aboutsummaryrefslogtreecommitdiff
path: root/src/hyper/pages/ug11.ht
blob: b2f874a3a79bb18518ca03a3f7cc58e595a26923 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
% Copyright The Numerical Algorithms Group Limited 1992-94. All rights reserved.
% !! DO NOT MODIFY THIS FILE BY HAND !! Created by ht.awk.
\texht{\setcounter{chapter}{10}}{} % Chapter 11


%
%
\newcommand{\ugPackagesTitle}{Packages}
\newcommand{\ugPackagesNumber}{11.}
%
% =====================================================================
\begin{page}{ugPackagesPage}{11. Packages}
% =====================================================================
\beginscroll

Packages provide the bulk of
%-% \HDindex{package}{ugPackagesPage}{11.}{Packages}
\Language{}'s algorithmic library, from numeric packages for computing
special functions to symbolic facilities for
%-% \HDindex{constructor!package}{ugPackagesPage}{11.}{Packages}
differential equations, symbolic integration, and limits.
%-% \HDindex{package!constructor}{ugPackagesPage}{11.}{Packages}

In \downlink{``\ugIntProgTitle''}{ugIntProgPage} in Chapter \ugIntProgNumber\ignore{ugIntProg}, we developed several useful functions for drawing
vector fields and complex functions.
We now show you how you can add these functions to the
\Language{} library to make them available for general use.

The way we created the functions in \downlink{``\ugIntProgTitle''}{ugIntProgPage} in Chapter \ugIntProgNumber\ignore{ugIntProg} is typical of how
you, as an advanced \Language{} user, may interact with \Language{}.
You have an application.
You go to your editor and create an input file defining some
functions for the application.
Then you run the file and try the functions.
Once you get them all to work, you will often want to extend them,
add new features, perhaps write additional functions.

Eventually, when you have a useful set of functions for your application,
you may want to add them to your local \Language{} library.
To do this, you embed these function definitions in a package and add
that package to the library.

To introduce new packages, categories, and domains into the system,
you need to use the \Language{} compiler to convert the constructors
into executable machine code.
An existing compiler in \Language{} is available on an ``as-is''
basis.
A new, faster compiler will be available in version 2.0
of \Language{}.

\beginImportant
  
\noindent
\label{pak-cdraw}
{\tt 1.\ \ \ C\ \ \ \ \ \ ==>\ Complex\ DoubleFloat}\newline
{\tt 2.\ \ \ S\ \ \ \ \ \ ==>\ Segment\ DoubleFloat}\newline
{\tt 3.\ \ \ INT\ \ \ \ ==>\ Integer}\newline
{\tt 4.\ \ \ DFLOAT\ ==>\ DoubleFloat}\newline
{\tt 5.\ \ \ VIEW3D\ ==>\ ThreeDimensionalViewport}\newline
{\tt 6.\ \ \ CURVE\ \ ==>\ List\ List\ Point\ DFLOAT}\newline
{\tt 7.\ \ \ }\newline
{\tt 8.\ \ \ )abbrev\ package\ DRAWCX\ DrawComplex}\newline
{\tt 9.\ \ \ DrawComplex():\ Exports\ ==\ Implementation\ where}\newline
{\tt 10.\ \ }\newline
{\tt 11.\ \ \ \ Exports\ ==\ with}\newline
{\tt 12.\ \ \ \ \ \ drawComplex:\ (C\ ->\ C,S,S,Boolean)\ ->\ VIEW3D}\newline
{\tt 13.\ \ \ \ \ \ drawComplexVectorField:\ (C\ ->\ C,S,S)\ ->\ VIEW3D}\newline
{\tt 14.\ \ \ \ \ \ setRealSteps:\ INT\ ->\ INT}\newline
{\tt 15.\ \ \ \ \ \ setImagSteps:\ INT\ ->\ INT}\newline
{\tt 16.\ \ \ \ \ \ setClipValue:\ DFLOAT->\ DFLOAT}\newline
{\tt 17.\ \ }\newline
{\tt 18.\ \ \ \ Implementation\ ==\ add}\newline
{\tt 19.\ \ \ \ \ \ arrowScale\ :\ DFLOAT\ :=\ (0.2)::DFLOAT\ --relative\ size}\newline
{\tt 20.\ \ \ \ \ \ arrowAngle\ :\ DFLOAT\ :=\ pi()-pi()/(20::DFLOAT)}\newline
{\tt 21.\ \ \ \ \ \ realSteps\ \ :\ INT\ :=\ 11\ --\#\ real\ steps}\newline
{\tt 22.\ \ \ \ \ \ imagSteps\ \ :\ INT\ :=\ 11\ --\#\ imaginary\ steps}\newline
{\tt 23.\ \ \ \ \ \ clipValue\ \ :\ DFLOAT\ \ :=\ 10::DFLOAT\ --maximum\ vector\ length}\newline
{\tt 24.\ \ }\newline
{\tt 25.\ \ \ \ \ \ setRealSteps(n)\ ==\ realSteps\ :=\ n}\newline
{\tt 26.\ \ \ \ \ \ setImagSteps(n)\ ==\ imagSteps\ :=\ n}\newline
{\tt 27.\ \ \ \ \ \ setClipValue(c)\ ==\ clipValue\ :=\ c}\newline
{\tt 28.\ \ }\newline
{\tt 29.\ \ \ \ \ \ clipFun:\ DFLOAT\ ->\ DFLOAT\ --Clip\ large\ magnitudes.}\newline
{\tt 30.\ \ \ \ \ \ clipFun(x)\ ==\ min(max(x,\ -clipValue),\ clipValue)}\newline
{\tt 31.\ \ }\newline
{\tt 32.\ \ \ \ \ \ makeArrow:\ (Point\ DFLOAT,Point\ DFLOAT,DFLOAT,DFLOAT)\ ->\ CURVE}\newline
{\tt 33.\ \ \ \ \ \ makeArrow(p1,\ p2,\ len,\ arg)\ ==\ ...}\newline
{\tt 34.\ \ }\newline
{\tt 35.\ \ \ \ \ \ drawComplex(f,\ realRange,\ imagRange,\ arrows?)\ ==\ ...}\newline
\caption{The DrawComplex package.}\label{fig-pak-cdraw}
\endImportant

