "NSUP.spad" 1244984 1244994 1249524 1249677) (-791 "NSUP2.spad" 1244376 1244388 1244974 1244979) (-790 "NSMP.spad" 1240606 1240625 1240914 1241041) (-789 "NREP.spad" 1238984 1238998 1240596 1240601) (-788 "NPCOEF.spad" 1238230 1238250 1238974 1238979) (-787 "NORMRETR.spad" 1237828 1237867 1238220 1238225) (-786 "NORMPK.spad" 1235730 1235749 1237818 1237823) (-785 "NORMMA.spad" 1235418 1235444 1235720 1235725) (-784 "NONE.spad" 1235159 1235167 1235408 1235413) (-783 "NONE1.spad" 1234835 1234845 1235149 1235154) (-782 "NODE1.spad" 1234322 1234338 1234825 1234830) (-781 "NNI.spad" 1233217 1233225 1234296 1234317) (-780 "NLINSOL.spad" 1231843 1231853 1233207 1233212) (-779 "NIPROB.spad" 1230384 1230392 1231833 1231838) (-778 "NFINTBAS.spad" 1227944 1227961 1230374 1230379) (-777 "NETCLT.spad" 1227918 1227929 1227934 1227939) (-776 "NCODIV.spad" 1226134 1226150 1227908 1227913) (-775 "NCNTFRAC.spad" 1225776 1225790 1226124 1226129) (-774 "NCEP.spad" 1223942 1223956 1225766 1225771) (-773 "NASRING.spad" 1223538 1223546 1223932 1223937) (-772 "NASRING.spad" 1223132 1223142 1223528 1223533) (-771 "NARNG.spad" 1222484 1222492 1223122 1223127) (-770 "NARNG.spad" 1221834 1221844 1222474 1222479) (-769 "NAGSP.spad" 1220911 1220919 1221824 1221829) (-768 "NAGS.spad" 1210572 1210580 1220901 1220906) (-767 "NAGF07.spad" 1209003 1209011 1210562 1210567) (-766 "NAGF04.spad" 1203405 1203413 1208993 1208998) (-765 "NAGF02.spad" 1197474 1197482 1203395 1203400) (-764 "NAGF01.spad" 1193235 1193243 1197464 1197469) (-763 "NAGE04.spad" 1186935 1186943 1193225 1193230) (-762 "NAGE02.spad" 1177595 1177603 1186925 1186930) (-761 "NAGE01.spad" 1173597 1173605 1177585 1177590) (-760 "NAGD03.spad" 1171601 1171609 1173587 1173592) (-759 "NAGD02.spad" 1164348 1164356 1171591 1171596) (-758 "NAGD01.spad" 1158641 1158649 1164338 1164343) (-757 "NAGC06.spad" 1154516 1154524 1158631 1158636) (-756 "NAGC05.spad" 1153017 1153025 1154506 1154511) (-755 "NAGC02.spad" 1152284 1152292 1153007 1153012) (-754 "NAALG.spad" 1151825 1151835 1152252 1152279) (-753 "NAALG.spad" 1151386 1151398 1151815 1151820) (-752 "MULTSQFR.spad" 1148344 1148361 1151376 1151381) (-751 "MULTFACT.spad" 1147727 1147744 1148334 1148339) (-750 "MTSCAT.spad" 1145821 1145842 1147625 1147722) (-749 "MTHING.spad" 1145480 1145490 1145811 1145816) (-748 "MSYSCMD.spad" 1144914 1144922 1145470 1145475) (-747 "MSET.spad" 1142872 1142882 1144620 1144659) (-746 "MSETAGG.spad" 1142717 1142727 1142840 1142867) (-745 "MRING.spad" 1139694 1139706 1142425 1142492) (-744 "MRF2.spad" 1139264 1139278 1139684 1139689) (-743 "MRATFAC.spad" 1138810 1138827 1139254 1139259) (-742 "MPRFF.spad" 1136850 1136869 1138800 1138805) (-741 "MPOLY.spad" 1134321 1134336 1134680 1134807) (-740 "MPCPF.spad" 1133585 1133604 1134311 1134316) (-739 "MPC3.spad" 1133402 1133442 1133575 1133580) (-738 "MPC2.spad" 1133048 1133081 1133392 1133397) (-737 "MONOTOOL.spad" 1131399 1131416 1133038 1133043) (-736 "MONOID.spad" 1130718 1130726 1131389 1131394) (-735 "MONOID.spad" 1130035 1130045 1130708 1130713) (-734 "MONOGEN.spad" 1128783 1128796 1129895 1130030) (-733 "MONOGEN.spad" 1127553 1127568 1128667 1128672) (-732 "MONADWU.spad" 1125583 1125591 1127543 1127548) (-731 "MONADWU.spad" 1123611 1123621 1125573 1125578) (-730 "MONAD.spad" 1122771 1122779 1123601 1123606) (-729 "MONAD.spad" 1121929 1121939 1122761 1122766) (-728 "MOEBIUS.spad" 1120665 1120679 1121909 1121924) (-727 "MODULE.spad" 1120535 1120545 1120633 1120660) (-726 "MODULE.spad" 1120425 1120437 1120525 1120530) (-725 "MODRING.spad" 1119760 1119799 1120405 1120420) (-724 "MODOP.spad" 1118425 1118437 1119582 1119649) (-723 "MODMONOM.spad" 1118156 1118174 1118415 1118420) (-722 "MODMON.spad" 1114951 1114967 1115670 1115823) (-721 "MODFIELD.spad" 1114313 1114352 1114853 1114946) (-720 "MMLFORM.spad" 1113173 1113181 1114303 1114308) (-719 "MMAP.spad" 1112915 1112949 1113163 1113168) (-718 "MLO.spad" 1111374 1111384 1112871 1112910) (-717 "MLIFT.spad" 1109986 1110003 1111364 1111369) (-716 "MKUCFUNC.spad" 1109521 1109539 1109976 1109981) (-715 "MKRECORD.spad" 1109125 1109138 1109511 1109516) (-714 "MKFUNC.spad" 1108532 1108542 1109115 1109120) (-713 "MKFLCFN.spad" 1107500 1107510 1108522 1108527) (-712 "MKBCFUNC.spad" 