1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
|
// Copyright (C) 2010, Gabriel Dos Reis.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
//
// - Neither the name of The Numerical Algorithms Group Ltd. nor the
// names of its contributors may be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
// OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// --% Author: Gabriel Dos Reis
// --% Description:
// --% Memory management facility. Acquire raw memory directly
// --% from the host OS. Provide random access read to
// --% files through file mapping.
#ifndef OPENAXIOM_STORAGE_INCLUDED
#define OPENAXIOM_STORAGE_INCLUDED
#include <stddef.h>
#include <string.h>
#include <new>
#include <cmath>
#include <string>
#include <open-axiom/config>
namespace OpenAxiom {
// -----------------
// -- SystemError --
// -----------------
// Objects of (type derived from) this type are used to report
// error orignating from the OpenAxiom core system.
struct SystemError {
explicit SystemError(std::string);
virtual ~SystemError();
// Return the text of the diagnostic message.
virtual const std::string& message() const;
protected:
const std::string text;
};
// Report a file system error
void filesystem_error(std::string);
namespace Memory {
// Datatype for the unit of storage.
typedef unsigned char Byte;
// Datatype for pointers to data.
typedef void* Pointer;
// Precision of the host OS storage page unit in byte count
size_t page_size();
// Acquire raw memory from the host OS.
Pointer os_acquire_raw_memory(size_t);
// Release raw storage to the hosting OS. The first operand must
// be a pointer value previous returned by `os_acquire_raw_memory'.
// Otherwise, the result is undefined.
void os_release_raw_memory(Pointer, size_t);
// Acquire `n' pages of memory storage from the host OS.
inline Pointer
acquire_raw_pages(size_t n) {
return os_acquire_raw_memory(n * page_size());
}
// Release `n' pages of storage starting the location `p'.
inline void
release_raw_pages(Pointer p, size_t n) {
os_release_raw_memory(p, n * page_size());
}
// -------------
// -- Storage --
// -------------
// This class is a low-level abstraction intented for use
// to implement higher level storage abstraction.
struct Storage {
// Acquire storage chunk of `n' bytes, and align
// the first allocatable address to `a' booundary.
// The result is a pointer to a storage object. That object
// `result' is constructed such that `result->free' points
// to the next allocatable address, with alignment `a'.
static Storage* acquire(size_t a, size_t n);
// Return the storage pointed to by the operand. It
// must be a pointer value previously returned by `acquire'.
// Otherwise, the result is undefined.
static void release(Storage*);
// Count of bytes that can fit in this storage.
size_t capacity() const { return limit_bot - limit_top; }
// Count of avaliable allocatable bytes in this storage.
size_t room() const { return limit_bot - free; }
// Count of allocated storage in this storage.
size_t occupancy() const { return free - limit_top; }
// Align next allocatable address to a boundary (operand).
// Return true on success.
bool align_to(size_t);
// Allocate `n' bytes of storage. It is assumed that prior
// to calling this function, `n' is less than `room()'.
// The allocated storage is guaranteed to contain only zeros.
void* allocate(size_t n) {
void* result = free;
free += n;
return memset(result, 0, n);
}
// Next unused address
void* next_available() { return free; }
// address at offset `o' from the first allocatable address.
void* at_offset(size_t o) {
return limit_top + o;
}
// Round up `n' to a multiple of `a', a power of 2.
static size_t
round_up(size_t n, size_t a) {
return (n + a - 1) & ~(a - 1);
}
// Next address after `p' in this storage that has alignment `a'.
void*
round_up(void* p, size_t a) {
return base() + round_up(base() - static_cast<Byte*>(p), a);
}
protected:
Byte* limit_top; // first allocatable address
Byte* limit_bot; // one-past-the-end of valid allocatable
// address in this storage.
Byte* free; // first allocatable address suitably
// aligned at boundary specified at
// construction time.
Storage() { }
// Address of the host OS page holding this storage.
Byte* base() {
return reinterpret_cast<Byte*>(this);
}
size_t extent() {
return size_t(limit_bot - base());
}
private:
Storage(const Storage&); // not implemented
Storage& operator=(const Storage&); // idem.
};
// -----------
// -- Arena --
// -----------
// Extensible storage holding objects of a given type.
// The totality of all objects held in such a storage does not
// necessarily constitute a contiguous block. However,
// it is guaranteed that objects allocated in a single call
// to `allocate()' occupy a contiguous block of storage.
template<typename T>
struct Arena {
// Acquire storage capable of holding `n' objects of type `T'.
explicit Arena(size_t);
// Release all storage acquired by this object, upon end of life.
