1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
|
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/input infprod.input}
\author{The Axiom Team}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{License}
<<license>>=
--Copyright The Numerical Algorithms Group Limited 1991.
@
<<*>>=
<<license>>
--% Infinite products of Taylor series
-- We compute series expansions of various infinite products using INFPROD0
-- Author: Clifton J. Williamson
-- Date Created: 20 August 1992
-- Date Last Updated: 20 August 1992
-- Keywords: Taylor series, infinite product
-- References:
)clear all
-- the partition function
f : UTS(INT,x,0) := 1 - x
g : UTS(INT,x,0) := recip f
-- the coefficient of x ** n in the following series is the number of ways
-- that n can be partitioned as a sum of positive integers:
infiniteProduct g
-- Ramanujan's tau function
h := infiniteProduct(f ** 24)
-- the coefficient of x ** n in the following series is Ramanujan's
-- function tau(n)
delta := x * h
-- the function tau(n) is multiplicative, i.e. if gcd(m,n) = 1, then
-- tau(m * n) = tau(m) * tau(n)
coefficient(delta,21)
coefficient(delta,3) * coefficient(delta,7)
coefficient(delta,20)
coefficient(delta,4) * coefficient(delta,5)
coefficient(delta,65)
coefficient(delta,13) * coefficient(delta,5)
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|