1106995 1107013 1107490 1107495) (-711 "MINT.spad" 1106434 1106442 1106897 1106990) (-710 "MHROWRED.spad" 1104945 1104955 1106424 1106429) (-709 "MFLOAT.spad" 1103465 1103473 1104835 1104940) (-708 "MFINFACT.spad" 1102865 1102887 1103455 1103460) (-707 "MESH.spad" 1100647 1100655 1102855 1102860) (-706 "MDDFACT.spad" 1098858 1098868 1100637 1100642) (-705 "MDAGG.spad" 1098149 1098159 1098838 1098853) (-704 "MCMPLX.spad" 1094160 1094168 1094774 1094975) (-703 "MCDEN.spad" 1093370 1093382 1094150 1094155) (-702 "MCALCFN.spad" 1090492 1090518 1093360 1093365) (-701 "MAYBE.spad" 1089776 1089787 1090482 1090487) (-700 "MATSTOR.spad" 1087084 1087094 1089766 1089771) (-699 "MATRIX.spad" 1085788 1085798 1086272 1086299) (-698 "MATLIN.spad" 1083132 1083156 1085672 1085677) (-697 "MATCAT.spad" 1074861 1074883 1083100 1083127) (-696 "MATCAT.spad" 1066462 1066486 1074703 1074708) (-695 "MATCAT2.spad" 1065744 1065792 1066452 1066457) (-694 "MAPPKG3.spad" 1064659 1064673 1065734 1065739) (-693 "MAPPKG2.spad" 1063997 1064009 1064649 1064654) (-692 "MAPPKG1.spad" 1062825 1062835 1063987 1063992) (-691 "MAPPAST.spad" 1062140 1062148 1062815 1062820) (-690 "MAPHACK3.spad" 1061952 1061966 1062130 1062135) (-689 "MAPHACK2.spad" 1061721 1061733 1061942 1061947) (-688 "MAPHACK1.spad" 1061365 1061375 1061711 1061716) (-687 "MAGMA.spad" 1059155 1059172 1061355 1061360) (-686 "MACROAST.spad" 1058734 1058742 1059145 1059150) (-685 "M3D.spad" 1056454 1056464 1058112 1058117) (-684 "LZSTAGG.spad" 1053692 1053702 1056444 1056449) (-683 "LZSTAGG.spad" 1050928 1050940 1053682 1053687) (-682 "LWORD.spad" 1047633 1047650 1050918 1050923) (-681 "LSTAST.spad" 1047417 1047425 1047623 1047628) (-680 "LSQM.spad" 1045703 1045717 1046097 1046148) (-679 "LSPP.spad" 1045238 1045255 1045693 1045698) (-678 "LSMP.spad" 1044088 1044116 1045228 1045233) (-677 "LSMP1.spad" 1041906 1041920 1044078 1044083) (-676 "LSAGG.spad" 1041575 1041585 1041874 1041901) (-675 "LSAGG.spad" 1041264 1041276 1041565 1041570) (-674 "LPOLY.spad" 1040218 1040237 1041120 1041189) (-673 "LPEFRAC.spad" 1039489 1039499 1040208 1040213) (-672 "LO.spad" 1038890 1038904 1039423 1039450) (-671 "LOGIC.spad" 1038492 1038500 1038880 1038885) (-670 "LOGIC.spad" 1038092 1038102 1038482 1038487) (-669 "LODOOPS.spad" 1037022 1037034 1038082 1038087) (-668 "LODO.spad" 1036406 1036422 1036702 1036741) (-667 "LODOF.spad" 1035452 1035469 1036363 1036368) (-666 "LODOCAT.spad" 1034118 1034128 1035408 1035447) (-665 "LODOCAT.spad" 1032782 1032794 1034074 1034079) (-664 "LODO2.spad" 1032055 1032067 1032462 1032501) (-663 "LODO1.spad" 1031455 1031465 1031735 1031774) (-662 "LODEEF.spad" 1030257 1030275 1031445 1031450) (-661 "LNAGG.spad" 1026404 1026414 1030247 1030252) (-660 "LNAGG.spad" 1022515 1022527 1026360 1026365) (-659 "LMOPS.spad" 1019283 1019300 1022505 1022510) (-658 "LMODULE.spad" 1019051 1019061 1019273 1019278) (-657 "LMDICT.spad" 1018338 1018348 1018602 1018629) (-656 "LLINSET.spad" 1017896 1017906 1018328 1018333) (-655 "LITERAL.spad" 1017802 1017813 1017886 1017891) (-654 "LIST.spad" 1015537 1015547 1016949 1016976) (-653 "LIST3.spad" 1014848 1014862 1015527 1015532) (-652 "LIST2.spad" 1013550 1013562 1014838 1014843) (-651 "LIST2MAP.spad" 1010453 1010465 1013540 1013545) (-650 "LINSET.spad" 1010232 1010242 1010443 1010448) (-649 "LINEXP.spad" 1009370 1009380 1010222 1010227) (-648 "LINDEP.spad" 1008179 1008191 1009282 1009287) (-647 "LIMITRF.spad" 1006107 1006117 1008169 1008174) (-646 "LIMITPS.spad" 1005010 1005023 1006097 1006102) (-645 "LIE.spad" 1003026 1003038 1004300 1004445) (-644 "LIECAT.spad" 1002502 1002512 1002952 1003021) (-643 "LIECAT.spad" 1002006 1002018 1002458 1002463) (-642 "LIB.spad" 1000219 1000227 1000665 1000680) (-641 "LGROBP.spad" 997572 997591 1000209 1000214) (-640 "LF.spad" 996527 996543 997562 997567) (-639 "LFCAT.spad" 995586 995594 996517 996522) (-638 "LEXTRIPK.spad" 991089 991104 995576 995581) (-637 "LEXP.spad" 989092 989119 991069 991084) (-636 "LETAST.spad" 988791 988799 989082 989087) (-635 "LEADCDET.spad" 987189 987206 988781 988786) (-634 "LAZM3PK.spad" 985893 985915 987179 987184) (-633 "LAUPOL.spad" 984586 984599 985486 985555) (-632 "LAPLACE.spad" 984169 984185 984576 984581) (-631 "LA.spad" 