~Arena();
// allocate storage for `n' more objects of type `T'.
T* allocate(size_t);
// Number of objects of type `T' allocated in this storage.
size_t population() const;
protected:
// Address of the first object of type `T' in a storage.
static T* first_object(Storage* s) {
return static_cast<T*>
(s->round_up(&previous(s) + 1, openaxiom_alignment(T)));
}
// Address of one-past-the-end object of type `T' in this storage.
static T* last_object(Storage* s) {
return static_cast<T*>(s->next_available());
}
// Number of objects allocated in a storage.
static size_t object_count(Storage* s) {
return last_object(s) - first_object(s);
}
// The `previous' link in the chain of storage.
static Storage*& previous(Storage* s) {
return *static_cast<Storage**>(s->at_offset(0));
}
Storage* store; // active storage to allocate from
private:
// Acquire storage large enough to hold `n' objects of type `T'.
static Storage* acquire(size_t);
};
template<typename T>
size_t
Arena<T>::population() const {
size_t n = 0;
for (Storage* s = store; s != 0; s = previous(s))
n += object_count(s);
return n;
}
template<typename T>
T*
Arena<T>::allocate(size_t n) {
const size_t sz = n * sizeof(T);
if (store->room() < sz) {
Storage* s = acquire(std::max(n, object_count(store)));
previous(s) = store;
store = s;
}
return static_cast<T*>(store->allocate(sz));
}
template<typename T>
Arena<T>::Arena(size_t n) : store(acquire(n)) { }
template<typename T>
Arena<T>::~Arena() {
// Release storage in the reverse order of their
// their allocation.
while (store != 0) {
Storage* current = store;
store = previous(store);
Storage::release(current);
}
}
template<typename T>
Storage*
Arena<T>::acquire(size_t n) {
// We build single-linked list of Storage objects, so
// don't forget to account for the additional pointer,
// and necessary padding.
const size_t sz = n * sizeof(T)
+ Storage::round_up(sizeof(Storage*), openaxiom_alignment(T));
Storage* s = Storage::acquire(openaxiom_alignment(Storage*), sz);
s->allocate(sizeof(Storage*));
previous(s) = 0;
s->align_to(openaxiom_alignment(T));
return s;
}
// -------------
// -- Factory --
// -------------
template<typename T>
struct Factory : Arena<T> {
Factory() : Arena<T>(nominal_population()) { }
~Factory();
// Allocate storage and value-construct an object of type `T'.
T* make() {
return new(this->allocate(1)) T();
}
// Allocate storage and construct an object of type `T'.
template<typename U>
T* make(const U& u) {
return new(this->allocate(1)) T(u);
}
// Allocate storage and construct an object of type `T'.
template<typename U, typename V>
T* make(const U& u, const V& v) {
return new(this->allocate(1)) T(u, v);
}
// Allocate storage and construct an object of type `T'.
template<typename U, typename V, typename W>
T* make(const U& u, const V& v, const W& w) {
return new(this->allocate(1)) T(u, v, w);
}
private:
// Return 1 or the number of objects that can fit in a page unit.
static size_t nominal_population() {
const size_t overhead =
Storage::round_up(sizeof(Storage),
openaxiom_alignment(Storage*))
+ Storage::round_up(sizeof(Storage*), openaxiom_alignment(T));
const size_t psz = page_size();
if (overhead + sizeof (T) > psz)
return 1;
return (psz - overhead) / sizeof(T);
}
};
// Destroy objects in the reverse order of their construction.
template<typename T>
Factory<T>::~Factory() {
for (Storage* s = this->store; s != 0; s = Arena<T>::previous(s)) {
T* last = Arena<T>::last_object(s);
for (--last; last >= Arena<T>::first_object(s); --last)
last->~T();
}
}
// -----------------
// -- FileMapping --
// -----------------
struct FileMapping {
explicit FileMapping(std::string);
~FileMapping();
const char* begin() const { return static_cast<const char*>(start); }
const char* end() const { return begin() + extent; }
std::size_t size() const { return extent; }
protected:
Pointer start; // address at the mapped storage
size_t extent; // length (in bytes) of the storage
private:
FileMapping(const FileMapping&); // not implemented
FileMapping& operator=(const FileMapping&); // idem
};
}
}
#endif // OPENAXIOM_STORAGE_INCLUDED
|