1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
|
-- Copyright (c) 1991-2002, The Numerical Algorithms Group Ltd.
-- All rights reserved.
-- Copyright (C) 2007-2012, Gabriel Dos Reis.
-- All rights reserved.
--
-- Redistribution and use in source and binary forms, with or without
-- modification, are permitted provided that the following conditions are
-- met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical Algorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
-- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
-- IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
-- TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
-- PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
-- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
-- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
-- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import msgdb
import pathname
import define
namespace BOOT
module compiler where
coerce: (%Triple,%Mode) -> %Maybe %Triple
convert: (%Triple,%Mode) -> %Maybe %Triple
comp: (%Form,%Mode,%Env) -> %Maybe %Triple
compOrCroak: (%Form,%Mode,%Env) -> %Maybe %Triple
compCompilerPredicate: (%Form,%Env) -> %Maybe %Triple
checkCallingConvention: (%List %Sig,%Short) -> %SimpleArray %Short
--%
compUniquely: (%Form,%Mode,%Env) -> %Maybe %Triple
compNoStacking: (%Form,%Mode,%Env) -> %Maybe %Triple
compNoStacking1: (%Form,%Mode,%Env,%List %Thing) -> %Maybe %Triple
compOrCroak1: (%Form,%Mode,%Env) -> %Maybe %Triple
comp2: (%Form,%Mode,%Env) -> %Maybe %Triple
comp3: (%Form,%Mode,%Env) -> %Maybe %Triple
compExpression: (%Form,%Mode,%Env) -> %Maybe %Triple
compAtom: (%Form,%Mode,%Env) -> %Maybe %Triple
compSymbol: (%Form,%Mode,%Env) -> %Maybe %Triple
compTypeOf: (%Form,%Mode,%Env) -> %Maybe %Triple
compForm: (%Form,%Mode,%Env) -> %Maybe %Triple
compForm1: (%Form,%Mode,%Env) -> %Maybe %Triple
compForm2: (%Form,%Mode,%Env,%List %Modemap) -> %Maybe %Triple
compForm3: (%Form,%Mode,%Env,%List %Modemap) -> %Maybe %Triple
compArgumentsAndTryAgain: (%Form,%Mode,%Env) -> %Maybe %Triple
compWithMappingMode: (%Form,%Mode,%Env) -> %Maybe %Triple
compFormMatch: (%Modemap,%List %Mode) -> %Boolean
compFormWithModemap: (%Form,%Mode,%Env,%Modemap) -> %Maybe %Triple
compToApply: (%Form,%List %Form,%Mode,%Env) -> %Maybe %Triple
compApplication: (%Form,%List %Form,%Mode,%Triple) -> %Maybe %Triple
primitiveType: %Form -> %Mode
modeEqual: (%Form,%Form) -> %Boolean
hasUniqueCaseView: (%Form,%Mode,%Env) -> %Boolean
convertOrCroak: (%Triple,%Mode) -> %Maybe %Triple
getFormModemaps: (%Form,%Env) -> %List %Modemap
reshapeArgumentList: (%Form,%Sig) -> %Form
applyMapping: (%Form,%Mode,%Env,%List %Mode) -> %Maybe %Triple
++ A list of routines for diagnostic reports. These functions, in an
++ abstract sense, have type: forall T: Type . String -> T, so they
++ can be used in T-returning functions, for any T.
$coreDiagnosticFunctions ==
'(error userError systemError)
$IOFormDomains ==
[$InputForm,$OutputForm,$Syntax]
--%
compTopLevel: (%Form,%Mode,%Env) -> %Maybe %Triple
compTopLevel(x,m,e) ==
-- signals that target is derived from lhs-- see NRTmakeSlot1Info
$NRTderivedTargetIfTrue: local := false
$killOptimizeIfTrue: local:= false
$forceAdd: local:= false
-- start with a base list of domains we may want to inline.
$optimizableConstructorNames: local := $SystemInlinableConstructorNames
x is ["DEF",:.] or x is ["where",["DEF",:.],:.] =>
([val,mode,.]:= compOrCroak(x,m,e); [val,mode,e])
--keep old environment after top level function defs
compOrCroak(x,m,e)
++ True if no ambiguity is allowed in overload resolution.
$compUniquelyIfTrue := false
compUniquely(x,m,e) ==
$compUniquelyIfTrue: local:= true
CATCH("compUniquely",comp(x,m,e))
compOrCroak(x,m,e) ==
compOrCroak1(x,m,e)
compOrCroak1(x,m,e) ==
fn(x,m,e,nil,nil) where
fn(x,m,e,$compStack,$compErrorMessageStack) ==
T:= CATCH("compOrCroak",comp(x,m,e)) => T
--stackAndThrow here and moan in UT LISP K does the appropriate THROW
$compStack:= [[x,m,e,$exitModeStack],:$compStack]
$s: local :=
compactify $compStack where
compactify al ==
null al => nil
LASSOC(first first al,rest al) => compactify rest al
[first al,:compactify rest al]
$level: local := #$s
errorMessage:=
$compErrorMessageStack ~= nil => first $compErrorMessageStack
"unspecified error"
$scanIfTrue =>
stackSemanticError(errorMessage,mkErrorExpr $level)
["failedCompilation",m,e]
displaySemanticErrors()
SAY("****** comp fails at level ",$level," with expression: ******")
displayComp $level
userError errorMessage
++ The form `x' is intended to be evaluated by the compiler, e.g. in
++ toplevel conditional definition or as sub-domain predicate.
++ Normalize operators and compile the form.
compCompilerPredicate(x,e) ==
$normalizeTree: local := true
compOrCroak(parseTran x, $Boolean, e)
comp(x,m,e) ==
T:= compNoStacking(x,m,e) => ($compStack:= nil; T)
$compStack:= [[x,m,e,$exitModeStack],:$compStack]
nil
compNoStacking(x,m,e) ==
T:= comp2(x,m,e) =>
$useRepresentationHack and m=$EmptyMode and T.mode=$Representation =>
[T.expr,"$",T.env]
T
--$Representation is bound in compDefineFunctor, set by doIt
--this hack says that when something is undeclared, $ is
--preferred to the underlying representation -- RDJ 9/12/83
--Now that `per' and `rep' are built in, we use the above
--hack only when `Rep' is defined the old way. -- gdr 2008/01/26
compNoStacking1(x,m,e,$compStack)
compNoStacking1(x,m,e,$compStack) ==
u:= get(RepIfRepHack m,"value",e) =>
(T:= comp2(x,u.expr,e) => [T.expr,m,T.env]; nil)
nil
comp2(x,m,e) ==
[y,m',e]:= comp3(x,m,e) or return nil
--if cons? y and isDomainForm(y,e) then e := addDomain(x,e)
--line commented out to prevent adding derived domain forms
m~=m' and ($bootStrapMode or isDomainForm(m',e))=>[y,m',addDomain(m',e)]
--isDomainForm test needed to prevent error while compiling Ring
--$bootStrapMode-test necessary for compiling Ring in $bootStrapMode
[y,m',e]
comp3(x,m,$e) ==
--returns a Triple or %else nil to signalcan't do'
$e:= addDomain(m,$e)
e:= $e --for debugging purposes
m is ["Mapping",:.] => compWithMappingMode(x,m,e)
m is ['QUOTE,a] => (x=a => [x,m,$e]; nil)
string? m => (x isnt [.,:.] => (m=x or m=STRINGIMAGE x => [m,m,e]; nil); nil)
-- In quasiquote mode, x should match exactly
(y := isQuasiquote m) =>
y = x => [quote x, m, $e]
nil
x isnt [.,:.] => compAtom(x,m,e)
op:= x.op
ident? op and getXmode(op,e) is ["Mapping",:ml]
and (T := applyMapping(x,m,e,ml)) => T
op is ":" => compColon(x,m,e)
op is "::" => compCoerce(x,m,e)
not $insideCompTypeOf and stringPrefix?('"TypeOf",PNAME op) =>
compTypeOf(x,m,e)
t:= compExpression(x,m,e)
t is [x',m',e'] and not listMember?(m',getDomainsInScope e') =>
[x',m',addDomain(m',e')]
t
compTypeOf(x:=[op,:argl],m,e) ==
$insideCompTypeOf: local := true
newModemap :=
applySubst(pairList(argl,$FormalMapVariableList),get(op,'modemap,e))
e:= put(op,'modemap,newModemap,e)
comp3(x,m,e)
++ We just determined that `op' is called with argument list `args', where
++ `op' is either a local capsule function, or an external function
++ with a local signature-import declaration. Emit insn for the call.
emitLocalCallInsn: (%Symbol,%List %Code,%Env) -> %Code
emitLocalCallInsn(op,args,e) ==
op' := -- Find out the linkage name for `op'.
get(op,"%Link",e) or encodeLocalFunctionName op
get(op,"%Lang",e) => [op',:args] -- non-Spad calling convention
[op',:args,"$"]
applyMapping([op,:argl],m,e,ml) ==
#argl ~= #ml-1 => nil
isCategoryForm(first ml,e) =>
--is op a functor?
pairlis := pairList($FormalMapVariableList,argl)
ml' := applySubst(pairlis,ml)
argl' :=
[T.expr for x in argl for m' in rest ml'] where
T() == [.,.,e]:= comp(x,m',e) or return "failed"
argl' is "failed" => nil
form :=
ident? op and symbolMember?(op,$formalArgList) =>
-- this domain form is given by a general function application
['%funcall,op,:argl'] -- constructor call linkage is special
[op,:argl']
convert([form,first ml',e],m)
argl':=
[T.expr for x in argl for m' in rest ml] where
T() == [.,.,e]:= comp(x,m',e) or return "failed"
if argl' is "failed" then return nil
form:=
symbol? op and not symbolMember?(op,$formalArgList) and null (u := get(op,"value",e)) =>
emitLocalCallInsn(op,argl',e)
-- Compiler synthetized operators are inline.
u ~= nil and u.expr is ["XLAM",:.] => ['%call,u.expr,:argl']
['%call,['%apply,op],:argl']
pairlis := pairList($FormalMapVariableList,argl')
convert([form,applySubst(pairlis,first ml),e],m)
hasFormalMapVariable(x, vl) ==
$formalMapVariables: local := vl
null vl => false
ScanOrPairVec(function hasone?,x) where
hasone? x == symbolMember?(x,$formalMapVariables)
++ Return the usage list of free variables in a lambda expresion.
++ The usage list is an a-list (name, number of timed used.)
freeVarUsage([.,vars,body],env) ==
freeList(body,vars,nil,env) where
freeList(u,bound,free,e) ==
u isnt [.,:.] =>
not ident? u => free
symbolMember?(u,bound) => free
v := objectAssoc(u,free) =>
v.rest := 1 + rest v
free
getmode(u,e) = nil => free
[[u,:1],:free]
op := u.op
op in '(QUOTE GO function) => free
op in '(LAMBDA %lambda) =>
bound := setUnion(u.absParms,bound)
for v in CDDR u repeat
free := freeList(v,bound,free,e)
free
op = 'PROG =>
bound := setUnion(bound, second u)
for v in CDDR u | cons? v repeat
free := freeList(v,bound,free,e)
free
op = '%bind =>
for [v,init] in second u repeat
bound := [v,:bound]
free := freeList(init,bound,free,e)
freeList(third u,bound,free,e)
op = 'LET =>
locals := nil
for [v,init] in second u repeat
free := freeList(init,bound,free,e)
locals := [v,:locals]
freeList(third u,setUnion(locals,bound),free,e)
op = '%seq =>
for v in rest u | cons? v repeat
free := freeList(v,bound,free,e)
free
op in '(COND %when) =>
for v in rest u repeat
for vv in v repeat
free := freeList(vv,bound,free,e)
free
if op isnt [.,:.] then --Atomic functions aren't descended
u := rest u
for v in u repeat
free := freeList(v,bound,free,e)
free
++ Finish processing a lambda expression with parameter list `vars',
++ and `env' as the environement after the compilation its body.
finishLambdaExpression(expr is ["LAMBDA",vars,.],env) ==
$FUNNAME: local := nil
$FUNNAME__TAIL: local := [nil]
expandedFunction := transformToBackendCode expr
frees := freeVarUsage(expandedFunction,env)
vec := nil -- mini-vector
expandedFunction :=
frees = nil => ["LAMBDA",[:vars,"$$"], :CDDR expandedFunction]
-- At this point, we have a function that we would like to pass.
-- Unfortunately, it makes various free variable references outside
-- itself. So we build a mini-vector that contains them all, and
-- pass this as the environment to our inner function.
-- One free can go by itself, more than one needs a vector.
frees is [[var,:.]] =>
vec := var
["LAMBDA",[:vars,var],:CDDR expandedFunction]
scode := nil -- list of multiple used variables, need local bindings.
slist := nil -- list of single used variables, no local bindings.
for v in frees for i in 0.. repeat
val := ['%vref,"$$",i]
vec := [first v,:vec]
rest v = 1 => slist := [[first v,:val],:slist]
scode := [[first v,val],:scode]
body :=
slist => applySubstNQ(slist,CDDR expandedFunction)
CDDR expandedFunction
if scode ~= nil then
body := [['%bind,reverse! scode,:body]]
vec := ['%vector,:reverse! vec]
["LAMBDA",[:vars,"$$"],:body]
fname := ["CLOSEDFN",expandedFunction] --Like QUOTE, but gets compiled
['%pair,fname,vec]
compWithMappingMode(x,m is ["Mapping",m',:sl],oldE) ==
$killOptimizeIfTrue: local:= true
e := oldE
isFunctor x =>
if get(x,"modemap",$CategoryFrame) is [[[.,target,:argModeList],.],:.] and
(and/[extendsCategoryForm("$",s,mode) for mode in argModeList for s in sl]
) and extendsCategoryForm("$",target,m') then
return [['%function,x],m,e]
x is ["+->",:.] => compLambda(x,m,oldE)
if string? x then x := makeSymbol x
for m in sl for v in (vl:= take(#sl,$FormalMapVariableList)) repeat
[.,.,e]:= compMakeDeclaration(v,m,e)
(vl ~= nil) and not hasFormalMapVariable(x, vl) =>
[u,.,.] := comp([x,:vl],m',e) or return nil
extractCodeAndConstructTriple(u, m, oldE)
null vl and (t := comp([x], m', e)) =>
[u,.,.] := t
extractCodeAndConstructTriple(u, m, oldE)
[u,.,.]:= comp(x,m',e) or return nil
[.,fun] := optimizeFunctionDef [nil,["LAMBDA",vl,u]]
[finishLambdaExpression(fun,e),m,oldE]
extractCodeAndConstructTriple(u, m, oldE) ==
u is ['%call,fn,:.] =>
if fn is ['%apply,a] then fn := a
[fn,m,oldE]
[op,:.,env] := u
[['%pair,['%function,op],env],m,oldE]
compExpression(x,m,e) ==
$insideExpressionIfTrue: local:= true
-- special forms have dedicated compilers.
(op := x.op) and ident? op and (fn := property(op,'SPECIAL)) =>
FUNCALL(fn,x,m,e)
compForm(x,m,e)
++ Subroutine of compAtomWithModemap.