\beginmenu
    \menudownlink{{11.1. Names, Abbreviations, and File Structure}}{ugPackagesNamesPage}
    \menudownlink{{11.2. Syntax}}{ugPackagesSyntaxPage}
    \menudownlink{{11.3. Abstract Datatypes}}{ugPackagesAbstractPage}
    \menudownlink{{11.4. Capsules}}{ugPackagesCapsulesPage}
    \menudownlink{{11.5. Input Files vs. Packages}}{ugPackagesInputFilesPage}
    \menudownlink{{11.6. Compiling Packages}}{ugPackagesPackagesPage}
    \menudownlink{{11.7. Parameters}}{ugPackagesParametersPage}
    \menudownlink{{11.8. Conditionals}}{ugPackagesCondsPage}
    \menudownlink{{11.9. Testing}}{ugPackagesCompilingPage}
    \menudownlink{{11.10. How Packages Work}}{ugPackagesHowPage}
\endmenu
\endscroll
\autobuttons
\end{page}
%
%
\newcommand{\ugPackagesNamesTitle}{Names, Abbreviations, and File Structure}
\newcommand{\ugPackagesNamesNumber}{11.1.}
%
% =====================================================================
\begin{page}{ugPackagesNamesPage}{11.1. Names, Abbreviations, and File Structure}
% =====================================================================
\beginscroll
%
Each package has a name and an abbreviation.
For a package of the complex draw functions from \downlink{``\ugIntProgTitle''}{ugIntProgPage} in Chapter \ugIntProgNumber\ignore{ugIntProg},
we choose the name \nonLibAxiomType{DrawComplex}
and
%-% \HDindex{abbreviation!constructor}{ugPackagesNamesPage}{11.1.}{Names, Abbreviations, and File Structure}
abbreviation \nonLibAxiomType{DRAWCX}.\footnote{An abbreviation can be any string
of
%-% \HDindex{constructor!abbreviation}{ugPackagesNamesPage}{11.1.}{Names, Abbreviations, and File Structure}
between two and seven capital letters and digits, beginning with a letter.
See \downlink{``\ugTypesWritingAbbrTitle''}{ugTypesWritingAbbrPage} in Section \ugTypesWritingAbbrNumber\ignore{ugTypesWritingAbbr} for more information.}
To be sure that you have not chosen a name or abbreviation already used by
the system, issue the system command \spadcmd{)show} for both the name and
the abbreviation.
%-% \HDsyscmdindex{show}{ugPackagesNamesPage}{11.1.}{Names, Abbreviations, and File Structure}

Once you have named the package and its abbreviation, you can choose any new
filename you like with extension ``{\bf \spadFileExt{}}'' to hold the
definition of your package.
We choose the name {\bf
drawpak\spadFileExt{}}.
If your application involves more than one package, you
can put them all in the same file.
\Language{} assumes no relationship between the name of a library file, and
the name or abbreviation of a package.

Near the top of the ``{\bf \spadFileExt{}}'' file, list all the
abbreviations for the packages
using \spadcmd{)abbrev}, each command beginning in column one.
Macros giving names to \Language{} expressions can also be placed near the
top of the file.
The macros are only usable from their point of definition until the
end of the file.

Consider the definition of
\nonLibAxiomType{DrawComplex} in Figure \ref{fig-pak-cdraw}.
After the macro
%-% \HDindex{macro}{ugPackagesNamesPage}{11.1.}{Names, Abbreviations, and File Structure}
definition
\begin{verbatim}
S      ==> Segment DoubleFloat
\end{verbatim}
the name
{\tt S} can be used in the file as a
shorthand for \axiomType{Segment DoubleFloat}.\footnote{The interpreter also allows
{\tt macro} for macro definitions.}
The abbreviation command for the package
\begin{verbatim}
)abbrev package DRAWCX DrawComplex
\end{verbatim}
is given after the macros (although it could precede them).

