1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra tube.spad}
\author{Clifton J. Williamson}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain TUBE TubePlot}
<<domain TUBE TubePlot>>=
)abbrev domain TUBE TubePlot
++ Author: Clifton J. Williamson
++ Date Created: Bastille Day 1989
++ Date Last Updated: 5 June 1990
++ Keywords:
++ Examples:
++ Description:
++ Package for constructing tubes around 3-dimensional parametric curves.
++ Domain of tubes around 3-dimensional parametric curves.
TubePlot(Curve): Exports == Implementation where
Curve : PlottableSpaceCurveCategory
B ==> Boolean
L ==> List
Pt ==> Point DoubleFloat
Exports ==> with
getCurve: % -> Curve
++ getCurve(t) returns the \spadtype{PlottableSpaceCurveCategory}
++ representing the parametric curve of the given tube plot t.
listLoops: % -> L L Pt
++ listLoops(t) returns the list of lists of points, or the 'loops',
++ of the given tube plot t.
closed?: % -> B
++ closed?(t) tests whether the given tube plot t is closed.
open?: % -> B
++ open?(t) tests whether the given tube plot t is open.
setClosed: (%,B) -> B
++ setClosed(t,b) declares the given tube plot t to be closed if
++ b is true, or if b is false, t is set to be open.
tube: (Curve,L L Pt,B) -> %
++ tube(c,ll,b) creates a tube of the domain \spadtype{TubePlot} from a
++ space curve c of the category \spadtype{PlottableSpaceCurveCategory},
++ a list of lists of points (loops) ll and a boolean b which if
++ true indicates a closed tube, or if false an open tube.
Implementation ==> add
--% representation
Rep := Record(parCurve:Curve,loops:L L Pt,closedTube?:B)
getCurve plot == plot.parCurve
listLoops plot == plot.loops
closed? plot == plot.closedTube?
open? plot == not plot.closedTube?
setClosed(plot,flag) == plot.closedTube? := flag
tube(curve,ll,b) == [curve,ll,b]
@
\section{package TUBETOOL TubePlotTools}
<<package TUBETOOL TubePlotTools>>=
)abbrev package TUBETOOL TubePlotTools
++ Author: Clifton J. Williamson
++ Date Created: Bastille Day 1989
++ Date Last Updated: 5 June 1990
++ Keywords:
++ Examples:
++ Description:
++ Tools for constructing tubes around 3-dimensional parametric curves.
TubePlotTools(): Exports == Implementation where
I ==> Integer
SF ==> DoubleFloat
L ==> List
Pt ==> Point SF
Exports ==> with
point: (SF,SF,SF,SF) -> Pt
++ point(x1,x2,x3,c) creates and returns a point from the three
++ specified coordinates \spad{x1}, \spad{x2}, \spad{x3}, and also
++ a fourth coordinate, c, which is generally used to specify the
++ color of the point.
* : (SF,Pt) -> Pt
++ s * p returns a point whose coordinates are the scalar multiple
++ of the point p by the scalar s, preserving the color, or fourth
++ coordinate, of p.
+ : (Pt,Pt) -> Pt
++ p + q computes and returns a point whose coordinates are the sums
++ of the coordinates of the two points \spad{p} and \spad{q}, using
++ the color, or fourth coordinate, of the first point \spad{p}
++ as the color also of the point \spad{q}.
- : (Pt,Pt) -> Pt
++ p - q computes and returns a point whose coordinates are the
++ differences of the coordinates of two points \spad{p} and \spad{q},
++ using the color, or fourth coordinate, of the first point \spad{p}
++ as the color also of the point \spad{q}.
dot : (Pt,Pt) -> SF
++ dot(p,q) computes the dot product of the two points \spad{p}
++ and \spad{q} using only the first three coordinates, and returns
++ the resulting \spadtype{DoubleFloat}.
cross : (Pt,Pt) -> Pt
++ cross(p,q) computes the cross product of the two points \spad{p}
++ and \spad{q} using only the first three coordinates, and keeping
++ the color of the first point p. The result is returned as a point.
unitVector: Pt -> Pt
++ unitVector(p) creates the unit vector of the point p and returns
++ the result as a point. Note: \spad{unitVector(p) = p/|p|}.
cosSinInfo: I -> L L SF
++ cosSinInfo(n) returns the list of lists of values for n, in the
++ form: \spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]}
++ where \spad{a = 2 pi/n}. Note: n should be greater than 2.
loopPoints: (Pt,Pt,Pt,SF,L L SF) -> L Pt
++ loopPoints(p,n,b,r,lls) creates and returns a list of points
++ which form the loop with radius r, around the center point
++ indicated by the point p, with the principal normal vector of
++ the space curve at point p given by the point(vector) n, and the
++ binormal vector given by the point(vector) b, and a list of lists,
++ lls, which is the \spadfun{cosSinInfo} of the number of points
++ defining the loop.
