1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
|
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra vector.spad}
\author{The Axiom Team}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{category VECTCAT VectorCategory}
<<category VECTCAT VectorCategory>>=
)abbrev category VECTCAT VectorCategory
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors: DirectProductCategory, Vector, IndexedVector
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ \spadtype{VectorCategory} represents the type of vector like objects,
++ i.e. finite sequences indexed by some finite segment of the
++ integers. The operations available on vectors depend on the structure
++ of the underlying components. Many operations from the component domain
++ are defined for vectors componentwise. It can by assumed that extraction or
++ updating components can be done in constant time.
VectorCategory(R:Type): Category == OneDimensionalArrayAggregate R with
if R has AbelianSemiGroup then
+ : (%, %) -> %
++ x + y returns the component-wise sum of the vectors x and y.
++ Error: if x and y are not of the same length.
if R has AbelianMonoid then
zero: NonNegativeInteger -> %
++ zero(n) creates a zero vector of length n.
if R has AbelianGroup then
- : % -> %
++ -x negates all components of the vector x.
- : (%, %) -> %
++ x - y returns the component-wise difference of the vectors x and y.
++ Error: if x and y are not of the same length.
* : (Integer, %) -> %
++ n * y multiplies each component of the vector y by the integer n.
if R has Monoid then
* : (R, %) -> %
++ r * y multiplies the element r times each component of the vector y.
* : (%, R) -> %
++ y * r multiplies each component of the vector y by the element r.
if R has Ring then
dot: (%, %) -> R
++ dot(x,y) computes the inner product of the two vectors x and y.
++ Error: if x and y are not of the same length.
outerProduct: (%, %) -> Matrix R
++ outerProduct(u,v) constructs the matrix whose (i,j)'th element is
++ u(i)*v(j).
cross: (%, %) -> %
++ vectorProduct(u,v) constructs the cross product of u and v.
++ Error: if u and v are not of length 3.
if R has RadicalCategory and R has Ring then
length: % -> R
++ length(v) computes the sqrt(dot(v,v)), i.e. the magnitude
magnitude: % -> R
++ magnitude(v) computes the sqrt(dot(v,v)), i.e. the length
add
if R has AbelianSemiGroup then
u + v ==
(n := #u) ~= #v => error "Vectors must be of the same length"
map(_+ , u, v)
if R has AbelianMonoid then
zero n == new(n, 0)
if R has AbelianGroup then
- u == map(- #1, u)
n:Integer * u:% == map(n * #1, u)
u - v == u + (-v)
if R has Monoid then
u:% * r:R == map(#1 * r, u)
r:R * u:% == map(r * #1, u)
if R has Ring then
dot(u, v) ==
#u ~= #v => error "Vectors must be of the same length"
+/[qelt(u, i) * qelt(v, i) for i in minIndex u .. maxIndex u]
outerProduct(u, v) ==
matrix [[qelt(u, i) * qelt(v,j) for i in minIndex u .. maxIndex u] _
for j in minIndex v .. maxIndex v]
cross(u, v) ==
#u ~= 3 or #v ~= 3 => error "Vectors must be of length 3"
construct [qelt(u, 2)*qelt(v, 3) - qelt(u, 3)*qelt(v, 2) , _
qelt(u, 3)*qelt(v, 1) - qelt(u, 1)*qelt(v, 3) , _
qelt(u, 1)*qelt(v, 2) - qelt(u, 2)*qelt(v, 1) ]
if R has RadicalCategory and R has Ring then
length p ==
sqrt(dot(p,p))
magnitude p ==
sqrt(dot(p,p))
@
\section{domain IVECTOR IndexedVector}
<<domain IVECTOR IndexedVector>>=
)abbrev domain IVECTOR IndexedVector
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors: Vector, DirectProduct
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This type represents vector like objects with varying lengths
++ and a user-specified initial index.
IndexedVector(R:Type, mn:Integer):
VectorCategory R == IndexedOneDimensionalArray(R, mn)
@
\section{domain VECTOR Vector}
<<domain VECTOR Vector>>=
)abbrev domain VECTOR Vector
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors: IndexedVector, DirectProduct
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This type represents vector like objects with varying lengths
++ and indexed by a finite segment of integers starting at 1.
Vector(R:Type): Exports == Implementation where
VECTORMININDEX ==> 1 -- if you want to change this, be my guest
Exports ==> VectorCategory R with
vector: List R -> %
++ vector(l) converts the list l to a vector.
Implementation ==>
IndexedVector(R, VECTORMININDEX) add
vector l == construct l
if R has ConvertibleTo InputForm then
convert(x:%):InputForm ==
convert [convert('vector)@InputForm,
convert(parts x)@InputForm]
@
\section{package VECTOR2 VectorFunctions2}
<<package VECTOR2 VectorFunctions2>>=
)abbrev package VECTOR2 VectorFunctions2
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This package provides operations which all take as arguments
++ vectors of elements of some type \spad{A} and functions from \spad{A} to
++ another of type B. The operations all iterate over their vector argument
++ and either return a value of type B or a vector over B.
