1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
|
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/input dhtri.input}
\author{The Axiom Team}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{License}
<<license>>=
--Copyright The Numerical Algorithms Group Limited 1994.
@
<<*>>=
<<license>>
-- Create Affine transformations (DH matrices) that transform
-- a given triangle into another given triangle
-- tri2tri(t1, t2) returns a DHMATRIX which transforms t1 to t2,
-- where t1 and t2 are the vertices of two triangles in 3-space.
tri2tri(t1: List Point DoubleFloat, t2: List Point DoubleFloat): DHMATRIX(DoubleFloat) ==
n1 := triangleNormal(t1)
n2 := triangleNormal(t2)
tet2tet(concat(t1, n1), concat(t2, n2))
-- tet2tet(t1, t2) returns a DHMATRIX which transforms t1 to t2,
-- where t1 and t2 are the vertices of two tetrahedrons in 3-space.
tet2tet(t1: List Point DoubleFloat, t2: List Point DoubleFloat): DHMATRIX(DoubleFloat) ==
m1 := makeColumnMatrix t1
m2 := makeColumnMatrix t2
m2 * inverse(m1)
-- put the vertices of a tetrahedron into matrix form
makeColumnMatrix(t) ==
m := new(4,4,0)$DHMATRIX(DoubleFloat)
for x in t for i in 1..repeat
for j in 1..3 repeat
m(j,i) := x.j
m(4,i) := 1
m
-- return a vector normal to the given triangle, whose length
-- is the square root of the area of the triangle
triangleNormal(t) ==
a := triangleArea t
p1 := t.2 - t.1
p2 := t.3 - t.2
c := cross(p1, p2)
len := length(c)
len = 0 => error "degenerate triangle!"
c := (1/len)*c
t.1 + sqrt(a) * c
-- compute the are of a triangle using Heron's formula
triangleArea t ==
a := length(t.2 - t.1)
b := length(t.3 - t.2)
c := length(t.1 - t.3)
s := (a+b+c)/2
sqrt(s*(s-a)*(s-b)*(s-c))
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|