983609 983623 984091 984130) (-630 "LALG.spad" 983385 983395 983589 983604) (-629 "LALG.spad" 983169 983181 983375 983380) (-628 "KVTFROM.spad" 982904 982914 983159 983164) (-627 "KTVLOGIC.spad" 982416 982424 982894 982899) (-626 "KRCFROM.spad" 982154 982164 982406 982411) (-625 "KOVACIC.spad" 980877 980894 982144 982149) (-624 "KONVERT.spad" 980599 980609 980867 980872) (-623 "KOERCE.spad" 980336 980346 980589 980594) (-622 "KERNEL.spad" 978991 979001 980120 980125) (-621 "KERNEL2.spad" 978694 978706 978981 978986) (-620 "KDAGG.spad" 977803 977825 978674 978689) (-619 "KDAGG.spad" 976920 976944 977793 977798) (-618 "KAFILE.spad" 975883 975899 976118 976145) (-617 "JORDAN.spad" 973712 973724 975173 975318) (-616 "JOINAST.spad" 973406 973414 973702 973707) (-615 "JAVACODE.spad" 973272 973280 973396 973401) (-614 "IXAGG.spad" 971405 971429 973262 973267) (-613 "IXAGG.spad" 969393 969419 971252 971257) (-612 "IVECTOR.spad" 968163 968178 968318 968345) (-611 "ITUPLE.spad" 967324 967334 968153 968158) (-610 "ITRIGMNP.spad" 966163 966182 967314 967319) (-609 "ITFUN3.spad" 965669 965683 966153 966158) (-608 "ITFUN2.spad" 965413 965425 965659 965664) (-607 "ITFORM.spad" 964768 964776 965403 965408) (-606 "ITAYLOR.spad" 962762 962777 964632 964729) (-605 "ISUPS.spad" 955199 955214 961736 961833) (-604 "ISUMP.spad" 954700 954716 955189 955194) (-603 "ISTRING.spad" 953788 953801 953869 953896) (-602 "ISAST.spad" 953507 953515 953778 953783) (-601 "IRURPK.spad" 952224 952243 953497 953502) (-600 "IRSN.spad" 950196 950204 952214 952219) (-599 "IRRF2F.spad" 948681 948691 950152 950157) (-598 "IRREDFFX.spad" 948282 948293 948671 948676) (-597 "IROOT.spad" 946621 946631 948272 948277) (-596 "IR.spad" 944422 944436 946476 946503) (-595 "IRFORM.spad" 943746 943754 944412 944417) (-594 "IR2.spad" 942774 942790 943736 943741) (-593 "IR2F.spad" 941980 941996 942764 942769) (-592 "IPRNTPK.spad" 941740 941748 941970 941975) (-591 "IPF.spad" 941305 941317 941545 941638) (-590 "IPADIC.spad" 941066 941092 941231 941300) (-589 "IP4ADDR.spad" 940623 940631 941056 941061) (-588 "IOMODE.spad" 940145 940153 940613 940618) (-587 "IOBFILE.spad" 939506 939514 940135 940140) (-586 "IOBCON.spad" 939371 939379 939496 939501) (-585 "INVLAPLA.spad" 939020 939036 939361 939366) (-584 "INTTR.spad" 932402 932419 939010 939015) (-583 "INTTOOLS.spad" 930157 930173 931976 931981) (-582 "INTSLPE.spad" 929477 929485 930147 930152) (-581 "INTRVL.spad" 929043 929053 929391 929472) (-580 "INTRF.spad" 927467 927481 929033 929038) (-579 "INTRET.spad" 926899 926909 927457 927462) (-578 "INTRAT.spad" 925626 925643 926889 926894) (-577 "INTPM.spad" 924011 924027 925269 925274) (-576 "INTPAF.spad" 921875 921893 923943 923948) (-575 "INTPACK.spad" 912249 912257 921865 921870) (-574 "INT.spad" 911697 911705 912103 912244) (-573 "INTHERTR.spad" 910971 910988 911687 911692) (-572 "INTHERAL.spad" 910641 910665 910961 910966) (-571 "INTHEORY.spad" 907080 907088 910631 910636) (-570 "INTG0.spad" 900813 900831 907012 907017) (-569 "INTFTBL.spad" 894842 894850 900803 900808) (-568 "INTFACT.spad" 893901 893911 894832 894837) (-567 "INTEF.spad" 892286 892302 893891 893896) (-566 "INTDOM.spad" 890909 890917 892212 892281) (-565 "INTDOM.spad" 889594 889604 890899 890904) (-564 "INTCAT.spad" 887853 887863 889508 889589) (-563 "INTBIT.spad" 887360 887368 887843 887848) (-562 "INTALG.spad" 886548 886575 887350 887355) (-561 "INTAF.spad" 886048 886064 886538 886543) (-560 "INTABL.spad" 884566 884597 884729 884756) (-559 "INT8.spad" 884446 884454 884556 884561) (-558 "INT64.spad" 884325 884333 884436 884441) (-557 "INT32.spad" 884204 884212 884315 884320) (-556 "INT16.spad" 884083 884091 884194 884199) (-555 "INS.spad" 881586 881594 883985 884078) (-554 "INS.spad" 879175 879185 881576 881581) (-553 "INPSIGN.spad" 878623 878636 879165 879170) (-552 "INPRODPF.spad" 877719 877738 878613 878618) (-551 "INPRODFF.spad" 876807 876831 877709 877714) (-550 "INNMFACT.spad" 875782 875799 876797 876802) (-549 "INMODGCD.spad" 875270 875300 875772 875777) (-548 "INFSP.spad" 873567 873589 875260 875265) (-547 "INFPROD0.spad" 872647 872666 873557 873562) (-546 "INFORM.spad" 869846 869854 872637 872642) (-545 "INFORM1.spad" 869471 869481 869836 