++ `Ts' is list of (at least 2) triples. Return the one with most
++ specific mode. Otherwise, return nil.
mostSpecificTriple(Ts,e) ==
[T,:Ts] := Ts
and/[T := lesser(T,T',e) for T' in Ts] where
lesser(t,t',e) ==
isSubset(t.mode,t'.mode,e) => t
isSubset(t'.mode,t.mode,e) => t'
nil
++ Elaborate use of an overloaded constant.
compAtomWithModemap: (%Symbol,%Mode,%Env,%List %Modemap) -> %Maybe %Triple
compAtomWithModemap(x,m,e,mmList) ==
mmList := [mm for mm in mmList | mm.mmImplementation is ['CONST,:.]]
mmList = nil => nil
name := -- constant name displayed in diagnostics.
externalName x -- FIXME: Remove when the parser is fixed.
-- Try constants with exact type matches, first.
Ts := [[['%call,first y],mm.mmTarget,e] for mm in mmList |
mm.mmTarget = m and
(y := compViableModemap(x,nil,mm,e))]
Ts is [T] => T -- Only one possibility, take it.
Ts ~= nil => -- Ambiguous constant.
stackMessage('"Too many (%1b) constants named %2b with type %3pb",
[#Ts,name,m])
-- Fallback to constants that are coercible to the target.
Ts := [[['%call,first y],mm.mmTarget,nil] for mm in mmList |
coerceable(mm.mmTarget,m,e) and
(y := compViableModemap(x,nil,mm,e))]
Ts = nil =>
stackMessage('"No viable constant named %1b in %2pb context",[name,m])
Ts is [T] or (T := mostSpecificTriple(Ts,e)) =>
coerce([T.expr,T.mode,e],m)
stackMessage('"Ambiguous constant %1b in %2pb constext. Candidates are %3f",
[name,m,[function formatConstantCandidates,name,Ts]])
++ Format constants named `op' with mode given in the list of triples `Ts'.
formatConstantCandidates(op,Ts) ==
displayAmbiguousSignatures(op,[[T.mode,'constant] for T in Ts])
++ Attempt to elaborate the integer literal `x' as an exported operator
++ in the type context `m' and assumption environment `e'.
compIntegerLiteral(x,m,e) ==
x := internalName x
compAtomWithModemap(x,m,e,get(x,'modemap,e))
compAtom(x,m,e) ==
x is "break" => compBreak(x,m,e)
x is "iterate" => compIterate(x,m,e)
T := ident? x and compAtomWithModemap(x,m,e,get(x,"modemap",e)) => T
T := integer? x and x > 1 and compIntegerLiteral(x,m,e) => T
t :=
ident? x => compSymbol(x,m,e) or return nil
listMember?(m,$IOFormDomains) and primitiveType x => [x,m,e]
string? x => [x,x,e]
[x,primitiveType x or return nil,e]
convert(t,m)
primitiveType x ==
x is nil => $EmptyMode
string? x => $String
integer? x =>
x = 0 => $NonNegativeInteger
x > 0 => $PositiveInteger
$Integer
FLOATP x => $DoubleFloat
nil
compSymbol(s,m,e) ==
s is "$NoValue" => ["$NoValue",$NoValueMode,e]
isFluid s => [s,getmode(s,e) or return nil,e]
sameObject?(s,m) or isLiteral(s,e) => [quote s,s,e]
v := get(s,"value",e) =>
symbolMember?(s,$functorLocalParameters) =>
getLocalIndex(constructorDB currentConstructor e,s)
[s,v.mode,e] --s will be replaced by an ELT form in beforeCompile
[s,v.mode,e] --s has been SETQd
m' := getmode(s,e) =>
if not symbolMember?(s,$formalArgList) and not symbolMember?(s,$FormalMapVariableList) and
not isFunction(s,e) and not $compForModeIfTrue then errorRef s
[s,m',e] --s is a declared argument
symbolMember?(s,$FormalMapVariableList) =>
stackMessage('"no mode found for %1b",[s])
listMember?(m,$IOFormDomains) or member(m,[$Identifier,$Symbol]) =>
[quote s,m,e]
not isFunction(s,e) => errorRef s
++ Return true if `m' is the most recent unique type case assumption
++ on `x' that predates its declaration in environment `e'.
hasUniqueCaseView(x,m,e) ==
props := getProplist(x,e)
for [p,:v] in props repeat
p is "condition" and v is [["case",.,t],:.] => return modeEqual(t,m)
p is "value" => return false
convertOrCroak(T,m) ==
u := convert(T,m) => u
userError ['"CANNOT CONVERT: ",T.expr,"%l",'" OF MODE: ",T.mode,"%l",
'" TO MODE: ",m,"%l"]
convert(T,m) ==
coerce(T,resolve(T.mode,m) or return nil)
mkUnion(a,b) ==
b is "$" and $Rep is ["Union",:l] => b
a is ["Union",:l] =>
b is ["Union",:l'] => ["Union",:union(l,l')]
["Union",:union([b],l)]
b is ["Union",:l] => ["Union",:union([a],l)]
["Union",a,b]
hasType(x,e) ==
fn get(x,"condition",e) where
fn x ==
x = nil => nil
x is [["case",.,y],:.] => y
fn rest x
--% General Forms
compForm(form,m,e) ==
T :=
compForm1(form,m,e) or compArgumentsAndTryAgain(form,m,e) or return
stackMessageIfNone ["cannot compile","%b",form,"%d"]
T
compArgumentsAndTryAgain(form is [.,:argl],m,e) ==
-- used in case: f(g(x)) where f is in domain introduced by
-- comping g, e.g. for (ELT (ELT x a) b), environment can have no
-- modemap with selector b
form is ["elt",a,.] =>
([.,.,e]:= comp(a,$EmptyMode,e) or return nil; compForm1(form,m,e))
+/[(e := T.env; 1) for x in argl | T := comp(x,$EmptyMode,e)] = 0 => nil
compForm1(form,m,e)
outputComp(x,e) ==
u:=comp(['_:_:,x,$OutputForm],$OutputForm,e) => u
x is ['construct,:argl] =>
[['%list,:[([.,.,e]:=outputComp(x,e)).expr for x in argl]],$OutputForm,e]
(v:= get(x,"value",e)) and (v.mode is ['Union,:l]) =>
[['coerceUn2E,x,v.mode],$OutputForm,e]
[x,$OutputForm,e]
compForm1(form is [op,:argl],m,e) ==
symbolMember?(op,$coreDiagnosticFunctions) =>
[[op,:[([.,.,e]:=outputComp(x,e)).expr for x in argl]],m,e]
op is ["elt",domain,op'] =>
domain="Lisp" =>
[[op',:[([.,.,e]:= compOrCroak(x,$EmptyMode,e)).expr for x in argl]],m,e]
domain is ["Foreign",lang] => compForeignPackageCall(lang,op',argl,m,e)
(op'="COLLECT") and coerceable(domain,m,e) =>
(T:= comp([op',:argl],domain,e) or return nil; coerce(T,m))
-- Next clause added JHD 8/Feb/94: the clause after doesn't work
-- since addDomain refuses to add modemaps from Mapping
(domain is ['Mapping,:.]) and
(ans := compForm2([op',:argl],m,e:= augModemapsFromDomain1(domain,domain,e),
[x for x in getFormModemaps([op',:argl],e) | x.mmDC = domain])) => ans
ans := compForm2([op',:argl],m,e:= addDomain(domain,e),
[x for x in getFormModemaps([op',:argl],e) | x.mmDC = domain]) => ans
(op'="construct") and coerceable(domain,m,e) =>
(T:= comp([op',:argl],domain,e) or return nil; coerce(T,m))
nil
T := compForm2(form,m,e,getFormModemaps(form,e)) => T
--FIXME: remove next line when the parser is fixed.
form = $Zero or form = $One => nil
compToApply(op,argl,m,e)
compForm2(form is [op,:argl],m,e,modemapList) ==
modemapList = nil => nil
aList := pairList($TriangleVariableList,argl)
modemapList := applySubst(aList,modemapList)
-- The calling convention vector is used to determine when it is
-- appropriate to infer type by compiling the argument vs. just
-- looking up the parameter type for flag arguments.
cc := checkCallingConvention([mm.mmSignature for mm in modemapList], #argl)
Tl :=
[[.,.,e] := T for x in argl for i in 0..
while (T := inferMode(x,cc.i > 0,e))] where
inferMode(x,flag,e) ==
flag => [x,quasiquote x,e]
isSimple x => compUniquely(x,$EmptyMode,e)
nil
or/[x for x in Tl] =>
partialModeList := [(x => x.mode; nil) for x in Tl]
compFormPartiallyBottomUp(form,m,e,modemapList,partialModeList) or
compForm3(form,m,e,modemapList)
compForm3(form,m,e,modemapList)
++ We are about to compile a call. Returns true if each argument
++ partially matches (as could be determined by type inference) the
++ corresponding expected type in the callee's modemap.
compFormMatch(mm,partialModeList) == main where
main() ==
match(mm.mmSource,partialModeList)
or wantArgumentsAsTuple(partialModeList,mm.mmSource)
match(a,b) ==
b = nil => true
first b = nil => match(rest a,rest b)
first a=first b and match(rest a,rest b)
compFormPartiallyBottomUp(form,m,e,modemapList,partialModeList) ==
mmList := [mm for mm in modemapList | compFormMatch(mm,partialModeList)] =>
compForm3(form,m,e,mmList)
nil
compForm3(form is [op,:argl],m,e,modemapList) ==
T :=
or/
[compFormWithModemap(form,m,e,first (mml:= ml))
for ml in tails modemapList]
$compUniquelyIfTrue =>
or/[compFormWithModemap(form,m,e,mm) for mm in rest mml] =>
THROW("compUniquely",nil)
T
T
compFormWithModemap(form,m,e,modemap) ==
[map:= [.,target,:sig],[pred,impl]]:= modemap
[op,:argl] := form := reshapeArgumentList(form,sig)
if isCategoryForm(target,e) and isFunctor op then
[modemap,e] := evaluateConstructorModemap(argl,modemap,e) or return nil
[map:=[.,target,:.],:cexpr] := modemap
sv := listOfSharpVars map
if sv ~= nil then
-- SAY [ "compiling ", op, " in compFormWithModemap,
-- mode= ",map," sharp vars=",sv]
for x in argl for ss in $FormalMapVariableList repeat
if symbolMember?(ss,sv) then
[map:= [.,target,:.],:cexpr]:= modemap :=SUBST(x,ss,modemap)
-- SAY ["new map is",map]
not coerceable(target,m,e) => nil
[f,Tl] := compApplyModemap(form,modemap,e) or return nil
--generate code; return
T :=
[x',target,e'] where
x':=
form':= [f,:[t.expr for t in Tl]]
target = $Category or isCategoryForm(target,e) =>
-- Constructor instantiations are direct calls
ident? f and constructorDB f ~= nil => form'
-- Otherwise, this is an indirect call
['%call,:form']
-- try to deal with new-style Unions where we know the conditions
op = "elt" and f is ['XLAM,:.] and ident?(z := first argl) and
(c := get(z,'condition,e)) and
c is [["case",=z,c1]] and
(c1 is [":",=(second argl),=m] or sameObject?(c1,second argl) ) =>
-- first is a full tag, as placed by getInverseEnvironment
-- second is what getSuccessEnvironment will place there
['%tail,z]
['%call,:form']
e':=
Tl ~= nil => last(Tl).env
e
convert(T,m)
++ Returns the list of candidate modemaps for a form. A modemap
++ is candidate for a form if its signature has the same number
++ of paramter types as arguments supplied to the form. A special
++ case is made for a modemap whose sole parameter type is a Tuple.
++ In that case, it matches any number of supplied arguments.
getFormModemaps(form is [op,:argl],e) ==
op is ["elt",domain,op1] and isDomainForm(domain,e) =>
[x for x in getFormModemaps([op1,:argl],e) | x.mmDC = domain]
op is [.,:.] => nil
modemapList := get(op,"modemap",e)
-- Within default implementations, modemaps cannot mention the
-- current domain.
if $insideCategoryPackageIfTrue then
modemapList := [x for x in modemapList | x.mmDC isnt '$]
if form is ["elt",.,f] then
modemapList := eltModemapFilter(f,modemapList,e) or return nil
else if form is ["setelt",.,f,.] then
modemapList := seteltModemapFilter(f,modemapList,e) or return nil
nargs := #argl
finalModemapList:= [mm for mm in modemapList
| enoughArguments(argl,mm.mmSource)]
modemapList and null finalModemapList =>
stackMessage('"no modemap for %1b with %2 arguments", [op,nargs])
finalModemapList
++ We are either compiling a function call, or trying to determine
++ whether we know something about a function being defined with
++ parameters are not declared in the definition. `sigs' is the list of
++ candidate signatures for `nargs' arguments or parameters. We need
++ to detemine whether any of the arguments are flags. If any
++ operation takes a flag argument, then all other overloads must have
++ the same arity and must take flag argument in the same position.
++ Returns a vector of length `nargs' with positive entries indicating
++ flag arguments, and negative entries for normal argument passing.
checkCallingConvention(sigs,nargs) ==
v := makeFilledSimpleArray("%Short",nargs,0)
for sig in sigs repeat
for t in rest sig
for i in 0.. repeat
isQuasiquote t =>
arrayRef(v,i) < 0 =>
userError '"flag argument restriction violation"
arrayRef(v,i) := arrayRef(v,i) + 1
arrayRef(v,i) > 0 => userError '"flag argument restriction violation"
arrayRef(v,i) := arrayRef(v,i) - 1
v
eltModemapFilter(name,mmList,e) ==
isConstantId(name,e) =>
l:= [mm for mm in mmList | second mm.mmSource = name] => l
--there are elts with extra parameters
stackMessage('"selector variable: %1b is undeclared and unbound",[name])
nil
mmList
seteltModemapFilter(name,mmList,e) ==
isConstantId(name,e) =>
l:= [mm for mm in mmList | second mm.mmSource = name] => l
--there are setelts with extra parameters
stackMessage('"selector variable: %1b is undeclared and unbound",[name])
nil
mmList
compApplication(op,argl,m,T) ==
e := T.env
T.mode is ['Mapping, retm, :argml] =>
#argl ~= #argml => nil
retm := resolve(m, retm)
retm = $Category or isCategoryForm(retm,e) => nil -- not handled
argTl := [[.,.,e] := comp(x,m,e) or return "failed"
for x in argl for m in argml]
argTl = "failed" => nil
form:=
args := [a.expr for a in argTl]
ident? T.expr and
not (symbolMember?(op,$formalArgList) or symbolMember?(T.expr,$formalArgList)) and
null get(T.expr,"value",e) =>
emitLocalCallInsn(T.expr,args,e)
['%call,['%apply,T.expr],:args]
coerce([form, retm, e],resolve(retm,m))
op is 'elt => nil
eltForm := ['elt, op, :argl]
comp(eltForm, m, e)
compToApply(op,argl,m,e) ==
T := compNoStacking(op,$EmptyMode,e) or return nil
T.expr is ['QUOTE, =T.mode] => nil
compApplication(op,argl,m,T)
++ `form' is a call to a operation described by the signature `sig'.
