aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/twofact.spad.pamphlet
blob: fb560b20b4ae0ab4f6ce3c4ca2a61bdcfaf45389 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra twofact.spad}
\author{Patrizia Gianni, James Davenport}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package NORMRETR NormRetractPackage}
<<package NORMRETR NormRetractPackage>>=
)abbrev package NORMRETR NormRetractPackage
++ Description:
++ This package \undocumented
NormRetractPackage(F, ExtF, SUEx, ExtP, n):C  == T where
  F          :   FiniteFieldCategory
  ExtF       :   FiniteAlgebraicExtensionField(F)
  SUEx       :   UnivariatePolynomialCategory ExtF
  ExtP       :   UnivariatePolynomialCategory SUEx
  n          :   PositiveInteger
  SUP       ==>  SparseUnivariatePolynomial
  R         ==>  SUP F
  P         ==>  SUP R

  C  ==> with
      normFactors : ExtP -> List ExtP
	++ normFactors(x) \undocumented
      retractIfCan : ExtP -> Union(P, "failed")
	++ retractIfCan(x) \undocumented
      Frobenius    : ExtP -> ExtP
	++ Frobenius(x) \undocumented

  T  ==> add

      normFactors(p:ExtP):List ExtP ==
          facs : List ExtP := [p]
          for i in 1..n-1 repeat 
             member?((p := Frobenius p), facs) => return facs
             facs := cons(p, facs)
          facs

      Frobenius(ff:ExtP):ExtP ==
         fft:ExtP:=0
         while ff~=0 repeat
           fft:=fft + monomial(map(Frobenius, leadingCoefficient ff),
                               degree ff)
           ff:=reductum ff
         fft

      retractIfCan(ff:ExtP):Union(P, "failed") ==          
         fft:P:=0
         while ff ~= 0 repeat
           lc : SUEx := leadingCoefficient ff
           plc: SUP F := 0
           while lc ~= 0 repeat
              lclc:ExtF := leadingCoefficient lc
              (retlc := retractIfCan lclc) case "failed" => return "failed"
              plc := plc + monomial(retlc::F, degree lc)
              lc := reductum lc
           fft:=fft+monomial(plc, degree ff)
           ff:=reductum ff
         fft

@
\section{package TWOFACT TwoFactorize}
<<package TWOFACT TwoFactorize>>=
)abbrev package TWOFACT TwoFactorize
++ Authors : P.Gianni, J.H.Davenport
++ Date Created : May 1990
++ Date Last Updated: March 1992
++ Description:
++ A basic package for the factorization of bivariate polynomials 
++ over a finite field.
++ The functions here represent the base step for the multivariate factorizer.
 
TwoFactorize(F) : C == T
 where
  F          :   FiniteFieldCategory
  SUP       ==>  SparseUnivariatePolynomial
  R         ==>  SUP F
  P         ==>  SUP R
  UPCF2     ==>  UnivariatePolynomialCategoryFunctions2
 
  C == with
    generalTwoFactor    : (P)  ->  Factored P 
      ++ generalTwoFactor(p) returns the factorisation of polynomial p,
      ++ a sparse univariate polynomial (sup) over a
      ++ sup over F.
    generalSqFr    : (P)  ->  Factored P 
      ++ generalSqFr(p) returns the square-free factorisation of polynomial p,
      ++ a sparse univariate polynomial (sup) over a
      ++ sup over F.
    twoFactor    : (P,Integer)  ->  Factored P 
      ++ twoFactor(p,n) returns the factorisation of polynomial p,
      ++ a sparse univariate polynomial (sup) over a
      ++ sup over F. 
      ++ Also, p is assumed primitive and square-free and n is the 
      ++ degree of the inner variable of p (maximum of the degrees
      ++ of the coefficients of p).
 