869841) (-544 "INFINITY.spad" 869023 869031 869461 869466) (-543 "INETCLTS.spad" 869000 869008 869013 869018) (-542 "INEP.spad" 867538 867560 868990 868995) (-541 "INDE.spad" 867267 867284 867528 867533) (-540 "INCRMAPS.spad" 866688 866698 867257 867262) (-539 "INBFILE.spad" 865760 865768 866678 866683) (-538 "INBFF.spad" 861554 861565 865750 865755) (-537 "INBCON.spad" 859844 859852 861544 861549) (-536 "INBCON.spad" 858132 858142 859834 859839) (-535 "INAST.spad" 857793 857801 858122 858127) (-534 "IMPTAST.spad" 857501 857509 857783 857788) (-533 "IMATRIX.spad" 856446 856472 856958 856985) (-532 "IMATQF.spad" 855540 855584 856402 856407) (-531 "IMATLIN.spad" 854145 854169 855496 855501) (-530 "ILIST.spad" 852803 852818 853328 853355) (-529 "IIARRAY2.spad" 852191 852229 852410 852437) (-528 "IFF.spad" 851601 851617 851872 851965) (-527 "IFAST.spad" 851215 851223 851591 851596) (-526 "IFARRAY.spad" 848708 848723 850398 850425) (-525 "IFAMON.spad" 848570 848587 848664 848669) (-524 "IEVALAB.spad" 847975 847987 848560 848565) (-523 "IEVALAB.spad" 847378 847392 847965 847970) (-522 "IDPO.spad" 847176 847188 847368 847373) (-521 "IDPOAMS.spad" 846932 846944 847166 847171) (-520 "IDPOAM.spad" 846652 846664 846922 846927) (-519 "IDPC.spad" 845590 845602 846642 846647) (-518 "IDPAM.spad" 845335 845347 845580 845585) (-517 "IDPAG.spad" 845082 845094 845325 845330) (-516 "IDENT.spad" 844732 844740 845072 845077) (-515 "IDECOMP.spad" 841971 841989 844722 844727) (-514 "IDEAL.spad" 836920 836959 841906 841911) (-513 "ICDEN.spad" 836109 836125 836910 836915) (-512 "ICARD.spad" 835300 835308 836099 836104) (-511 "IBPTOOLS.spad" 833907 833924 835290 835295) (-510 "IBITS.spad" 833110 833123 833543 833570) (-509 "IBATOOL.spad" 830087 830106 833100 833105) (-508 "IBACHIN.spad" 828594 828609 830077 830082) (-507 "IARRAY2.spad" 827582 827608 828201 828228) (-506 "IARRAY1.spad" 826627 826642 826765 826792) (-505 "IAN.spad" 824850 824858 826443 826536) (-504 "IALGFACT.spad" 824453 824486 824840 824845) (-503 "HYPCAT.spad" 823877 823885 824443 824448) (-502 "HYPCAT.spad" 823299 823309 823867 823872) (-501 "HOSTNAME.spad" 823107 823115 823289 823294) (-500 "HOMOTOP.spad" 822850 822860 823097 823102) (-499 "HOAGG.spad" 820132 820142 822840 822845) (-498 "HOAGG.spad" 817189 817201 819899 819904) (-497 "HEXADEC.spad" 815291 815299 815656 815749) (-496 "HEUGCD.spad" 814326 814337 815281 815286) (-495 "HELLFDIV.spad" 813916 813940 814316 814321) (-494 "HEAP.spad" 813308 813318 813523 813550) (-493 "HEADAST.spad" 812841 812849 813298 813303) (-492 "HDP.spad" 802919 802935 803296 803427) (-491 "HDMP.spad" 800133 800148 800749 800876) (-490 "HB.spad" 798384 798392 800123 800128) (-489 "HASHTBL.spad" 796854 796885 797065 797092) (-488 "HASAST.spad" 796570 796578 796844 796849) (-487 "HACKPI.spad" 796061 796069 796472 796565) (-486 "GTSET.spad" 795000 795016 795707 795734) (-485 "GSTBL.spad" 793519 793554 793693 793708) (-484 "GSERIES.spad" 790690 790717 791651 791800) (-483 "GROUP.spad" 789963 789971 790670 790685) (-482 "GROUP.spad" 789244 789254 789953 789958) (-481 "GROEBSOL.spad" 787738 787759 789234 789239) (-480 "GRMOD.spad" 786309 786321 787728 787733) (-479 "GRMOD.spad" 784878 784892 786299 786304) (-478 "GRIMAGE.spad" 777767 777775 784868 784873) (-477 "GRDEF.spad" 776146 776154 777757 777762) (-476 "GRAY.spad" 774609 774617 776136 776141) (-475 "GRALG.spad" 773686 773698 774599 774604) (-474 "GRALG.spad" 772761 772775 773676 773681) (-473 "GPOLSET.spad" 772215 772238 772443 772470) (-472 "GOSPER.spad" 771484 771502 772205 772210) (-471 "GMODPOL.spad" 770632 770659 771452 771479) (-470 "GHENSEL.spad" 769715 769729 770622 770627) (-469 "GENUPS.spad" 766008 766021 769705 769710) (-468 "GENUFACT.spad" 765585 765595 765998 766003) (-467 "GENPGCD.spad" 765171 765188 765575 765580) (-466 "GENMFACT.spad" 764623 764642 765161 765166) (-465 "GENEEZ.spad" 762574 762587 764613 764618) (-464 "GDMP.spad" 759630 759647 760404 760531) (-463 "GCNAALG.spad" 753553 753580 759424 759491) (-462 "GCDDOM.spad" 752729 752737 753479 753548) (-461 "GCDDOM.spad" 751967 751977 752719 752724) (-460 "GB.spad" 749493 749531 751923 751928) (-459 "GBINTERN.spad" 745513 745551 749483 749488) (-458 "GBF.spad" 741280 741318 