++ Massage the call so that homogeneous variable length argument lists
++ are properly tuplified.
reshapeArgumentList(form,sig) ==
[op,:args] := form
wantArgumentsAsTuple(args,sig) => [op,["%Comma",:args]]
form
++ Attempt to find values for queries variables `vars' so that
++ the category expression `x' equals the category expression `p'.
solveEquation(x,p,sl,vars) ==
ident? p and symbolMember?(p,vars) =>
z := symbolTarget(p,sl) =>
x = z => sl
'failed
[[p,:x],:sl]
x isnt [.,:.] or p isnt [.,:.] =>
x = p => sl
'failed
symbolEq?(x.op,p.op) =>
#x.args ~= #p.args => 'failed
x.args = nil => sl
and/[sl := solveEquation(x',p',sl,vars)
for x' in x.args for p' in p.args
| sl isnt 'failed or leave 'failed]
'failed
++ Attempt to find values for queries variables `vars' so that
++ the category expression `x' subsumes the category expression `p'.
solveSubsumption(x,p,sl,vars,typings,e) ==
x isnt [.,:.] or p isnt [.,:.] => solveEquation(x,p,sl,vars)
p = $Type => sl
symbolEq?(x.op,p.op) => solveEquation(x,p,sl,vars)
x.op is 'Join =>
x.args = nil => 'failed
or/[sl' := solveSubsumption(x',p,sl,vars,typings,e) for x' in x.args
| sl' isnt 'failed] or 'failed
x is ['CATEGORY,.,:xs] =>
or/[sl' := solveSubsumption(x',p,sl,vars,typings,e) for x' in xs
| sl' isnt 'failed] or 'failed
x.op in '(SIGNATURE ATTRIBUTE) => 'failed
getConstructorKind x.op isnt 'category => 'failed --FIXME: for now.
x := applySubst(constructSubst x,getConstructorCategory x.op)
solveSubsumption(x,p,sl,vars,typings,e)
++ Subroutine of bindPredicateExistentials, with similar semantics.
++ `vars' is the list of quantified variables, and `conds' is a
++ of conditions the conjunction of which makes the whole predicate.
deduceImplicitArguments(vars,conds,e) ==
eqs := nil -- equation constraints
typings := nil -- typing constraints
sl := nil
for c in conds while sl isnt 'failed repeat
c is ['ofCategory,x,y] => -- subsumption constraint
ident? x and symbolMember?(x,vars) =>
typings := [[x,:y],:typings]
eqs := [[x,:y],:eqs]
c is ['ofType,x,y] => -- exact type constraints
T := comp(x,$EmptyMode,e)
T = nil => sl := 'failed
sl := solveEquation(T.mode,y,sl,vars)
for [x,:y] in eqs while sl isnt 'failed repeat
cat :=
x isnt [.,:.] => getXmode(x,e)
applySubst(constructSubst x,getConstructorCategory x.op)
sl := solveSubsumption(cat,y,sl,vars,typings,e)
sl is 'failed => sl
-- Every existential must have a value
or/[symbolTarget(v,sl) = nil for v in vars] => 'failed
sl --FIXME: check typing constraints
++ Attempt to find values for existentially quantified variables in
++ the predicate `cond' so that it holds in the environment `e'.
++ Return a substitution on success; otherwise fail.
bindPredicateExistentials(cond,e) ==
cond is true => nil -- identity substitution
cond is ['%exist,vars,['AND,:conds]] =>
deduceImplicitArguments(vars,conds,e)
'failed
++ The argument list `argl' is used to instantiate a constructor
++ with `modemap' in environment `e'. Return the resulting
++ modemap is instantiation is legit.
evaluateConstructorModemap(argl,modemap is [[dc,:sig],:.],e) ==
#dc ~= #sig =>
keyedSystemError("S2GE0016",['"evaluateConstructorModemap",
'"Incompatible maps"])
#argl ~= #sig.source => nil
-- Get `source-level' subtitution in an attempt to deduce implicits.
sl := pairList(dc.args,argl)
sl' := bindPredicateExistentials(applySubst(sl,modemap.mmCondition),e)
sl' is 'failed => nil
-- Subtitute values for implicit in formal modemap. Then substitute
-- the `source-level' arguments into the resulting modemap, before
-- compiling them. Note the sort of bootstrapping process.
signature := applySubst(sl',modemap.mmSignature)
args' := [x for a in argl for m in applySubst(sl,signature.source)
| [x,.,e] := compOrCroak(a,m,e)]
-- Now substitutte elaborations of actual arguments into the formal
-- signature to construct the final result.
signature := applySubst(pairList(dc.args,args'),signature)
-- At this point, the modemap condition was evaluated successfully,
-- so we return plain `true' for that part of the modemap.
[[[[dc.op,:args'],:signature],[true,dc.op]],e]
--% SPECIAL EVALUATION FUNCTIONS
compEnumCat(x,m,e) ==
for arg in x.args repeat
ident? arg => nil -- OK
stackAndThrow('"all arguments to %1b must be identifiers",[x.op])
[x,resolve($Category,m),e]
compConstructorCategory(x,m,e) ==
x is [ctor,:args] =>
ctor in '(RecordCategory UnionCategory MappingCategory) =>
failed := false
colons := 0
args' := []
while not failed for y in args repeat
y is [":",.,t] =>
colons := colons + 1
[t',.,e] := compForMode(t,$EmptyMode,e) or return (failed := true)
args' := [[y.op,second y,t'],:args']
[t',.,e] := compForMode(y,$EmptyMode,e) or return (failed := true)
args' := [t',:args']
failed => nil
colons ~= 0 and colons ~= #args and ctor isnt 'MappingCategory => nil
[[ctor,:reverse! args'],resolve($Category,m),e]
ctor is 'EnumerationCategory => compEnumCat(x,m,e)
nil
nil
--% SUBSET CATEGORY
compSubsetCategory: (%Form,%Mode,%Env) -> %Maybe %Triple
compSubsetCategory(["SubsetCategory",cat,R],m,e) ==
--1. put "Subsets" property on R to allow directly coercion to subset;
-- allow automatic coercion from subset to R but not vice versa
e:= put(R,"Subsets",[[$lhsOfColon,"isFalse"]],e)
--2. give the subset domain modemaps of cat plus 3 new functions
comp(["Join",cat,C'],m,e) where
C'() ==
substitute($lhsOfColon,"$",C'') where
C''() ==
["CATEGORY","domain",["SIGNATURE","coerce",[R,"$"]],["SIGNATURE",
"lift",[R,"$"]],["SIGNATURE","reduce",["$",R]]]
--% CONS
compCons: (%Form,%Mode,%Env) -> %Maybe %Triple
compCons1: (%Form,%Mode,%Env) -> %Maybe %Triple
compCons(form,m,e) == compCons1(form,m,e) or compForm(form,m,e)
compCons1(["CONS",x,y],m,e) ==
[x,mx,e]:= comp(x,$EmptyMode,e) or return nil
null y => coerce([['%list,x],["List",mx],e],m)
yt:= [y,my,e]:= comp(y,$EmptyMode,e) or return nil
T:=
my is ["List",m',:.] =>
mr:= ["List",resolve(m',mx) or return nil]
yt':= coerce(yt,mr) or return nil
[x,.,e]:= coerce([x,mx,yt'.env],second mr) or return nil
yt'.expr is ['%list,:.] => [['%list,x,:rest yt'.expr],mr,e]
[['%pair,x,yt'.expr],mr,e]
[['%pair,x,y],["Pair",mx,my],e]
coerce(T,m)
--% SETQ
compSetq: (%Instantiation,%Mode,%Env) -> %Maybe %Triple
compSetq1: (%Form,%Form,%Mode,%Env) -> %Maybe %Triple
compSetq([":=",form,val],m,E) ==
compSetq1(form,val,m,E)
compSetq1(form,val,m,E) ==
ident? form => setqSingle(form,val,m,E)
form is [":",x,y] =>
[.,.,E']:= compMakeDeclaration(x,y,E)
compSetq1(x,val,m,E')
form is [op,:l] =>
op is "CONS" => setqMultiple(uncons form,val,m,E)
op is "%Comma" => setqMultiple(l,val,m,E)
setqSetelt(form,val,m,E)
compMakeDeclaration: (%Form,%Mode,%Env) -> %Maybe %Triple
compMakeDeclaration(x,m,e) ==
$insideExpressionIfTrue: local := false
compColon([":",x,m],$EmptyMode,e)
setqSetelt([v,:s],val,m,E) ==
comp(["setelt",v,:s,val],m,E)
setqSingle(id,val,m,E) ==
checkVariableName id
$insideSetqSingleIfTrue: local:= true
--used for comping domain forms within functions
currentProplist:= getProplist(id,E)
m'':=
get(id,"mode",E) or getmode(id,E) or
(if m=$NoValueMode then $EmptyMode else m)
T:=
eval or return nil where
eval() ==
T:= comp(val,m'',E) => T
get(id,"mode",E) = nil and m'' ~= (maxm'':=maximalSuperType m'') and
(T:=comp(val,maxm'',E)) => T
(T:= comp(val,$EmptyMode,E)) and getmode(T.mode,E) =>
assignError(val,T.mode,id,m'')
T':= [x,m',e']:= coerce(T,m) or return nil
if $profileCompiler then
not ident? id => nil
key :=
symbolMember?(id,$form.args) => "arguments"
"locals"
profileRecord(key,id,T.mode)
newProplist :=
consProplistOf(id,currentProplist,"value",removeEnv [val,:rest T])
e':=
cons? id => e'
addBinding(id,newProplist,e')
if isDomainForm(val,e') then
if isDomainInScope(id,e') then
stackWarning('"domain valued variable %1b has been reassigned within its scope",[id])
-- single domains have constant values in their scopes, we might just
-- as well take advantage of that at compile-time where appropriate.
e' := put(id,'%macro,val,e')
e':= augModemapsFromDomain1(id,val,e')
--all we do now is to allocate a slot number for lhs
--e.g. the %LET form below will be changed by putInLocalDomainReferences
form :=
db := constructorDB currentConstructor e'
k := assocIndex(db,id) => ['%store,['%tref,'$,k],x]
["%LET",id,x]
[form,m',e']
assignError(val,m',form,m) ==
val =>
stackMessage('"CANNOT ASSIGN: %1b OF MODE: %2pb TO: %3b OF MODE: %4bp",
[val,m',form,m])
stackMessage('"CANNOT ASSIGN: %1b TO: %2b OF MODE: %3pb",[val,form,m])
setqMultiple(nameList,val,m,e) ==
val is ["CONS",:.] and m=$NoValueMode =>
setqMultipleExplicit(nameList,uncons val,m,e)
val is ["%Comma",:l] and m=$NoValueMode =>
setqMultipleExplicit(nameList,l,m,e)
-- 1. create a gensym, %add to local environment, compile and assign rhs
g:= genVariable()
e:= addBinding(g,nil,e)
T:= [.,m1,.]:= compSetq1(g,val,$EmptyMode,e) or return nil
e:= put(g,"mode",m1,e)
[x,m',e]:= coerce(T,m) or return nil
-- 2. exit if result is a list
m1 is ["List",D] =>
for y in nameList repeat
e:= giveVariableSomeValue(y,D,e)
coerce([['%seq,x,["%LET",nameList,g],g],m',e],m)
-- 3. For a cross, do it by hand here instead of general mm. FIXME.
m1 is ['Cross,:.] =>
n := #m1.args
#nameList ~= n =>
stackMessage('"%1b must decompose into %2 components",[val,n])
stmts := nil
for y in nameList for t in m1.args for i in 0.. repeat
e := giveVariableSomeValue(y,t,e)
stmts := [['%LET,y,['%call,eltRecordFun(n,i),g,i]],:stmts]
coerce([['%seq,x,:reverse! stmts,g],m1,e],m)
-- 4. verify that the #nameList = number of parts of right-hand-side
selectorModePairs:=
--list of modes
decompose(m1,#nameList,e) or return nil where
decompose(t,length,e) ==
t is ["Record",:l] => [[name,:mode] for [":",name,mode] in l]
comp(t,$EmptyMode,e) is [.,["RecordCategory",:l],.] =>
[[name,:mode] for [":",name,mode] in l]
stackMessage('"no multiple assigns to mode: %1p",[t])
#nameList~=#selectorModePairs =>
stackMessage('"%1b must decompose into %2 components",[val,#nameList])
-- 5. generate code; return
assignList:=
[([.,.,e]:= compSetq1(x,["elt",g,y],z,e) or return "failed").expr
for x in nameList for [y,:z] in selectorModePairs]
assignList="failed" => nil
[['%seq,x,:assignList,g],m',e]
setqMultipleExplicit(nameList,valList,m,e) ==
#nameList~=#valList =>
stackMessage('"Multiple assignment error; # of items in: %1b must = # in: %2",[nameList,valList])
gensymList:= [genVariable() for name in nameList]
bindings := --should be fixed to declare genVar when possible
[insn.args for g in gensymList for val in valList
| [insn,.,e] := compSetq1(g,val,$EmptyMode,e) or leave "failed" ]
bindings is "failed" => nil
reAssignList :=
[[.,.,e] := compSetq1(name,g,$EmptyMode,e) or return "failed"
for g in gensymList for name in nameList]
reAssignList is "failed" => nil
[['%bind,bindings,['%seq,:[T.expr for T in reAssignList]]],
$NoValueMode, last(reAssignList).env]
--% Quasiquotation
++ Compile a quotation `[| form |]'. form is not type-checked, and
++ is returned as is. Note: when get to support splicing, we would
++ need to scan `form' to see whether there is any computation that
++ must be done.
++ ??? Another strategy would be to infer a more accurate domain
++ ??? based on the meta operator, e.g. (DEF ...) would be a
++ DefinitionAst, etc. That however requires that we have a full
++ fledged AST algebra -- which we don't have yet in mainstream.
compileQuasiquote: (%Instantiation,%Mode,%Env) -> %Maybe %Triple
compileQuasiquote(["[||]",:form],m,e) ==
null form => nil
coerce([['QUOTE, :form],$Syntax,e], m)
--% WHERE
++ The form `item' appears in a side condition of a where-expression.