\endscroll
\autobuttons
\end{page}
%
%
\newcommand{\ugPackagesSyntaxTitle}{Syntax}
\newcommand{\ugPackagesSyntaxNumber}{11.2.}
%
% =====================================================================
\begin{page}{ugPackagesSyntaxPage}{11.2. Syntax}
% =====================================================================
\beginscroll
%
The definition of a package has the syntax:
\centerline{{\frenchspacing{\it PackageForm {\tt :} Exports\quad{\tt ==}\quad Implementation}}}
The syntax for defining a package constructor is the same as that
%-% \HDindex{syntax}{ugPackagesSyntaxPage}{11.2.}{Syntax}
for defining any function in \Language{}.
In practice, the definition extends over many lines so that this syntax is
not practical.
Also, the type of a package is expressed by the operator \axiom{with}
\spadkey{with}
followed by an explicit list of operations.
A preferable way to write the definition of a package is with a \axiom{where}
\spadkey{where}
expression:

\beginImportant
The definition of a package usually has the form: \newline
{\tt%
{\it PackageForm} : Exports  ==  Implementation where \newline
\texht{\hspace*{.75pc}}{\tab{3}} {\it optional type declarations}\newline
\texht{\hspace*{.75pc}}{\tab{3}} Exports  ==   with \newline
\texht{\hspace*{2.0pc}}{\tab{6}}   {\it list of exported operations}\newline
\texht{\hspace*{.75pc}}{\tab{3}} Implementation == add \newline
\texht{\hspace*{2.0pc}}{\tab{6}}   {\it list of function definitions for exported operations}
}
\endImportant

The \axiomType{DrawComplex} package takes no parameters and exports five
operations, each a separate item of a \spadgloss{pile}.
Each operation is described as a \spadgloss{declaration}: a name, followed
by a colon (\axiomSyntax{:}), followed by the type of the operation.
All operations have types expressed as \spadglossSee{mappings}{mapping} with
the syntax
\centerline{{{\it}}
\centerline{{source\quad{\tt ->}\quad target}}
\centerline{{}}}

%e *********************************************************************
\endscroll
\autobuttons
\end{page}
%
%
\newcommand{\ugPackagesAbstractTitle}{Abstract Datatypes}
\newcommand{\ugPackagesAbstractNumber}{11.3.}
%
% =====================================================================
\begin{page}{ugPackagesAbstractPage}{11.3. Abstract Datatypes}
% =====================================================================
\beginscroll

A constructor as defined in \Language{} is called an \spadgloss{abstract
datatype} in the computer science literature.
Abstract datatypes separate ``specification'' (what operations are
provided) from ``implementation'' (how the operations are implemented).
The {\tt Exports} (specification) part of a constructor is said to be ``public'' (it
provides the user interface to the package) whereas the {\tt Implementation}
part is ``private'' (information here is effectively hidden---programs
cannot take advantage of it).

The {\tt Exports} part specifies what operations the package provides to users.
As an author of a package, you must ensure that
the {\tt Implementation} part provides a function for each
operation in the {\tt Exports} part.\footnote{The \spadtype{DrawComplex}
package enhances the facility
described in  \downlink{``\ugIntProgCompFunsTitle''}{ugIntProgCompFunsPage} in Chapter \ugIntProgCompFunsNumber\ignore{ugIntProgCompFuns} by allowing a
complex function to have
arrows emanating from the surface to indicate the direction of the
complex argument.}

An important difference between interactive programming and the
use of packages is in the handling of global variables such as
\axiom{realSteps} and \axiom{imagSteps}.
In interactive programming, you simply change the values of
variables by \spadgloss{assignment}.
With packages, such variables are local to the package---their
values can only be set using functions exported by the package.
In our example package, we provide two functions
\fakeAxiomFun{setRealSteps} and \fakeAxiomFun{setImagSteps} for
this purpose.

Another local variable is \axiom{clipValue} which can be changed using
the exported operation \fakeAxiomFun{setClipValue}.
This value is referenced by the internal function \fakeAxiomFun{clipFun} that
decides whether to use the computed value of the function at a point or,
if the magnitude of that value is too large, the
value assigned to \axiom{clipValue} (with the
appropriate sign).

\endscroll
\autobuttons
\end{page}
%
%
\newcommand{\ugPackagesCapsulesTitle}{Capsules}
\newcommand{\ugPackagesCapsulesNumber}{11.4.}
%
% =====================================================================
\begin{page}{ugPackagesCapsulesPage}{11.4. Capsules}
% =====================================================================
\beginscroll
%
The part to the right of {\tt add} in the {\tt Implementation}
\spadkey{add}
part of the definition is called a \spadgloss{capsule}.
The purpose of a capsule is:
\indent{4}
\beginitems
\item[-] to define a function for each exported operation, and
\item[-] to define a \spadgloss{local environment} for these functions to run.
\enditems
\indent{0}

What is a local environment?
First, what is an environment?
%-% \HDindex{environment}{ugPackagesCapsulesPage}{11.4.}{Capsules}
Think of the capsule as an input file that \Language{} reads from top to
bottom.
Think of the input file as having a \axiom{)clear all} at the top
so that initially no variables or functions are defined.
When this file is read, variables such as \axiom{realSteps} and
\axiom{arrowSize} in \nonLibAxiomType{DrawComplex} are set to initial values.
Also, all the functions defined in the capsule are compiled.
These include those that are exported (like \axiom{drawComplex}), and
those that are not (like \axiom{makeArrow}).
At the end, you get a set of name-value pairs:
variable names (like \axiom{realSteps} and \axiom{arrowSize})
are paired with assigned values, while
operation names (like \axiom{drawComplex} and \axiom{makeArrow})
are paired with function values.

