aboutsummaryrefslogtreecommitdiff
path: root/src/hyper/pages/DERHAM.ht
blob: b5a78cae42f71913cf3e1d70052383d00dc0fff6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
% Copyright The Numerical Algorithms Group Limited 1992-94. All rights reserved.
% !! DO NOT MODIFY THIS FILE BY HAND !! Created by ht.awk.
\newcommand{\DeRhamComplexXmpTitle}{DeRhamComplex}
\newcommand{\DeRhamComplexXmpNumber}{9.14}
%
% =====================================================================
\begin{page}{DeRhamComplexXmpPage}{9.14 DeRhamComplex}
% =====================================================================
\beginscroll
 
The domain constructor \spadtype{DeRhamComplex} creates the
class of differential forms of arbitrary degree over a coefficient ring.
The De Rham complex constructor takes two arguments: a ring, \spad{coefRing,}
and a list of coordinate variables.
 
\xtc{
This is the ring of coefficients.
}{
\spadpaste{coefRing := Integer \bound{coefRing}}
}
\xtc{
These are the coordinate variables.
}{
\spadpaste{lv : List Symbol := [x,y,z] \bound{lv}}
}
\xtc{
This is the De Rham complex of Euclidean three-space using
coordinates \spad{x, y} and \spad{z.}
}{
\spadpaste{der := DERHAM(coefRing,lv) \free{coefRing}\free{lv}\bound{der}}
}
 
This complex allows us to describe differential forms having
expressions of integers as coefficients.
These coefficients can involve any number of variables, for example,
\spad{f(x,t,r,y,u,z).}
As we've chosen to work with ordinary
Euclidean three-space, expressions involving these forms
are treated as functions of
\spad{x, y} and \spad{z} with the additional arguments
\spad{t, r} and \spad{u} regarded as symbolic constants.
\xtc{
Here are some examples of coefficients.
}{
\spadpaste{R := Expression coefRing \free{coefRing}\bound{R}}
}
\xtc{
}{
\spadpaste{f : R := x**2*y*z-5*x**3*y**2*z**5 \free{R}\bound{f}}
}
\xtc{
}{
\spadpaste{g : R := z**2*y*cos(z)-7*sin(x**3*y**2)*z**2 \free{R}\bound{g}}
}
\xtc{
}{
\spadpaste{h : R :=x*y*z-2*x**3*y*z**2 \free{R}\bound{h}}
}
\xtc{
We now define
the multiplicative basis elements for the exterior algebra over \spad{R}.
}{
\spadpaste{dx : der := generator(1) \free{der}\bound{dx}}
}
\xtc{
}{
\spadpaste{dy : der := generator(2)\free{der}\bound{dy}}
}
\xtc{
}{
\spadpaste{dz : der := generator(3)\free{der}\bound{dz}}
}
\xtc{
This is an alternative way to give the above assignments.
}{
\spadpaste{[dx,dy,dz] := [generator(i)\$der for i in 1..3] \free{der}\bound{dxyz}}
}
\xtc{
Now we define some one-forms.
}{
\spadpaste{alpha : der := f*dx + g*dy + h*dz \bound{alpha}\free{der f g h dxyz}}
}
\xtc{
}{
\spadpaste{beta  : der := cos(tan(x*y*z)+x*y*z)*dx + x*dy \bound{beta}\free{der f g h dxyz}}
}
\xtc{
A well-known theorem states that the composition of
\spadfunFrom{exteriorDifferential}{DeRhamComplex}
with itself is the zero map for continuous forms.
Let's verify this theorem for \spad{alpha}.
}{
\spadpaste{exteriorDifferential alpha; \free{alpha}\bound{ed}}
}
\xtc{
We suppressed the lengthy output of the last expression, but nevertheless, the
composition is zero.
}{
\spadpaste{exteriorDifferential \% \free{ed}}
}
 
\xtc{
Now we check that \spadfunFrom{exteriorDifferential}{DeRhamComplex}
is a ``graded derivation'' \spad{D,} that is, \spad{D} satisfies:
\begin{verbatim}
D(a*b) = D(a)*b + (-1)**degree(a)*a*D(b)
\end{verbatim}
}{
\spadpaste{gamma := alpha * beta \bound{gamma}\free{alpha}\free{beta}}
}
\xtc{
We try this for the one-forms \spad{alpha} and \spad{beta}.
}{
\spadpaste{exteriorDifferential(gamma) - (exteriorDifferential(alpha)*beta - alpha * exteriorDifferential(beta)) \free{alpha beta gamma}}
}
\xtc{
Now we define some ``basic operators'' (see \downlink{`Operator'}{OperatorXmpPage}\ignore{Operator}).
%-% \HDindex{operator}{DeRhamComplexXmpPage}{9.14}{DeRhamComplex}
}{
\spadpaste{a : BOP := operator('a) \bound{ao}}
}
\xtc{
}{
\spadpaste{b : BOP := operator('b) \bound{bo}}
}
\xtc{
}{
\spadpaste{c : BOP := operator('c) \bound{co}}
}
\xtc{
We also define
some indeterminate one- and two-forms using these operators.
}{
\spadpaste{sigma := a(x,y,z) * dx + b(x,y,z) * dy + c(x,y,z) * dz \bound{sigma}\free{ao bo co dxyz}}
}
\xtc{
}{
\spadpaste{theta  := a(x,y,z) * dx * dy + b(x,y,z) * dx * dz + c(x,y,z) * dy * dz \bound{theta}\free{ao bo co dxyz}}
}
 
\xtc{
This allows us to get formal definitions for the ``gradient'' \ldots
}{
\spadpaste{totalDifferential(a(x,y,z))\$der \free{ao der}}
}
\xtc{
the ``curl'' \ldots
}{
\spadpaste{exteriorDifferential sigma \free{sigma}}
}
\xtc{
and the ``divergence.''
}{
\spadpaste{exteriorDifferential theta \free{theta}}
}
 
\xtc{
Note that the De Rham complex is an algebra with unity.
This element \spad{1} is the basis for elements for zero-forms, that is,
functions in our space.
}{
\spadpaste{one : der := 1 \bound{one}\free{der}}
}
 
\xtc{
To convert a function to a function lying in the De Rham complex,
multiply the function by ``one.''
}{
\spadpaste{g1 : der := a([x,t,y,u,v,z,e]) * one \free{der one ao}\bound{g1}}
}
\xtc{
A current limitation of \Language{} forces you to write
functions with more than four arguments using square brackets in this way.
}{
\spadpaste{h1 : der := a([x,y,x,t,x,z,y,r,u,x]) * one \free{der one ao}\bound{h1}}
}
 
\xtc{
Now note how the system keeps track of where your coordinate functions
are located in expressions.
}{
\spadpaste{exteriorDifferential g1 \free{g1}}
}
\xtc{
}{
\spadpaste{exteriorDifferential h1 \free{h1}}
}
 
\xtc{
In this example of Euclidean three-space, the basis for the De Rham complex
consists of the eight forms: \spad{1}, \spad{dx}, \spad{dy}, \spad{dz},
\spad{dx*dy}, \spad{dx*dz}, \spad{dy*dz}, and \spad{dx*dy*dz}.
}{
\spadpaste{coefficient(gamma, dx*dy) \free{gamma dxyz}}
}
\xtc{
}{
\spadpaste{coefficient(gamma, one) \free{gamma one}}
}
\xtc{
}{
\spadpaste{coefficient(g1,one) \free{g1 one}}
}
\endscroll
\autobuttons
\end{page}
%