aboutsummaryrefslogtreecommitdiff
path: root/src/hyper/pages/Link.ht
blob: 6cedca061653a888a01e7ed1f38902ae4014e463 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
%insert a pointer to reference section

% Page pointed to from top level menu
\begin{page}{htxl}{The AXIOM Link to NAG Software}
\beginscroll
\beginmenu
\menumemolink{Introduction to the NAG Library Link}{nagLinkIntroPage}
\menumemolink{Access the Link from HyperDoc}{htxl1}
\menulispmemolink{Browser pages for individual routines}{(|kSearch| "Nag*")}
\menumemolink{NAG Library Documentation}{FoundationLibraryDocPage}
\endmenu
\endscroll
\end{page}



\begin{page}{htxl1}{Use of the Link from HyperDoc}
Click on the chapter of routines that you would like to use.
\beginscroll
\beginmenu
\menumemolink{C02}{c02}\tab{8} Zeros of Polynomials
\menumemolink{C05}{c05}\tab{8} Roots of One or More Transcendental Equations
\menumemolink{C06}{c06}\tab{8} Summation of Series
\menumemolink{D01}{d01}\tab{8} Quadrature
\menumemolink{D02}{d02}\tab{8} Ordinary Differential Equations
\menumemolink{D03}{d03}\tab{8} Partial Differential Equations
\menumemolink{E01}{e01}\tab{8} Interpolation
\menumemolink{E02}{e02}\tab{8} Curve and Surface Fitting
\menumemolink{E04}{e04}\tab{8} Minimizing or Maximizing a Function
\menumemolink{F01}{f01}\tab{8} Matrix Operations, Including Inversion
\menumemolink{F02}{f02}\tab{8} Eigenvalues and Eigenvectors
\menumemolink{F04}{f04}\tab{8} Simultaneous Linear Equations
\menumemolink{F07}{f07}\tab{8} Linear Equations (LAPACK)
\menumemolink{S}{s}\tab{8} Approximations of Special Functions
\endmenu
\endscroll
\end{page}

\begin{page}{c02}{C02 Zeros of Polynomials}
\beginscroll
\centerline{What would you like to do?}
\newline
\beginmenu
\item Read
\menuwindowlink{Foundation Library Chapter c02 Manual Page}{manpageXXc02}
\item or
\menulispwindowlink{Browse}{(|kSearch| "NagPolynomialRootsPackage")}\tab{10} through this chapter
\item or use the routines:
\menulispdownlink{C02AFF}{(|c02aff|)}\space{}
\tab{10}  All zeros of a complex polynomial 
\menulispdownlink{C02AGF}{(|c02agf|)}\space{}
\tab{10}  All zeros of a real polynomial
\endmenu
\endscroll
\autobuttons 
\end{page}

\begin{page}{c05}{C05 Roots of One or More Transcendental Equations}
\beginscroll
\centerline{What would you like to do?}
\newline
\beginmenu
\item Read
\menuwindowlink{Foundation Library Chapter c05 Manual Page}{manpageXXc05}
\item or
\menulispwindowlink{Browse}{(|kSearch| "NagRootFindingPackage")}\tab{10} through this chapter
\item or use the routines:
\menulispdownlink{C05ADF}{(|c05adf|)}\space{}
\tab{10}  Zero of continuous function in given interval, Bus and Dekker algorithm
\menulispdownlink{C05NBF}{(|c05nbf|)}\space{}
\tab{10}  Solution of system of nonlinear equations using function values only
\menulispdownlink{C05PBF}{(|c05pbf|)}\space{}
\tab{10}  Solution of system of nonlinear equations using 1st derivatives
\endmenu
\endscroll
\autobuttons 
\end{page}

