aboutsummaryrefslogtreecommitdiff
path: root/src/include/vm.H
blob: 3bb62250d3f8f3f4b44005c00a7d24e7d3280eb8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
// Copyright (C) 2011-2014, Gabriel Dos Reis.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     - Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//
//     - Redistributions in binary form must reproduce the above copyright
//       notice, this list of conditions and the following disclaimer in
//       the documentation and/or other materials provided with the
//       distribution.
//
//     - Neither the name of OpenAxiom nor the names of its contributors
//       may be used to endorse or promote products derived from this
//       software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
// OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// --% Author: Gabriel Dos Reis
// --% Description:
// --%   Interface and implementation of basic services of the 
// --%   OpenAxiom Virtual Machine.

#ifndef OPENAXIOM_VM_included
#define OPENAXIOM_VM_included

#include <open-axiom/storage>
#include <open-axiom/string-pool>
#include <stdint.h>
#include <utility>
#include <set>
#include <vector>
#include <type_traits>

#define internal_type struct alignas(16)
#define internal_data alignas(16)

namespace OpenAxiom {
   namespace VM {
      // --%
      // --% Value representation
      // --%
      // A far reaching design decision is that of providing a uniform
      // representation for values.  That is all values, irrespective
      // of type have fit in a fixed format, i.e. a scalar register.
      // This means that values that are more complicated than a scalar,
      // i.e. the vast majority and most interesting values, have to
      // be stored in allocated objects and addresses of their container
      // objects used in place of the actual values.  This is folklore
      // in the communities of garbage collected languages.
      // 
      // An unfortunate but widely held belief is that AXIOM-based
      // systems (and computer algebra systems in general) are
      // Lisp-based systems.  Nothing could be further from the truth
      // for OpenAxiom.  The type system is believed to support
      // erasure semantics, at least for values.
      //
      // However the current implementation, being Lisp-based,
      // unwittingly makes use of some Lisp features that are not
      // strictly necessary.  It would take a certain amount of effort
      // to get rid of them.  Consequently, we must cope -- at least
      // for now -- with the notion of uniform value representation and
      // use runtime predicates to descriminate between values.
      // On the other hand, we do not want to carry an unduly expensive
      // abstraction penalty for perfectly well behaved and well
      // disciplined programs.  So, here are a few constraints:
      //   1. Small integers should represent themselves -- not allocated.
      //      Furthermore, the maximum range should be sought where possible.
      //   2. Since we have to deal with characters, they should be
      //      directly represented -- not allocated.
      //   3. List values and list manipulation should be efficient.
      //      Ideally, a pair should occupy no more than what it
      //      takes to store two values in a type-erasure semantics.
      //   4. Idealy, pointers to foreign objects (at least) should be
      //      left unmolested.
      //   5. Ideally, we want efficient access to string literals
      // 
      // * Assumptions:
      //     (a) the host machine has sizeof(Value) quo 4 = 0.
      //     (b) allocated objects can be aligned on sizeof(Value) boundary.
      //     (c) the host machine has 2's complement arithmetic.
      //
      // If:
      //   -- we use a dedicated allocation pool for cons cells
      //   -- we allocate the first cell in each cons-storage arena
      //      on a 8-byte boundary
      //   -- we use exactly 2 * sizeof(Value) to store a cons cell
      //      therefore realizing constraint (3)
      // then:
      //   every pointer to a cons cell will have its last 3 bits cleared.
      //
      // Therefore, we can use the last 3 bits to tag a cons value, instead
      // of storing the tag inside the cons cell.  We can't leave those
      // bits cleared for we would not be able to easily and cheaply
      // distinguish a pointer to a cons cell from a pointer to other
      // objects, in particular foreign objects.
      //
      // To meet constraint (1), we must logically use at least one bit
      // to distinguish a small integer from a pointer to a cons cell.
      // The good news is that we need no more than that if pointers
      // to foreign pointers do not have the last bit set.  Which is
      // the case with assumption (a).  Furthermore, if we align all
      // other internal data on 16 byte boundary, then we have 4 spare bits
      // for use to categorize values.
      // Therefore we arrive at the first design:
      //    I. the value representation of a small integer always has the
      //       the least significant bit set.  All other bits are
      //       significant.  In other words, the last four bits of a small
      //       integer are 0bxxx1
      // 
      // As a consequence, the last bit of all other values must be cleared.
      //
      // Next,
      //   II. All foreign pointers that are aligned on 8-boundary are
      //       directly represented.  Any foreign pointer not meeting
      //       this condition is stored in an internal object.  As a
      //       consequence, the last four bits of all foreign addresses 
      //       directly represented follow the pattern 0bx000.
      // 
      //  III. Cons cells are represented by their addresses with the
      //       last 4 bits matching the pattern 0bx010.
      //
      //   IV. All internal objects are allocated on 16-byte boundary.
      //       Their last 4 bits are set to the pattern 0b0110.
      //
      //    V. String literals are represented by their addressed with
      //       the last four bits following the pattern 0bx100..
      //
      // Finally:
      //   IV. The representation of a character shall have the last four
      //       bits set to 0b1110.
      //
      // Note: These choices do not fully satisfy constraint 4.  This is 
      //     because we restrict foreign pointers to address aligned
      //     to 8-byte boundaries.  A modest constraint.
      //
      // Special Constants:
      //     NIL    0x00
      //     T      0x10


