aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/wtpol.spad.pamphlet
blob: d4b28f47636521d98b47b094004786f913f28d95 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra wtpol.spad}
\author{James Davenport}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain WP WeightedPolynomials}
<<domain WP WeightedPolynomials>>=
)abbrev domain WP WeightedPolynomials
++ Author: James Davenport
++ Date Created:  17 April 1992
++ Date Last Updated: 12 July 1992
++ Basic Functions: Ring, changeWeightLevel
++ Related Constructors: PolynomialRing
++ Also See: OrdinaryWeightedPolynomials
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This domain represents truncated weighted polynomials over a general
++ (not necessarily commutative) polynomial type. The variables must be
++ specified, as must the weights.
++ The representation is sparse
++ in the sense that only non-zero terms are represented.

WeightedPolynomials(R:Ring,VarSet: OrderedSet, E:OrderedAbelianMonoidSup,
                           P:PolynomialCategory(R,E,VarSet),
                             vl:List VarSet, wl:List NonNegativeInteger,
                              wtlevel:NonNegativeInteger):
       Ring with
         if R has CommutativeRing then Algebra(R)
         coerce: $ -> P
	         ++ convert back into a "P", ignoring weights
         if R has Field then "/": ($,$) -> Union($,"failed")
	         ++ x/y division (only works if minimum weight
	         ++ of divisor is zero, and if R is a Field)
         coerce: P -> $
	         ++ coerce(p) coerces p into Weighted form, applying weights and ignoring terms
         changeWeightLevel: NonNegativeInteger -> Void
        	 ++ changeWeightLevel(n) changes the weight level to the new value given:
	         ++ NB: previously calculated terms are not affected
    ==
  add
   --representations
   Rep  := PolynomialRing(P,NonNegativeInteger)
   p:P
   w,x1,x2:$
   n:NonNegativeInteger
   z:Integer
   changeWeightLevel(n) ==
        wtlevel:=n
   lookupList:List Record(var:VarSet, weight:NonNegativeInteger)
   if #vl ~= #wl then error "incompatible length lists in WeightedPolynomial"
   lookupList:=[[v,n] for v in vl for n in wl]
   -- local operation
   innercoerce: (P,Integer) -> $
   lookup:VarSet -> NonNegativeInteger
   lookup v ==
      l:=lookupList
      while l ~= [] repeat
        v = l.first.var => return l.first.weight
        l:=l.rest
      0
   innercoerce(p,z) ==
      z<0 => 0
      zero? p => 0
      mv:= mainVariable p
      mv case "failed" => monomial(p,0)
      n:=lookup(mv)
      up:=univariate(p,mv)
      ans:$
      ans:=0
      while not zero? up  repeat
        d:=degree up
        f:=n*d
        lcup:=leadingCoefficient up
        up:=up-leadingMonomial up
        mon:=monomial(1,mv,d)
        f<=z =>
            tmp:= innercoerce(lcup,z-f)
            while not zero? tmp repeat
              ans:=ans+ monomial(mon*leadingCoefficient(tmp),degree(tmp)+f)
              tmp:=reductum tmp
      ans
   coerce(p):$ == innercoerce(p,wtlevel)
   coerce(w):P ==  "+"/[c for c in coefficients w]
   coerce(p:$):OutputForm ==
     zero? p => (0$Integer)::OutputForm
     degree p = 0 => leadingCoefficient(p):: OutputForm
     reduce("+",(reverse [paren(c::OutputForm) for c in coefficients p])
                 ::List OutputForm)
   0 == 0$Rep
   1 == 1$Rep
   x1 = x2 ==
      -- Note that we must strip out any terms greater than wtlevel
      while degree x1 > wtlevel repeat
            x1 := reductum x1
      while degree x2 > wtlevel repeat
            x2 := reductum x2
      x1 =$Rep x2
   x1 + x2 == x1 +$Rep x2
   -x1 == -(x1::Rep)
   x1 * x2 ==
     -- Note that this is probably an extremely inefficient definition
     w:=x1 *$Rep x2
     while degree(w) > wtlevel repeat
           w:=reductum w
     w

@
\section{domain OWP OrdinaryWeightedPolynomials}
<<domain OWP OrdinaryWeightedPolynomials>>=
)abbrev domain OWP OrdinaryWeightedPolynomials
++ Author: James Davenport
++ Date Created:  17 April 1992
++ Date Last Updated: 12 July 1992
++ Basic Functions: Ring, changeWeightLevel
++ Related Constructors: WeightedPolynomials
++ Also See: PolynomialRing
++ AMS classifications:
++ Keywords:
++ References:
++ Description:
++ This domain represents truncated weighted polynomials over the
++ "Polynomial" type. The variables must be
++ specified, as must the weights.
++ The representation is sparse
++ in the sense that only non-zero terms are represented.

OrdinaryWeightedPolynomials(R:Ring,
                             vl:List Symbol, wl:List NonNegativeInteger,
                              wtlevel:NonNegativeInteger):
       Ring with
         if R has CommutativeRing then Algebra(R)
         coerce: $ -> Polynomial(R)
	         ++ coerce(p) converts back into a Polynomial(R), ignoring weights
         coerce: Polynomial(R) -> $
      	 	++ coerce(p) coerces a Polynomial(R) into Weighted form,
         	++ applying weights and ignoring terms
         if R has Field then "/": ($,$) -> Union($,"failed")
	         ++ x/y division (only works if minimum weight
       		 ++ of divisor is zero, and if R is a Field)
         changeWeightLevel: NonNegativeInteger -> Void
	         ++ changeWeightLevel(n) This changes the weight level to the new value given:
         	 ++ NB: previously calculated terms are not affected
    == WeightedPolynomials(R,Symbol,IndexedExponents(Symbol),
                           Polynomial(R),
                            vl,wl,wtlevel)

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<domain WP WeightedPolynomials>>
<<domain OWP OrdinaryWeightedPolynomials>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}