1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
|
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/input tanatan.input}
\author{The Axiom Team}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{License}
<<license>>=
--Copyright The Numerical Algorithms Group Limited 1994.
@
<<*>>=
<<license>>
)clear all
--Here's an equation
eq:=2*tan(x)+2*tan(2*x)
--
-- Solve it
--
thesols:=solve(eq,x)
--
-- Verify the solutions
--
theproofs:=[eval(eq,i) for i in thesols]
--
-- Problem with simplification of tan(n*atan(y))
-- Get the tower for each expression
--
thetowers:=[tower i for i in theproofs];
thesubs:LIST Record (a:LIST KERNEL EXPR INT ,b:LIST EXPR INT)
thetans:LIST LIST Record(i:INT,k:KERNEL EXPR INT,z:List Equation EXPR INT)
--
-- apply pattern-matching to find tan(n*atan(y))
-- and construct the structures needed
--
thetans:=_
[[construct(j,i.j,Is(argument(i.j).1,n * atan(y))) for j in 1..#i_
|is?(i.j,tan) and is?(argument(i.j).1,n * atan(y))] _
for i in thetowers] ;
--
-- Construct the evaluation rules for tan(n*atan(y)) -> tanNa(a,n)
--
thesubs:=_
[construct([j.k for j in thetans.i],_
[tanNa(rhs(j.z.2),rhs(j.z.1) ::INT)$TangentExpansions(EXPR INT)_
for j in thetans.i]) _
for i in 1..#theproofs];
--
-- Apply the evaluation rules
--
thezeros:=[eval(i,j.a,j.b) for i in theproofs for j in thesubs]
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|