This set of name-value pairs is called an \spadgloss{environment}.
Actually, we call this environment the ``initial environment'' of a package:
it is the environment that exists immediately after the package is
first built.
Afterwards, functions of this capsule can
access or reset a variable in the environment.
The environment is called {\it local} since any changes to the value of a
variable in this environment can be seen {\it only} by these functions.

Only the functions from the package can change the variables in the local
environment.
When two functions are called successively from a package,
any changes caused by the first function called
are seen by the second.

Since the environment is local to the package, its names
don't get mixed
up with others in the system or your workspace.
If you happen to have a variable called \axiom{realSteps} in your
workspace, it does not affect what the
\nonLibAxiomType{DrawComplex} functions do in any way.

The functions in a package are compiled into machine code.
Unlike function definitions in input files that may be compiled repeatedly
as you use them with varying argument types,
functions in packages have a unique type (generally parameterized by
the argument parameters of a package) and a unique compilation residing on disk.

The capsule itself is turned into a compiled function.
This so-called {\it capsule function} is what builds the initial environment
spoken of above.
If the package has arguments (see below), then each call to the package
constructor with a distinct pair of arguments
builds a distinct package, each with its own local environment.

\endscroll
\autobuttons
\end{page}
%
%
\newcommand{\ugPackagesInputFilesTitle}{Input Files vs. Packages}
\newcommand{\ugPackagesInputFilesNumber}{11.5.}
%
% =====================================================================
\begin{page}{ugPackagesInputFilesPage}{11.5. Input Files vs. Packages}
% =====================================================================
\beginscroll
%
A good question at this point would be ``Is writing a package more difficult than
writing an input file?''

The programs in input files are designed for flexibility and ease-of-use.
\Language{} can usually work out all of your types as it reads your program
and does the computations you request.
Let's say that you define a one-argument function without giving its type.
When you first apply the function to a value, this
value is understood by \Language{} as identifying the type for the
argument parameter.
Most of the time \Language{} goes through the body of your function and
figures out the target type that you have in mind.
\Language{} sometimes fails to get it right.
Then---and only then---do you need a declaration to tell \Language{} what
type you want.

Input files are usually written to be read by \Language{}---and by you.
%-% \HDindex{file!input!vs. package}{ugPackagesInputFilesPage}{11.5.}{Input Files vs. Packages}
Without suitable documentation and declarations, your input files
%-% \HDindex{package!vs. input file}{ugPackagesInputFilesPage}{11.5.}{Input Files vs. Packages}
are likely incomprehensible to a colleague---and to you some
months later!

Packages are designed for legibility, as well as
run-time efficiency.
There are few new concepts you need to learn to write
packages. Rather, you just have to be explicit about types
and type conversions.
The types of all functions are pre-declared so that \Language{}---and the reader---
knows precisely what types of arguments can be passed to and from
the functions (certainly you don't want a colleague to guess or to
have to work this out from context!).
The types of local variables are also declared.
Type conversions are explicit, never automatic.\footnote{There
is one exception to this rule: conversions from a subdomain to a
domain are automatic.
After all, the objects both have the domain as a common type.}

In summary, packages are more tedious to write than input files.
When writing input files, you can casually go ahead, giving some
facts now, leaving others for later.
Writing packages requires forethought, care and discipline.

\endscroll
\autobuttons
\end{page}
%
%
\newcommand{\ugPackagesPackagesTitle}{Compiling Packages}
\newcommand{\ugPackagesPackagesNumber}{11.6.}
%
% =====================================================================
\begin{page}{ugPackagesPackagesPage}{11.6. Compiling Packages}
% =====================================================================
\beginscroll
%

Once you have defined the package \nonLibAxiomType{DrawComplex},
you need to compile and test it.
To compile the package, issue the system command \spadcmd{)compile drawpak}.
\Language{} reads the file {\bf drawpak\spadFileExt{}}
and compiles its contents into machine binary.
If all goes well, the file {\bf DRAWCX.NRLIB} is created in your
local directory for the package.
To test the package, you must load the package before trying an
operation.