\begin{page}{c06}{C06 Summation of Series}
\beginscroll
\centerline{What would you like to do?}
\newline
\beginmenu
\item Read
\menuwindowlink{Foundation Library Chapter c06 Manual Page}{manpageXXc06}
\item or
\menulispwindowlink{Browse}{(|kSearch| "NagSeriesSummationPackage")}\tab{10} through this chapter
\item or use the routines:
\menulispdownlink{C06EAF}{(|c06eaf|)}\space{}
\tab{10}  Single 1-D real discrete Fourier transform, no extra workspace
\menulispdownlink{C06EBF}{(|c06ebf|)}\space{}
\tab{10}  Single 1-D Hermitian discrete Fourier transform, no extra workspace
\menulispdownlink{C06ECF}{(|c06ecf|)}\space{}
\tab{10}  Single 1-D complex discrete Fourier transform, no extra workspace
\menulispdownlink{C06EKF}{(|c06ekf|)}\space{}
\tab{10}  Circular convolution or correlation of two real vectors, no extra
workspace
\menulispdownlink{C06FPF}{(|c06fpf|)}\space{}
\tab{10}  Multiple 1-D real discrete Fourier transforms
\menulispdownlink{C06FQF}{(|c06fqf|)}\space{}
\tab{10}  Multiple 1-D Hermitian discrete Fourier transforms
\menulispdownlink{C06FRF}{(|c06frf|)}\space{}
\tab{10}  Multiple 1-D complex discrete Fourier transforms
\menulispdownlink{C06FUF}{(|c06fuf|)}\space{}
\tab{10}  2-D complex discrete Fourier transforms
\menulispdownlink{C06GBF}{(|c06gbf|)}\space{}
\tab{10}  Complex conjugate of Hermitian sequence
\menulispdownlink{C06GCF}{(|c06gcf|)}\space{}
\tab{10}  Complex conjugate of complex sequence
\menulispdownlink{C06GQF}{(|c06gqf|)}\space{}
\tab{10}  Complex conjugate of multiple Hermitian sequences
\menulispdownlink{C06GSF}{(|c06gsf|)}\space{}
\tab{10}  Convert Hermitian sequences to general complex sequences
\endmenu
\endscroll
\autobuttons 
\end{page}

\begin{page}{d01}{D01 Quadrature}
\beginscroll
\centerline{What would you like to do?}
\newline
\beginmenu
\item Read
\menuwindowlink{Foundation Library Chapter d01 Manual Page}{manpageXXd01}
\item or
\menulispwindowlink{Browse}{(|kSearch| "NagIntegrationPackage")}\tab{10} through this chapter
\item or use the routines:
\menulispdownlink{D01AJF}{(|d01ajf|)}\space{}
\tab{10}  1-D quadrature, adaptive, finite interval, strategy due to Plessens
and de Doncker, allowing for badly-behaved integrands
\menulispdownlink{D01AKF}{(|d01akf|)}\space{}
\tab{10}  1-D quadrature, adaptive, finite interval, method suitable for
oscillating functions
\menulispdownlink{D01ALF}{(|d01alf|)}\space{}
\tab{10}  1-D quadrature, adaptive, finite interval, allowing for 
singularities at user specified points
\menulispdownlink{D01AMF}{(|d01amf|)}\space{}
\tab{10}  1-D quadrature, adaptive, infinite or semi-finite interval
\menulispdownlink{D01ANF}{(|d01anf|)}\space{}
\tab{10}  1-D quadrature, adaptive, finite interval, weight function
 cos(\omega x) or sin(\omega x)
\menulispdownlink{D01APF}{(|d01apf|)}\space{}
\tab{10}  1-D quadrature, adaptive, finite interval, weight function
with end point singularities of algebraico-logarithmic type
\menulispdownlink{D01AQF}{(|d01aqf|)}\space{}
\tab{10}  1-D quadrature, adaptive, finite interval, weight function
1/(x-c), Cauchy principle value (Hilbert transform)
\menulispdownlink{D01ASF}{(|d01asf|)}\space{}
\tab{10}  1-D quadrature, adaptive, semi-infinite interval, weight function
cos(\omega x) or sin(\omega x)
\menulispdownlink{D01BBF}{(|d01bbf|)}\space{}
\tab{10} Pre-computed weights and abscissae for Gaussian quadrature rules,
restricted choice of rule
\menulispdownlink{D01FCF}{(|d01fcf|)}\space{}
\tab{10} Multi-dimensional adaptive quadrature over hyper-rectangle
\menulispdownlink{D01GAF}{(|d01gaf|)}\space{}
\tab{10} 1-D quadrature, integration of function defined by data values,
Gill-Miller method
\menulispdownlink{D01GBF}{(|d01gbf|)}\space{}
\tab{10} Multi-dimensional quadrature over hyper-rectangle, Monte Carlo method
\endmenu
\endscroll
\autobuttons 
\end{page}