++ Register all declarations it locally introduces.
recordDeclarationInSideCondition(item,e,decls) ==
item is [":",x,t] =>
t := macroExpand(t,e)
ident? x => deref(decls) := [[x,t],:deref decls]
x is ['%Comma,:.] =>
deref(decls) := [:[[x',t] for x' in x.args],:deref decls]
item is ['SEQ,:stmts,["exit",.,val]] =>
for stmt in stmts repeat
recordDeclarationInSideCondition(stmt,e,decls)
recordDeclarationInSideCondition(val,e,decls)
compWhere: (%Form,%Mode,%Env) -> %Maybe %Triple
compWhere([.,form,:exprList],m,eInit) ==
$insideExpressionIfTrue: local:= false
$insideWhereIfTrue: local := true
e := eInit
decls := ref get('%compilerData,'%whereDecls,e)
u :=
for item in exprList repeat
recordDeclarationInSideCondition(item,e,decls)
[.,.,e]:= comp(item,$EmptyMode,e) or return "failed"
u is "failed" => return nil
-- Remember side declaration constraints, if any.
if deref decls ~= nil then
e := put('%compilerData,'%whereDecls,deref decls,e)
$insideWhereIfTrue := false
[x,m,eAfter] := comp(macroExpand(form,eBefore := e),m,e) or return nil
eFinal :=
del := deltaContour(eAfter,eBefore) => addContour(del,eInit)
eInit
[x,m,eFinal]
compConstruct: (%Form,%Mode,%Env) -> %Maybe %Triple
compConstruct(form is ["construct",:l],m,e) ==
y:= modeIsAggregateOf("List",m,e) =>
T:= compList(l,["List",second y],e) => coerce(T,m)
compForm(form,m,e)
y:= modeIsAggregateOf("Vector",m,e) =>
T:= compVector(l,["Vector",second y],e) => coerce(T,m)
compForm(form,m,e)
T:= compForm(form,m,e) => T
for D in getDomainsInScope e repeat
(y:=modeIsAggregateOf("List",D,e)) and
(T:= compList(l,["List",second y],e)) and (T':= coerce(T,m)) =>
return T'
(y:=modeIsAggregateOf("Vector",D,e)) and
(T:= compVector(l,["Vector",second y],e)) and (T':= coerce(T,m)) =>
return T'
++ Compile a literal (quoted) symbol.
compQuote: (%Form,%Mode,%Env) -> %Maybe %Triple
compQuote(expr,m,e) ==
expr is ['QUOTE,x] and ident? x =>
-- Ideally, Identifier should be the default type. However, for
-- historical reasons we cannot afford that luxury yet.
m = $Identifier or listMember?(m,$IOFormDomains) => [expr,m,e]
coerce([expr,$Symbol,e],m)
stackAndThrow('"%1b is not a literal symbol.",[x])
compList: (%Form,%Mode,%Env) -> %Maybe %Triple
compList(l,m is ["List",mUnder],e) ==
null l => ['%nil,m,e]
Tl:= [[.,mUnder,e]:= comp(x,mUnder,e) or return "failed" for x in l]
Tl is "failed" => nil
T := [['%list,:[T.expr for T in Tl]],["List",mUnder],e]
compVector: (%Form,%Mode,%Env) -> %Maybe %Triple
compVector(l,m is ["Vector",mUnder],e) ==
Tl := [[.,mUnder,e]:= comp(x,mUnder,e) or return "failed" for x in l]
Tl is "failed" => nil
[["MAKE-ARRAY", #Tl, KEYWORD::ELEMENT_-TYPE, quote getVMType mUnder,
KEYWORD::INITIAL_-CONTENTS, ['%list, :[T.expr for T in Tl]]],m,e]
--% MACROS
++ True if we are compiling a macro definition.
$macroIfTrue := false
compMacro(form,m,e) ==
$macroIfTrue: local:= true
["MDEF",lhs,signature,rhs] := form
if $verbose then
prhs :=
rhs is ['CATEGORY,:.] => ['"-- the constructor category"]
rhs is ['Join,:.] => ['"-- the constructor category"]
rhs is ['CAPSULE,:.] => ['"-- the constructor capsule"]
rhs is ['add,:.] => ['"-- the constructor capsule"]
formatUnabbreviated rhs
sayBrightly ['" processing macro definition",'"%b",
:formatUnabbreviated lhs,'" ==> ",:prhs,'"%d"]
m=$EmptyMode or m=$NoValueMode =>
-- Macro names shall be identifiers.
(lhs isnt [.,:.] and not ident? lhs)
or (lhs is [op,:.] and not ident? op) =>
stackMessage('"invalid left-hand-side in macro definition",nil)
e
-- We do not have the means, at this late stage, to make a distinction
-- between a niladic functional macro and an identifier that is
-- defined as a macro.
if lhs is [op] then lhs := op
["/throwAway",$NoValueMode,putMacro(lhs,macroExpand(rhs,e),e)]
nil
--% SEQ
compSeq: (%Form,%Mode,%Env) -> %Maybe %Triple
compSeq1: (%Form,%List %Thing,%Env) -> %Maybe %Triple
compSeqItem: (%Form,%Mode,%Env) -> %Maybe %Triple
compSeq(["SEQ",:l],m,e) ==
compSeq1(l,[m,:$exitModeStack],e)
compSeq1(l,$exitModeStack,e) ==
$insideExpressionIfTrue: local := false
$finalEnv: local := nil --used in replaceExitEtc.
c :=
[([.,.,e] := compSeqItem(x,$NoValueMode,e) or leave "failed").expr
for x in l]
if c is "failed" then return nil
catchTag := MKQ gensym()
form := ['%seq,:replaceExitEtc(c,catchTag,"TAGGEDexit",first $exitModeStack)]
[['%scope,catchTag,form],first $exitModeStack,$finalEnv]
compSeqItem(x,m,e) ==
$insideExpressionIfTrue := false
comp(macroExpand(x,e),m,e)
replaceExitEtc(x,tag,opFlag,opMode) ==
(fn(x,tag,opFlag,opMode); x) where
fn(x,tag,opFlag,opMode) ==
atomic? x => nil
x is [ =opFlag,n,t] =>
t.expr := replaceExitEtc(t.expr,tag,opFlag,opMode)
n=0 =>
$finalEnv :=
$finalEnv ~= nil => intersectionEnvironment($finalEnv,t.env)
t.env
x.op :=
opFlag is 'TAGGEDreturn => '%return
second(x) := tag
'%leave
third(x) := convertOrCroak(t,opMode).expr
second(x) := n-1
x is [key,n,t] and key in '(TAGGEDreturn TAGGEDexit) =>
t.expr := replaceExitEtc(t.expr,tag,opFlag,opMode)
replaceExitEtc(first x,tag,opFlag,opMode)
replaceExitEtc(rest x,tag,opFlag,opMode)
--% SUCHTHAT
compSuchthat: (%Form,%Mode,%Env) -> %Maybe %Triple
compSuchthat([.,x,p],m,e) ==
[x',m',e]:= comp(x,m,e) or return nil
[p',.,e]:= comp(p,$Boolean,e) or return nil
e:= put(x',"condition",p',e)
[x',m',e]
--% exit
compExit: (%Form,%Mode,%Env) -> %Maybe %Triple
compExit(["exit",level,x],m,e) ==
index := level-1
$exitModeStack = [] => comp(x,m,e)
m1 := $exitModeStack.index
[x',m',e']:=
u :=
comp(x,m1,e) or return
stackMessageIfNone ["cannot compile exit expression",x,"in mode",m1]
modifyModeStack(m',index)
[["TAGGEDexit",index,u],m,e]
modifyModeStack(m,index) ==
$reportExitModeStack =>
SAY("exitModeStack: ",copyTree $exitModeStack," ====> ",
($exitModeStack.index:= resolve(m,$exitModeStack.index); $exitModeStack))
$exitModeStack.index:= resolve(m,$exitModeStack.index)
compLeave: (%Form,%Mode,%Env) -> %Maybe %Triple
compLeave(["leave",level,x],m,e) ==
index := #$exitModeStack - 1 - $leaveLevelStack.(level-1)
[x',m',e'] := u := comp(x,$exitModeStack.index,e) or return nil
modifyModeStack(m',index)
[["TAGGEDexit",index,u],m,e]
jumpFromLoop(kind,key) ==
null $exitModeStack or kind ~= $loopKind =>
stackAndThrow('"You can use %1b only in %2b loop",[key,kind])
false
true
compBreak: (%Symbol,%Mode,%Env) -> %Maybe %Triple
compBreak(x,m,e) ==
x isnt "break" or not jumpFromLoop("REPEAT",x) => nil
index := #$exitModeStack - 1 - $leaveLevelStack.0
$breakCount := $breakCount + 1
u := coerce(["$NoValue",$Void,e],$exitModeStack.index) or return nil
u := coerce(u,m) or return nil
modifyModeStack(u.mode,index)
[["TAGGEDexit",index,u],m,e]
compIterate: (%Symbol,%Mode,%Env) -> %Maybe %Triple
compIterate(x,m,e) ==
x isnt "iterate" or not jumpFromLoop("REPEAT",x) => nil
index := #$exitModeStack - 1 - ($leaveLevelStack.0 + 1)
$iterateCount := $iterateCount + 1
u := coerce(['%nil,'$Void,e],$exitModeStack.index) or return nil
u := coerce(u,m) or return nil
modifyModeStack(u.mode,index)
if $loopBodyTag = nil then -- bound in compRepeatOrCollect
$loopBodyTag := MKQ gensym()
[['%leave,$loopBodyTag,u.expr],u.mode,e]
--% return
compReturn: (%Form,%Mode,%Env) -> %Maybe %Triple
compReturn(["return",x],m,e) ==
null $exitModeStack =>
stackAndThrow('"the return before %1b is unneccessary",[x])
nil
index:= MAX(0,#$exitModeStack-1)
if index >= 0 then
$returnMode:= resolve($exitModeStack.index,$returnMode)
[x',m',e']:= u:= comp(x,$returnMode,e) or return nil
if index>=0 then
$returnMode:= resolve(m',$returnMode)
modifyModeStack(m',index)
[["TAGGEDreturn",0,u],m,e']
--% throw expressions
compThrow: (%Form,%Mode,%Env) -> %Maybe %Triple
compThrow(["%Throw",x],m,e) ==
T := compOrCroak(x,$EmptyMode,e)
-- An exception does not use the normal exit/return route, so
-- we don't take into account neither $exitModeStack nor $returnMode.
[['%throw,T.mode,T.expr],$NoValueMode,T.env]
compCatch: (%Form,%Mode,%Env) -> %Maybe %Triple
compCatch([x,s],m,e) ==
[.,m',e] := compMakeDeclaration(second x, third x,e)
T := compOrCroak(s,m,e)
[['%catch,second x,m',T.expr],T.mode,T.env]
compTry: (%Form,%Mode,%Env) -> %Maybe %Triple
compTry(['%Try,x,ys,z],m,e) ==
x' := compOrCroak(x,m,e).expr
ys' := [compCatch(y,m,e).expr for y in ys]
z' :=
z = nil => nil
['%finally,compOrCroak(z,$NoValueMode,e).expr]
[['%try,x',ys',z'],m,e]
--% ELT
getModemapListFromDomain(op,numOfArgs,D,e) ==
[mm
for (mm:= [[dc,:sig],:.]) in get(op,'modemap,e) | dc=D and #rest sig=
numOfArgs]
++ `op' supposedly designate an external entity with language linkage
++ `lang'. Return the mode of its local declaration (import).
getExternalSymbolMode(op,lang,e) ==
lang is 'Builtin => "%Thing" -- for the time being
lang is 'Lisp => "%Thing" -- for the time being
lang is "C" =>
stackAndThrow('"Sorry: %b Foreign %1b %d is invalid at the moment",[lang])
get(op,"%Lang",e) ~= lang =>
stackAndThrow('"%1bp is not known to have language linkage %2bp",[op,lang])
getmode(op,e) or stackAndThrow('"Operator %1bp is not in scope",[op])
compElt: (%Form,%Mode,%Env) -> %Maybe %Triple
compElt(form,m,E) ==
form isnt ["elt",aDomain,anOp] => compForm(form,m,E)
aDomain is "Lisp" or (aDomain is ["Foreign",lang] and lang="Builtin") =>
[anOp',m,E] where anOp'() == (anOp = $Zero => 0; anOp = $One => 1; anOp)
lang ~= nil =>
opMode := getExternalSymbolMode(anOp,lang,E)
op := get(anOp,"%Link",E) or anOp
coerce([op,opMode,E],m)
isDomainForm(aDomain,E) =>
E := addDomain(aDomain,E)
mmList:= getModemapListFromDomain(internalName anOp,0,aDomain,E)
modemap:=
-- FIXME: do this only for constants.
n:=#mmList
1=n => mmList.0
0=n =>
return
stackMessage('"Operation %1b missing from domain: %2p",
[anOp,aDomain])
stackWarning('"more than 1 modemap for: %1 with dc = %2p ===> %3",
[anOp,aDomain,mmList])
mmList.0
[sig,[pred,val]]:= modemap
#sig ~= 2 and val isnt ["CONST",:.] => nil
val := genDeltaEntry(opOf anOp,modemap,E)
coerce([['%call,val],second sig,E], m)
compForm(form,m,E)
--% HAS
compHas: (%Form,%Mode,%Env) -> %Maybe %Triple
compHas(pred is ["has",a,b],m,e) ==
e := chaseInferences(pred,e)
predCode := compHasFormat(pred,e)
coerce([predCode,$Boolean,e],m)
--used in various other places to make the discrimination
compHasFormat(pred is ["has",olda,b],e) ==
argl := $form.args
formals := take(#argl,$FormalMapVariableList)
a := applySubst(pairList(formals,argl),olda)
[a,.,e] := comp(a,$EmptyMode,e) or return nil
a := applySubst(pairList(argl,formals),a)
b is ["ATTRIBUTE",c] => ["HasAttribute",a,quote c]
b is ["SIGNATURE",op,sig,:.] =>
["HasSignature",a,
mkList [MKQ op,mkList [mkTypeForm type for type in sig]]]
b is ["Join",:l] or b is ["CATEGORY",.,:l] =>
["AND",:[compHasFormat(["has",olda,c],e) for c in l]]
isCategoryForm(b,e) => ["HasCategory",a,optimize! mkTypeForm b]
stackAndThrow('"Second argument to %1b must be a category, or a signature or an attribute",["has"])
--% IF
compIf: (%Form,%Mode,%Env) -> %Maybe %Triple
compPredicate: (%Form,%Env) -> %Code
compFromIf: (%Form,%Mode,%Env) -> %Maybe %Triple
compIf(["IF",a,b,c],m,E) ==
[xa,ma,Ea,Einv]:= compPredicate(a,E) or return nil
[xb,mb,Eb]:= Tb:= compFromIf(b,m,Ea) or return nil
[xc,mc,Ec]:= Tc:= compFromIf(c,resolve(mb,m),Einv) or return nil
xb':= coerce(Tb,mc) or return nil
x:= ["IF",xa,xb'.expr,xc]
(returnEnv:= Env(xb'.env,Ec,xb'.expr,xc,E)) where
Env(bEnv,cEnv,b,c,E) ==
canReturn(b,0,0,true) =>
(canReturn(c,0,0,true) => intersectionEnvironment(bEnv,cEnv); bEnv)
canReturn(c,0,0,true) => cEnv
E
[x,mc,returnEnv]
canReturn(expr,level,exitCount,ValueFlag) == --SPAD: exit and friends
expr isnt [.,:.] => ValueFlag and level=exitCount
op := expr.op
op in '(QUOTE CLOSEDFN %lambda) => ValueFlag and level=exitCount
op is "TAGGEDexit" =>
expr is [.,count,data] => canReturn(data.expr,level,count,count=level)
level=exitCount and not ValueFlag => nil
op is '%seq => or/[canReturn(u,level+1,exitCount,false) for u in rest expr]
op is "TAGGEDreturn" => nil
op is '%scope =>
[.,gs,data]:= expr
(findThrow(gs,data,level,exitCount,ValueFlag) => true) where
findThrow(gs,expr,level,exitCount,ValueFlag) ==
expr isnt [.,:.] => nil
expr is ['%leave, =gs,data] => true
--this is pessimistic, but I know of no more accurate idea
expr is ['%seq,:l] =>
or/[findThrow(gs,u,level+1,exitCount,ValueFlag) for u in l]
or/[findThrow(gs,u,level,exitCount,ValueFlag) for u in rest expr]
canReturn(data,level,exitCount,ValueFlag)
op is '%when =>
level = exitCount =>
or/[canReturn(last u,level,exitCount,ValueFlag) for u in rest expr]
or/[or/[canReturn(u,level,exitCount,ValueFlag) for u in v]
for v in rest expr]
op is "IF" =>
expr is [.,a,b,c]
if not canReturn(a,0,0,true) then
SAY "IF statement can not cause consequents to be executed"
pp expr
canReturn(a,level,exitCount,nil) or canReturn(b,level,exitCount,ValueFlag)
or canReturn(c,level,exitCount,ValueFlag)
op in '(LET %bind) =>
or/[canReturn(init,level,exitCount,false) for [.,init] in second expr]
or canReturn(third expr,level,exitCount,ValueFlag)
--now we have an ordinary form
op isnt [.,:.] => and/[canReturn(u,level,exitCount,ValueFlag) for u in expr]
systemErrorHere ['"canReturn",expr] --for the time being
++ We are compiling a conditional expression, type check and generate
++ code for the predicate of the branch as a Boolean expression.
compPredicate(p,E) ==
-- Ideally, we should be first inferring the type of the predicate
-- `p'. That would have the virtue of pointing out possible
-- ambiguities. Then, on a second phase, implicitly coerce the
-- the result to Boolean. However, that would not quite work. The
-- being that there are cases, such as equality, that are highgly
-- ambiguous (e.g. see the various overloading of `=') for which it
-- would be unfortunate to require more type annotation. Note that
-- the problem here is many misguided overloading of some operators.