\nullXtc{
Compile the package.
}{
\spadpaste{)compile drawpak}
}
\xtc{
Expose the package.
}{
\spadpaste{)expose DRAWCX \bound{dp}}
}
\xtc{
Use an odd step size to avoid
a pole at the origin.
}{
\spadpaste{setRealSteps 51 \free{dp}\bound{srs}}
}
\xtc{
}{
\spadpaste{setImagSteps 51 \free{dp}\bound{scs}}
}
\xtc{
Define \userfun{f} to be the Gamma function.
}{
\spadpaste{f(z) == Gamma(z) \bound{f}}
}
\xtc{
Clip values of function with magnitude larger than 7.
}{
\spadpaste{setClipValue 7}
}
\psXtc{
Draw the \spadfun{Gamma} function.
}{
\graphpaste{drawComplex(f,-\%pi..\%pi,-\%pi..\%pi, false) \free{srs scs f}}
}{
\epsffile[0 0 300 300]{../ps/3Dgamma11.ps}
}

\endscroll
\autobuttons
\end{page}
%
%
\newcommand{\ugPackagesParametersTitle}{Parameters}
\newcommand{\ugPackagesParametersNumber}{11.7.}
%
% =====================================================================
\begin{page}{ugPackagesParametersPage}{11.7. Parameters}
% =====================================================================
\beginscroll
%
The power of packages becomes evident when packages have parameters.
Usually these parameters are domains and the exported operations have types
involving these parameters.

In \downlink{``\ugTypesTitle''}{ugTypesPage} in Chapter \ugTypesNumber\ignore{ugTypes}, you learned that categories denote classes of
domains.
Although we cover this notion in detail in the next
chapter, we now give you a sneak preview of its usefulness.

In \downlink{``\ugUserBlocksTitle''}{ugUserBlocksPage} in Section \ugUserBlocksNumber\ignore{ugUserBlocks}, we defined functions \axiom{bubbleSort(m)} and
\axiom{insertionSort(m)} to sort a list of integers.
If you look at the code for these functions, you see that they may be
used to sort {\it any} structure \axiom{m} with the right properties.
Also, the functions can be used to sort lists of {\it any} elements---not
just integers.
Let us now recall the code for \axiom{bubbleSort}.

\begin{verbatim}
bubbleSort(m) ==
  n := #m
  for i in 1..(n-1) repeat
    for j in n..(i+1) by -1 repeat
      if m.j < m.(j-1) then swap!(m,j,j-1)
  m
\end{verbatim}

What properties of ``lists of integers'' are assumed by the sorting
algorithm?
In the first line, the operation \spadfun{\#} computes the maximum index of
the list.
The first obvious property is that \axiom{m} must have a finite number of
elements.
In \Language{}, this is done
by your telling \Language{} that \axiom{m} has
the ``attribute'' \spadatt{finiteAggregate}.
An \spadgloss{attribute} is a property
that a domain either has or does not have.
As we show later in \downlink{``\ugCategoriesAttributesTitle''}{ugCategoriesAttributesPage} in Section \ugCategoriesAttributesNumber\ignore{ugCategoriesAttributes},
programs can query domains as to the presence or absence of an attribute.

The operation \spadfunX{swap} swaps elements of \axiom{m}.
Using \Browse{}, you find that \spadfunX{swap} requires its
elements to come from a domain of category
\axiomType{IndexedAggregate} with attribute
\spadatt{shallowlyMutable}.
This attribute means that you can change the internal components
of \axiom{m} without changing its external structure.
Shallowly-mutable data structures include lists, streams, one- and
two-dimensional arrays, vectors, and matrices.

The category \axiomType{IndexedAggregate} designates the class of
aggregates whose elements can be accessed by the notation
\axiom{m.s} for suitable selectors \axiom{s}.
The category \axiomType{IndexedAggregate} takes two arguments:
\axiom{Index}, a domain of selectors for the aggregate, and
\axiom{Entry}, a domain of entries for the aggregate.
Since the sort functions access elements by integers, we must
choose \axiom{Index = }\axiomType{Integer}.
The most general class of domains for which \axiom{bubbleSort} and
\axiom{insertionSort} are defined are those of
category \spadtype{IndexedAggregate(Integer,Entry)} with the two
attributes \spadatt{shallowlyMutable} and
\spadatt{finiteAggregate}.

Using \Browse{}, you can also discover that \Language{} has many kinds of domains
with attribute \spadatt{shallowlyMutable}.
Those of class \axiomType{IndexedAggregate(Integer,Entry)} include
\axiomType{Bits}, \axiomType{FlexibleArray}, \axiomType{OneDimensionalArray},
\axiomType{List}, \axiomType{String}, and \axiomType{Vector}, and also
\axiomType{HashTable} and \axiomType{EqTable} with integer keys.
Although you may never want to sort all such structures, we
nonetheless demonstrate \Language{}'s
ability to do so.

Another requirement is that \nonLibAxiomType{Entry} has an
operation \axiomOp{<}.
One way to get this operation is to assume that
\nonLibAxiomType{Entry} has category \axiomType{OrderedSet}.
By definition, will then export a \axiomOp{<} operation.
A more general approach is to allow any comparison function
\axiom{f} to be used for sorting.
This function will be passed as an argument to the sorting
functions.

Our sorting package then takes two arguments: a domain \axiom{S}
of objects of {\it any} type, and a domain \axiom{A}, an aggregate
of type \axiomType{IndexedAggregate(Integer, S)} with the above
two attributes.
Here is its definition using what are close to the original
definitions of \axiom{bubbleSort} and \axiom{insertionSort} for
sorting lists of integers.
The symbol \axiomSyntax{!} is added to the ends of the operation
names.
This uniform naming convention is used for \Language{} operation
names that destructively change one or more of their arguments.