  T == add
    PI ==> PositiveInteger
    NNI ==> NonNegativeInteger
    import CommuteUnivariatePolynomialCategory(F,R,P)

                   ----  Local Functions  ----
    computeDegree  :  (P,Integer,Integer) -> PI
    exchangeVars   :           P          -> P
    exchangeVarTerm:        (R, NNI)      -> P
    pthRoot        :     (R, NNI, NNI)    -> R
 
    -- compute the degree of the extension to reduce the polynomial to a
    -- univariate one
    computeDegree(m : P,mx:Integer,q:Integer): PI ==
      my:=degree m
      n1:Integer:=length(10*mx*my)
      n2:Integer:=length(q)-1
      n:=(n1 quo n2)+1
      n::PI
--      n=1 => 1$PositiveInteger
--      (nextPrime(max(n,min(mx,my)))$IntegerPrimesPackage(Integer))::PI
 
    exchangeVars(p : P) : P ==
       p = 0 => 0
       exchangeVarTerm(leadingCoefficient p, degree p) +
          exchangeVars(reductum p)

    exchangeVarTerm(c:R, e:NNI) : P ==
       c = 0 => 0
       monomial(monomial(leadingCoefficient c, e)$R, degree c)$P + 
          exchangeVarTerm(reductum c, e)

    pthRoot(poly:R,p:NonNegativeInteger,PthRootPow:NonNegativeInteger):R ==
       tmp:=divideExponents(map((#1::F)**PthRootPow,poly),p)
       tmp case "failed" => error "consistency error in TwoFactor"
       tmp
 
    fUnion ==> Union("nil", "sqfr", "irred", "prime")
    FF     ==> Record(flg:fUnion, fctr:P, xpnt:Integer)

    generalSqFr(m:P): Factored P ==
       m = 0 => 0
       degree m = 0 =>
         l:=squareFree(leadingCoefficient m)
         makeFR(unit(l)::P,[[u.flg,u.fctr::P,u.xpnt] for u in factorList l])
       cont := content m
       m := (m exquo cont)::P
       sqfrm := squareFree m
       pfaclist : List FF := empty()
       unitPart := unit sqfrm
       for u in factorList sqfrm repeat
          u.flg = "nil" =>
             uexp:NNI:=(u.xpnt):NNI
             nfacs:=squareFree(exchangeVars u.fctr)
             for v in factorList nfacs repeat
                pfaclist:=cons([v.flg, exchangeVars v.fctr, v.xpnt*uexp],
                              pfaclist)
             unitPart := unit(nfacs)**uexp * unitPart
          pfaclist := cons(u,pfaclist)
       not one? cont =>
           sqp := squareFree cont
           contlist:=[[w.flg,(w.fctr)::P,w.xpnt] for w in factorList sqp]
           pfaclist:= append(contlist, pfaclist)
           makeFR(unit(sqp)*unitPart,pfaclist)
       makeFR(unitPart,pfaclist)

        
    generalTwoFactor(m:P): Factored P ==
       m = 0 => 0
       degree m = 0 =>
         l:=factor(leadingCoefficient m)$DistinctDegreeFactorize(F,R)
         makeFR(unit(l)::P,[[u.flg,u.fctr::P,u.xpnt] for u in factorList l])
       ll:List FF
       ll:=[]
       unitPart:P
       cont:=content m
       if positive? degree(cont) then 
          m1:=m exquo cont
          m1 case "failed" => error "content doesn't divide"
          m:=m1
          contfact:=factor(cont)$DistinctDegreeFactorize(F,R)
          unitPart:=(unit contfact)::P
          ll:=[[w.flg,(w.fctr)::P,w.xpnt] for w in factorList contfact]
       else
          unitPart:=cont::P
       sqfrm:=squareFree m
       for u in factors sqfrm repeat
           expo:=u.exponent
           if negative? expo then error "negative exponent in a factorisation"
           expon:NonNegativeInteger:=expo::NonNegativeInteger
           fac:=u.factor
           degree fac = 1 => ll:=[["irred",fac,expon],:ll]
           differentiate fac = 0 =>      
              -- the polynomial is  inseparable w.r.t. its main variable
              map(differentiate,fac) = 0 =>
                p:=characteristic$F
                PthRootPow:=(size()$F exquo p)::NonNegativeInteger
                m1:=divideExponents(map(pthRoot(#1,p,PthRootPow),fac),p)
                m1 case "failed" => error "consistency error in TwoFactor"
                res:=generalTwoFactor m1
                unitPart:=unitPart*unit(res)**((p*expon)::NNI)
                ll:=[:[[v.flg,v.fctr,expon *p*v.xpnt] for v in factorList res],:ll]
              m2:=generalTwoFactor swap fac
              unitPart:=unitPart*unit(m2)**(expon::NNI)
              ll:=[:[[v.flg,swap v.fctr,expon*v.xpnt] for v in factorList m2],:ll]
           ydeg:="max"/[degree w for w in coefficients fac]
           twoF:=twoFactor(fac,ydeg)
           unitPart:=unitPart*unit(twoF)**expon
           ll:=[:[[v.flg,v.fctr,expon*v.xpnt] for v in factorList twoF],
                :ll]
       makeFR(unitPart,ll)
 