\begin{page}{d02}{D02 Ordinary Differential Equations}
\beginscroll
\centerline{What would you like to do?}
\newline
\beginmenu
\item Read
\menuwindowlink{Foundation Library Chapter d02 Manual Page}{manpageXXd02}
\item or
\menulispwindowlink{Browse}{(|kSearch| "NagOrdinaryDifferentialEquationsPackage")}\tab{10} through this chapter
\item or use the routines:
\menulispdownlink{D02BBF}{(|d02bbf|)}\space{}
\tab{10}  ODEs, IVP, Runge-Kutta-Merson method, over a range, 
intermediate output
\menulispdownlink{D02BHF}{(|d02bhf|)}\space{}
\tab{10}  ODEs, IVP, Runge-Kutta-Merson method, until function of 
solution is zero
\menulispdownlink{D02CJF}{(|d02cjf|)}\space{}
\tab{10}  ODEs, IVP, Adams method, until function of solution is zero,
intermediate output
\menulispdownlink{D02EJF}{(|d02ejf|)}\space{}
\tab{10}  ODEs, stiff IVP, BDF method, until function of solution is zero,
intermediate output
\menulispdownlink{D02GAF}{(|d02gaf|)}\space{}
\tab{10}  ODEs, boundary value problem, finite difference technique with
deferred correction, simple nonlinear problem
\menulispdownlink{D02GBF}{(|d02gbf|)}\space{}
\tab{10}  ODEs, boundary value problem, finite difference technique with
deferred correction, general nonlinear problem
\menulispdownlink{D02KEF}{(|d02kef|)}\space{}
\tab{10}  2nd order Sturm-Liouville problem, regular/singular system,
finite/infinite range, eigenvalue and eigenfunction, user-specified 
break-points
\menulispdownlink{D02RAF}{(|d02raf|)}\space{}
\tab{10}  ODEs, general nonlinear boundary value problem, finite difference
technique with deferred correction, continuation facility
\endmenu
\endscroll
\autobuttons 
\end{page}

\begin{page}{d03}{D03 Partial Differential Equations}
\beginscroll
\centerline{What would you like to do?}
\newline
\beginmenu
\item Read
\menuwindowlink{Foundation Library Chapter d03 Manual Page}{manpageXXd03}
\item or
\menulispwindowlink{Browse}{(|kSearch| "NagPartialDifferentialEquationsPackage")}\tab{10} through this chapter
\item or use the routines:
\menulispdownlink{D03EDF}{(|d03edf|)}\space{}
\tab{10}  Elliptic PDE, solution of finite difference equations by a multigrid 
technique
\menulispdownlink{D03EEF}{(|d03eef|)}\space{}
\tab{10}  Discretize a 2nd order elliptic PDE on a rectangle
\menulispdownlink{D03FAF}{(|d03faf|)}\space{}
\tab{10}  Elliptic PDE, Helmholtz equation, 3-D Cartesian co-ordinates
\endmenu
\endscroll
\autobuttons 
\end{page}

\begin{page}{e01}{E01 Interpolation}
\beginscroll
\centerline{What would you like to do?}
\beginmenu
\item Read
\menuwindowlink{Foundation Library Chapter e01 Manual Page}{manpageXXe01}
\item or
\menulispwindowlink{Browse}{(|kSearch| "NagInterpolationPackage")}\tab{10} through this chapter
\item or use the routines:
\menulispdownlink{E01BAF}{(|e01baf|)}\space{}
\tab{10}  Interpolating functions, cubic spline interpolant, one variable
\menulispdownlink{E01BEF}{(|e01bef|)}\space{}
\tab{10}  Interpolating functions, monotonicity-preserving, piecewise
cubic Hermite, one variable
\menulispdownlink{E01BFF}{(|e01bff|)}\space{}
\tab{10}  Interpolated values, interpolant computed by E01BEF, function
only, one variable
\menulispdownlink{E01BGF}{(|e01bgf|)}\space{}
\tab{10}  Interpolated values, interpolant computed by E01BEF, function
and 1st derivative, one variable
\menulispdownlink{E01BHF}{(|e01bhf|)}\space{}
\tab{10}  Interpolated values, interpolant computed by E01BEF, definite
integral, one variable
\menulispdownlink{E01DAF}{(|e01daf|)}\space{}
\tab{10}  Interpolating functions, fitting bicubic spline, data on a 
rectangular grid
\menulispdownlink{E01SAF}{(|e01saf|)}\space{}
\tab{10}  Interpolating functions, method of Renka and Cline, two variables
\menulispdownlink{E01SEF}{(|e01sef|)}\space{}
\tab{10}  Interpolating functions, modified Shepherd's method, two variables
\endmenu
\endscroll
\autobuttons 
\end{page}