\beginImportant
  
\noindent
{\tt 1.\ \ \ SortPackage(S,A)\ :\ Exports\ ==\ Implementation\ where}\newline
{\tt 2.\ \ \ \ \ S:\ Object}\newline
{\tt 3.\ \ \ \ \ A:\ IndexedAggregate(Integer,S)}\newline
{\tt 4.\ \ \ \ \ \ \ with\ (finiteAggregate;\ shallowlyMutable)}\newline
{\tt 5.\ \ \ }\newline
{\tt 6.\ \ \ \ \ Exports\ ==\ with}\newline
{\tt 7.\ \ \ \ \ \ \ bubbleSort!:\ (A,(S,S)\ ->\ Boolean)\ ->\ A}\newline
{\tt 8.\ \ \ \ \ \ \ insertionSort!:\ (A,\ (S,S)\ ->\ Boolean)\ ->\ A}\newline
{\tt 9.\ \ \ }\newline
{\tt 10.\ \ \ \ Implementation\ ==\ add}\newline
{\tt 11.\ \ \ \ \ \ bubbleSort!(m,f)\ ==}\newline
{\tt 12.\ \ \ \ \ \ \ \ n\ :=\ \#m}\newline
{\tt 13.\ \ \ \ \ \ \ \ for\ i\ in\ 1..(n-1)\ repeat}\newline
{\tt 14.\ \ \ \ \ \ \ \ \ \ for\ j\ in\ n..(i+1)\ by\ -1\ repeat}\newline
{\tt 15.\ \ \ \ \ \ \ \ \ \ \ \ if\ f(m.j,m.(j-1))\ then\ swap!(m,j,j-1)}\newline
{\tt 16.\ \ \ \ \ \ \ \ m}\newline
{\tt 17.\ \ \ \ \ \ insertionSort!(m,f)\ ==}\newline
{\tt 18.\ \ \ \ \ \ \ \ for\ i\ in\ 2..\#m\ repeat}\newline
{\tt 19.\ \ \ \ \ \ \ \ \ \ j\ :=\ i}\newline
{\tt 20.\ \ \ \ \ \ \ \ \ \ while\ j\ >\ 1\ and\ f(m.j,m.(j-1))\ repeat}\newline
{\tt 21.\ \ \ \ \ \ \ \ \ \ \ \ swap!(m,j,j-1)}\newline
{\tt 22.\ \ \ \ \ \ \ \ \ \ \ \ j\ :=\ (j\ -\ 1)\ pretend\ PositiveInteger}\newline
{\tt 23.\ \ \ \ \ \ \ \ m}\newline
\endImportant

\endscroll
\autobuttons
\end{page}
%
%
\newcommand{\ugPackagesCondsTitle}{Conditionals}
\newcommand{\ugPackagesCondsNumber}{11.8.}
%
% =====================================================================
\begin{page}{ugPackagesCondsPage}{11.8. Conditionals}
% =====================================================================
\beginscroll
%
When packages have parameters, you can say that an operation is or is not
%-% \HDindex{conditional}{ugPackagesCondsPage}{11.8.}{Conditionals}
exported depending on the values of those parameters.
When the domain of objects \axiom{S} has an \axiomOp{<}
operation, we can supply one-argument versions of
\axiom{bubbleSort} and \axiom{insertionSort} which use this operation
for sorting.
The presence of the
operation \axiomOp{<} is guaranteed when \axiom{S} is an ordered set.

\beginImportant
  
\noindent
{\tt 1.\ \ \ Exports\ ==\ with}\newline
{\tt 2.\ \ \ \ \ \ \ bubbleSort!:\ (A,(S,S)\ ->\ Boolean)\ ->\ A}\newline
{\tt 3.\ \ \ \ \ \ \ insertionSort!:\ (A,\ (S,S)\ ->\ Boolean)\ ->\ A}\newline
{\tt 4.\ \ \ }\newline
{\tt 5.\ \ \ \ \ \ \ if\ S\ has\ OrderedSet\ then}\newline
{\tt 6.\ \ \ \ \ \ \ \ \ bubbleSort!:\ A\ ->\ A}\newline
{\tt 7.\ \ \ \ \ \ \ \ \ insertionSort!:\ A\ ->\ A}\newline
\endImportant

In addition to exporting the one-argument sort operations
%-% \HDindex{sort!bubble}{ugPackagesCondsPage}{11.8.}{Conditionals}
conditionally, we must provide conditional definitions for the
%-% \HDindex{sort!insertion}{ugPackagesCondsPage}{11.8.}{Conditionals}
operations in the {\tt Implementation} part.
This is easy: just have the one-argument functions call the
corresponding two-argument functions with the operation
\axiomOp{<} from \axiom{S}.

