1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
|
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/input pmint.input}
\author{Manuel Bronstein}
\maketitle
\begin{abstract}
pmint is a very short (95 lines) Maple program for integrating
transcendental elementary or special functions. It is based on recent
improvements to a powerful heuristic called parallel
integration. While it is not meant to be as complete as the large
commercial integrators based on the Risch algorithm, its very small
size makes it easy to port to any computer algebra system or library
capable of factoring multivariate polynomials. Because it is
applicable to special functions (such as Airy, Bessel, Whittaker,
Lambert), it is able to compute integrals not handled by the existing
integrators.
pmint is not meant as a replacement for existing integrators, but
either as an extension, or as a cheap and powerful alternative for any
computer algebra project.
\end{abstract}
\eject
\tableofcontents
\eject
\section{pmint}
These come from Manuel Bronstein's pages at
http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/examples
\section{The Maple Code}
The maple code is:
\begin{verbatim}
# The Poor Man's Integrator, a parallel integration heuristic
# Version 1.1 --- May 10, 2005 (c) M.Bronstein and INRIA 2004-2005
pmint := proc(f,x)
local ff, si, li, lin, lout, ld, q, d, l, vars, dx, ls, fint, lc;
ff := eval(convert(f, tan)); # convert trigs to tan
si := select(proc(d) diff(d,x) <> 0 end, indets(ff));
si := select(proc(d) diff(d,x) <> 0 end, indets(map(diff, si, x))) union si;
li := [op(si)]; # list of terms in integrand and its derivative
lin := [seq(d=`tools/genglobal`(x), d=li)]; # substitution terms->indets
lout := [seq(rhs(d)=lhs(d), d=lin)]; # substitution indets->terms
ld := subs(lin, map(diff, li, x)); # derivatives of all the terms
q := lcm(seq(denom(d), d=ld)); # denominator of the total derivation
l := [seq(normal(q * d), d=ld)]; # q * derivatives of all the terms
vars := map(lhs, lout);
dx := totalDerivation(vars, l); # vector field dx = q * d/dx
ls := [seq(getSpecial(d, lin), d=li)]; # list of known Darboux for dx
fint := subs(lout, pmIntegrate(subs(lin, ff), dx, q, vars, ls));
lc := select(proc(d) convert(d,string)[1]="_"; end, indets(fint, name));
subs({seq(d = 0, d=lc minus si)}, fint);
end;
getSpecial := proc(f, l) local p; # return known Darboux polys
p := op(0,f);
if p = `tan` then [1+subs(l,f)^2, false];
elif p = `tanh` then [1 + subs(l,f), false], [1 - subs(l,f), false];
elif p = `LambertW` then [subs(l,f), true];
else NULL; fi;
end;
totalDerivation := proc(lv, ld)
proc(f) local fp, i;
fp := 0; for i to nops(ld) do fp := fp + ld[i] * diff(f, lv[i]); od;
fp;
end;
end;
pmIntegrate := proc(f, d, q, vars)
local ls, splq, s, ff, df, spl, cden, dg, monomials, cand, lunk, sol, i;
if nargs = 5 then ls := args[5]; else ls := []; fi;
splq := splitFactor(q, d);
s := splq[1]; for i to nops(ls) do if ls[i][2] then s := s*ls[i][1]; fi; od;
ff := normal(f); df := denom(ff); spl := splitFactor(df, d);
cden := s * spl[1] * deflation(spl[2], d);
dg := 1 + degree(s) + max(degree(numer(ff)), degree(denom(ff)));
monomials := [op(enumerateMonoms(vars, dg))];
cand := add('_A'[i] * monomials[i], i = 1..nops(monomials)) / cden;
lunk := { seq('_A'[i], i = 1..nops(monomials)) };
sol:= tryIntegral(f, d, q, vars, cand, lunk, spl[1], spl[2], splq[1], ls, 0);
if sol[1] then sol := tryIntegral(f, d, q, vars, cand, lunk,
spl[1], spl[2], splq[1], ls, I); fi;
if sol[1] then Int(f); else sol[2]; fi;
end;
tryIntegral := proc(f, d, q, vars, cand, lunk, l1, l2, l3, ls, K)
local candlog, p, candidate, i, sol;
candlog := [op({ myfactors(l1, K), myfactors(l2, K), myfactors(l3, K) }
union { seq(p[1], p=ls) })];
candidate := cand + add('_B'[i] * log(candlog[i]), i = 1..nops(candlog));