745503 745508) (-457 "GBEUCLID.spad" 739162 739200 741270 741275) (-456 "GAUSSFAC.spad" 738475 738483 739152 739157) (-455 "GALUTIL.spad" 736801 736811 738431 738436) (-454 "GALPOLYU.spad" 735255 735268 736791 736796) (-453 "GALFACTU.spad" 733428 733447 735245 735250) (-452 "GALFACT.spad" 723617 723628 733418 733423) (-451 "FVFUN.spad" 720640 720648 723607 723612) (-450 "FVC.spad" 719692 719700 720630 720635) (-449 "FUNDESC.spad" 719370 719378 719682 719687) (-448 "FUNCTION.spad" 719219 719231 719360 719365) (-447 "FT.spad" 717516 717524 719209 719214) (-446 "FTEM.spad" 716681 716689 717506 717511) (-445 "FSUPFACT.spad" 715581 715600 716617 716622) (-444 "FST.spad" 713667 713675 715571 715576) (-443 "FSRED.spad" 713147 713163 713657 713662) (-442 "FSPRMELT.spad" 712029 712045 713104 713109) (-441 "FSPECF.spad" 710120 710136 712019 712024) (-440 "FS.spad" 704388 704398 709895 710115) (-439 "FS.spad" 698434 698446 703943 703948) (-438 "FSINT.spad" 698094 698110 698424 698429) (-437 "FSERIES.spad" 697285 697297 697914 698013) (-436 "FSCINT.spad" 696602 696618 697275 697280) (-435 "FSAGG.spad" 695719 695729 696558 696597) (-434 "FSAGG.spad" 694798 694810 695639 695644) (-433 "FSAGG2.spad" 693541 693557 694788 694793) (-432 "FS2UPS.spad" 688032 688066 693531 693536) (-431 "FS2.spad" 687679 687695 688022 688027) (-430 "FS2EXPXP.spad" 686804 686827 687669 687674) (-429 "FRUTIL.spad" 685758 685768 686794 686799) (-428 "FR.spad" 679290 679300 684598 684667) (-427 "FRNAALG.spad" 674559 674569 679232 679285) (-426 "FRNAALG.spad" 669840 669852 674515 674520) (-425 "FRNAAF2.spad" 669296 669314 669830 669835) (-424 "FRMOD.spad" 668706 668736 669227 669232) (-423 "FRIDEAL.spad" 667931 667952 668686 668701) (-422 "FRIDEAL2.spad" 667535 667567 667921 667926) (-421 "FRETRCT.spad" 667046 667056 667525 667530) (-420 "FRETRCT.spad" 666423 666435 666904 666909) (-419 "FRAMALG.spad" 664771 664784 666379 666418) (-418 "FRAMALG.spad" 663151 663166 664761 664766) (-417 "FRAC.spad" 660250 660260 660653 660826) (-416 "FRAC2.spad" 659855 659867 660240 660245) (-415 "FR2.spad" 659191 659203 659845 659850) (-414 "FPS.spad" 656006 656014 659081 659186) (-413 "FPS.spad" 652849 652859 655926 655931) (-412 "FPC.spad" 651895 651903 652751 652844) (-411 "FPC.spad" 651027 651037 651885 651890) (-410 "FPATMAB.spad" 650789 650799 651017 651022) (-409 "FPARFRAC.spad" 649276 649293 650779 650784) (-408 "FORTRAN.spad" 647782 647825 649266 649271) (-407 "FORT.spad" 646731 646739 647772 647777) (-406 "FORTFN.spad" 643901 643909 646721 646726) (-405 "FORTCAT.spad" 643585 643593 643891 643896) (-404 "FORMULA.spad" 641059 641067 643575 643580) (-403 "FORMULA1.spad" 640538 640548 641049 641054) (-402 "FORDER.spad" 640229 640253 640528 640533) (-401 "FOP.spad" 639430 639438 640219 640224) (-400 "FNLA.spad" 638854 638876 639398 639425) (-399 "FNCAT.spad" 637449 637457 638844 638849) (-398 "FNAME.spad" 637341 637349 637439 637444) (-397 "FMTC.spad" 637139 637147 637267 637336) (-396 "FMONOID.spad" 636804 636814 637095 637100) (-395 "FMONCAT.spad" 633957 633967 636794 636799) (-394 "FM.spad" 633652 633664 633891 633918) (-393 "FMFUN.spad" 630682 630690 633642 633647) (-392 "FMC.spad" 629734 629742 630672 630677) (-391 "FMCAT.spad" 627402 627420 629702 629729) (-390 "FM1.spad" 626759 626771 627336 627363) (-389 "FLOATRP.spad" 624494 624508 626749 626754) (-388 "FLOAT.spad" 617808 617816 624360 624489) (-387 "FLOATCP.spad" 615239 615253 617798 617803) (-386 "FLINEXP.spad" 614961 614971 615229 615234) (-385 "FLINEXP.spad" 614627 614639 614897 614902) (-384 "FLASORT.spad" 613953 613965 614617 614622) (-383 "FLALG.spad" 611599 611618 613879 613948) (-382 "FLAGG.spad" 608641 608651 611579 611594) (-381 "FLAGG.spad" 605584 605596 608524 608529) (-380 "FLAGG2.spad" 604309 604325 605574 605579) (-379 "FINRALG.spad" 602370 602383 604265 604304) (-378 "FINRALG.spad" 600357 600372 602254 602259) (-377 "FINITE.spad" 599509 599517 600347 600352) (-376 "FINAALG.spad" 588630 588640 599451 599504) (-375 "FINAALG.spad" 577763 577775 588586 588591) (-374 "FILE.spad" 577346 577356 577753 577758) (-373 "FILECAT.spad" 575872 575889 577336 577341) (-372 "FIELD.spad" 575278 575286 575774 575867) (-371 "FIELD.spad" 574770 574780 575268 