    -- factorization of a primitive square-free bivariate polynomial --
    twoFactor(m:P,dx:Integer):Factored P ==
       -- choose the degree for the extension
       n:PI:=computeDegree(m,dx,size()$F)
       -- extend the field
       -- find the substitution for x
       look:Boolean:=true
       dm:=degree m
       tryCount:Integer:=min(5,size()$F)
       i:Integer:=0
       lcm := leadingCoefficient m
       umv : R
       vval : F
       while look and i < tryCount repeat
          vval := random()$F
          i:=i+1
          zero? elt(lcm, vval) => "next value"
          umv := map(elt(#1,vval), m)$UPCF2(R, P, F, R)
          degree(gcd(umv,differentiate umv))~=0 => "next val"
          n := 1
          look := false
       extField:=FiniteFieldExtension(F,n)
       SUEx:=SUP extField
       TP:=SparseUnivariatePolynomial SUEx
       mm:TP:=0
       m1:=m
       while m1~=0 repeat
         mm:=mm+monomial(map(coerce,leadingCoefficient m1)$UPCF2(F,R,
                extField,SUEx),degree m1)
         m1:=reductum m1
       lcmm := leadingCoefficient mm
       val : extField
       umex : SUEx
       if not look then
          val := vval :: extField
          umex := map(coerce, umv)$UPCF2(F, R, extField, SUEx)
       while look repeat
         val:=random()$extField
         i:=i+1
         elt(lcmm,val)=0 => "next value"
         umex := map(elt(#1,val), mm)$UPCF2(SUEx, TP, extField, SUEx)
         degree(gcd(umex,differentiate umex))~=0 => "next val"
         look:=false
       prime:SUEx:=monomial(1,1)-monomial(val,0)
       fumex:=factor(umex)$DistinctDegreeFactorize(extField,SUEx)
       lfact1:=factors fumex

       #lfact1=1 => primeFactor(m,1)
       lfact : List TP :=
          [map(coerce,lf.factor)$UPCF2(extField,SUEx,SUEx,TP)
           for lf in lfact1]
       lfact:=cons(map(coerce,unit fumex)$UPCF2(extField,SUEx,SUEx,TP),
                   lfact)
       import GeneralHenselPackage(SUEx,TP)
       dx1:PI:=(dx+1)::PI
       lfacth:=completeHensel(mm,lfact,prime,dx1)
       lfactk: List P :=[]
       Normp := NormRetractPackage(F, extField, SUEx, TP, n)
      
       while not empty? lfacth repeat
         ff := first lfacth
         lfacth := rest lfacth
         if not one?(c:=leadingCoefficient leadingCoefficient ff) then
           ff:=((inv c)::SUEx)* ff
         not ((ffu:= retractIfCan(ff)$Normp) case "failed") =>
                    lfactk := cons(ffu::P, lfactk)
         normfacs := normFactors(ff)$Normp
         lfacth := [g for g in lfacth | not member?(g, normfacs)]
         ffn := */normfacs
         lfactk:=cons(retractIfCan(ffn)$Normp :: P, lfactk)
       */[primeFactor(ff1,1) for ff1 in lfactk]

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
 
<<package NORMRETR NormRetractPackage>>
<<package TWOFACT TwoFactorize>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}