-- Consequently, we compile directly with Boolean as target.
[p',m,E] := comp(p,$Boolean,E) or return nil
[p',m,getSuccessEnvironment(p,E),getInverseEnvironment(p,E)]
compFromIf(a,m,E) ==
a is "%noBranch" => ["%noBranch",m,E]
comp(a,m,E)
compImport: (%Form,%Mode,%Env) -> %Triple
compImport(["import",:doms],m,e) ==
if not $bootStrapMode then
for dom in doms repeat
e := addDomain(dom,e)
["/throwAway",$NoValueMode,e]
--% Foreign Function Interface
bootDenotation: %Symbol -> %Symbol
bootDenotation s ==
makeSymbol(symbolName s,"BOOTTRAN")
++ Return the Boot denotation of a basic FFI type.
getBasicFFIType: %Mode -> %Symbol
getBasicFFIType t ==
t = $Byte => bootDenotation "byte"
t = $Int16 => bootDenotation "int16"
t = $UInt16 => bootDenotation "uint16"
t = $Int32 => bootDenotation "int32"
t = $UInt32 => bootDenotation "uint32"
t = $Int64 => bootDenotation "int64"
t = $UInt64 => bootDenotation "uint64"
t = $SingleInteger => bootDenotation "int"
t = $DoubleFloat => bootDenotation "double"
t = $String => bootDenotation "string"
t = $SystemPointer => bootDenotation "pointer"
nil
++ List of admissible type modifiers in an FFI import declaration.
$FFITypeModifier == '(ReadOnly WriteOnly ReadWrite)
++ List of admissible element types of contiguously stored
++ homogeneous FFI aggregate types.
$FFIAggregableDataType ==
[$Byte,
$Int16,$UInt16,
$Int32,$UInt32,
$Int64, $UInt64,
$DoubleFloat]
++ Return the Boot denotation of an FFI datatype. This is either
++ a basic VM type, or a simple array of sized integer or floating
++ point type.
getFFIDatatype: %Mode -> %Form
getFFIDatatype t ==
x := getBasicFFIType t => x
t is [m,["PrimitiveArray",t']] and symbolMember?(m,$FFITypeModifier) and
listMember?(t',$FFIAggregableDataType) =>
m' :=
m is "ReadOnly" => bootDenotation "readonly"
m is "WriteOnly" => bootDenotation "writeonly"
bootDenotation "readwrite"
[m',[bootDenotation "buffer",getBasicFFIType t']]
nil
++ Return the Boot denotation of a type that is valid in a external entity
++ signature.
getBootType: %Mode -> %Form
getBootType t ==
x := getFFIDatatype t => x
t is ["Mapping",ret,:args] =>
ret' :=
ret = $Void => bootDenotation "void"
getBasicFFIType ret or return nil
args' := [getFFIDatatype arg or return "failed" for arg in args]
args' = "failed" => return nil
[bootDenotation "%Mapping",ret',args']
nil
++ Verify that mode `t' is admissible in an external entity signature
++ specification, and return its Boot denotation.
checkExternalEntityType(t,e) ==
t isnt [.,:.] =>
stackAndThrow('"Type variable not allowed in import of external entity",nil)
t' := getBootType t => t'
stackAndThrow('"Type %1bp is invalid in a foreign signature",[t])
++ An external entity named `id' is being imported under signature
++ `type' from a foreign language `lang'. Check that the import
++ is valid, and if so return the linkage name of the entity.
checkExternalEntity(id,type,lang,e) ==
checkVariableName id
-- An external entity name shall be unique in scope.
getmode(id,e) =>
stackAndThrow('"%1b is already in scope",[id])
-- In particular, an external entity name cannot be overloaded
-- with exported operators.
get(id,"modemap",e) =>
stackAndThrow('"%1b already names exported operations in scope",[id])
-- We don't type check builtin declarations at the moment.
lang is 'Builtin or lang is 'Lisp => id
-- Only functions are accepted at the moment. And all mentioned
-- types must be those that are supported by the FFI.
type' := checkExternalEntityType(type,e)
type' isnt [=bootDenotation "%Mapping",:.] =>
stackAndThrow('"Signature for external entity must be a Mapping type",nil)
id' := encodeLocalFunctionName id
[def] := genImportDeclaration(id',[bootDenotation "%Signature",id,type'])
compileLispDefinition(id,def)
id'
++ Remove possible modifiers in the FFI type expression `t'.
removeModifiers t ==
for (ts := [x,:.]) in tails t repeat
x is [m,t'] and symbolMember?(m,$FFITypeModifier) =>
ts.first := t'
t
++ Compile external entity signature import.
compSignatureImport: (%Form,%Mode,%Env) -> %Maybe %Triple
compSignatureImport(["%SignatureImport",id,type,home],m,e) ==
-- 1. Make sure we have the right syntax.
home isnt ["Foreign",:args] =>
stackAndThrow('"signature import must be from a %1bp domain",["Foreign"])
args isnt [lang] =>
stackAndThrow('"%1bp takes exactly one argument",["Foreign"])
not ident? lang =>
stackAndThrow('"Argument to %1bp must be an identifier",["Foreign"])
not (lang in '(Builtin C Lisp)) =>
stackAndThrow('"Sorry: Only %1bp is valid at the moment",["Foreign C"])
-- 2. Make sure this import is not subverting anything we know
id' := checkExternalEntity(id,type,lang,e)
-- 3. Make a local declaration for it.
T := [.,.,e] := compMakeDeclaration(id,removeModifiers type,e) or return nil
e := put(id,"%Lang",lang,e)
e := put(id,"%Link",id',e)
-- 4. Also make non-function externals self-evaluating so we don't
-- complain later for undefined variable references.
if T.mode isnt ['Mapping,:.] then
e := put(id,"value",[id',T.mode,nil],e)
T.env := e
coerce(T,m)
++ Compile package call to an external function.
++ `lang' is the language calling convention
++ `op' is the operator name
++ `args' is the list of arguments
++ `m' is the context mode.
++ `e' is the compilation environment in effect.
compForeignPackageCall(lang,op,args,m,e) ==
lang = "Builtin" =>
-- Note: We don't rename builtin functions.
[[op,:[([.,.,e]:= compOrCroak(x,$EmptyMode,e)).expr
for x in args]],m,e]
getExternalSymbolMode(op,lang,e) is ["Mapping",:argModes]
and (#argModes = #args + 1) => applyMapping([op,:args],m,e,argModes)
stackAndThrow('"OpenAxiom could not determine the meaning of %1bp",[op])
--% Compilation of logical operators that may have a pre-defined
--% meaning, or may need special handling because or short-circuiting
--% etc.
++ Compile a logical negation form `(not ...)'.
compLogicalNot: (%Form,%Mode,%Env) -> %Maybe %Triple
compLogicalNot(x,m,e) ==
x isnt ["not", y] => nil
-- ??? For the time being compiler values cannot handle operations
-- ??? selected through general modemaps, and their semantics
-- ??? are quite hardwired with their syntax.
-- ??? Eventually, we should not need to do this.
yTarget :=
$normalizeTree and resolve(m,$Boolean) = $Boolean => $Boolean
$EmptyMode
yT := comp(y,yTarget,e) or return nil
yT.mode = $Boolean and yTarget = $Boolean =>
[["%not",yT.expr],yT.mode,yT.env]
compResolveCall("not",[yT],m,yT.env)
++ Compile an exclusive `xor' expression.
compExclusiveOr: (%Form,%Mode,%Env) -> %Maybe %Triple
compExclusiveOr(x,m,e) ==
x isnt ["xor",a,b] => nil
aT := comp(a,$EmptyMode,e) or return nil
e :=
aT.mode = $Boolean => getSuccessEnvironment(a,aT.env)
aT.env
bT := comp(b,$EmptyMode,e) or return nil
compResolveCall("xor",[aT,bT],m,bT.env)
--% Case
compCase: (%Form,%Mode,%Env) -> %Maybe %Triple
compCase1: (%Form,%Mode,%Env) -> %Maybe %Triple
getModemapList(op,nargs,e) ==
op is ['elt,D,op'] => getModemapListFromDomain(internalName op',nargs,D,e)
[mm for
(mm:= [[.,.,:sigl],:.]) in get(op,'modemap,e) | nargs=#sigl]
--Will the jerk who commented out these two functions please NOT do so
--again. These functions ARE needed, and case can NOT be done by
--modemap alone. The reason is that A case B requires to take A
--evaluated, but B unevaluated. Therefore a special function is
--required. You may have thought that you had tested this on "failed"
--etc., but "failed" evaluates to it's own mode. Try it on x case $
--next time.
-- An angry JHD - August 15th., 1984
compCase(["case",x,m'],m,e) ==
e:= addDomain(m',e)
T:= compCase1(x,m',e) => coerce(T,m)
nil
compCase1(x,m,e) ==
[x',m',e'] := comp(x,$EmptyMode,e) or return nil
u :=
[mm for mm in getModemapList("case",2,e')
| mm.mmSignature is [=$Boolean,s,t] and modeEqual(maybeSpliceMode t,m)
and modeEqual(s,m')] or return nil
fn := (or/[mm for mm in u | mm.mmCondition = true]) or return nil
fn := genDeltaEntry("case",fn,e)
[['%call,fn,x',MKQ m],$Boolean,e']
++ For `case' operation implemented in library, the second operand
++ (target type) is taken unevaluated. The corresponding parameter
++ type in the modemap was specified as quasiquotation. We
++ want to look at the actual type when comparing with modeEqual.
maybeSpliceMode: %Mode -> %Mode
maybeSpliceMode m ==
(m' := isQuasiquote m) => m'
m
compColon: (%Form,%Mode,%Env) -> %Maybe %Triple
compColon([":",f,t],m,e) ==
$insideExpressionIfTrue => compColonInside(f,m,e,t)
--if inside an expression, ":" means to convert to m "on faith"
$lhsOfColon: local:= f
t:=
t isnt [.,:.] and (t':= assoc(t,getDomainsInScope e)) => t'
isDomainForm(t,e) and not $insideCategoryIfTrue =>
(if not listMember?(t,getDomainsInScope e) then e:= addDomain(t,e); t)
isDomainForm(t,e) or isCategoryForm(t,e) => t
t is ["Mapping",m',:r] => t
string? t => t -- literal flag types are OK
unknownTypeError t
t
f is ["LISTOF",:l] =>
z := [T.expr for x in l while ([.,.,e] := T := compColon([":",x,t],m,e))]
[['%seq,:z],t,e]
e:=
f is [op,:argl] =>
--for MPOLY--replace parameters by formal arguments: RDJ 3/83
--FIXME: why? -- gdr 2011-04-30
newTarget :=
applySubst(pairList([(x is [":",a,m] => a; x) for x in argl],
$FormalMapVariableList),t)
signature :=
["Mapping",newTarget,:
[(x is [":",a,m] => m;
getmode(x,e) or systemErrorHere ['"compColon",x]) for x in argl]]
put(op,"mode",signature,e)
put(f,"mode",t,e)
if not $bootStrapMode and $insideFunctorIfTrue and
makeCategoryForm(t,e) is [catform,e] then
e := giveVariableSomeValue(f,t,e)
val :=
$insideCapsuleFunctionIfTrue => ['%LET,f,'%undefined]
"/throwAway"
[val,getmode(f,e),e]
unknownTypeError name ==
name:=
name is [op,:.] => op
name
stackAndThrow('"%1b is not a known type",[name])
compPretend: (%Form,%Mode,%Env) -> %Maybe %Triple
compPretend(["pretend",x,t],m,e) ==
e:= addDomain(t,e)
T:= comp(x,t,e) or comp(x,$EmptyMode,e) or return nil
t' := T.mode -- save this, in case we need to make suggestions
T:= [T.expr,t,T.env]
T':= coerce(T,m) =>
-- If the `pretend' wasn't necessary, we should advise user to use
-- less crude way of selecting expressions of thr `right type'.
if t' = t then
stackWarning('"pretend %1p -- should replace by @",[t])
T'
nil
compColonInside(x,m,e,m') ==
e:= addDomain(m',e)
T:= comp(x,$EmptyMode,e) or return nil
if (m'':=T.mode)=m' then warningMessage:= [":",m'," -- should replace by @"]
T:= [T.expr,m',T.env]
T':= coerce(T,m) =>
if m'' = m' then
stackWarning('": %1p -- should replace by @",[m'])
else
stackWarning('" : %1p -- replace by pretend", [m'])
T'
compIs: (%Form,%Mode,%Env) -> %Maybe %Triple
compIs(["is",a,b],m,e) ==
[aval,am,e] := comp(a,$EmptyMode,e) or
stackAndThrow('"Cannot determine the type of the expression %1b",[a])
not isCategoryForm(am,e) =>
stackAndThrow('"Expression %1b does not designate a domain",[a])
[bval,bm,e] := comp(b,$EmptyMode,e) or return nil
T:= [["domainEqual",aval,bval],$Boolean,e]
coerce(T,m)
--% Functions for coercion by the compiler
-- The function coerce is used by the old compiler for coercions.
-- The function coerceInteractive is used by the interpreter.