575273) (-370 "FGROUP.spad" 573417 573427 574750 574765) (-369 "FGLMICPK.spad" 572204 572219 573407 573412) (-368 "FFX.spad" 571579 571594 571920 572013) (-367 "FFSLPE.spad" 571082 571103 571569 571574) (-366 "FFPOLY.spad" 562344 562355 571072 571077) (-365 "FFPOLY2.spad" 561404 561421 562334 562339) (-364 "FFP.spad" 560801 560821 561120 561213) (-363 "FF.spad" 560249 560265 560482 560575) (-362 "FFNBX.spad" 558761 558781 559965 560058) (-361 "FFNBP.spad" 557274 557291 558477 558570) (-360 "FFNB.spad" 555739 555760 556955 557048) (-359 "FFINTBAS.spad" 553253 553272 555729 555734) (-358 "FFIELDC.spad" 550830 550838 553155 553248) (-357 "FFIELDC.spad" 548493 548503 550820 550825) (-356 "FFHOM.spad" 547241 547258 548483 548488) (-355 "FFF.spad" 544676 544687 547231 547236) (-354 "FFCGX.spad" 543523 543543 544392 544485) (-353 "FFCGP.spad" 542412 542432 543239 543332) (-352 "FFCG.spad" 541204 541225 542093 542186) (-351 "FFCAT.spad" 534377 534399 541043 541199) (-350 "FFCAT.spad" 527629 527653 534297 534302) (-349 "FFCAT2.spad" 527376 527416 527619 527624) (-348 "FEXPR.spad" 519093 519139 527132 527171) (-347 "FEVALAB.spad" 518801 518811 519083 519088) (-346 "FEVALAB.spad" 518294 518306 518578 518583) (-345 "FDIV.spad" 517736 517760 518284 518289) (-344 "FDIVCAT.spad" 515800 515824 517726 517731) (-343 "FDIVCAT.spad" 513862 513888 515790 515795) (-342 "FDIV2.spad" 513518 513558 513852 513857) (-341 "FCTRDATA.spad" 512526 512534 513508 513513) (-340 "FCPAK1.spad" 511093 511101 512516 512521) (-339 "FCOMP.spad" 510472 510482 511083 511088) (-338 "FC.spad" 500479 500487 510462 510467) (-337 "FAXF.spad" 493450 493464 500381 500474) (-336 "FAXF.spad" 486473 486489 493406 493411) (-335 "FARRAY.spad" 484623 484633 485656 485683) (-334 "FAMR.spad" 482759 482771 484521 484618) (-333 "FAMR.spad" 480879 480893 482643 482648) (-332 "FAMONOID.spad" 480547 480557 480833 480838) (-331 "FAMONC.spad" 478843 478855 480537 480542) (-330 "FAGROUP.spad" 478467 478477 478739 478766) (-329 "FACUTIL.spad" 476671 476688 478457 478462) (-328 "FACTFUNC.spad" 475865 475875 476661 476666) (-327 "EXPUPXS.spad" 472698 472721 473997 474146) (-326 "EXPRTUBE.spad" 469986 469994 472688 472693) (-325 "EXPRODE.spad" 467146 467162 469976 469981) (-324 "EXPR.spad" 462321 462331 463035 463330) (-323 "EXPR2UPS.spad" 458443 458456 462311 462316) (-322 "EXPR2.spad" 458148 458160 458433 458438) (-321 "EXPEXPAN.spad" 455088 455113 455720 455813) (-320 "EXIT.spad" 454759 454767 455078 455083) (-319 "EXITAST.spad" 454495 454503 454749 454754) (-318 "EVALCYC.spad" 453955 453969 454485 454490) (-317 "EVALAB.spad" 453527 453537 453945 453950) (-316 "EVALAB.spad" 453097 453109 453517 453522) (-315 "EUCDOM.spad" 450671 450679 453023 453092) (-314 "EUCDOM.spad" 448307 448317 450661 450666) (-313 "ESTOOLS.spad" 440153 440161 448297 448302) (-312 "ESTOOLS2.spad" 439756 439770 440143 440148) (-311 "ESTOOLS1.spad" 439441 439452 439746 439751) (-310 "ES.spad" 432256 432264 439431 439436) (-309 "ES.spad" 424977 424987 432154 432159) (-308 "ESCONT.spad" 421770 421778 424967 424972) (-307 "ESCONT1.spad" 421519 421531 421760 421765) (-306 "ES2.spad" 421024 421040 421509 421514) (-305 "ES1.spad" 420594 420610 421014 421019) (-304 "ERROR.spad" 417921 417929 420584 420589) (-303 "EQTBL.spad" 416393 416415 416602 416629) (-302 "EQ.spad" 411198 411208 413985 414097) (-301 "EQ2.spad" 410916 410928 411188 411193) (-300 "EP.spad" 407242 407252 410906 410911) (-299 "ENV.spad" 405920 405928 407232 407237) (-298 "ENTIRER.spad" 405588 405596 405864 405915) (-297 "EMR.spad" 404876 404917 405514 405583) (-296 "ELTAGG.spad" 403130 403149 404866 404871) (-295 "ELTAGG.spad" 401348 401369 403086 403091) (-294 "ELTAB.spad" 400823 400836 401338 401343) (-293 "ELFUTS.spad" 400210 400229 400813 400818) (-292 "ELEMFUN.spad" 399899 399907 400200 400205) (-291 "ELEMFUN.spad" 399586 399596 399889 399894) (-290 "ELAGG.spad" 397557 397567 399566 399581) (-289 "ELAGG.spad" 395465 395477 397476 397481) (-288 "ELABOR.spad" 394811 394819 395455 395460) (-287 "ELABEXPR.spad" 393743 393751 394801 394806) (-286 "EFUPXS.spad" 390519 390549 393699 393704) (-285 "EFULS.spad" 387355 387378 390475 390480) (-284 "EFSTRUC.spad" 385370 385386 387345 387350) (-283 "EF.spad" 