sol := solve({coeffs(numer(normal(f - d(candidate)/q)), {op(vars)})},
lunk union { seq('_B'[i], i = 1..nops(candlog)) });
[evalb(sol=NULL), subs(sol,candidate)];
end;
myfactors := proc(p, K) local l, fact;
if K = 0 then l := factors(p); else l := factors(p, K); fi;
seq(fact[1], fact=l[2]);
end;
enumerateMonoms := proc(vars, d) local n, x, i, v, s, w;
n := nops(vars);
if n = 0 then {1}; else
x := vars[n];
v := [seq(vars[i], i = 1..n-1)];
s := enumerateMonoms(v, d);
for i to d do s := s union {seq(x^i*w,w=enumerateMonoms(v,d-i))}; od;
s;
fi;
end;
splitFactor := proc(p, d) local si, x, c, q, spl, s, splh;
si := select(proc(z) d(z) <> 0 end, indets(p,name));
if si = {} then RETURN([1,p]) fi;
x := si[1];
c := content(p, x, 'q');
spl := splitFactor(c, d);
s := normal(gcd(q, d(q)) / gcd(q, diff(q, x)));
if degree(s) = 0 then RETURN([spl[1], q * spl[2]]); fi;
splh := splitFactor(normal(q / s), d);
[spl[1] * splh[1] * s, spl[2] * splh[2]];
end;
deflation := proc(p, d) local si, x, c, q;
si := select(proc(z) d(z) <> 0 end, indets(p,name));
if si = {} then RETURN(p) fi;
x := si[1];
c := content(p, x, 'q');
deflation(c, d) * gcd(q, diff(q, x));
end;
\end{verbatim}
\section{rational functions}
<<rational functions>>=
)clear all
-- Rational Functions
f:=(x^7-24*x^4-4*x^2+8*x-8)/(x^8+6*x^6+12*x^4+8*x^2)
-- should be:
-- 7 4 2
-- x - 24x - 4x + 8x - 8
-- (1) ------------------------
-- 8 6 4 2
-- x + 6x + 12x + 8x
-- Type: Fraction Polynomial Integer
g:=integrate(f,x)
-- should be:
-- 5 3 3 2
-- (x + 4x + 4x)log(x) + 3x + 8x + 6x + 4
-- (2) ------------------------------------------
-- 5 3
-- x + 4x + 4x
-- Type: Union(Expression Integer,...)
differentiate(g,x)
-- should be:
-- 7 4 2
-- x - 24x - 4x + 8x - 8
-- (3) ------------------------
-- 8 6 4 2
-- x + 6x + 12x + 8x
-- Type: Expression Integer
@
\section{trigonometric functions}
<<trigonometric functions>>=
)clear all
-- Trigonometric Functions
f:=(x-tan(x))/tan(x)^2 + tan(x)
-- should be:
-- 3
-- tan(x) - tan(x) + x
-- (1) --------------------
-- 2
-- tan(x)
-- Type: Expression Integer
g:=integrate(f,x)
-- should be:
-- 2 2
-- tan(x)log(tan(x) + 1) - x tan(x) - 2x
-- (2) --------------------------------------
-- 2tan(x)
-- Type: Union(Expression Integer,...)
differentiate(g,x)
-- should be:
-- 3
-- tan(x) - tan(x) + x
-- (3) --------------------
-- 2
-- tan(x)
-- Type: Expression Integer
@
\section{log-exp functions}
<<log-exp functions>>=
)clear all
-- Log-Exp Functions
f:=(1+x+x*exp(x))*(x+log(x)+exp(x)-1)/(x+log(x)+exp(x))^2/x
-- should be:
-- x x 2 2 x 2
-- (x %e + x + 1)log(x) + x (%e ) + (x + 1)%e + x - 1
-- (1) ---------------------------------------------------------
-- 2 x 2 x 2 2 x 3
-- x log(x) + (2x %e + 2x )log(x) + x (%e ) + 2x %e + x
-- Type: Expression Integer
g:=integrate(f,x)
-- should be:
-- x x
-- (log(x) + %e + x)log(log(x) + %e + x) + 1
-- (2) -------------------------------------------
-- x
-- log(x) + %e + x
-- Type: Union(Expression Integer,...)
differentiate(g,x)
-- should be:
-- x x 2 2 x 2
-- (x %e + x + 1)log(x) + x (%e ) + (x + 1)%e + x - 1
-- (3) ---------------------------------------------------------
-- 2 x 2 x 2 2 x 3
-- x log(x) + (2x %e + 2x )log(x) + x (%e ) + 2x %e + x
-- Type: Expression Integer
@
\section{liouvillian functions}
<<liouvillian functions>>=
)clear all
-- Liouvillian special functions
f:=exp(-x^2)+erf(x)/(erf(x)^3-erf(x)^2-erf(x)+1)
-- should be:
-- 2
-- 3 2 - x
-- (erf(x) - erf(x) - erf(x) + 1)%e + erf(x)
-- (4) -----------------------------------------------
-- 3 2
-- erf(x) - erf(x) - erf(x) + 1
-- Type: Expression Integer
--
-- 2
-- x 3 2 - %G
-- ++ (erf(%G) - erf(%G) - erf(%G) + 1)%e + erf(%G)
-- (2) | ---------------------------------------------------- d%G
-- ++ 3 2
-- erf(%G) - erf(%G) - erf(%G) + 1
-- Type: Union(Expression Integer,...)