\begin{page}{e02}{E02 Curve and Surface Fitting}
\beginscroll
\centerline{What would you like to do?}
\beginmenu
\item Read
\menuwindowlink{Foundation Library Chapter e02 Manual Page}{manpageXXe02}
\item or
\menulispwindowlink{Browse}{(|kSearch| "NagFittingPackage")}\tab{10} through this chapter
\item or use the routines:
\menulispdownlink{E02ADF}{(|e02adf|)}\space{}
\tab{10}  Least-squares curve fit, by polynomials, arbitrary data points
\menulispdownlink{E02AEF}{(|e02aef|)}\space{}
\tab{10}  Evaluation of fitted polynomial in one variable from Chebyshev series
form (simplified parameter list)
\menulispdownlink{E02AGF}{(|e02agf|)}\space{}
\tab{10}  Least-squares polynomial fit, values and derivatives may be
constrained, arbitrary data points
\menulispdownlink{E02AHF}{(|e02ahf|)}\space{}
\tab{10}  Derivative of fitted polynomial in Chebyshev series form
\menulispdownlink{E02AJF}{(|e02ajf|)}\space{}
\tab{10}  Integral of fitted polynomial in Chebyshev series form
\menulispdownlink{E02AKF}{(|e02akf|)}\space{}
\tab{10}  Evaluation of fitted polynomial in one variable, from Chebyshev 
series form
\menulispdownlink{E02BAF}{(|e02baf|)}\space{}
\tab{10}  Least-squares curve cubic spline fit (including interpolation)
\menulispdownlink{E02BBF}{(|e02bbf|)}\space{}
\tab{10}  Evaluation of fitted cubic spline, function only
\menulispdownlink{E02BCF}{(|e02bcf|)}\space{}
\tab{10}  Evaluation of fitted cubic spline, function and derivatives
\menulispdownlink{E02BDF}{(|e02bdf|)}\space{}
\tab{10}  Evaluation of fitted cubic spline, definite integral
\menulispdownlink{E02BEF}{(|e02bef|)}\space{}
\tab{10}  Least-squares curve cubic spline fit, automatic knot placement
\menulispdownlink{E02DAF}{(|e02daf|)}\space{}
\tab{10}  Least-squares surface fit, bicubic splines
\menulispdownlink{E02DCF}{(|e02dcf|)}\space{}
\tab{10}  Least-squares surface fit by bicubic splines with automatic knot
placement, data on a rectangular grid
\menulispdownlink{E02DDF}{(|e02ddf|)}\space{}
\tab{10}  Least-squares surface fit by bicubic splines with automatic knot
placement, scattered data
\menulispdownlink{E02DEF}{(|e02def|)}\space{}
\tab{10}  Evaluation of a fitted bicubic spline at a vector of points
\menulispdownlink{E02DFF}{(|e02dff|)}\space{}
\tab{10}  Evaluation of a fitted bicubic spline at a mesh of points
\menulispdownlink{E02GAF}{(|e02gaf|)}\space{}
\tab{10}  \htbitmap{l1}-approximation by general linear function
\menulispdownlink{E02ZAF}{(|e02zaf|)}\space{}
\tab{10}  Sort 2-D sata into panels for fitting bicubic splines
\endmenu
\endscroll
\autobuttons 
\end{page}