380146 380162 385360 385365) (-282 "EAB.spad" 378422 378430 380136 380141) (-281 "E04UCFA.spad" 377958 377966 378412 378417) (-280 "E04NAFA.spad" 377535 377543 377948 377953) (-279 "E04MBFA.spad" 377115 377123 377525 377530) (-278 "E04JAFA.spad" 376651 376659 377105 377110) (-277 "E04GCFA.spad" 376187 376195 376641 376646) (-276 "E04FDFA.spad" 375723 375731 376177 376182) (-275 "E04DGFA.spad" 375259 375267 375713 375718) (-274 "E04AGNT.spad" 371109 371117 375249 375254) (-273 "DVARCAT.spad" 367999 368009 371099 371104) (-272 "DVARCAT.spad" 364887 364899 367989 367994) (-271 "DSMP.spad" 362354 362368 362659 362786) (-270 "DROPT.spad" 356313 356321 362344 362349) (-269 "DROPT1.spad" 355978 355988 356303 356308) (-268 "DROPT0.spad" 350835 350843 355968 355973) (-267 "DRAWPT.spad" 349008 349016 350825 350830) (-266 "DRAW.spad" 341884 341897 348998 349003) (-265 "DRAWHACK.spad" 341192 341202 341874 341879) (-264 "DRAWCX.spad" 338662 338670 341182 341187) (-263 "DRAWCURV.spad" 338209 338224 338652 338657) (-262 "DRAWCFUN.spad" 327741 327749 338199 338204) (-261 "DQAGG.spad" 325919 325929 327709 327736) (-260 "DPOLCAT.spad" 321268 321284 325787 325914) (-259 "DPOLCAT.spad" 316703 316721 321224 321229) (-258 "DPMO.spad" 309497 309513 309635 309880) (-257 "DPMM.spad" 302304 302322 302429 302674) (-256 "DOMTMPLT.spad" 302075 302083 302294 302299) (-255 "DOMCTOR.spad" 301830 301838 302065 302070) (-254 "DOMAIN.spad" 300917 300925 301820 301825) (-253 "DMP.spad" 298177 298192 298747 298874) (-252 "DLP.spad" 297529 297539 298167 298172) (-251 "DLIST.spad" 296108 296118 296712 296739) (-250 "DLAGG.spad" 294525 294535 296098 296103) (-249 "DIVRING.spad" 294067 294075 294469 294520) (-248 "DIVRING.spad" 293653 293663 294057 294062) (-247 "DISPLAY.spad" 291843 291851 293643 293648) (-246 "DIRPROD.spad" 281658 281674 282298 282429) (-245 "DIRPROD2.spad" 280476 280494 281648 281653) (-244 "DIRPCAT.spad" 279637 279653 280340 280471) (-243 "DIRPCAT.spad" 278527 278545 279232 279237) (-242 "DIOSP.spad" 277352 277360 278517 278522) (-241 "DIOPS.spad" 276348 276358 277332 277347) (-240 "DIOPS.spad" 275318 275330 276304 276309) (-239 "DIFRING.spad" 275156 275164 275298 275313) (-238 "DIFFSPC.spad" 274735 274743 275146 275151) (-237 "DIFFSPC.spad" 274312 274322 274725 274730) (-236 "DIFFMOD.spad" 273801 273811 274280 274307) (-235 "DIFFDOM.spad" 272966 272977 273791 273796) (-234 "DIFFDOM.spad" 272129 272142 272956 272961) (-233 "DIFEXT.spad" 271300 271310 272109 272124) (-232 "DIFEXT.spad" 270388 270400 271199 271204) (-231 "DIAGG.spad" 270018 270028 270368 270383) (-230 "DIAGG.spad" 269656 269668 270008 270013) (-229 "DHMATRIX.spad" 267968 267978 269113 269140) (-228 "DFSFUN.spad" 261608 261616 267958 267963) (-227 "DFLOAT.spad" 258339 258347 261498 261603) (-226 "DFINTTLS.spad" 256570 256586 258329 258334) (-225 "DERHAM.spad" 254484 254516 256550 256565) (-224 "DEQUEUE.spad" 253808 253818 254091 254118) (-223 "DEGRED.spad" 253425 253439 253798 253803) (-222 "DEFINTRF.spad" 250962 250972 253415 253420) (-221 "DEFINTEF.spad" 249472 249488 250952 250957) (-220 "DEFAST.spad" 248840 248848 249462 249467) (-219 "DECIMAL.spad" 246946 246954 247307 247400) (-218 "DDFACT.spad" 244759 244776 246936 246941) (-217 "DBLRESP.spad" 244359 244383 244749 244754) (-216 "DBASE.spad" 243023 243033 244349 244354) (-215 "DATAARY.spad" 242485 242498 243013 243018) (-214 "D03FAFA.spad" 242313 242321 242475 242480) (-213 "D03EEFA.spad" 242133 242141 242303 242308) (-212 "D03AGNT.spad" 241219 241227 242123 242128) (-211 "D02EJFA.spad" 240681 240689 241209 241214) (-210 "D02CJFA.spad" 240159 240167 240671 240676) (-209 "D02BHFA.spad" 239649 239657 240149 240154) (-208 "D02BBFA.spad" 239139 239147 239639 239644) (-207 "D02AGNT.spad" 233953 233961 239129 239134) (-206 "D01WGTS.spad" 232272 232280 233943 233948) (-205 "D01TRNS.spad" 232249 232257 232262 232267) (-204 "D01GBFA.spad" 231771 231779 232239 232244) (-203 "D01FCFA.spad" 231293 231301 231761 231766) (-202 "D01ASFA.spad" 230761 230769 231283 231288) (-201 "D01AQFA.spad" 230207 230215 230751 230756) (-200 "D01APFA.spad" 229631 229639 230197 230202) (-199 "D01ANFA.spad" 229125 229133 229621 229626) (-198 "D01AMFA.spad" 228635 228643 229115 229120) (-197 "D01ALFA.spad" 228175 228183 228625 228630) (-196 "D01AKFA.spad" 227701 227709 228165 228170) (-195 "D01AJFA.spad" 227224 227232 227691 227696) (-194 "D01AGNT.spad" 223291 223299 227214 227219) (-193 "CYCLOTOM.spad" 222797 222805 223281 223286) (-192 "CYCLES.spad" 219589 219597 222787 222792) (-191 "CVMP.spad" 219006 219016 219579 219584) (-190 "CTRIGMNP.spad" 217506 217522 218996 219001) (-189 "CTOR.spad" 217197 217205 217496 217501) (-188 "CTORKIND.spad" 216800 216808 217187 217192) (-187 "CTORCAT.spad" 216049 216057 216790 216795) (-186 "CTORCAT.spad" 215296 215306 216039 216044) (-185 "CTORCALL.spad" 214885 214895 215286 215291) (-184 "CSTTOOLS.spad" 214130 214143 214875 214880) (-183 "CRFP.spad" 207854 207867 214120 214125) (-182 "CRCEAST.spad" 207574 207582 207844 207849) (-181 "CRAPACK.spad" 206625 206635 207564 207569) (-180 "CPMATCH.spad" 206129 206144 206550 206555) (-179 "CPIMA.spad" 205834 205853 206119 206124) (-178 "COORDSYS.spad" 200843 200853 205824 205829) (-177 "CONTOUR.spad" 200254 200262 200833 200838) (-176 "CONTFRAC.spad" 196004 196014 200156 200249) (-175 "CONDUIT.spad" 195762 195770 195994 195999) (-174 "COMRING.spad" 195436 195444 195700 195757) (-173 "COMPPROP.spad" 194954 194962 195426 195431) (-172 "COMPLPAT.spad" 194721 194736 194944 194949) (-171 "COMPLEX.spad" 188858 188868 189102 189363) (-170 "COMPLEX2.spad" 188573 188585 188848 188853) (-169 "COMPILER.spad" 188122 188130 188563 188568) (-168 "COMPFACT.spad" 187724 187738 188112 188117) (-167 "COMPCAT.spad" 185796 185806 187458 187719) (-166 "COMPCAT.spad" 183596 183608 185260 185265) (-165 "COMMUPC.spad" 183344 183362 183586 183591) (-164 "COMMONOP.spad" 182877 182885 183334 183339) (-163 "COMM.spad" 182688 182696 182867 182872) (-162 "COMMAAST.spad" 182451 182459 182678 182683) (-161 "COMBOPC.spad" 181366 181374 182441 182446) (-160 "COMBINAT.spad" 180133 180143 181356 181361) (-159 "COMBF.spad" 177515 177531 180123 180128) (-158 "COLOR.spad" 176352 176360 177505 177510) (-157 "COLONAST.spad" 176018 176026 176342 176347) (-156 "CMPLXRT.spad" 175729 175746 176008 176013) (-155 "CLLCTAST.spad" 175391 175399 175719 175724) (-154 "CLIP.spad" 171499 171507 175381 175386) (-153 "CLIF.spad" 170154 170170 171455 171494) (-152 "CLAGG.spad" 166659 166669 170144 170149) (-151 "CLAGG.spad" 163035 163047 166522 166527) (-150 "CINTSLPE.spad" 162366 162379 163025 163030) (-149 "CHVAR.spad" 160504 160526 162356 162361) (-148 "CHARZ.spad" 160419 160427 160484 160499) (-147 "CHARPOL.spad" 159929 159939 160409 160414) (-146 "CHARNZ.spad" 159682 159690 159909 159924) (-145 "CHAR.spad" 157556 157564 159672 159677) (-144 "CFCAT.spad" 156884 156892 157546 157551) (-143 "CDEN.spad" 156080 156094 156874 156879) (-142 "CCLASS.spad" 154229 154237 155491 155530) (-141 "CATEGORY.spad" 153271 153279 154219 154224) (-140 "CATCTOR.spad" 153162 153170 153261 153266) (-139 "CATAST.spad" 152780 152788 153152 153157) (-138 "CASEAST.spad" 152494 152502 152770 152775) (-137 "CARTEN.spad" 147861 147885 152484 152489) (-136 "CARTEN2.spad" 147251 147278 147851 147856) (-135 "CARD.spad" 144546 144554 147225 147246) (-134 "CAPSLAST.spad" 144320 144328 144536 144541) (-133 "CACHSET.spad" 143944 143952 144310 144315) (-132 "CABMON.spad" 143499 143507 143934 143939) (-131 "BYTEORD.spad" 143174 143182 143489 143494) (-130 "BYTE.spad" 142601 142609 143164 143169) (-129 "BYTEBUF.spad" 140460 140468 141770 141797) (-128 "BTREE.spad" 139533 139543 140067 140094) (-127 "BTOURN.spad" 138538 138548 139140 139167) (-126 "BTCAT.spad" 137930 137940 138506 138533) (-125 "BTCAT.spad" 137342 137354 137920 137925) (-124 "BTAGG.spad" 136808 136816 137310 137337) (-123 "BTAGG.spad" 136294 136304 136798 136803) (-122 "BSTREE.spad" 135035 135045 135901 135928) (-121 "BRILL.spad" 133232 133243 135025 135030) (-120 "BRAGG.spad" 132172 132182 133222 133227) (-119 "BRAGG.spad" 131076 131088 132128 132133) (-118 "BPADICRT.spad" 129057 129069 129312 129405) (-117 "BPADIC.spad" 128721 128733 128983 129052) (-116 "BOUNDZRO.spad" 128377 128394 128711 128716) (-115 "BOP.spad" 123559 123567 128367 128372) (-114 "BOP1.spad" 121025 121035 123549 123554) (-113 "BOOLE.spad" 120675 120683 121015 121020) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file