-- One should always call the correct function, since the represent-
-- ation of basic objects may not be the same.
tryCourtesyCoercion: (%Triple, %Mode) -> %Maybe %Triple
tryCourtesyCoercion(T,m) ==
$InteractiveMode =>
keyedSystemError("S2GE0016",['"coerce",
'"function coerce called from the interpreter."])
if $useRepresentationHack then
T.rest.first := MSUBST("$",$Rep,second T)
T' := coerceEasy(T,m) => T'
T' := coerceSubset(T,m) => T'
T' := coerceHard(T,m) => T'
nil
coerce(T,m) ==
T' := tryCourtesyCoercion(T,m) => T'
isSomeDomainVariable m => nil
stackMessage('"Cannot coerce %1b of mode %2pb to mode %3pb",
[T.expr,T.mode,m])
coerceEasy: (%Triple,%Mode) -> %Maybe %Triple
coerceEasy(T,m) ==
m=$EmptyMode => T
m=$NoValueMode or m=$Void => [T.expr,m,T.env]
T.mode =m => T
T.mode =$Exit =>
[['%seq,T.expr,["userError", '"Did not really exit."]],m,T.env]
T.mode=$EmptyMode or modeEqualSubst(T.mode,m,T.env) =>
[T.expr,m,T.env]
++ Return true if the VM constant form `val' is known to satisfy
++ the predicate `pred'. Note that this is a fairly conservatism
++ approximation in the sense that the retunred value maye be false
++ for some other reasons, such as the predicate not being closed
++ with respect to the parameter `#1'.
satisfies(val,pred) ==
pred=false or pred=true => pred
vars := findVMFreeVars pred
vars ~= nil and vars isnt ["#1"] => false
eval ['%bind,[["#1",val]],pred]
++ If the domain designated by the domain forms `m' and `m'' have
++ a common super domain, return least such super domaon (ordered
++ in terms of sub-domain relationship). Otherwise, return nil.
commonSuperType(m,m') ==
lineage := [m']
while (t := superType m') ~= nil repeat
lineage := [t,:lineage]
m' := t
while m ~= nil repeat
listMember?(m,lineage) => return m
m := superType m
++ Coerce value `x' of mode `m' to mode `m'', if m is a subset of
++ of m'. A special case is made for cross-subdomain conversion
++ for integral literals.
coerceSubset: (%Triple,%Mode) -> %Maybe %Triple
coerceSubset([x,m,e],m') ==
isSubset(m,m',e) => [x,m',e]
integer? x and (m'' := commonSuperType(m,m')) =>
-- obviously this is temporary
satisfies(x,isSubDomain(m',m'')) => [x,m',e]
nil
nil
coerceHard: (%Triple,%Mode) -> %Maybe %Triple
coerceHard(T,m) ==
$e: local:= T.env
m':= T.mode
string? m' and modeEqual(m,$String) => [T.expr,m,$e]
modeEqual(m',m) or ident? m' and
(get(m',"value",$e) is [m'',:.] or getXmode(m',$e) is ["Mapping",m'']) and
modeEqual(m'',m) or ident? m and
(get(m,"value",$e) is [m'',:.] or getXmode(m,$e) is ["Mapping",m'']) and
modeEqual(m'',m') => [T.expr,m,T.env]
string? T.expr and T.expr=m => [T.expr,m,$e]
isCategoryForm(m,$e) =>
$bootStrapMode => [T.expr,m,$e]
extendsCategoryForm(T.expr,T.mode,m) => [T.expr,m,$e]
coerceExtraHard(T,m)
(m' is "$" and m = $functorForm) or (m' = $functorForm and m = "$") =>
[T.expr,m,$e]
coerceExtraHard(T,m)
coerceExtraHard: (%Triple,%Mode) -> %Maybe %Triple
coerceExtraHard(T is [x,m',e],m) ==
-- Allow implicit injection into Union, if that is
-- clear from the context
isUnionMode(m,e) is ['Union,:l] and listMember?(m',l) =>
autoCoerceByModemap(T,m)
-- For values from domains satisfying Union-like properties, apply
-- implicit retraction if clear from context.
(t := hasType(x,e)) and unionLike?(m',e) is ['UnionCategory,:l]
and listMember?(t,l) =>
T' := autoCoerceByModemap(T,t) => coerce(T',m)
nil
-- Give it one last chance.
-- FIXME: really, we shouldn't. Codes relying on this are
-- FIXME: inherently difficult to comprehend and likely broken.
T' := autoCoerceByModemap(T,m) => T'
m' is ['Record,:.] and m = $OutputForm =>
[['coerceRe2E,x,['ELT,copyTree m',0]],m,e]
-- Domain instantiations are first class objects
m = $Domain =>
m' = $Category => nil
isCategoryForm(m',e) => [x,m',e]
nil
nil
coerceable(m,m',e) ==
m=m' => m
tryCourtesyCoercion(["$fromCoerceable$",m,e],m') => m'
nil
coerceExit: (%Triple,%Mode) -> %Maybe %Triple
coerceExit([x,m,e],m') ==
m' := resolve(m,m')
x' := replaceExitEtc(x,catchTag := MKQ gensym(),"TAGGEDexit",$exitMode)
coerce([['%scope,catchTag,x'],m,e],m')
compAtSign: (%Form,%Mode,%Env) -> %Maybe %Triple
compAtSign(["@",x,m'],m,e) ==
e:= addDomain(m',e)
T:= comp(x,m',e) or return nil
coerce(T,m)
compCoerce: (%Form,%Mode,%Env) -> %Maybe %Triple
compCoerce1: (%Form,%Mode,%Env) -> %Maybe %Triple
coerceByModemap: (%Maybe %Triple,%Mode) -> %Maybe %Triple
autoCoerceByModemap: (%Maybe %Triple,%Mode) -> %Maybe %Triple
compCoerce(["::",x,m'],m,e) ==
e:= addDomain(m',e)
T:= compCoerce1(x,m',e) => coerce(T,m)
ident? m' and getXmode(m',e) is ["Mapping",["UnionCategory",:l]] =>
T:= (or/[compCoerce1(x,m1,e) for m1 in l]) or return nil
coerce([T.expr,m',T.env],m)
++ Subroutine of compCoerce1. If `T' is a triple whose mode is
++ a super-domain of `sub', then return code that performs the
++ checked courtesy coercion to `sub'.
coerceSuperset: (%Triple, %Mode) -> %Maybe %Triple
coerceSuperset(T,sub) ==
sub is "$" =>
T' := coerceSuperset(T,$functorForm) or return nil
T'.rest.first := "$"
T'
pred := isSubset(sub,T.mode,T.env) =>
[["%retract",T.expr,sub,pred],sub,T.env]
nil
compCoerce1(x,m',e) ==
T:= comp(x,m',e) or comp(x,$EmptyMode,e) or return nil
m1:=
string? T.mode => $String
T.mode
m':=resolve(m1,m')
T:=[T.expr,m1,T.env]
T':= coerce(T,m') => T'
T':= coerceByModemap(T,m') => T'
T' := coerceSuperset(T,m') => T'
nil
coerceByModemap([x,m,e],m') ==
u :=
[mm for mm in getModemapList("coerce",1,e)
| mm.mmSignature is [t,s] and (modeEqual(t,m') or isSubset(t,m',e))
and (modeEqual(s,m) or isSubset(m,s,e))] or return nil
--mm:= (or/[mm for (mm:=[.,[cond,.]]) in u | cond=true]) or return nil
mm:=first u -- patch for non-trival conditons
fn := genDeltaEntry('coerce,mm,e)
[['%call,fn,x],m',e]
autoCoerceByModemap([x,source,e],target) ==
u :=
[mm for mm in getModemapList("autoCoerce",1,e)
| mm.mmSignature is [t,s] and modeEqual(t,target)
and modeEqual(s,source)] or return nil
fn := (or/[mm for mm in u | mm.mmCondition=true]) or return nil
source is ["Union",:l] and listMember?(target,l) =>
(y:= get(x,"condition",e)) and (or/[u is ["case",., =target] for u in y])
=> [['%call,genDeltaEntry("autoCoerce",fn,e),x],target,e]
x="$fromCoerceable$" => nil
stackMessage('"cannot coerce %1b of mode %2pb to %3pb without a case statement",
[x,source,target])
[['%call,genDeltaEntry("autoCoerce",fn,e),x],target,e]
++ Compile a comma separated expression list. These typically are
++ tuple objects, or argument list in a call to a homogeneous
++ vararg operations.
compComma: (%Form,%Mode,%Env) -> %Maybe %Triple
compComma(form,m,e) ==
form isnt ["%Comma",:argl] => systemErrorHere ["compComma",form]
Tl := [comp(a,$EmptyMode,e) or return "failed" for a in argl]
Tl = "failed" => nil
-- ??? Ideally, we would like to compile to a Cross type, then
-- convert to the target type. However, the current compiler and
-- runtime data structures are not regular enough in their interfaces;
-- so we make a special rule when compiling with a Tuple as target,
-- we do the convertion here (instead of calling convert). Semantically,
-- there should be no difference, but it makes the compiler code
-- less regular, with duplicated effort.
m is ["Tuple",t] =>
Tl' := [coerce(T,t) or return "failed" for T in Tl]
Tl' = "failed" => nil
[["asTupleNew0", ["getVMType",t], [T.expr for T in Tl']], m, e]
T := [['%call,mkRecordFun #argl,:[T.expr for T in Tl]],
["Cross",:[T.mode for T in Tl]], e]
coerce(T,m)
--% Very old resolve
-- should only be used in the old (preWATT) compiler
resolve(din,dout) ==
din=$NoValueMode or dout=$NoValueMode => $NoValueMode
dout=$EmptyMode => din
din~=dout and (string? din or string? dout) =>
modeEqual(dout,$String) => dout
modeEqual(din,$String) => nil
mkUnion(din,dout)
dout
modeEqual(x,y) ==
-- this is the late modeEqual
-- orders Unions
x isnt [.,:.] or y isnt [.,:.] => x=y
#x ~= #y => nil
x is ['Union,:xl] and y is ['Union,:yl] =>
for x1 in xl repeat
for y1 in yl repeat
modeEqual(x1,y1) =>
xl := remove(xl,x1)
yl := remove(yl,y1)
return nil
xl or yl => nil
true
(and/[modeEqual(u,v) for u in x for v in y])
modeEqualSubst(m1,m,e) ==
modeEqual(m1, m) => true
m1 isnt [.,:.] => get(m1,"value",e) is [m',:.] and modeEqual(m',m)
m1 is [op,:l1] and m is [=op,:l2] and # l1 = # l2 =>
-- Above length test inserted JHD 4:47 on 15/8/86
-- Otherwise Records can get fouled up - consider expressIdealElt
-- in the DEFAULTS package
and/[modeEqualSubst(xm1,xm2,e) for xm1 in l1 for xm2 in l2]
nil
--% Categories
compBuiltinDomain(form is [functorName,:argl],m,e) ==
fn := property(functorName,"makeFunctionList") or return nil
diagnoseUnknownType(form,e)
[funList,e]:= FUNCALL(fn,form,form,e)
exports := [cat for x in parentsOfBuiltinInstance form]
where cat() ==
x.rest is true => x.first
['IF,x.rest,['ATTRIBUTE,x.first],'%noBranch]
catForm:=
["Join",:exports,["CATEGORY","domain",:
[["SIGNATURE",op,sig] for [op,sig,.] in funList | op~="="]]]
--RDJ: for coercion purposes, it necessary to know it's a Set; I'm not
--sure if it uses any of the other signatures(see extendsCategoryForm)
[form,catForm,e]
--% APPLY MODEMAPS
++ `op' has been selected as a viable candidate exported operation,
++ for argument triple list `argTl', modemap `mm'.
++ Return the most refined implementation that makes the call successful.
compViableModemap(op,argTl,mm,e) ==
[[dc,.,:margl],fnsel] := mm
-- 1. Give up if the call is hopeless.
argTl := [coerce(x,m) or return "failed" for x in argTl for m in margl]
argTl = "failed" => nil
-- 2. obtain domain-specific function, if possible
f := compMapCond(dc,fnsel,e) or return nil
-- 3. Mark `f' as used.
-- We can no longer trust what the modemap says for a reference into
-- an exterior domain (it is calculating the displacement based on view
-- information which is no longer valid; thus ignore this index and
-- store the signature instead.
f is [op1,.,.] and op1 in '(ELT CONST Subsumed) =>
[genDeltaEntry(op,mm,e),argTl]
[f,argTl]
compApplyModemap(form,modemap,$e) ==
[op,:argl] := form --form to be compiled
[[mc,mr,:margl],fnsel] := modemap --modemap we are testing
-- $e is the current environment
-- 0. fail immediately if #argl=#margl
if #argl~=#margl then return nil
-- 1. use modemap to evaluate arguments, returning failed if
-- not possible
lt:=
[[.,.,$e]:= comp(y,m,$e) or return "failed"
for y in argl for m in margl]
lt="failed" => return nil
-- 2. Select viable modemap implementation.
compViableModemap(op,lt,modemap,$e)
compMapCond': (%Form,%Mode,%Env) -> %Boolean
compMapCond'(cexpr,dc,env) ==
cexpr=true => true
cexpr is ["AND",:l] => and/[compMapCond'(u,dc,env) for u in l]
cexpr is ["OR",:l] => or/[compMapCond'(u,dc,env) for u in l]
cexpr is ["not",u] => not compMapCond'(u,dc,env)
cexpr is ["has",name,cat] => (knownInfo(cexpr,env) => true; false)
--for the time being we'll stop here - shouldn't happen so far
--$disregardConditionIfTrue => true
--stackSemanticError(("not known that",'"%b",name,
-- '"%d","has",'"%b",cat,'"%d"),nil)
--now it must be an attribute
listMember?(["ATTRIBUTE",dc,cexpr],get("$Information","special",$e)) => true
--for the time being we'll stop here - shouldn't happen so far
stackMessage('"not known that %1pb has %2pb",[dc,cexpr])
false
compMapCond: (%Mode,%List %Code,%Env) -> %Code
compMapCond(dc,[cexpr,fnexpr],env) ==
compMapCond'(cexpr,dc,env) => fnexpr
stackMessage('"not known that %1pb has %2pb",[dc,cexpr])
--%
compResolveCall(op,argTs,m,$e) ==
outcomes :=
[t for mm in getModemapList(op,#argTs,$e) | t := tryMM] where
tryMM() ==
not coerceable(mm.mmTarget,m,$e) =>nil
compViableModemap(op,argTs,mm,$e) isnt [f,Ts] => nil
coerce([['%call,f,:[T.expr for T in Ts]],mm.mmTarget,$e],m)
#outcomes ~= 1 => nil
first outcomes
--% %Match
++ Subroutine of compAlternativeGuardItem, responsible of compiling
++ individual alternative of the form
++ x@t => stmt
++ in environment `e'. Here `sn' is the temporary holding the
++ value of the scrutinee, and `sm' is its type.
++ Return a quadruple [init,guard,init',envTrue,envFalse], where
++ `init' is code that intializes the retract intermediate entity.
++ `guard' is code that gates the body of the alternative
++ `init'' is list of possible initializations local to the branch
++ `envTrue' is an environment after the guard evaluates to true
++ `envFalse' is an environment after the guard evaluates to false.
compRetractGuard(x,t,sn,sm,e) ==
-- The retract pattern is compiled by transforming
-- x@t => stmt
-- into the following program fragment
-- sn case t => (x := <expr>; stmt)
-- where <expr> is code that computes appropriate initialization
-- for `x' under the condition that either `sn' may be implicitly
-- convertible to t (using only courtesy coercions) or that
-- `sn' is retractable to t.