VectorFunctions2(A, B): Exports == Implementation where
A, B: Type
VA ==> Vector A
VB ==> Vector B
O2 ==> FiniteLinearAggregateFunctions2(A, VA, B, VB)
UB ==> Union(B,"failed")
Exports ==> with
scan : ((A, B) -> B, VA, B) -> VB
++ scan(func,vec,ident) creates a new vector whose elements are
++ the result of applying reduce to the binary function func,
++ increasing initial subsequences of the vector vec,
++ and the element ident.
reduce : ((A, B) -> B, VA, B) -> B
++ reduce(func,vec,ident) combines the elements in vec using the
++ binary function func. Argument ident is returned if vec is empty.
map : (A -> B, VA) -> VB
++ map(f, v) applies the function f to every element of the vector v
++ producing a new vector containing the values.
map : (A -> UB, VA) -> Union(VB,"failed")
++ map(f, v) applies the function f to every element of the vector v
++ producing a new vector containing the values or \spad{"failed"}.
Implementation ==> add
scan(f, v, b) == scan(f, v, b)$O2
reduce(f, v, b) == reduce(f, v, b)$O2
map(f:(A->B), v:VA):VB == map(f, v)$O2
map(f:(A -> UB), a:VA):Union(VB,"failed") ==
res : List B := []
for u in entries(a) repeat
r := f u
r = "failed" => return "failed"
res := [r::B,:res]
vector reverse! res
@
\section{category DIRPCAT DirectProductCategory}
<<category DIRPCAT DirectProductCategory>>=
)abbrev category DIRPCAT DirectProductCategory
-- all direct product category domains must be compiled
-- without subsumption, set SourceLevelSubset to EQUAL
--)bo $noSubsumption := true
--% DirectProductCategory
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors: DirectProduct
++ Also See: VectorCategory
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This category represents a finite cartesian product of a given type.
++ Many categorical properties are preserved under this construction.
DirectProductCategory(dim:NonNegativeInteger, R:Type): Category ==
Join(IndexedAggregate(Integer, R), CoercibleTo Vector R) with
finiteAggregate
++ attribute to indicate an aggregate of finite size
directProduct: Vector R -> %
++ directProduct(v) converts the vector v to become
++ a direct product. Error: if the length of v is
++ different from dim.
if R has SetCategory then FullyRetractableTo R
if R has Ring then
BiModule(R, R)
DifferentialExtension R
FullyLinearlyExplicitRingOver R
unitVector: PositiveInteger -> %
++ unitVector(n) produces a vector with 1 in position n and
++ zero elsewhere.
dot: (%, %) -> R
++ dot(x,y) computes the inner product of the vectors x and y.
if R has AbelianSemiGroup then AbelianSemiGroup
if R has CancellationAbelianMonoid then CancellationAbelianMonoid
if R has Monoid then
Monoid
* : (R, %) -> %
++ r * y multiplies the element r times each component of the
++ vector y.
* : (%, R) -> %
++ y * r multiplies each component of the vector y by the element r.
if R has Finite then Finite
if R has CommutativeRing then
Algebra R
CommutativeRing
if R has unitsKnown then unitsKnown
if R has OrderedRing then OrderedRing
if R has OrderedAbelianMonoidSup then OrderedAbelianMonoidSup
if R has Field then VectorSpace R
add
if R has Ring then
equation2R: Vector % -> Matrix R
coerce(n:Integer):% == n::R::%
characteristic == characteristic$R
differentiate(z:%, d:R -> R) == map(d, z)
equation2R v ==
ans:Matrix(R) := new(dim, #v, 0)
for i in minRowIndex ans .. maxRowIndex ans repeat
for j in minColIndex ans .. maxColIndex ans repeat
qsetelt_!(ans, i, j, qelt(qelt(v, j), i))
ans
reducedSystem(m:Matrix %):Matrix(R) ==
empty? m => new(0, 0, 0)
reduce(vertConcat, [equation2R row(m, i)
for i in minRowIndex m .. maxRowIndex m])$List(Matrix R)
reducedSystem(m:Matrix %, v:Vector %):
Record(mat:Matrix R, vec:Vector R) ==
vh:Vector(R) :=
empty? v => empty()
rh := reducedSystem(v::Matrix %)@Matrix(R)
column(rh, minColIndex rh)
[reducedSystem(m)@Matrix(R), vh]
if R has Finite then size == size$R ** dim
if R has Field then
x / b == x * inv b
dimension() == dim::CardinalNumber
@
\section{domain DIRPROD DirectProduct}
<<domain DIRPROD DirectProduct>>=
)abbrev domain DIRPROD DirectProduct
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors: Vector, IndexedVector
++ Also See: OrderedDirectProduct
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This type represents the finite direct or cartesian product of an
++ underlying component type. This contrasts with simple vectors in that
++ the members can be viewed as having constant length. Thus many
++ categorical properties can by lifted from the underlying component type.