\begin{page}{e04}{E04 Minimizing or Maximizing a Function}
\beginscroll
\centerline{What would you like to do?}
\newline
\beginmenu
\item Read
\menuwindowlink{Foundation Library Chapter e04 Manual Page}{manpageXXe04}
\item or
\menulispwindowlink{Browse}{(|kSearch| "NagOptimisationPackage")}\tab{10} through this chapter
\item or use the routines:
\menulispdownlink{E04DGF}{(|e04dgf|)}\space{}
\tab{10}  Unconstrained minimum, pre-conditioned conjugate gradient algorithm,
function of several variables using 1st derivatives
\menulispdownlink{E04FDF}{(|e04fdf|)}\space{}
\tab{10}  Unconstrained minimum of a sum of squares, combined Gauss-Newton
and modified Newton algorithm using function values only
\menulispdownlink{E04GCF}{(|e04gcf|)}\space{}
\tab{10}  Unconstrained minimum, of a sum of squares, combined Gauss-Newton
and modified Newton algorithm using 1st derivatives
\menulispdownlink{E04JAF}{(|e04jaf|)}\space{}
\tab{10}  Minimum, function of several variables, quasi-Newton algorithm,
simple bounds, using function values only
\menulispdownlink{E04MBF}{(|e04mbf|)}\space{}
\tab{10}  Linear programming problem
\menulispdownlink{E04NAF}{(|e04naf|)}\space{}
\tab{10}  Quadratic programming problem
\menulispdownlink{E04UCF}{(|e04ucf|)}\space{}
\tab{10}  Minimum, function of several variables, sequential QP method,
nonlinear constraints, using function values and optionally 1st derivatives
\menulispdownlink{E04YCF}{(|e04ycf|)}\space{}
\tab{10}  Covariance matrix for non-linear least-squares problem
\endmenu
\endscroll
\autobuttons 
\end{page}

\begin{page}{f01}{F01 Matrix Operations - Including Inversion}
\beginscroll
\centerline{What would you like to do?}
\beginmenu
\item Read
\menuwindowlink{Foundation Library Chapter f Manual Page}{manpageXXf}
\menuwindowlink{Foundation Library Chapter f01 Manual Page}{manpageXXf01}
\item or
\menulispwindowlink{Browse}{(|kSearch| "NagMatrixOperationsPackage")}\tab{10} through this chapter
\item or use the routines:
\menulispdownlink{F01BRF}{(|f01brf|)}\space{}
\tab{10}  {\it LU} factorization of real sparse matrix
\menulispdownlink{F01BSF}{(|f01bsf|)}\space{}
\tab{10}  {\it LU} factorization of real sparse matrix with known sparsity
pattern
\menulispdownlink{F01MAF}{(|f01maf|)}\space{}
\tab{10}  \htbitmap{llt} factorization of real sparse
symmetric positive-definite matrix
\menulispdownlink{F01MCF}{(|f01mcf|)}\space{}
\tab{10}  \htbitmap{ldlt} factorization of real 
symmetric positive-definite variable-bandwith matrix
\menulispdownlink{F01QCF}{(|f01qcf|)}\space{}
\tab{10}  {\it QR} factorization of real {\it m} by {\it n} matrix 
(m \htbitmap{great=} n)
\menulispdownlink{F01QDF}{(|f01qdf|)}\space{}
\tab{10} Operations with orthogonal matrices, compute {\it QB} or
\htbitmap{f01qdf} after factorization by F01QCF or F01QFF
\menulispdownlink{F01QEF}{(|f01qef|)}\space{}
\tab{10} Operations with orthogonal matrices, form columns of {\it Q}
after factorization by F01QCF or F01QFF 
\menulispdownlink{F01RCF}{(|f01rcf|)}\space{}
\tab{10} {\it QR} factorization of complex {\it m} by {\it n} matrix 
(m \htbitmap{great=} n) 
\menulispdownlink{F01RDF}{(|f01rdf|)}\space{}
\tab{10} Operations with unitary matrices, compute {\it QB} or
\htbitmap{f01rdf} after factorization by F01RCF
\menulispdownlink{F01REF}{(|f01ref|)}\space{}
\tab{10} Operations with unitary matrices, form columns of {\it Q}
after factorization by F01RCF
\endmenu
\endscroll
\autobuttons 
\end{page}

