aboutsummaryrefslogtreecommitdiff
path: root/src/input/infprod.input.pamphlet
blob: 74121fc0a48b82fd2b1fe3a30618dce6a0f576ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/input infprod.input}
\author{The Axiom Team}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{License}
<<license>>=
--Copyright The Numerical Algorithms Group Limited 1991.
@
<<*>>=
<<license>>

--% Infinite products of Taylor series
-- We compute series expansions of various infinite products using INFPROD0
-- Author: Clifton J. Williamson
-- Date Created: 20 August 1992
-- Date Last Updated: 20 August 1992
-- Keywords: Taylor series, infinite product
-- References:

)clear all

-- the partition function

f : UTS(INT,x,0) := 1 - x
g : UTS(INT,x,0) := recip f

-- the coefficient of x ** n in the following series is the number of ways
-- that n can be partitioned as a sum of positive integers:

infiniteProduct g

-- Ramanujan's tau function

h := infiniteProduct(f ** 24)

-- the coefficient of x ** n in the following series is Ramanujan's
-- function tau(n)

delta := x * h

-- the function tau(n) is multiplicative, i.e. if gcd(m,n) = 1, then
-- tau(m * n) = tau(m) * tau(n)

coefficient(delta,21)
coefficient(delta,3) * coefficient(delta,7)

coefficient(delta,20)
coefficient(delta,4) * coefficient(delta,5)

coefficient(delta,65)
coefficient(delta,13) * coefficient(delta,5)
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}