1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/input ecfact.as}
\author{The Axiom Team}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{License}
<<license>>=
-- Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
-- All rights reserved.
--
-- Redistribution and use in source and binary forms, with or without
-- modification, are permitted provided that the following conditions are
-- met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
-- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
-- IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
-- TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
-- PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
-- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
-- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
-- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
#include "axiom.as"
#pile
--% Elliptic curve method for integer factorization
-- This file implements Lenstra's algorithm for integer factorization.
-- A divisor of N is found by computing a large multiple of a rational
-- point on a randomly generated elliptic curve in P2 Z/NZ.
-- The Hessian model is used for the curve (1) to simplify the selection
-- of the initial point on the random curve and (2) to minimize the
-- cost of adding points.
-- Ref: IBM RC 11262, DV Chudnovsky & GV Chudnovsky
-- SMW Sept 86.
--% EllipticCurveRationalPoints
--)abbrev domain ECPTS EllipticCurveRationalPoints
EllipticCurveRationalPoints(x0:Integer, y0:Integer, z0:Integer, n:Integer): ECcat == ECdef where
Point ==> Record(x: Integer, y: Integer, z: Integer)
ECcat ==> AbelianGroup with
double: % -> %
p0: %
HessianCoordinates: % -> Point
ECdef ==> add
Rep == Point
import from Rep
import from List Integer
Ex == OutputForm
default u, v: %
apply(u:%,x:'x'):Integer == rep(u).x
apply(u:%,y:'y'):Integer == rep(u).y
apply(u:%,z:'z'):Integer == rep(u).z
import from 'x'
import from 'y'
import from 'z'
coerce(u:%): Ex == [u.x, u.y, u.z]$List(Integer) :: Ex
p0:% == per [x0 rem n, y0 rem n, z0 rem n]
HessianCoordinates(u:%):Point == rep u
0:% ==
per [1, (-1) rem n, 0]
-(u:%):% ==
per [u.y, u.x, u.z]
(u:%) = (v:%):Boolean ==
XuZv := u.x * v.z
XvZu := v.x * u.z
YuZv := u.y * v.z
YvZu := v.y * u.z
(XuZv-XvZu) rem n = 0 and (YuZv-YvZu) rem n = 0
(u:%) + (v:%): % ==
XuZv := u.x * v.z
XvZu := v.x * u.z
YuZv := u.y * v.z
YvZu := v.y * u.z
(XuZv-XvZu) rem n = 0 and (YuZv-YvZu) rem n = 0 => double u
XuYv := u.x * v.y
XvYu := v.x * u.y
Xw := XuZv*XuYv - XvZu*XvYu
Yw := YuZv*XvYu - YvZu*XuYv
Zw := XvZu*YvZu - XuZv*YuZv
per [Yw rem n, Xw rem n, Zw rem n]
double(u:%): % ==
import from PositiveInteger
X3 := u.x**(3@PositiveInteger)
Y3 := u.y**(3@PositiveInteger)
Z3 := u.z**(3@PositiveInteger)
Xw := u.x*(Y3 - Z3)
Yw := u.y*(Z3 - X3)
Zw := u.z*(X3 - Y3)
per [Yw rem n, Xw rem n, Zw rem n]
(n:Integer)*(u:%): % ==
n < 0 => (-n)*(-u)
v := 0
import from UniversalSegment Integer
for i in 0..length n - 1 repeat
if bit?(n,i) then v := u + v
u := double u
v
--% EllipticCurveFactorization
--)abbrev package ECFACT EllipticCurveFactorization
EllipticCurveFactorization: with
LenstraEllipticMethod: (Integer) -> Integer
LenstraEllipticMethod: (Integer, Float) -> Integer
LenstraEllipticMethod: (Integer, Integer, Integer) -> Integer
LenstraEllipticMethod: (Integer, Integer) -> Integer
lcmLimit: Integer -> Integer
lcmLimit: Float-> Integer
solveBound: Float -> Float
bfloor: Float -> Integer
primesTo: Integer -> List Integer
lcmTo: Integer -> Integer
== add
import from List Integer
Ex == OutputForm
import from Ex
import from String
import from Float
NNI==> NonNegativeInteger
import from OutputPackage
import from Integer, NonNegativeInteger
import from UniversalSegment Integer
blather:Boolean := true
--% Finding the multiplier
flabs (f: Float): Float == abs f
flsqrt(f: Float): Float == sqrt f
nthroot(f:Float,n:Integer):Float == exp(log f/n::Float)
bfloor(f: Float): Integer == wholePart floor f
lcmLimit(n: Integer):Integer ==
lcmLimit nthroot(n::Float, 3)
lcmLimit(divisorBound: Float):Integer ==
y := solveBound divisorBound
lcmLim := bfloor exp(log divisorBound/y)
if blather then
output("The divisor bound is", divisorBound::Ex)
output("The lcm Limit is", lcmLim::Ex)
lcmLim
-- Solve the bound equation using a Newton iteration.