\begin{page}{f02}{F02 Eigenvalues and Eigenvectors}
\beginscroll
\centerline{What would you like to do?}
\beginmenu
\item Read
\menuwindowlink{Foundation Library Chapter f Manual Page}{manpageXXf}
\menuwindowlink{Foundation Library Chapter f02 Manual Page}{manpageXXf02}
\item or
\menulispwindowlink{Browse}{(|kSearch| "NagEigenPackage")}\tab{10} through this chapter
\item or use the routines:
\menulispdownlink{F02AAF}{(|f02aaf|)}\space{}
\tab{10}  All eigenvalues of real symmetric matrix (Black box)
\menulispdownlink{F02ABF}{(|f02abf|)}\space{}
\tab{10}  All eigenvalues and eigenvectors of real symmetric matrix (Black box)
\menulispdownlink{F02ADF}{(|f02adf|)}\space{}
\tab{10}  All eigenvalues of generalized real eigenproblem of the form
Ax = \lambda Bx where A and B are symmetric and B is positive definite
\menulispdownlink{F02AEF}{(|f02aef|)}\space{}
\tab{10}  All eigenvalues and eigenvectors of generalized real eigenproblem 
of the form Ax = \lambda Bx where A and B are symmetric and B is positive 
definite
\menulispdownlink{F02AFF}{(|f02aff|)}\space{}
\tab{10}  All eigenvalues of real matrix (Black box)
\menulispdownlink{F02AGF}{(|f02agf|)}\space{}
\tab{10}  All eigenvalues and eigenvectors of real matrix (Black box)
\menulispdownlink{F02AJF}{(|f02ajf|)}\space{}
\tab{10}  All eigenvalues of complex matrix (Black box)
\menulispdownlink{F02AKF}{(|f02akf|)}\space{}
\tab{10}  All eigenvalues and eigenvectors of complex matrix (Black box)
\menulispdownlink{F02AWF}{(|f02awf|)}\space{}
\tab{10}  All eigenvalues of complex Hermitian matrix (Black box)
\menulispdownlink{F02AXF}{(|f02axf|)}\space{}
\tab{10}  All eigenvalues and eigenvectors of complex Hermitian 
matrix (Black box)
\menulispdownlink{F02BBF}{(|f02bbf|)}\space{}
\tab{10}  Selected eigenvalues and eigenvectors of real symmetric
matrix (Black box)
\menulispdownlink{F02BJF}{(|f02bjf|)}\space{}
\tab{10}  All eigenvalues and optionally eigenvectors of generalized
eigenproblem by {\it QZ} algorithm, real matrices (Black box)
\menulispdownlink{F02FJF}{(|f02fjf|)}\space{}
\tab{10}  Selected eigenvalues and eigenvectors of sparse symmetric 
eigenproblem
\menulispdownlink{F02WEF}{(|f02wef|)}\space{}
\tab{10}  SVD of real matrix
\menulispdownlink{F02XEF}{(|f02xef|)}\space{}
\tab{10}  SVD of complex matrix
\endmenu
\endscroll
\autobuttons 
\end{page}

\begin{page}{f04}{F04 Simultaneous Linear Equations}
\beginscroll
\centerline{What would you like to do?}
\beginmenu
\item Read
\menuwindowlink{Foundation Library Chapter f Manual Page}{manpageXXf}
\menuwindowlink{Foundation Library Chapter f04 Manual Page}{manpageXXf04}
\item or
\menulispwindowlink{Browse}{(|kSearch| "NagLinearEquationSolvingPackage")}\tab{10} through this chapter
\item or use the routines:
\menulispdownlink{F04ADF}{(|f04adf|)}\space{}
\tab{10}  Solution of complex simultaneous linear equations, with multiple
right-hand sides (Black box)
\menulispdownlink{F04ARF}{(|f04arf|)}\space{}
\tab{10}  Solution of real simultaneous linear equations, one right-hand side
(Black box)
\menulispdownlink{F04ASF}{(|f04asf|)}\space{}
\tab{10}  Solution of real symmetric positive-definite simultaneous linear
equations, one right-hand side using iterative refinement (Black box)
\menulispdownlink{F04ATF}{(|f04atf|)}\space{}
\tab{10}  Solution of real simultaneous linear equations, one right-hand side 
using iterative refinement (Black box)
\menulispdownlink{F04AXF}{(|f04axf|)}\space{}
\tab{10}  Approximate solution of real sparse simultaneous linear equations
(coefficient matrix already factorized by F01BRF or F01BSF)
\menulispdownlink{F04FAF}{(|f04faf|)}\space{}
\tab{10}  Solution of real symmetric positive-definite tridiagonal 
simultaneous linear equations, one right-hand side (Black box)
\menulispdownlink{F04JGF}{(|f04jgf|)}\space{}
\tab{10}  Least-squares (if rank = n) or minimal least-squares (if rank < n) 
solution of m real equations in n unknowns, rank \htbitmap{less=} n,
 m \htbitmap{great=} n
\menulispdownlink{F04MAF}{(|f04maf|)}\space{}
\tab{10}  Real sparse symmetric positive-definite simultaneous linear
equations(coefficient matrix already factorized)
\menulispdownlink{F04MBF}{(|f04mbf|)}\space{}
\tab{10}  Real sparse symmetric simultaneous linear equations
\menulispdownlink{F04MCF}{(|f04mcf|)}\space{}
\tab{10}  Approximate solution of real symmetric positive-definite 
variable-bandwidth simultaneous linear equations (coefficient matrix 
already factorized)
\menulispdownlink{F04QAF}{(|f04qaf|)}\space{}
\tab{10}  Sparse linear least-squares problem, {\it m} real equations
in {\it n} unknowns
\endmenu
\endscroll
\autobuttons 
\end{page}