--
-- 1. Evaluate the retract condition, and retract.
initCode := nil
caseCode := nil
restrictCode := nil
envFalse := e
-- 1.1. Try courtesy coercions first. That way we can use
-- optimized versions where available. That also
-- makes the scheme work for untagged unions.
if testT := compPredicate(["case",sn,t],e) then
[caseCode,.,e,envFalse] := testT
[restrictCode,.,e] :=
tryCourtesyCoercion([sn,sm,e],t) or
comp(["retract",sn],t,e) or return
stackAndThrow('"Could not retract from %1bp to %2bp",[sm,t])
-- 1.2. Otherwise try retractIfCan, for those `% has RetractableTo t'.
else if retractT := comp(["retractIfCan",sn],["Union",t,'"failed"],e) then
[retractCode,.,e] := retractT
-- Assign this value to a temporary. That temporary needs to
-- have a lifetime that covers both the condition and the body
-- of the alternative
z := gensym()
initCode := [[z,retractCode]]
caseCode := ['%ieq,['%head,z],0]
restrictCode := ["%tail",z]
-- 1.3. Everything else failed; nice try.
else return stackAndThrow('"%1bp is not retractable to %2bp",[sm,t])
-- 2. Now declare `x'.
[.,.,e] := compMakeDeclaration(x,t,e) or return nil
e := giveVariableSomeValue(x,t,e)
-- 3. Assemble result.
[initCode,caseCode,[[x,restrictCode]],e,envFalse]
++ Subroutine of compRecoverGuard. The parameters and the result
++ have the same meaning as in compRecoverGuard.
++ Note: a value of type Any is a dotted pair (dom . val) where
++ `dom' is a devaluated form of the domain of `val'.
compRecoverDomain(x,t,sn,e) ==
-- 1. We recover domains only.
not isDomainForm(t,e) =>
stackAndThrow('"Form %1b does not designate a domain",[t])
caseCode := ["%equal",["devaluate",t],["%head",sn]]
-- 2. Declare `x'.
originalEnv := e
[.,.,e] := compMakeDeclaration(x,t,e) or return nil
e := giveVariableSomeValue(x,t,e)
-- 3. Assemble the result
[nil,caseCode,[[x,['%tail,sn]]],e,originalEnv]
++ Subroutine of compAlternativeGuardItem, responsible for
++ compiling a guad item of the form
++ x: t
++ in environment `e', where `sn' is the temporary holding
++ the value of the scrutinee, and `sm' is its mode.
++ Return a quadruple [guard,init,envTrue,envFalse], where
++ `guard' is code that gates the body of the alternative
++ `init' is list of possible initializations
++ `envTrue' is an environment after the guard evaluates to true
++ `envFalse' is an environment after the guard environment to false.
compRecoverGuard(x,t,sn,sm,e) ==
-- The retract pattern is compiled by transforming
-- x: t => stmt
-- into the following program fragment
-- domainOf y is t => (x := <expr>; stmt)
-- where <expr> is code that compute appropriate initialization
-- for `x' under the condition that sm is Any, and the
-- underlying type is t.
--
-- 0. Type recovery is for expressions of type 'Any'.
(sm is "$" => get('$,'%dc,e); sm) ~= $Any =>
stackAndThrow('"Scrutinee must be of type %1pb in type recovery alternative of case pattern",[$Any])
-- 1. Do some preprocessing if this is existential type recovery.
t is ["%Exist",var,t'] =>
var isnt [":",var',cat'] =>
stackAndThrow('"Sorry: Only univariate type schemes are supported in this context",nil)
-- We have a univariate type scheme. At the moment we insist
-- that the body of the type scheme be identical to the type
-- variable. This restriction should be lifted in future work.
not ident? t' or t' ~= var' =>
stackAndThrow('"Sorry: type %1b too complex",[t'])
not isCategoryForm(cat',e) =>
stackAndThrow('"Expression %1b does not designate a category",[cat'])
getmode(var',e) =>
stackAndThrow('"You cannot redeclare identifier %1b",[var'])
-- Extract the type component.
varDef := [":=",[":",var',$Type],
[["elt",["Foreign","Builtin"],"evalDomain"],
[["elt",["Foreign","Builtin"],"%head"], sn]]]
[def,.,e] := compOrCroak(varDef,$EmptyMode,e)
[hasTest,.,e] := compOrCroak(["has",var',cat'],$EmptyMode,e)
[defs',guard,inits,e,envFalse] := compRecoverDomain(x,var',sn,e)
[[def.args,:defs'],hasTest,inits,e,envFalse]
-- 2. Hand it to whoever is in charge.
compRecoverDomain(x,t,sn,e)
warnUnreachableAlternative pat ==
stackWarning('"Alternative with pattern %1b will not be reached",[pat])
warnTooManyOtherwise() ==
stackWarning('"One too many `otherwise' alternative",nil)
++ Subroutine of compMatch. Perform semantics analysis of the scrutinee
++ in a case-pattern. Return a triple if everything is OK, otherwise nil.
compMatchScrutinee(form,e) ==
form is ["%Comma",:exprs] =>
Xs := Ms := nil
for expr in exprs repeat
[x,m,e] := compOrCroak(expr,$EmptyMode,e)
Xs := [x,:Xs]
Ms := [m,:Ms]
[["%Comma",:reverse! Xs], ["%Cross",:reverse! Ms],e]
compOrCroak(form,$EmptyMode,e)
++ Subroutine of compMatch. We just finished semantics analysis of
++ the scrutinee. Define temporary to hold the resulting value in store.
++ Returns declared temporaries if everything is fine, otherwise nil.
defineMatchScrutinee(m,e) ==
m is ["%Cross",:.] =>
[[t for m' in rest m | [t,e] := defTemp(m',e)], e]
defTemp(m,e)
where defTemp(m,e) ==
t := gensym()
[.,.,e] := compMakeDeclaration(t,m,e)
[t,giveVariableSomeValue(t,m,e)]
++ Generate code for guard in a simple pattern where
++ `sn' is the name of the temporary holding the scrutinee value,
++ `sn' is its mode,
++ `pat' is the simple pattern being compiled.
++ On success, return a quintuple of the form [inits,guard,inits',eT,eF] where
++ inits is initialization to perform before the guard test. This
++ iniialization extends to the corresponding branch of the pattern clause.
++ guard is the code for guard alternative
++ inits' is initialization to perform after the pattrn test.
++ eT is the environment for successful guard
++ eF is the environment for unsuccessful guard
compAlternativeGuardItem(sn,sm,pat,e) ==
pat is [op,x,t] and op in '(_: _@) =>
not ident? x =>
stackAndThrow('"pattern %1b must declare a variable",[pat])
if $catchAllCount > 0 then
warnUnreachableAlternative pat
op is ":" => compRecoverGuard(x,t,sn,sm,e)
compRetractGuard(x,t,sn,sm,e) or
stackAndThrow('"cannot compile %1b",[pat])
stackAndThrow('"invalid pattern %1b",[pat])
++ Subroutine of compMatchAlternative. The parameters
++ have the same meaning.
++ Return value has same structure and semantics as compAlternativeGuardItem.
compAlternativeGuard(sn,sm,pat,e) ==
pat = "otherwise" =>
if $catchAllCount > 0 then
warnTooManyOtherwise()
$catchAllCount := $catchAllCount + 1
[nil,'%otherwise,nil,e,e]
cons? sn =>
pat isnt ["%Comma",:.] =>
stackAndThrow('"Pattern must be a tuple for a tuple scrutinee",nil)
#sn ~= #rest pat =>
stackAndThrow('"Tuple pattern must match tuple scrutinee in length",nil)
inits := nil
guards := nil
inits' := nil
ok := true
originalEnv := e
for n in sn for m in rest sm for p in rest pat while ok repeat
[init,guard,init',e,.] := compAlternativeGuardItem(n,m,p,e) =>
inits := [init,:inits]
guards := [guard,:guards]
inits' := [init',:inits']
ok := false
ok => [append/reverse! inits,
['%and,:reverse! guards],
append/reverse! inits',
e,originalEnv]
nil
compAlternativeGuardItem(sn,sm,pat,e)
++ Subroutine of compMatch. Analyze an alternative in a case-pattern.
++ `sn' is a name or a list of name for temporaries holding the
++ value of the scrutinee.
++ `sm' is the mode of list of modes for the scrutinee.
++ `pat' is the pattern of the alternative we are compiling
++ `stmt' is the body of the alternative we are compiling
++ `m' is the desired mode for the return value.
++ `e' is the environment in effect at the start of the environment.
++ Return a doublet with the first part being a 3-uple with components
++ as follows:
++ 0. initialization code (if any) to run before performing the test
++ 1. code for the guard
++ 2. code to execute when the guard test succeeds.
++ and the second part being an environment to consider when
++ the guard test fails.
compMatchAlternative(sn,sm,pat,stmt,m,e) ==
[inits,guard,inits',e,eF] := compAlternativeGuard(sn,sm,pat,e) or return nil
stmtT := compOrCroak(stmt,m,e)
body :=
inits' = nil => stmtT.expr
['%bind,inits',stmtT.expr]
[[inits,guard,body],eF]
++ Analyze and generate code for `case is'-pattern where the
++ scrutinee is `subject' and the alternatives are `altBlock'.
-- FIXME: Make sure nobody asks for creating matter out of void.
compMatch(["%Match",subject,altBlock],m,env) ==
altBlock isnt ["%Block",:alts] =>
stackAndThrow('"case pattern must specify block of alternatives",nil)
savedEnv := env
-- 1. subjectTmp := subject
[se,sm,env] := compMatchScrutinee(subject,env)
[sn,env] := defineMatchScrutinee(sm,env)
-- 2. compile alternatives.
$catchAllCount: local := 0
altsCode := nil
for alt in alts repeat
alt is ["=>",pat,stmt] =>
[block,env] := compMatchAlternative(sn,sm,pat,stmt,m,env) or
return stackAndThrow('"cannot compile pattern %1b",[pat])
altsCode := [block,:altsCode]
return stackAndThrow('"invalid alternative %1b",[alt])
body := '%noBranch
for [inits,guard,stmt] in altsCode repeat
body := ['IF,guard,stmt,body]
inits = nil => nil
body := ['%bind,inits,body]
$catchAllCount = 0 =>
stackAndThrow('"missing %b otherwise %d alternative in case pattern",nil)
inits :=
ident? sn => [[sn,se]]
[[n,e] for n in sn for e in rest se]
[['%bind,inits,body],m,savedEnv]
++ Compile the form scheme `x'.
compScheme(x,m,e) ==
stackSemanticError(["Sorry: Expression schemes are not supported in this context"],nil)
--%
--% Inline Requests
--%
++ We are processing a capsule and `t is nominated in an inline
++ directive. This means that the compiler can `bypass' the usual
++ indirect call through domain interface and attempt to resolve
++ modemap references.
++ Concretely, this means that `t is evaluated.
processInlineRequest(t,e) ==
T := compOrCroak(t,$EmptyMode,e)
not isCategoryForm(T.mode,e) =>
stackAndThrow('"%1b does not designate a domain",[t])
T.expr isnt [.,:.] =>
stackWarning('"inline request for type variable %1bp is meaningless",[t])
registerInlinableDomain T.expr
--%
--% ITERATORS
--%
++ Generate code for collecting values generated by the expression `body'
++ controlled by iterators in `iters' into a list.
finishListCollect(iters,body) ==
val := gensym() -- result of the list comprehension
-- Transform the body to build the list as we go.
body := ['%store,val,['%pair,body,val]]
-- Don't forget we built the result in reverse order.
['%repeat,:iters,['%init,val,'%nil],body,['%lreverse!,val]]
++ Generate code for collecting values generated by the expression `body'
++ controlled by iterators in `iters' into a vector with element
++ type indicated by `eltType'.
finishVectorCollect(eltType,iters,body) ==
fromList := false -- are we drawing from a list?
vecSize := nil -- size of vector
index := nil -- loop/vector index.
for iter in iters while not fromList repeat
[op,:.] := iter
op in '(_| SUCHTHAT WHILE UNTIL) => fromList := true
op in '(IN ON) => vecSize := [['%llength,third iter],:vecSize]
op in '(STEP ISTEP) =>
-- pick a loop variable that we can use as the loop index.
[.,var,lo,inc,:etc] := iter
if lo = 0 and inc = 1 then
index :=
var is [.,:var'] => var'
var
if [hi] := etc then
sz :=
inc = 1 =>
lo = 1 => hi
lo = 0 => ['%iinc,hi]
['%iinc,['%isub,hi,lo]]
lo = 1 => ['%idiv,hi,inc]
lo = 0 => ['%idiv,['%iinc,hi],inc]
['%idiv,['%isub,['%iinc,hi], lo],inc]
vecSize := [sz, :vecSize]
systemErrorHere ['finishVectorCollect, iter]
-- if we draw from a list, then just build a list and convert to vector.
fromList =>
['homogeneousListToVector,['getVMType,eltType],
finishListCollect(iters,body)]
vecSize = nil => systemErrorHere ['finishVectorCollect,eltType,iters,body]
-- get the actual size of the vector.
vecSize :=
vecSize is [hi] => hi
['%imin,:reverse! vecSize]
-- if no suitable loop index was found, introduce one.
if index = nil then
index := gensym()
iters := [:iters,['STEP,index,0,1]]
vec := gensym()
['%bind,[[vec,['makeSimpleArray,['getVMType,eltType],vecSize]]],
['%repeat,:iters,['setSimpleArrayEntry,vec,index,body],vec]]
compReduce(form,m,e) ==
compReduce1(form,m,e,$formalArgList)
compReduce1(form is ["REDUCE",op,.,collectForm],m,e,$formalArgList) ==
[collectOp,:itl,body] := collectForm
if string? op then op := makeSymbol op
collectOp ~= "COLLECT" => systemError ['"illegal reduction form:",form]
$until: local := nil
oldEnv := e
itl := [([.,e]:= compIterator(x,e) or return "failed").0 for x in itl]
itl="failed" => return nil
b := gensym() -- holds value of the body
[bval,bmode,e] := comp([":=",b,body],$EmptyMode,e) or return nil
accu := gensym() -- holds value of the accumulator
[move,.,e] := comp([":=",accu,b],$EmptyMode,e) or return nil
move.op := '%store -- in reality, we are not defining a new variable
[update,mode,e] := comp([":=",accu,[op,accu,b]],m,e) or return nil
update.op := '%store -- just update the accumulation variable.
nval :=
id := getIdentity(op,e) => u.expr where
u() == comp(id,mode,e) or return nil
["IdentityError",MKQ op]
if $until then
[untilCode,.,e]:= comp($until,$Boolean,e) or return nil
itl := substitute(["UNTIL",untilCode],'$until,itl)
firstTime := gensym()
finalCode := ['%repeat,
['%init,accu,'%nil],['%init,firstTime,'%true],:itl,
['%bind,[[b,third bval]],
['%seq,
['%when,[firstTime,move],['%otherwise,update]],
['%store,firstTime,'%false]]],
['%when,[firstTime,nval],['%otherwise,accu]]]
T := coerce([finalCode,mode,e],m) or return nil
[T.expr,T.mode,oldEnv]
++ returns the identity element of the `reduction' operation `x'
++ over a list -- a monoid homomorphism.
getIdentity(x,e) ==
property(x,"THETA") is [y] =>
y = 0 => $Zero
y = 1 => $One
-- The empty list should be indicated by name, not by its
-- object representation.
y => y
"nil"
nil
numberize x ==
x=$Zero => 0
x=$One => 1
x isnt [.,:.] => x
[numberize first x,:numberize rest x]
++ If there is a local reference to mode `m', return it.
localReferenceIfThere(m,e) ==
m is "$" => m
idx := assocIndex(constructorDB currentConstructor e,m) => ['%tref,'$,idx]
quote m
compRepeatOrCollect(form,m,e) ==
fn(form,[m,:$exitModeStack],[#$exitModeStack,:$leaveLevelStack],$formalArgList
,e) where
fn(form,$exitModeStack,$leaveLevelStack,$formalArgList,e) ==
$until: local := nil
$loopKind: local := nil
$iterateCount: local := 0
$loopBodyTag: local := nil
$breakCount: local := 0
oldEnv := e
aggr := nil
[$loopKind,:itl,body]:= form
itl':=
[([x',e]:= compIterator(x,e) or return "failed"; x') for x in itl]
itl'="failed" => nil
targetMode:= first $exitModeStack
bodyMode:=
$loopKind="COLLECT" =>
targetMode = $EmptyMode => (aggr:=["List",$EmptyMode]; $EmptyMode)
[aggr,u] := modeIsAggregateOf('List,targetMode,e) => u
[aggr,u] := modeIsAggregateOf('PrimitiveArray,targetMode,e) =>
$loopKind := "%CollectV"
u
[aggr,u] := modeIsAggregateOf('Vector,targetMode,e) =>
$loopKind := "%CollectV"
u
stackMessage('"Invalid collect bodytype")
return nil
-- If we're doing a collect, and the type isn't conformable
-- then we've boobed. JHD 26.July.1990
-- ??? we hve a plain old loop; the return type should be Void
$NoValueMode
[body',m',e'] := compOrCroak(body,bodyMode,e) or return nil
-- Massage the loop body if we have a structured jump.
if $iterateCount > 0 then
body' := ['%scope,$loopBodyTag,body']
if $until then
[untilCode,.,e']:= comp($until,$Boolean,e')
itl':= substitute(["UNTIL",untilCode],'$until,itl')
form':=
$loopKind = "%CollectV" =>
finishVectorCollect(localReferenceIfThere(m',e'),itl',body')
-- We are phasing out use of LISP macros COLLECT and REPEAT.