      // -----------
      // -- Value --
      // -----------
      // All VM values fit in a universal value datatype.
      using ValueBits = uintptr_t;
      using ValueMask = ValueBits;
      enum class Value : ValueBits {
         nil = 0x00,            // distinguished NIL value
         t   = 0x10,            // distinguished T value
      };

      // -- Testing for nil value.
      constexpr Value null(Value v) {
         return v == Value::nil ? Value::t : Value::nil;
      }

      // -- Convert VM Boolean value to C++ view
      constexpr bool to_bool(Value v) { return v != Value::nil; }

      // -- Convert a C++ Boolean value to VM view.
      constexpr Value to_value(bool b) {
         return b ? Value::t : Value::nil;
      }

      // -- Identity equality.
      constexpr Value eq(Value x, Value y) { return to_value(x == y); }

      template<typename>
      struct ValueTrait {
      };

      // Return the tag of an abstract value, when viewed as a potential
      // T-value.
      template<typename T>
      constexpr ValueBits tag(Value v) {
         return ValueBits(v) & ValueTrait<T>::tag_mask;
      }

      // Return true if the abstract value is, in fact, a T-value.
      template<typename T>
      constexpr bool is(Value v) {
         return tag<T>(v) == ValueTrait<T>::tag;
      }

      // Return the pristine bits of an abstract value without its tag.
      template<typename T>
      constexpr ValueBits native(Value v) {
         return ValueBits(v) & ~ValueTrait<T>::tag_mask;
      }

      // -- Arity: number of arguments or forms taken by a function
      //           or a special operator.
      enum class Arity : intptr_t {
         variable = -1,         // Any number of arguments.
         zero     = 0,          // Exactly no argument.
         one      = 1,          // Exactly one argument.
         two      = 2,          // Exactly two arguments.
         three    = 3,          // Exactly three arguments.
      };

      // -------------
      // -- Dynamic --
      // -------------
      // Any internal value is of a class derived from this.
      internal_type Dynamic {
         struct Visitor;
         virtual ~Dynamic();
         virtual void accept(Visitor&) const = 0;
      };

      // Provide an S-view of a T-typed expression, assuming the type T
      // derives from S.
      template<typename S, typename T>
      inline const S& as(const T& t) { return t; }

      template<>
      struct ValueTrait<Dynamic> {
         enum Tag : ValueBits { tag = 0x6 };
         enum Mask : ValueBits { tag_mask = 0xF };
      };

      inline Dynamic* to_dynamic(Value v) {
         return reinterpret_cast<Dynamic*>(native<Dynamic>(v));
      }

      inline Dynamic* to_dynamic_if_can(Value v) {
         return is<Dynamic>(v) ? to_dynamic(v) : nullptr;
      }

      template<typename T>
      using IfDynamic = typename
         std::enable_if<std::is_base_of<Dynamic, T>::value, Value>::type;

      template<typename T>
      inline IfDynamic<T> to_value(const T* o) {
         return Value(ValueBits(o) | ValueTrait<Dynamic>::tag);
      }

      // -- Callable --
      struct Callable : Dynamic {
      };
      
      // -------------
      // -- Fixnum ---
      // -------------
      // VM integers are divided into classes: small numbers,
      // and large numbers.  A small number fits entirely in a register.
      // A large number is allocated and represented by its address.
      using FixnumBits = intptr_t;
      enum class Fixnum : FixnumBits {
         minimum = FixnumBits(~(~ValueBits() >> 2)),
         zero = FixnumBits(0),
         one = FixnumBits(1),
         maximum = FixnumBits(~ValueBits() >> 2),
      };

      template<>
      struct ValueTrait<Fixnum> {
         enum Tag : ValueBits { tag = 0x1  };
         enum Mask : ValueBits { tag_mask = 0x1 };
      };

      constexpr Fixnum to_fixnum(Value v) {
         return Fixnum(FixnumBits(v) >> 1);
      }

      constexpr Value from_fixnum(Fixnum i) {
         return Value((ValueBits(i) << 1 ) | ValueTrait<Fixnum>::tag);
      }