++ Component extraction operations are provided but no updating operations.
++ Thus new direct product elements can either be created by converting
++ vector elements using the \spadfun{directProduct} function
++ or by taking appropriate linear combinations of basis vectors provided
++ by the \spad{unitVector} operation.
DirectProduct(dim:NonNegativeInteger, R:Type):
DirectProductCategory(dim, R) == Vector R add
Rep := Vector R
coerce(z:%):Vector(R) == copy(z)$Rep pretend Vector(R)
coerce(r:R):% == new(dim, r)$Rep
parts x == VEC2LIST(x)$Lisp
directProduct z ==
size?(z, dim) => copy(z)$Rep
error "Not of the correct length"
if R has SetCategory then
same?: % -> Boolean
same? z == every?(#1 = z(minIndex z), z)
x = y == and/[qelt(x,i)$Rep = qelt(y,i)$Rep for i in 1..dim]
retract(z:%):R ==
same? z => z(minIndex z)
error "Not retractable"
retractIfCan(z:%):Union(R, "failed") ==
same? z => z(minIndex z)
"failed"
if R has AbelianSemiGroup then
u:% + v:% == map(_+ , u, v)$Rep
if R has AbelianMonoid then
0 == zero(dim)$Vector(R) pretend %
if R has Monoid then
1 == new(dim, 1)$Vector(R) pretend %
u:% * r:R == map(#1 * r, u)
r:R * u:% == map(r * #1, u)
x:% * y:% == [x.i * y.i for i in 1..dim]$Vector(R) pretend %
if R has CancellationAbelianMonoid then
subtractIfCan(u:%, v:%):Union(%,"failed") ==
w := new(dim,0)$Vector(R)
for i in 1..dim repeat
(c := subtractIfCan(qelt(u, i)$Rep, qelt(v,i)$Rep)) case "failed" =>
return "failed"
qsetelt_!(w, i, c::R)$Rep
w pretend %
if R has Ring then
u:% * v:% == map(_* , u, v)$Rep
recip z ==
w := new(dim,0)$Vector(R)
for i in minIndex w .. maxIndex w repeat
(u := recip qelt(z, i)) case "failed" => return "failed"
qsetelt_!(w, i, u::R)
w pretend %
unitVector i ==
v:= new(dim,0)$Vector(R)
v.i := 1
v pretend %
if R has OrderedSet then
x < y ==
for i in 1..dim repeat
qelt(x,i) < qelt(y,i) => return true
qelt(x,i) > qelt(y,i) => return false
false
if R has OrderedAbelianMonoidSup then sup(x, y) == map(sup, x, y)
--)bo $noSubsumption := false
@
\section{package DIRPROD2 DirectProductFunctions2}
<<package DIRPROD2 DirectProductFunctions2>>=
)abbrev package DIRPROD2 DirectProductFunctions2
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This package provides operations which all take as arguments
++ direct products of elements of some type \spad{A} and functions from \spad{A} to another
++ type B. The operations all iterate over their vector argument
++ and either return a value of type B or a direct product over B.
DirectProductFunctions2(dim, A, B): Exports == Implementation where
dim : NonNegativeInteger
A, B: Type
DA ==> DirectProduct(dim, A)
DB ==> DirectProduct(dim, B)
VA ==> Vector A
VB ==> Vector B
O2 ==> FiniteLinearAggregateFunctions2(A, VA, B, VB)
Exports ==> with
scan : ((A, B) -> B, DA, B) -> DB
++ scan(func,vec,ident) creates a new vector whose elements are
++ the result of applying reduce to the binary function func,
++ increasing initial subsequences of the vector vec,
++ and the element ident.
reduce : ((A, B) -> B, DA, B) -> B
++ reduce(func,vec,ident) combines the elements in vec using the
++ binary function func. Argument ident is returned if the vector is empty.
map : (A -> B, DA) -> DB
++ map(f, v) applies the function f to every element of the vector v
++ producing a new vector containing the values.
Implementation ==> add
import FiniteLinearAggregateFunctions2(A, VA, B, VB)
map(f, v) == directProduct map(f, v::VA)
scan(f, v, b) == directProduct scan(f, v::VA, b)
reduce(f, v, b) == reduce(f, v::VA, b)
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--Copyright (C) 2007-2009, Gabriel Dos Reis.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<category VECTCAT VectorCategory>>
<<domain IVECTOR IndexedVector>>
<<domain VECTOR Vector>>
<<package VECTOR2 VectorFunctions2>>
<<category DIRPCAT DirectProductCategory>>
<<domain DIRPROD DirectProduct>>
<<package DIRPROD2 DirectProductFunctions2>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|