f:=(exp(-x^2)+erf(x))/(erf(x)^3-erf(x)^2-erf(x)+1)
-- should be:
-- 2
-- - x
-- %e + erf(x)
-- (3) ------------------------------
-- 3 2
-- erf(x) - erf(x) - erf(x) + 1
-- Type: Expression Integer
integrate(f,x)
-- should be:
-- 1 sqrt(%pi) 1 1
-- - - ------------ - - sqrt(%pi) log(erf(x)+1) + - sqrt(%pi) log(erf(x)-1)
-- 4 erf(x) - 1 8 8
-- but axiom cannot do this and gives:
-- 2
-- x - %G
-- ++ %e + erf(%G)
-- (4) | --------------------------------- d%G
-- ++ 3 2
-- erf(%G) - erf(%G) - erf(%G) + 1
-- Type: Union(Expression Integer,...)
@
\section{airy functions}
<<airy functions>>=
)clear all
-- Airy Functions
-- f:=(x-airyAi(x)*airyAi(1,x))/(x^2-airyAi(x)^2)
-- OpenAxiom does not have a 2 argument form of the airyAi function
-- integrate(f,x)
-- should be:
-- 1 1
-- - log(x+airyAi(x)) + - log(x-airyAi(x))
-- 2 2
f:=x^2*airyAi(x)
-- should be:
-- 2
-- (1) x airyAi(x)
-- Type: Expression Integer
g:=integrate(f,x)
-- should be:
-- -airyAi(x) + airyAi(1,x) x
-- but OpenAxiom cannot integrate this and gives:
--
-- x
-- ++ 2
-- (2) | %H airyAi(%H)d%H
-- ++
-- Type: Union(Expression Integer,...)
@
\section{bessel functions}
<<bessel functions>>=
)clear all
-- Bessel functions
f:=besselJ(y+1,x)/besselJ(y,x)
-- should be:
-- besselJ(y + 1,x)
-- (1) ----------------
-- besselJ(y,x)
-- Type: Expression Integer
g:=integrate(f,x)
-- should be:
-- y log(x) - log(besselJ(y,x))
-- but OpenAxiom cannot integrate it and gives:
--
-- x
-- ++ besselJ(y + 1,%H)
-- (2) | ----------------- d%H
-- ++ besselJ(y,%H)
-- Type: Union(Expression Integer,...)
-- f:=normal(y*besselJ(y,x)/x = besselJ(y+1,x))
-- OpenAxiom does not have Maple's normal function
-- should be:
-- besselJ(y+1,x) x - y besselJ(y,x)
-- - ---------------------------------
-- x
--
@
\section{whittaker functions}
<<whittaker functions>>=
)clear all
-- Whittaker functions
-- f:=WhittakerW(u+1,n,x)/(WhittakerW(u,n,x)*x)
-- OpenAxiom does not implement WhittakerW
-- should be:
-- Whittaker(u+1,n,x)
-- ------------------
-- Whittaker(u,n,x) x
-- integrate(f,x)
-- should be:
-- x
-- - - u log(x) - log(WhattakerW(u,n,x))
-- 2
@
\section{lambertW function}
<<lambertW function>>=
)clear all
-- The Lambert W function
-- f:=LambertW(x)
-- OpenAxiom does not implement LambertW
-- g:=integrate(f,x)
-- should be:
-- 2 2 2 2
-- x + LambertW(x) x - LambertW(x) x
-- ------------------------------------
-- x LambertW(x)
--integrate(sin(LambertW(x)),x)
--should be:
-- +- -+
-- | 2 |
-- | +- -+ |
-- | 1 | 1 | 2 |
-- | - LambertW(x) tan | - LambertW(x) | x + |
-- | 2 | 2 | |
-- | +- -+ |
-- | |
-- | +- -+ |
-- | | 1 | 2 |
-- | LambertW(x) tan | - LambertW(x) | x + |
-- | | 2 | |
-- | +- -+ |
-- | |
-- | +- -+ |
-- | | 1 | 2 1 2 |
-- | tan | - LambertW(x) | x - - LambertW(x) x |
-- | | 2 | 2 |
-- | +- -+ |
-- +- -+
-- ------------------------------------------------------
-- +- 2 -+
-- | +- -+ |
-- | | 1 | |
-- x LambertW(x) | 1 + tan | - LambertW(x) | |
-- | | 2 | |
-- | +- -+ |
-- +- -+
-- f:=((x^2+2)*LambertW(x^2)^2+x^2*(2*LambertW(x^2)+1))/(x*(1+LambertW(x^2)^3))
--should be:
-- 2
-- 2 2 2 2