\begin{page}{f07}{F07 Linear Equations (LAPACK)}
\beginscroll
\centerline{What would you like to do?}
\beginmenu
\item Read
\menuwindowlink{Foundation Library Chapter f Manual Page}{manpageXXf}
\menuwindowlink{Foundation Library Chapter f07 Manual Page}{manpageXXf07}
\item or
\menulispwindowlink{Browse}{(|kSearch| "NagLapack")}\tab{10} through this chapter
\item or use the routines:
\menulispdownlink{F07ADF}{(|f07adf|)}\space{}
\tab{10}  (DGETRF) {\it LU} factorization of real {\it m} by {\it n} matrix
\menulispdownlink{F07AEF}{(|f07aef|)}\space{}
\tab{10}  (DGETRS) Solution of real system of linear equations, multiple 
right hand sides, matrix factorized by F07ADF
\menulispdownlink{F07FDF}{(|f07fdf|)}\space{}
\tab{10}  (DPOTRF) Cholesky factorization of real symmetric positive-definite
matrix
\menulispdownlink{F07FEF}{(|f07fef|)}\space{}
\tab{10}  (DPOTRS) Solution of real symmetric positive-definite system of
linear equations, multiple right-hand sides, matrix already factorized by 
F07FDF
\endmenu
\endscroll
\autobuttons 
\end{page}


