1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
|
% Copyright The Numerical Algorithms Group Limited 1992-94. All rights reserved.
% !! DO NOT MODIFY THIS FILE BY HAND !! Created by ht.awk.
\newcommand{\LazardSetSolvingPackageXmpTitle}{LazardSetSolvingPackage}
\newcommand{\LazardSetSolvingPackageXmpNumber}{9.40}
%
% =====================================================================
\begin{page}{LazardSetSolvingPackageXmpPage}{9.40 LazardSetSolvingPackage}
% =====================================================================
\beginscroll
The \spadtype{LazardSetSolvingPackage} package constructor solves
polynomial systems by means of Lazard triangular sets.
However one condition is relaxed:
Regular triangular sets whose saturated ideals have positive dimension
are not necessarily normalized.
The decompositions are computed in two steps.
First the algorithm of Moreno Maza (implemented in
the \spadtype{RegularTriangularSet} domain constructor)
is called.
Then the resulting decompositions are converted into lists
of square-free regular triangular sets
and the redundant components are removed.
Moreover, zero-dimensional regular triangular sets are normalized.
Note that the way of understanding triangular decompositions
is detailed in the example of the \spadtype{RegularTriangularSet}
constructor.
The \spadtype{LazardSetSolvingPackage} constructor takes six arguments.
The first one, {\bf R}, is the coefficient ring of the polynomials;
it must belong to the category \spadtype{GcdDomain}.
The second one, {\bf E}, is the exponent monoid of the polynomials;
it must belong to the category \spadtype{OrderedAbelianMonoidSup}.
the third one, {\bf V}, is the ordered set of variables;
it must belong to the category \spadtype{OrderedSet}.
The fourth one is the polynomial ring;
it must belong to the category \spadtype{RecursivePolynomialCategory(R,E,V)}.
The fifth one is a domain of the category \spadtype{RegularTriangularSetCategory(R,E,V,P)}
and the last one is a domain of the category \spadtype{SquareFreeRegularTriangularSetCategory(R,E,V,P)}.
The abbreviation for \spadtype{LazardSetSolvingPackage} is \spad{LAZM3PK}.
{\bf N.B.} For the purpose of solving zero-dimensional algebraic systems,
see also \spadtype{LexTriangularPackage} and \spadtype{ZeroDimensionalSolvePackage}.
These packages are easier to call than \spad{LAZM3PK}.
Moreover, the \spadtype{ZeroDimensionalSolvePackage}
package provides operations
to compute either the complex roots or the real roots.
We illustrate now the use of the \spadtype{LazardSetSolvingPackage} package
constructor with two examples (Butcher and Vermeer).
\xtc{
Define the coefficient ring.
}{
\spadpaste{R := Integer \bound{R}}
}
\xtc{
Define the list of variables,
}{
\spadpaste{ls : List Symbol := [b1,x,y,z,t,v,u,w] \bound{ls}}
}
\xtc{
and make it an ordered set;
}{
\spadpaste{V := OVAR(ls) \free{ls} \bound{V}}
}
\xtc{
then define the exponent monoid.
}{
\spadpaste{E := IndexedExponents V \free{V} \bound{E}}
}
\xtc{
Define the polynomial ring.
}{
\spadpaste{P := NSMP(R, V) \free{R} \free{V} \bound{P}}
}
\xtc{
Let the variables be polynomial.
}{
\spadpaste{b1: P := 'b1 \free{P} \bound{b1}}
}
\xtc{
}{
\spadpaste{x: P := 'x \free{P} \bound{x}}
}
\xtc{
}{
\spadpaste{y: P := 'y \free{P} \bound{y}}
}
\xtc{
}{
\spadpaste{z: P := 'z \free{P} \bound{z}}
}
\xtc{
}{
\spadpaste{t: P := 't \free{P} \bound{t}}
}
\xtc{
}{
\spadpaste{u: P := 'u \free{P} \bound{u}}
}
\xtc{
}{
\spadpaste{v: P := 'v \free{P} \bound{v}}
}
\xtc{
}{
\spadpaste{w: P := 'w \free{P} \bound{w}}
}
\xtc{
Now call the \spadtype{RegularTriangularSet} domain constructor.
}{
\spadpaste{T := REGSET(R,E,V,P) \free{R} \free{E} \free{V} \free{P} \bound{T} }
}
\xtc{
Define a polynomial system (the Butcher example).