--
-- f = y**2 - log(B)/log(y+1)
--
-- f/f' = fdf =
-- 2 2
-- y (y + 1)log(y + 1) - (y + 1)log(y + 1) logB
-- ---------------------------------------------
-- 2
-- 2y(y + 1)log(y + 1) + logB
--
fdf(y: Float, logB: Float): Float ==
logy := log(y + 1)
ylogy := (y + 1)*logy
ylogy2:= y*logy*ylogy
(y*ylogy2 - logB*ylogy)/((2@Integer)*ylogy2 + logB)
solveBound(divisorBound:Float):Float ==
-- solve y**2 = log(B)/log(y + 1)
-- although it may be y**2 = log(B)/(log(y)+1)
relerr := (10::Float)**(-5)
logB := log divisorBound
y0 := flsqrt log10 divisorBound
y1 := y0 - fdf(y0, logB)
while flabs((y1 - y0)/y0) > relerr repeat
y0 := y1
y1 := y0 - fdf(y0, logB)
y1
-- maxpin(p, n, logn) is max d s.t. p**d <= n
maxpin(p:Integer,n:Integer,logn:Float): NonNegativeInteger ==
d: Integer := bfloor(logn/log(p::Float))
if d < 0 then d := 0
d::NonNegativeInteger
multiple?(i: Integer, plist: List Integer): Boolean ==
for p in plist repeat if i rem p = 0 then return true
false
primesTo(n:Integer):List Integer ==
n < 2 => []
n = 2 => [2]
plist := [3, 2]
i:Integer := 5
while i <= n repeat
if not multiple?(i, plist) then plist := cons(i, plist)
i := i + 2
if not multiple?(i, plist) then plist := cons(i, plist)
i := i + 4
plist
lcmTo(n:Integer):Integer ==
plist := primesTo n
m: Integer := 1
logn := log(n::Float)
for p in plist repeat m := m * p**maxpin(p,n,logn)
if blather then
output("The lcm of 1..", n::Ex)
output(" is", m::Ex)
m
LenstraEllipticMethod(n: Integer):Integer ==
LenstraEllipticMethod(n, flsqrt(n::Float))
LenstraEllipticMethod(n: Integer, divisorBound: Float):Integer ==
lcmLim0 := lcmLimit divisorBound
multer0 := lcmTo lcmLim0
LenstraEllipticMethod(n, lcmLim0, multer0)
InnerLenstraEllipticMethod(n:Integer, multer:Integer,
X0:Integer, Y0:Integer, Z0:Integer):Integer ==
import from EllipticCurveRationalPoints(X0,Y0,Z0,n)
import from Record(x: Integer, y: Integer, z: Integer)
p := p0
pn := multer * p
Zn := HessianCoordinates.pn.z
gcd(n, Zn)
LenstraEllipticMethod(n: Integer, multer: Integer):Integer ==
X0:Integer := random()
Y0:Integer := random()
Z0:Integer := random()
InnerLenstraEllipticMethod(n, multer, X0, Y0, Z0)
LenstraEllipticMethod(n:Integer, lcmLim0:Integer, multer0:Integer):Integer ==
nfact: Integer := 1
for i:Integer in 1.. while nfact = 1 repeat
output("Trying elliptic curve number", i::Ex)
X0:Integer := random()
Y0:Integer := random()
Z0:Integer := random()
nfact := InnerLenstraEllipticMethod(n, multer0, X0, Y0, Z0)
if nfact = n then
lcmLim := lcmLim0
while nfact = n repeat
output("Too many iterations... backing off")
lcmLim := bfloor(lcmLim * 0.6)
multer := lcmTo lcmLim
nfact := InnerLenstraEllipticMethod(n, multer0, X0, Y0, Z0)
nfact
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|