\begin{page}{s}{S \space{2} Approximations of Special Functions}
\beginscroll
\centerline{What would you like to do?}
\beginmenu
\item Read
\menuwindowlink{Foundation Library Chapter s Manual Page}{manpageXXs}
\item or
\menulispwindowlink{Browse}{(|kSearch| "NagSpecialFunctionsPackage")}\tab{10} through this chapter
\item or use the routines:
\menulispdownlink{S01EAF}{(|s01eaf|)}\space{}
\tab{10}  Complex exponential {\em exp(z)}
\menulispdownlink{S13AAF}{(|s13aaf|)}\space{}
\tab{10}  Exponential integral \htbitmap{s13aaf2}
\menulispdownlink{S13ACF}{(|s13acf|)}\space{}
\tab{10}  Cosine integral {\em Ci(x)}
\menulispdownlink{S13ADF}{(|s13adf|)}\space{}
\tab{10}  Sine integral {\em Si(x)}
\menulispdownlink{S14AAF}{(|s14aaf|)}\space{}
\tab{10}  Gamma function \Gamma
\menulispdownlink{S14ABF}{(|s14abf|)}\space{}
\tab{10}  Log Gamma function {\em ln \Gamma}
\menulispdownlink{S14BAF}{(|s14baf|)}\space{}
\tab{10}  Incomplete gamma functions P(a,x) and Q(a,x)
\menulispdownlink{S15ADF}{(|s15adf|)}\space{}
\tab{10}  Complement of error function {\em erfc x }
\menulispdownlink{S15AEF}{(|s15aef|)}\space{}
\tab{10}  Error function {\em erf x}
\menulispdownlink{S17ACF}{(|s17acf|)}\space{}
\tab{10}  Bessel function \space{1} \htbitmap{s17acf} 
\menulispdownlink{S17ADF}{(|s17adf|)}\space{}
\tab{10}  Bessel function \space{1} \htbitmap{s17adf} 
\menulispdownlink{S17AEF}{(|s17aef|)}\space{}
\tab{10}  Bessel function \space{1} \htbitmap{s17aef1} 
\menulispdownlink{S17AFF}{(|s17aff|)}\space{}
\tab{10}  Bessel function \space{1} \htbitmap{s17aff1} 
\menulispdownlink{S17AGF}{(|s17agf|)}
\tab{10}  Airy function {\em Ai(x)}
\menulispdownlink{S17AHF}{(|s17ahf|)}
\tab{10}  Airy function {\em Bi(x)}
\menulispdownlink{S17AJF}{(|s17ajf|)}
\tab{10}  Airy function {\em Ai'(x)}
\menulispdownlink{S17AKF}{(|s17akf|)}
\tab{10}  Airy function {\em Bi'(x)}
\menulispdownlink{S17DCF}{(|s17dcf|)}
\tab{10} Bessel function \htbitmap{s17dcf}, real a \space{1}
\htbitmap{great=} 0, complex z, v = 0,1,2,...
\menulispdownlink{S17DEF}{(|s17def|)}
\tab{10} Bessel function \htbitmap{s17def}, real a \space{1}
\htbitmap{great=} 0, complex z, v = 0,1,2,...
\menulispdownlink{S17DGF}{(|s17dgf|)}
\tab{10} Airy function {\em Ai(z)} and {\em Ai'(z)}, complex z
\menulispdownlink{S17DHF}{(|s17dhf|)}
\tab{10} Airy function {\em Bi(z)} and {\em Bi'(z)}, complex z
\menulispdownlink{S17DLF}{(|s17dlf|)}
\tab{10} Hankel function \vspace{-32} \htbitmap{s17dlf}
\vspace{-37}, j = 1,2, real a \space{1} \htbitmap{great=} 0, 
complex z, v = 0,1,2,... \newline
\menulispdownlink{S18ACF}{(|s18acf|)}
\tab{10} Modified Bessel function \space{1} \htbitmap{s18acf1} 
\menulispdownlink{S18ADF}{(|s18adf|)}
\tab{10} Modified Bessel function \space{1} \htbitmap{s18adf1}
\menulispdownlink{S18AEF}{(|s18aef|)}
\tab{10} Modified Bessel function \space{1} \htbitmap{s18aef1} 
\menulispdownlink{S18AFF}{(|s18aff|)}
\tab{10} Modified Bessel function \space{1} \htbitmap{s18aff1} 
\menulispdownlink{S18DCF}{(|s18dcf|)}
\tab{10} Modified bessel function \htbitmap{s18dcf}, real a \space{1}
\htbitmap{great=} 0, complex z, v = 0,1,2,...
\menulispdownlink{S18DEF}{(|s18def|)}
\tab{10} Modified bessel function \htbitmap{s18def}, real a \space{1}
\htbitmap{great=} 0, complex z, v = 0,1,2,...
\menulispdownlink{S19AAF}{(|s19aaf|)}
\tab{10} Kelvin function {\em ber x}
\menulispdownlink{S19ABF}{(|s19abf|)}
\tab{10} Kelvin function {\em bei x}
\menulispdownlink{S19ACF}{(|s19acf|)}
\tab{10} Kelvin function {\em ker x}
\menulispdownlink{S19ADF}{(|s19adf|)}
\tab{10} Kelvin function {\em kei x}
\menulispdownlink{S20ACF}{(|s20acf|)}
\tab{10} Fresnel integral {\em S(x)}
\menulispdownlink{S20ADF}{(|s20adf|)}
\tab{10} Fresnel integral {\em C(x)}
\menulispdownlink{S21BAF}{(|s21baf|)}
\tab{10} Degenerate symmetrised elliptic integral of 1st kind 
\space{1} \htbitmap{s21baf1} 
\menulispdownlink{S21BBF}{(|s21bbf|)}
\tab{10} Symmetrised elliptic integral of 1st kind \space{1} 
\vspace{-28} \htbitmap{s21bbf1} \vspace{-40} 
\menulispdownlink{S21BCF}{(|s21bcf|)}
\tab{10} Symmetrised elliptic integral of 2nd kind \space{1} 
\vspace{-28} \htbitmap{s21bcf1} \vspace{-40} 
\menulispdownlink{S21BDF}{(|s21bdf|)}
\tab{10} Symmetrised elliptic integral of 3rd kind \space{1} 
\vspace{-26} \htbitmap{s21bdf1} \vspace{-40} 
\endmenu
\endscroll
\autobuttons 
\end{page}