$loopKind = "COLLECT" => finishListCollect(itl',body')
['%repeat,:itl',body','%nil]
m'' :=
aggr is [c,.] and c in '(List PrimitiveArray Vector) => [c,m']
m'
T := coerceExit([form',m'',e'],targetMode) or return nil
-- iterator variables and other variables declared in
-- in a loop are local to the loop.
[T.expr,T.mode,oldEnv]
--constructByModemap([x,source,e],target) ==
-- u:=
-- [cexpr
-- for (modemap:= [map,cexpr]) in getModemapList("construct",1,e) | map is [
-- .,t,s] and modeEqual(t,target) and modeEqual(s,source)] or return nil
-- fn:= (or/[selfn for [cond,selfn] in u | cond=true]) or return nil
-- [['%call,fn,x],target,e]
++ Return the least Integer subdomain that can represent values
++ of both Integer subdomains denoted by the forms `x' and `y.
joinIntegerModes(x,y,e) ==
isSubset(x,y,e) => y
isSubset(y,x,e) => x
$Integer
++ Given a for-loop iterator `x', return
++ a. its storage class
++ b. its name
++ c. an environment containing its declaration in case a type
++ was specified.
classifyIteratorVariable(x,e) == check(main(x,e),x) where
main(x,e) ==
x is [":",var,t] =>
not ident? var => nil
checkVariableName var
t is 'local => ['%local,var,e]
t is 'free => ['%free,var,e]
[.,.,e] := compMakeDeclaration(var,t,e) => ['%local,var,e]
nil
ident? x =>
checkVariableName x
['%local,x,e]
nil
check(x,y) ==
x ~= nil => x
stackAndThrow('"invalid loop variable %1bp",[y])
++ Subroutine of compStepIterator.
++ We are elaborating the STEP form of a for-iterator, where all
++ bounds and increment are expected to be integer-valued expressions.
++ Compile the expression `x' in the context `e', under those
++ circumstances. When successful we return either the declared
++ mode of the expression, or infer the tightest mode that can
++ represents the resulting value. Note that we do not attempt any
++ SmallInteger optimization at this stage. Such a transformation can
++ be done only when we have all information about the bound.
compIntegerValue(x,e) ==
-- 1. Preliminary transformation.
-- The literal values 0 and 1 get transformed by the parser
-- into calls Zero() and One(), respectively. Undo that transformation
-- locally. Note that this local transformation is OK, because
-- it presents semantics.
x :=
x = $Zero => 0
x = $One => 1
x
-- 2. Attempt to infer the type of the expression if at all possible.
-- The inferred mode is valid only if it is an integer (sub)domain.
T := comp(x,$EmptyMode,e)
isSubset(T.mode,$Integer,e) => T
-- 3. Otherwise, compile in checking mode.
comp(x,$PositiveInteger,e) or
comp(x,$NonNegativeInteger,e) or
compOrCroak(x,$Integer,e)
++ Attempt to compile a `for' iterator of the form
++ for index in start..final by inc
++ where the bound `final' may be missing.
compStepIterator(index,start,final,inc,e) ==
[sc,index,e] := classifyIteratorVariable(index,e)
if sc = '%local then
$formalArgList := [index,:$formalArgList]
[start,startMode,e] := compIntegerValue(start,e) or return
stackMessage('"start value of index: %1b must be an integer",[start])
[inc,incMode,e] := compIntegerValue(inc,e) or return
stackMessage('"index increment: %1b must be an integer",[inc])
if final ~= nil then
[final,finalMode,e] := compIntegerValue(first final,e) or return
stackMessage('"final value of index: %1b must be an integer",[final])
final := [final]
indexMode :=
final = nil or isSubset(incMode,$NonNegativeInteger,e) => startMode
joinIntegerModes(startMode,finalMode,e)
if get(index,"mode",e) = nil then
[.,.,e] := compMakeDeclaration(index,indexMode,e) or return nil
e := giveVariableSomeValue(index,indexMode,e)
[["STEP",[sc,:index],start,inc,:final],e]
compINIterator(x,y,e) ==
[sc,x,e] := classifyIteratorVariable(x,e)
--these two lines must be in this order, to get "for f in list f"
--to give an error message if f is undefined
[y',m,e]:= comp(y,$EmptyMode,e) or return nil
if sc = '%local then
$formalArgList := [x,:$formalArgList]
[mOver,mUnder]:=
modeIsAggregateOf("List",m,e) or return
stackMessage('"mode: %1pb must be a list of some mode",[m])
if null get(x,"mode",e) then [.,.,e]:=
compMakeDeclaration(x,mUnder,e) or return nil
e:= giveVariableSomeValue(x,mUnder,e)
[y'',m'',e] := coerce([y',m,e], mOver) or return nil
[["IN",[sc,:x],y''],e]
compONIterator(x,y,e) ==
[sc,x,e] := classifyIteratorVariable(x,e)
if sc = '%local then
$formalArgList := [x,:$formalArgList]
[y',m,e]:= comp(y,$EmptyMode,e) or return nil
[mOver,mUnder]:=
modeIsAggregateOf("List",m,e) or return
stackMessage('"mode: %1pb must be a list of other modes",[m])
if null get(x,"mode",e) then [.,.,e]:=
compMakeDeclaration(x,m,e) or return nil
e:= giveVariableSomeValue(x,m,e)
[y'',m'',e] := coerce([y',m,e], mOver) or return nil
[["ON",[sc,:x],y''],e]
compIterator(it,e) ==
-- ??? Allow for declared iterator variable.
it is ["IN",x,y] => compINIterator(x,y,e)
it is ["ON",x,y] => compONIterator(x,y,e)
it is ["STEP",index,start,inc,:optFinal] =>
compStepIterator(index,start,optFinal,inc,e)
it is ["WHILE",p] =>
[p',m,e]:=
comp(p,$Boolean,e) or return
stackMessage('"WHILE operand: %1b is not Boolean valued",[p])
[["WHILE",p'],e]
it is ["UNTIL",p] => ($until:= p; ['$until,e])
it is ["|",x] =>
u:=
comp(x,$Boolean,e) or return
stackMessage('"SUCHTHAT operand: %1b is not Boolean value",[x])
[["|",u.expr],u.env]
nil
--isAggregateMode(m,e) ==
-- m is [c,R] and c in '(Vector List) => R
-- name:=
-- m is [fn,:.] => fn
-- m="$" => "Rep"
-- m
-- get(name,"value",e) is [c,R] and c in '(Vector List) => R
modeIsAggregateOf(agg,m,e) ==
m is [ =agg,R] => [m,R]
m is ["Union",:l] =>
mList:= [pair for m' in l | (pair:= modeIsAggregateOf(agg,m',e))]
1=#mList => first mList
name:=
m is [fn,:.] => fn
RepIfRepHack m
get(name,"value",e) is [[ =agg,R],:.] => [m,R]
--% rep/per morphisms
++ Compile the form `per x' under the mode `m'.
++ The `per' operator is active only for new-style definition for
++ representation domain.
compPer(["per",x],m,e) ==
$useRepresentationHack => nil
inType := getRepresentation e or return nil
T := comp(x,inType,e) or return nil
if $subdomain then
T :=
integer? T.expr and satisfies(T.expr,domainVMPredicate "$") =>
[T.expr,"$",e]
coerceSuperset(T,"$") or return nil
else
T.rest.first := "$"
coerce(T,m)
++ Compile the form `rep x' under the mode `m'.
++ Like `per', the `rep' operator is active only for new-style
++ definition for representation domain.
compRep(["rep",x],m,e) ==
$useRepresentationHack => nil
T := comp(x,"$",e) or return nil
T.rest.first := getRepresentation e or return nil
coerce(T,m)
--% Lambda expressions
compUnnamedMapping(parms,source,target,body,env) ==
$killOptimizeIfTrue: local := true
savedEnv := env
for p in parms for s in source repeat
[.,.,env] := compMakeDeclaration(p,s,env)
env := giveVariableSomeValue(p,get(p,'mode,env),env)
T := comp(body,target,env) or return nil
fun := ['%closure,['%lambda,[:parms,'$],T.expr],'$]
[fun,["Mapping",T.mode,:source],savedEnv]
gatherParameterList vars == main(vars,nil,nil) where
main(vars,parms,source) ==
vars = nil => [reverse! parms,reverse! source]
vars isnt [.,:.] or vars is [":",:.] => [[x] for x in check vars]
[v,s] := check first vars
main(rest vars,[v,:parms],[s,:source])
check var ==
var isnt [.,:.] =>
not ident? var =>
stackAndThrow('"invalid parameter %1b in lambda expression",[var])
[checkVariableName var,nil]
var is [":",p,t] =>
not ident? p =>
stackAndThrow('"invalid parameter %1b in lambda expression",[p])
[checkVariableName p,t]
stackAndThrow('"invalid parameter for mapping",nil)
compLambda(x is ["+->",vars,body],m,e) ==
-- 1. Gather parameters and their types.
if vars is ["%Comma",:vars'] then
vars := vars'
[parms,source] := gatherParameterList vars
-- 2. Compile the form
T :=
-- 2.1. No parameter is declared
and/[s = nil for s in source] =>
-- Guess from context
m is ["Mapping",dst,:src] =>
#src ~= #parms =>
stackAndThrow('"inappropriate function type for unnamed mapping",nil)
compUnnamedMapping(parms,src,dst,body,e) or return nil
-- Otherwise, assumes this is just purely syntactic code block.
[quote ["+->",parms,body],$AnonymousFunction,e]
-- 2.2. If all parameters are declared, then compile as a mapping.
and/[s ~= nil for s in source] =>
compUnnamedMapping(parms,source,$EmptyMode,body,e) or return nil
-- 2.3. Well, give up for now.
stackAndThrow('"parameters in a lambda expression must be all declared or none declared",nil)
coerce(T,m)
--%
--% Entry point to the compiler
--%
preprocessParseTree pt ==
$postStack := []
pf := parseTransform postTransform pt
$postStack = nil => pf
displayPreCompilationErrors()
nil
++ Takes a parse tree `pt', typecheck it and compile it down
++ to VM instructions.
compileParseTree pt ==
pt = nil => nil
CURSTRM: local := $OutputStream
pf := preprocessParseTree pt
pf = nil => nil -- stop if preprocessing was a disaster.
-- Don't go further if only preprocessing was requested.
$PrintOnly =>
FORMAT(true,'"~S =====>~%",$currentLine)
PRETTYPRINT pf
-- Now start actual compilation.
$x: local := nil -- ???
$m: local := nil -- ???
$s: local := nil -- ???
$exitModeStack: local := [] -- Used by the compiler proper
-- We don't usually call the compiler to process interpreter
-- input, however attempt to second guess nevertheless.
if $InteractiveMode then
processInteractive(pf,nil)
else if T := compTopLevel(pf,$EmptyMode,$InteractiveFrame) then
[.,.,$InteractiveFrame] := T
TERPRI()
--%
--% Register compilers for special forms.
-- Those compilers are on the `SPECIAL' property of the corresponding
-- special form operator symbol.
for x in [["|", :"compSuchthat"],_
["@", :"compAtSign"],_
[":", :"compColon"],_
["::", :"compCoerce"],_
["+->", :"compLambda"],_
["QUOTE", :"compQuote"],_
["add", :"compAdd"],_
["CAPSULE", :"compCapsule"],_
["case", :"compCase"],_
["CATEGORY", :"compCategory"],_
["COLLECT", :"compRepeatOrCollect"],_
["CONS", :"compCons"],_
["construct", :"compConstruct"],_
["DEF", :"compDefine"],_
["elt", :"compElt"],_
["Enumeration", :"compBuiltinDomain"],_
["EnumerationCategory", :"compEnumCat"],_
["exit", :"compExit"],_
["has", :"compHas"],_
["IF", : "compIf"],_
["xor",: "compExclusiveOr"],_
["import", :"compImport"],_
["is", :"compIs"],_
["Join", :"compJoin"],_
["leave", :"compLeave"],_
[":=", :"compSetq"],_
["MDEF", :"compMacro"],_
["not", :"compLogicalNot"],_
["pretend", :"compPretend"],_
["Record", :"compBuiltinDomain"],_
["RecordCategory", :"compConstructorCategory"],_
["REDUCE", :"compReduce"],_
["REPEAT", :"compRepeatOrCollect"],_
["return", :"compReturn"],_
["SEQ", :"compSeq"],_
["SubDomain", :"compSubDomain"],_
["SubsetCategory", :"compSubsetCategory"],_
["Mapping", :"compBuiltinDomain"],_
["MappingCategory", :"compConstructorCategory"],_
["Union", :"compBuiltinDomain"],_
["UnionCategory", :"compConstructorCategory"],_
["where", :"compWhere"],_
["per",:"compPer"],_
["rep",:"compRep"],_
["%Comma",:"compComma"],_
["%Exist", : "compScheme"] , _
["%Forall", : "compSceheme"] , _
["%Match",:"compMatch"],_
["%SignatureImport",:"compSignatureImport"],_
['%Throw,:'compThrow],
['%Try, :'compTry],
["[||]", :"compileQuasiquote"]] repeat
property(first x, 'SPECIAL) := rest x
|