\beginImportant
  
\noindent
{\tt 1.\ \ \ \ \ Implementation\ ==\ add}\newline
{\tt 2.\ \ \ \ \ \ \ \ \ \ ...}\newline
{\tt 3.\ \ \ \ \ \ \ if\ S\ has\ OrderedSet\ then}\newline
{\tt 4.\ \ \ \ \ \ \ \ \ bubbleSort!(m)\ ==\ bubbleSort!(m,<\$S)}\newline
{\tt 5.\ \ \ \ \ \ \ \ \ insertionSort!(m)\ ==\ insertionSort!(m,<\$S)}\newline
\endImportant

In \downlink{``\ugUserBlocksTitle''}{ugUserBlocksPage} in Section \ugUserBlocksNumber\ignore{ugUserBlocks}, we give an alternative definition of
\fakeAxiomFun{bubbleSort} using \spadfunFrom{first}{List} and
\spadfunFrom{rest}{List} that is more efficient for a list (for
which access to any element requires traversing the list from its
first node).
To implement a more efficient algorithm for lists, we need the
operation \spadfun{setelt} which allows us to destructively change
the \spadfun{first} and \spadfun{rest} of a list.
Using \Browse{}, you find that these operations come from category
\axiomType{UnaryRecursiveAggregate}.
Several aggregate types are unary recursive aggregates including
those of \axiomType{List} and \axiomType{AssociationList}.
We provide two different implementations for
\fakeAxiomFun{bubbleSort!} and \fakeAxiomFun{insertionSort!}: one
for list-like structures, another for array-like structures.

\beginImportant
  
\noindent
{\tt 1.\ \ \ Implementation\ ==\ add}\newline
{\tt 2.\ \ \ \ \ \ \ \ \ \ \ ...}\newline
{\tt 3.\ \ \ \ \ \ \ if\ A\ has\ UnaryRecursiveAggregate(S)\ then}\newline
{\tt 4.\ \ \ \ \ \ \ \ \ bubbleSort!(m,fn)\ ==}\newline
{\tt 5.\ \ \ \ \ \ \ \ \ \ \ empty?\ m\ =>\ m}\newline
{\tt 6.\ \ \ \ \ \ \ \ \ \ \ l\ :=\ m}\newline
{\tt 7.\ \ \ \ \ \ \ \ \ \ \ while\ not\ empty?\ (r\ :=\ l.rest)\ repeat}\newline
{\tt 8.\ \ \ \ \ \ \ \ \ \ \ \ \ \ r\ :=\ bubbleSort!\ r}\newline
{\tt 9.\ \ \ \ \ \ \ \ \ \ \ \ \ \ x\ :=\ l.first}\newline
{\tt 10.\ \ \ \ \ \ \ \ \ \ \ \ \ if\ fn(r.first,x)\ then}\newline
{\tt 11.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ l.first\ :=\ r.first}\newline
{\tt 12.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ r.first\ :=\ x}\newline
{\tt 13.\ \ \ \ \ \ \ \ \ \ \ \ \ l.rest\ :=\ r}\newline
{\tt 14.\ \ \ \ \ \ \ \ \ \ \ \ \ l\ :=\ l.rest}\newline
{\tt 15.\ \ \ \ \ \ \ \ \ \ \ m}\newline
{\tt 16.\ \ \ \ \ \ \ \ \ insertionSort!(m,fn)\ ==}\newline
{\tt 17.\ \ \ \ \ \ \ \ \ \ \ \ ...}\newline
\endImportant

The ordering of definitions is important.
The standard definitions come first and
then the predicate
\begin{verbatim}
A has UnaryRecursiveAggregate(S)
\end{verbatim}
is evaluated.
If {\tt true}, the special definitions cover up the standard ones.

Another equivalent way to write the capsule is to use an
\axiom{if-then-else} expression:
\spadkey{if}

\beginImportant
  
\noindent
{\tt 1.\ \ \ \ \ \ \ \ if\ A\ has\ UnaryRecursiveAggregate(S)\ then}\newline
{\tt 2.\ \ \ \ \ \ \ \ \ \ \ ...}\newline
{\tt 3.\ \ \ \ \ \ \ \ else}\newline
{\tt 4.\ \ \ \ \ \ \ \ \ \ \ ...}\newline
\endImportant