-- (x + 2) LambertW(x ) + x (2 LambertW(x ) + 1)
-- ------------------------------------------------
-- 3
-- 2
-- x (1 + LambertW(x ))
--integrate(f,x)
--should be:
-- 2 4
--1 4 2 4 2 x 2 2 2 2
--- x LambertW(x ) + x LambertW(x ) + -- + LambertW(x ) x + x LambertW(x )
--2 2
-----------------------------------------------------------------------------
-- 2
-- 2 2 2
-- x LambertW(x ) (1 + LambertW(x ))
--
-- +
-- 2
-- log(1 + LambertW(x ))
--f:=(2*LambertW(x^2)*cos(LambertW(x^2))*(a*x+LambertW(x^2))+a*x*(1+LambertW(x^2)) + 2*LambertW(x^2))/((1+LambertW(x^2))*(a*x+LambertW(x^2))*x)
--+- -+
--| |
--| 2 2 2 |
--| 2 LambertW(x ) cos(LambertW(x )) (a x + LambertW(x )) + |
--| |
--| 2 2 |
--| a x (1 + LambertW(x )) + 2 LambertW(x ) |
--| |
--+- -+
-------------------------------------------------------------
-- 2 2
-- (1 + LambertW(x ))(a x+LambertW(x )) x
--
--integrate(f,x)
--
-- +- -+
-- | 1 2 |
-- 2 tan | - LambertW(x ) |
-- | 2 |
-- +- -+ 2
-- --------------------------- + log(a x + LambertW(x ))
-- 2
-- +- -+
-- | 1 2 |
-- 1 + tan | - LambertW(x ) |
-- | 2 |
-- +- -+
--
--
@
wright omega function}
<<wright omega function>>=
)clear all
-- The Wright omega function
-- omega:=proc(z) LambertW(exp(z)); end;
-- should be (in Maple notation)
--
-- proc(z) LambertW(exp(z)) end proc
--
--normal(integrate(omega(x),x))
--
-- 1 x x
-- - LambertW(%e )(LambertW(%e )+2)
-- 2
--
--f:=(1+LambertW(%e^x)*(2+cos(LambertW(%e^x))*(x+LambertW(%e^x))))/((1+LambertW(%e^x))*(x+LambertW(%e^x)))
--
--integrate(f,x)
--
-- +- -+
-- | 1 x |
-- 2 tan | - LambertW(%e ) |
-- | 2 |
-- +- -+ x
-- ---------------------------- + log(x + LambertW(%e ))
-- 2
-- +- -+
-- | 1 x |
-- 1 + tan | - LambertW(%e ) |
-- | 2 |
-- +- -+
--
@
\section{License}
<<license>>=
--Version 1.1 --- May 10, 2005 (c) M.Bronstein and INRIA 2004-2005
@
<<*>>=
<<license>>
<<rational functions>>
<<trigonometric functions>>
<<log-exp functions>>
<<liouvillian functions>>
<<airy functions>>
<<bessel functions>>
<<whittaker functions>>
<<lambertW function>>
<<wright omega function>>
@
\section{\eject
\begin{thebibliography}{99}
\bibitem{1} J.H.Davenport (1982):
On the Parallel Risch Algorithm (I),
Proceedings of EUROCAM'82, LNCS 144, Springer, 144-157.
\bibitem{2} J.H.Davenport (1982):
On the Parallel Risch Algorithm (III): Use of Tangents,
SIGSAM Bulletin 16, 3-6.
\bibitem{3} J.H.Davenport, B.M.Trager (1985):
On the Parallel Risch Algorithm (II),
ACM Transactions on Mathematical Software 11, 356-362.
\bibitem{4} J.Fitch (1981):
User-based integration software,
Proceedings of SYMSAC'81, ACM Press, 245-248.
\bibitem{5} K.Geddes, L.Stefanus (1989):
On the Risch-Norman Integration Method and its Implementation in Maple,
Proceedings of ISSAC'89, ACM Press, 212-217.
\bibitem{6} S.H.Harrington (1979):
A new symbolic integration system in reduce,
The Computer Journal 22, 127-131.
\bibitem{7} A.C.Norman, P.M.A.Moore (1977):
Implementing the new Risch Integration Algorithm,
Proceedings of the 4th International Colloquium on Advanced Computing
Methods in Theoretical Physics, 99-110.
\end{thebibliography}
\end{document}
|