}{
\spadpaste{p0 := b1 + y + z - t - w \free{b1} \free{x} \free{y} \free{z} \free{t} \free{u} \free{v} \free{w} \bound{p0}}
}
\xtc{
}{
\spadpaste{p1 := 2*z*u + 2*y*v + 2*t*w - 2*w**2 - w - 1 \free{b1} \free{x} \free{y} \free{z} \free{t} \free{u} \free{v} \free{w} \bound{p1}}
}
\xtc{
}{
\spadpaste{p2 := 3*z*u**2 + 3*y*v**2 - 3*t*w**2 + 3*w**3 + 3*w**2 - t + 4*w \free{b1} \free{x} \free{y} \free{z} \free{t} \free{u} \free{v} \free{w} \bound{p2}}
}
\xtc{
}{
\spadpaste{p3 := 6*x*z*v - 6*t*w**2 + 6*w**3 - 3*t*w + 6*w**2 - t + 4*w \free{b1} \free{x} \free{y} \free{z} \free{t} \free{u} \free{v} \free{w} \bound{p3}}
}
\xtc{
}{
\spadpaste{p4 := 4*z*u**3+ 4*y*v**3+ 4*t*w**3- 4*w**4 - 6*w**3+ 4*t*w- 10*w**2- w- 1 \free{b1} \free{x} \free{y} \free{z} \free{t} \free{u} \free{v} \free{w} \bound{p4}}
}
\xtc{
}{
\spadpaste{p5 := 8*x*z*u*v +8*t*w**3 -8*w**4 +4*t*w**2 -12*w**3 +4*t*w -14*w**2 -3*w -1 \free{b1} \free{x} \free{y} \free{z} \free{t} \free{u} \free{v} \free{w} \bound{p5}}
}
\xtc{
}{
\spadpaste{p6 := 12*x*z*v**2+12*t*w**3 -12*w**4 +12*t*w**2 -18*w**3 +8*t*w -14*w**2 -w -1 \free{b1} \free{x} \free{y} \free{z} \free{t} \free{u} \free{v} \free{w} \bound{p6}}
}
\xtc{
}{
\spadpaste{p7 := -24*t*w**3 + 24*w**4 - 24*t*w**2 + 36*w**3 - 8*t*w + 26*w**2 + 7*w + 1 \free{b1} \free{x} \free{y} \free{z} \free{t} \free{u} \free{v} \free{w} \bound{p7}}
}
\xtc{
}{
\spadpaste{lp := [p0, p1, p2, p3, p4, p5, p6, p7] \free{p0} \free{p1} \free{p2} \free{p3} \free{p4} \free{p5} \free{p6} \free{p7} \bound{lp}}
}
\xtc{
First of all, let us solve this system in the sense of Lazard by means of the \spadtype{REGSET}
constructor:
}{
\spadpaste{lts := zeroSetSplit(lp,false)$T \free{lp} \free{T} \bound{lts}}
}
\xtc{
We can get the dimensions of each component
of a decomposition as follows.
}{
\spadpaste{[coHeight(ts) for ts in lts] \free{lts}}
}
The first five sets have a simple shape.
However, the last one, which has dimension zero, can be simplified
by using Lazard triangular sets.
\xtc{
Thus we call the \spadtype{SquareFreeRegularTriangularSet} domain constructor,
}{
\spadpaste{ST := SREGSET(R,E,V,P) \free{R} \free{E} \free{V} \free{P} \bound{ST} }
}
\xtc{
and set the \spadtype{LAZM3PK} package constructor to our situation.
}{
\spadpaste{pack := LAZM3PK(R,E,V,P,T,ST) \free{R} \free{E} \free{V} \free{P} \free{T} \free{ST} \bound{pack} }
}
\xtc{
We are ready to solve the system by means of Lazard triangular sets:
}{
\spadpaste{zeroSetSplit(lp,false)$pack \free{lp} \free{pack}}
}
We see the sixth triangular set is {\em nicer} now:
each one of its polynomials has a constant initial.
We follow with the Vermeer example. The ordering is the usual one
for this system.
\xtc{
Define the polynomial system.
}{
\spadpaste{f0 := (w - v) ** 2 + (u - t) ** 2 - 1 \free{b1} \free{x} \free{y} \free{z} \free{t} \free{u} \free{v} \free{w} \bound{f0}}
}
\xtc{
}{
\spadpaste{f1 := t ** 2 - v ** 3 \free{b1} \free{x} \free{y} \free{z} \free{t} \free{u} \free{v} \free{w} \bound{f1}}
}
\xtc{
}{
\spadpaste{f2 := 2 * t * (w - v) + 3 * v ** 2 * (u - t) \free{b1} \free{x} \free{y} \free{z} \free{t} \free{u} \free{v} \free{w} \bound{f2}}
}
\xtc{
}{
\spadpaste{f3 := (3 * z * v ** 2 - 1) * (2 * z * t - 1) \free{b1} \free{x} \free{y} \free{z} \free{t} \free{u} \free{v} \free{w} \bound{f3}}
}
\xtc{
}{
\spadpaste{lf := [f0, f1, f2, f3] \free{f0} \free{f1} \free{f2} \free{f3} \bound{lf}}
}
\xtc{
First of all, let us solve this system in the sense of Kalkbrener by means of the \spadtype{REGSET}
constructor:
}{
\spadpaste{zeroSetSplit(lf,true)$T \free{lf} \free{T}}
}
We have obtained one regular chain (i.e. regular triangular set) with dimension 1.
This set is in fact a characterist set of the (radical of) of the ideal generated
by the input system {\bf lf}.
Thus we have only the {\em generic points} of the variety associated with {\bf lf}
(for the elimination ordering given by {\bf ls}).
So let us get now a full description of this variety.
\xtc{
Hence, we solve this system in the sense of Lazard by means of the \spadtype{REGSET}
constructor:
}{
\spadpaste{zeroSetSplit(lf,false)$T \free{lf} \free{T}}
}
We retrieve our regular chain of dimension 1 and we get three regular chains
of dimension 0 corresponding to the {\em degenerated cases}.
We want now to simplify these zero-dimensional regular chains
by using Lazard triangular sets.
Moreover, this will allow us to prove that the above decomposition has no redundant component.
{\bf N.B.} Generally, decompositions computed by the \spadtype{REGSET}
constructor do not have redundant components.
However, to be sure that no redundant component occurs one needs to use
the \spadtype{SREGSET} or \spadtype{LAZM3PK} constructors.
\xtc{
So let us solve the input system in the sense of Lazard by means of the \spadtype{LAZM3PK} constructor:
}{
\spadpaste{zeroSetSplit(lf,false)$pack \free{lf} \free{pack}}
}
Due to square-free factorization, we obtained now four zero-dimensional regular chains.
Moreover, each of them is normalized (the initials are constant).
Note that these zero-dimensional components may be investigated further
with the \spadtype{ZeroDimensionalSolvePackage} package constructor.
\endscroll
\autobuttons
\end{page}
%
|