\endscroll
\autobuttons
\end{page}
%
%
\newcommand{\ugPackagesCompilingTitle}{Testing}
\newcommand{\ugPackagesCompilingNumber}{11.9.}
%
% =====================================================================
\begin{page}{ugPackagesCompilingPage}{11.9. Testing}
% =====================================================================
\beginscroll
%
Once you have written the package, embed it in a file, for example, {\bf
sortpak\spadFileExt{}}.
%-% \HDindex{testing}{ugPackagesCompilingPage}{11.9.}{Testing}
Be sure to include an \axiom{)abbrev} command at the top of the file:
\begin{verbatim}
)abbrev package SORTPAK SortPackage
\end{verbatim}
Now compile the file (using \spadcmd{)compile sortpak\spadFileExt{}}).
\xtc{
Expose the constructor.
You are then ready to begin testing.
}{
\spadpaste{)expose SORTPAK}
}
\xtc{
Define a list.
}{
\spadpaste{l := [1,7,4,2,11,-7,3,2]}
}
\xtc{
Since the integers are an ordered set,
a one-argument operation will do.
}{
\spadpaste{bubbleSort!(l)}
}
\xtc{
Re-sort it using ``greater than.''
}{
\spadpaste{bubbleSort!(l,(x,y) +-> x > y)}
}
\xtc{
Now sort it again using \axiomOp{<} on integers.
}{
\spadpaste{bubbleSort!(l, <\$Integer)}
}
\xtc{
A string is an aggregate of characters so we can sort them as well.
}{
\spadpaste{bubbleSort! "Mathematical Sciences"}
}
\xtc{
Is \axiomOp{<} defined on booleans?
}{
\spadpaste{false < true}
}
\xtc{
Good! Create a bit string representing ten consecutive
boolean values \axiom{true}.
}{
\spadpaste{u : Bits := new(10,true)}
}
\xtc{
Set bits 3 through 5 to \axiom{false}, then display the result.
}{
\spadpaste{u(3..5) := false; u}
}
\xtc{
Now sort these booleans.
}{
\spadpaste{bubbleSort! u}
}
\xtc{
Create an ``eq-table'' (see \downlink{`EqTable'}{EqTableXmpPage}\ignore{EqTable}), a
table having integers as keys
and strings as values.
}{
\spadpaste{t : EqTable(Integer,String) := table()}
}
\xtc{
Give the table a first entry.
}{
\spadpaste{t.1 := "robert"}
}
\xtc{
And a second.
}{
\spadpaste{t.2 := "richard"}
}
\xtc{
What does the table look like?
}{
\spadpaste{t}
}
\xtc{
Now sort it.
}{
\spadpaste{bubbleSort! t}
}

\endscroll
\autobuttons
\end{page}
%
%
\newcommand{\ugPackagesHowTitle}{How Packages Work}
\newcommand{\ugPackagesHowNumber}{11.10.}
%
% =====================================================================
\begin{page}{ugPackagesHowPage}{11.10. How Packages Work}
% =====================================================================
\beginscroll
%
Recall that packages as abstract datatypes are compiled independently
and put into the library.
The curious reader may ask: ``How is the interpreter able to find an
operation such as \fakeAxiomFun{bubbleSort!}?
Also, how is a single compiled function such as \fakeAxiomFun{bubbleSort!} able
to sort data of different types?''

After the interpreter loads the package \nonLibAxiomType{SortPackage}, the four
operations from the package become known to the interpreter.
Each of these operations is expressed as a {\it modemap} in which the type
%-% \HDindex{modemap}{ugPackagesHowPage}{11.10.}{How Packages Work}
of the operation is written in terms of symbolic domains.
\nullXtc{
See the modemaps for \fakeAxiomFun{bubbleSort!}.
}{
\spadpaste{)display op bubbleSort!}
}
\begin{verbatim}
There are 2 exposed functions called bubbleSort! :

   [1] D1 -> D1 from SortPackage(D2,D1)
         if D2 has ORDSET and D2 has OBJECT and D1 has
         IndexedAggregate(Integer, D2) with
              finiteAggregate
              shallowlyMutable

   [2] (D1,((D3,D3) -> Boolean)) -> D1 from SortPackage(D3,D1)
         if D3 has OBJECT and D1 has
         IndexedAggregate(Integer,D3) with
              finiteAggregate
              shallowlyMutable
\end{verbatim}

What happens if you ask for \axiom{bubbleSort!([1,-5,3])}?
There is a unique modemap for an operation named
\fakeAxiomFun{bubbleSort!} with one argument.
Since \axiom{[1,-5,3]} is a list of integers, the symbolic domain
\axiom{D1} is defined as \axiomType{List(Integer)}.
For some operation to apply, it must satisfy the predicate for
some \axiom{D2}.
What \axiom{D2}?
The third expression of the \axiom{and} requires {\tt D1 has
IndexedAggregate(Integer, D2) with} two attributes.
So the interpreter searches for an \axiomType{IndexedAggregate}
among the ancestors of \axiomType{List (Integer)} (see
\downlink{``\ugCategoriesHierTitle''}{ugCategoriesHierPage} in Section \ugCategoriesHierNumber\ignore{ugCategoriesHier}).
It finds one: \axiomType{IndexedAggregate(Integer, Integer)}.
The interpreter tries defining \axiom{D2} as \axiomType{Integer}.
After substituting for \axiom{D1} and \axiom{D2}, the predicate
evaluates to \axiom{true}.
An applicable operation has been found!

Now \Language{} builds the package
\axiomType{SortPackage(List(Integer), Integer)}.
According to its definition, this package exports the required
operation: \fakeAxiomFun{bubbleSort!}: \spadsig{List Integer}{List
Integer}.
The interpreter then asks the package for a function implementing
this operation.
The package gets all the functions it needs (for example,
\axiomFun{rest} and \axiomFunX{swap}) from the appropriate
domains and then it
returns a \fakeAxiomFun{bubbleSort!} to the interpreter together with
the local environment for \fakeAxiomFun{bubbleSort!}.
The interpreter applies the function to the argument \axiom{[1,-5,3]}.
The \fakeAxiomFun{bubbleSort!} function is executed in its local
environment and produces the result.
\endscroll
\autobuttons
\end{page}
%