      // ------------
      // -- String --
      // ------------
      using String = InternedString;

      template<>
      struct ValueTrait<String> {
         enum Tag : ValueBits { tag = 0x4 };
         enum Mask : ValueBits { tag_mask = 0x7 };
      };

      inline InternedString to_string(Value v) {
         return reinterpret_cast<String>(native<String>(v));
      }

      inline Value from_string(InternedString s) {
         return Value(ValueBits(s) | ValueTrait<String>::tag);
      }

      inline InternedString to_string_if_can(Value v) {
         return is<String>(v) ? to_string(v) : nullptr;
      }

      // -------------
      // -- Pointer --
      // -------------
      // Allocated objects are represented by their addresses.
      using Memory::Pointer;

      template<>
      struct ValueTrait<Memory::Pointer> {
         enum Tag : ValueBits { tag = 0x0 };
         enum Mask : ValueBits { tag_mask = 0x7 };
      };

      inline Pointer to_pointer(Value v) {
         return Pointer(ValueBits(v));
      }

      inline Value from_pointer(Pointer p) {
         return Value(ValueBits(p) | ValueTrait<Memory::Pointer>::tag);
      }

      // ----------
      // -- Pair --
      // ----------
      struct alignas(8) ConsCell {
         Value head;
         Value tail;
      };

      using Pair = ConsCell*;

      template<>
      struct ValueTrait<Pair> {
         enum Tag : ValueBits { tag = 0x2 };
         enum Mask : ValueBits { tag_mask = 0x7 };
      };

      inline Pair to_pair(Value v) {
         return reinterpret_cast<Pair>(native<Pair>(v));
      }

      inline Value from_pair(Pair p) {
         return Value(ValueBits(p) | ValueTrait<Pair>::tag);
      }

      // Return true if argument designates a pair.
      constexpr Value consp(Value v) {
         return to_value(v != Value::nil and v != Value::t and is<Pair>(v));
      }

      inline Value atom(Value v) {
         return null(consp(v));
      }

      // If `v' designates a pair, return a pointer to its
      // concrete representation.
      inline Pair to_pair_if_can(Value v) {
         return consp(v) == Value::t ? to_pair(v) : nullptr;
      }

      Fixnum count_nodes(Pair);
      inline Fixnum count_nodes(Value v) {
         if (auto p = to_pair_if_can(v))
            return count_nodes(p);
         return Fixnum::zero;
      }

      // ---------------
      // -- Character --
      // ---------------
      // This datatype is prepared for Uncode characters even if
      // we do not handle UCN characters at the moment.
      enum class Character : ValueBits { };

      template<>
      struct ValueTrait<Character> {
         enum Tag : ValueBits { tag = 0xE };
         enum Mask : ValueBits { tag_mask = 0xF };
      };

      constexpr Character to_character(Value v) {
         return Character(ValueBits(v) >> 4);
      }

      constexpr Value from_character(Character c) {
         return Value((ValueBits(c) << 4) | ValueTrait<Character>::tag);
      }

      // -- Object --
      // An object is a typed value.
      struct Type;
      struct Object {
         Value value;
         const Type* type;
      };

      struct Package;

      enum class SymbolAttribute : ValueBits {
         None             = 0x0,    // No particular attribute.
         Constant         = 0x1,    // Symbol defined constant.
         Special          = 0x2,    // Symbol declared special.
         Keyword          = 0x4,    // A keyword symbol.
         SpecialConstant  = Constant | Special,
      };

      constexpr SymbolAttribute
      operator&(SymbolAttribute x, SymbolAttribute y) {
         return SymbolAttribute(ValueBits(x) & ValueBits(y));
      }

      // ------------
      // -- Symbol --
      // ------------
      struct Symbol : Dynamic {
         const InternedString name;
         Value value;
         const Callable* function;
         Pair properties;
         Package* package;
         SymbolAttribute attributes;
         explicit Symbol(InternedString);
         void accept(Visitor&) const override;
         bool has(SymbolAttribute x) const { return (attributes & x) == x; }
      };

      inline Symbol* to_symbol_if_can(Value v) {
         return dynamic_cast<Symbol*>(to_dynamic_if_can(v));
      }

      inline bool is_symbol(Value v) {
         return to_symbol_if_can(v) != nullptr;
      }

      // -- Test if a value is a symbol.
      inline Value symbolp(Value v) {
         return to_value(v == Value::nil or v == Value::t or is_symbol(v));
      }

      // -- Test if a value is a keyword symbol.
      inline Value keywordp(Value v) {
         if (auto sym = to_symbol_if_can(v))
            return to_value(sym->has(SymbolAttribute::Keyword));
         return Value::nil;
      }

      struct CmpByName {
         template<typename T>
         bool operator()(const T& x, const T& y) const {
            return std::less<String>()(x.name, y.name);
         }
      };

      template<typename T>
      inline const T* setf_symbol_function(Symbol* sym, const T* fun) {
         sym->function = fun;
         return fun;
      }

      // -- Argument binding as value.
      // Binding a parameter to a value in a call.
      struct Binding : Dynamic {
         Symbol* symbol;
         Value value;
         void accept(Visitor&) const override;
      };
      
      // -- Environments.
      struct Environment {
         struct Binding {
            Symbol* symbol;
            Value value;
         };

         Environment();
         ~Environment();

         void bind(Symbol*, Value);
         Binding* lookup(InternedString);
      private:
         std::vector<Binding> lexical;
         std::vector<Binding> dynamic;
      };

      // -------------
      // -- Package --
      // -------------
      struct Package : Dynamic {
         const InternedString name;
         std::set<Symbol, CmpByName> symbols;

         explicit Package(InternedString);
         void accept(Visitor&) const override;
         Symbol* make_symbol(InternedString);
         Symbol* find_symbol(InternedString);
      };

      // --------------
      // -- Function --
      // --------------
      struct FunctionBase : Callable {
         const Symbol* name;
         Value type;
         FunctionBase(const Symbol* n, Value t = Value::nil)
               : name(n), type(t) { }
         void accept(Visitor&) const override;
      };

      // ------------------------
      // -- Builtin Operations --
      // ------------------------
      // Types for native implementation of builtin operators.
      struct BasicContext;

      template<typename... Ts>
      using RuntimeOperation = Value(*)(BasicContext*, Ts...);
      using NullaryCode = RuntimeOperation<>;
      using UnaryCode = RuntimeOperation<Value>;
      using BinaryCode = RuntimeOperation<Value, Value>;
      using TernaryCode = RuntimeOperation<Value, Value, Value>;

      template<typename Code>
      struct BuiltinFunction : FunctionBase {
         Code code;
         BuiltinFunction(const Symbol* n, Code c)
               : FunctionBase(n), code(c)
         { }
         void accept(Visitor&) const override;
      };

      using NullaryOperator = BuiltinFunction<NullaryCode>;
      using UnaryOperator = BuiltinFunction<UnaryCode>;
      using BinaryOperator = BuiltinFunction<BinaryCode>;
      using TernaryOperator = BuiltinFunction<TernaryCode>;

      // -- Operand stack.
      struct OperandStack : private std::vector<Value> {
         using super = std::vector<Value>;
         using iterator = std::reverse_iterator<super::iterator>;
         using super::size;
         using super::empty;
         iterator begin() { return rbegin(); }
         iterator end() { return rend(); }
         Value top() { return back(); }
         void push(Value v) { push_back(v); }
         Value pop() { auto v = back(); pop_back(); return v; }
         void operator-=(std::size_t i) { resize(size() - i); }
         Value operator[](std::size_t i) {
            return super::operator[](size() - i - 1);
         }
      };

      // -- Dynamic::Visitor --
      struct Dynamic::Visitor {
         virtual void visit(const Symbol&) = 0;
         virtual void visit(const Binding&) = 0;
         virtual void visit(const Package&) = 0;
         virtual void visit(const FunctionBase&) = 0;
         virtual void visit(const NullaryOperator&);
         virtual void visit(const UnaryOperator&);
         virtual void visit(const BinaryOperator&);
      };

      template<typename Code>
      void BuiltinFunction<Code>::accept(Visitor& v) const { v.visit(*this); }

      // ------------------
      // -- BasicContext --
      // ------------------
      // Provides basic evaluation services.
      struct BasicContext : StringPool {
         BasicContext();
         ~BasicContext();

         Package* make_package(InternedString);
         Symbol* make_keyword(InternedString);
         Pair make_pair(Value, Value);
         const NullaryOperator* make_operator(Symbol*, NullaryCode);
         const UnaryOperator* make_operator(Symbol*, UnaryCode);
         const BinaryOperator* make_operator(Symbol*, BinaryCode);
         const TernaryOperator* make_operator(Symbol*, TernaryCode);

         Package* keyword_package() const { return keywords; }
         Package* homeless_package() const { return homeless; }

      protected:
         std::set<Package, CmpByName> packages;
         Memory::Factory<ConsCell> conses;
         Memory::Factory<NullaryOperator> nullaries;
         Memory::Factory<UnaryOperator> unaries;
         Memory::Factory<BinaryOperator> binaries;
         Memory::Factory<TernaryOperator> ternaries;
         Package* keywords;
         Package* homeless;
      };
   };
}

#endif  // OPENAXIOM_VM_INCLUDED