Implementation ==> add
import PointPackage(SF)
point(x,y,z,c) == point(l : L SF := [x,y,z,c])
getColor: Pt -> SF
getColor pt == (maxIndex pt > 3 => color pt; 0)
getColor2: (Pt,Pt) -> SF
getColor2(p0,p1) ==
maxIndex p0 > 3 => color p0
maxIndex p1 > 3 => color p1
0
a * p ==
l : L SF := [a * xCoord p,a * yCoord p,a * zCoord p,getColor p]
point l
p0 + p1 ==
l : L SF := [xCoord p0 + xCoord p1,yCoord p0 + yCoord p1,_
zCoord p0 + zCoord p1,getColor2(p0,p1)]
point l
p0 - p1 ==
l : L SF := [xCoord p0 - xCoord p1,yCoord p0 - yCoord p1,_
zCoord p0 - zCoord p1,getColor2(p0,p1)]
point l
dot(p0,p1) ==
(xCoord p0 * xCoord p1) + (yCoord p0 * yCoord p1) +_
(zCoord p0 * zCoord p1)
cross(p0,p1) ==
x0 := xCoord p0; y0 := yCoord p0; z0 := zCoord p0;
x1 := xCoord p1; y1 := yCoord p1; z1 := zCoord p1;
l : L SF := [y0 * z1 - y1 * z0,z0 * x1 - z1 * x0,_
x0 * y1 - x1 * y0,getColor2(p0,p1)]
point l
unitVector p == (inv sqrt dot(p,p)) * p
cosSinInfo n ==
ans : L L SF := nil()
theta : SF := 2 * pi()/n
for i in 1..(n-1) repeat --!! make more efficient
angle := i * theta
ans := concat([cos angle,sin angle],ans)
ans
loopPoints(ctr,pNorm,bNorm,rad,cosSin) ==
ans : L Pt := nil()
while not null cosSin repeat
cossin := first cosSin; cos := first cossin; sin := second cossin
ans := cons(ctr + rad * (cos * pNorm + sin * bNorm),ans)
cosSin := rest cosSin
pt := ctr + rad * pNorm
concat(pt,concat(ans,pt))
@
\section{package EXPRTUBE ExpressionTubePlot}
<<package EXPRTUBE ExpressionTubePlot>>=
)abbrev package EXPRTUBE ExpressionTubePlot
++ Author: Clifton J. Williamson
++ Date Created: Bastille Day 1989
++ Date Last Updated: 5 June 1990
++ Keywords:
++ Examples:
++ Package for constructing tubes around 3-dimensional parametric curves.
ExpressionTubePlot(): Exports == Implementation where
B ==> Boolean
I ==> Integer
FE ==> Expression Integer
SY ==> Symbol
SF ==> DoubleFloat
L ==> List
S ==> String
SEG ==> Segment
F2F ==> MakeFloatCompiledFunction(FE)
Pt ==> Point SF
PLOT3 ==> Plot3D
TUBE ==> TubePlot Plot3D
Exports ==> with
constantToUnaryFunction: SF -> (SF -> SF)
++ constantToUnaryFunction(s) is a local function which takes the
++ value of s, which may be a function of a constant, and returns
++ a function which always returns the value \spadtype{DoubleFloat} s.
tubePlot: (FE,FE,FE,SF -> SF,SEG SF,SF -> SF,I) -> TUBE
++ tubePlot(f,g,h,colorFcn,a..b,r,n) puts a tube of radius r(t) with
++ n points on each circle about the curve \spad{x = f(t)},
++ \spad{y = g(t)}, \spad{z = h(t)} for t in \spad{[a,b]}.
++ The tube is considered to be open.
tubePlot: (FE,FE,FE,SF -> SF,SEG SF,SF -> SF,I,S) -> TUBE
++ tubePlot(f,g,h,colorFcn,a..b,r,n,s) puts a tube of radius \spad{r(t)}
++ with n points on each circle about the curve \spad{x = f(t)},
++ \spad{y = g(t)},
++ \spad{z = h(t)} for t in \spad{[a,b]}. If s = "closed", the tube is
++ considered to be closed; if s = "open", the tube is considered
++ to be open.
tubePlot: (FE,FE,FE,SF -> SF,SEG SF,SF,I) -> TUBE
++ tubePlot(f,g,h,colorFcn,a..b,r,n) puts a tube of radius r with
++ n points on each circle about the curve \spad{x = f(t)},
++ \spad{y = g(t)}, \spad{z = h(t)} for t in \spad{[a,b]}.
++ The tube is considered to be open.
tubePlot: (FE,FE,FE,SF -> SF,SEG SF,SF,I,S) -> TUBE
++ tubePlot(f,g,h,colorFcn,a..b,r,n,s) puts a tube of radius r with
++ n points on each circle about the curve \spad{x = f(t)},
++ \spad{y = g(t)}, \spad{z = h(t)} for t in \spad{[a,b]}.
++ If s = "closed", the tube is
++ considered to be closed; if s = "open", the tube is considered
++ to be open.
Implementation ==> add
import Plot3D
import F2F
import TubePlotTools
--% variables
getVariable: (FE,FE,FE) -> SY
getVariable(x,y,z) ==
varList1 := variables x
varList2 := variables y
varList3 := variables z
(not (# varList1 <= 1)) or (not (# varList2 <= 1)) or _
(not (# varList3 <= 1)) =>
error "tubePlot: only one variable may be used"
null varList1 =>
null varList2 =>
null varList3 =>
error "tubePlot: a variable must appear in functions"
first varList3
t2 := first varList2
null varList3 => t2
not (first varList3 = t2) =>
error "tubePlot: only one variable may be used"
t1 := first varList1
null varList2 =>
null varList3 => t1
not (first varList3 = t1) =>
error "tubePlot: only one variable may be used"
t1
t2 := first varList2
null varList3 =>
not (t1 = t2) =>
error "tubePlot: only one variable may be used"
t1
not (first varList3 = t1) or not (t2 = t1) =>
error "tubePlot: only one variable may be used"
t1
--% tubes: variable radius
tubePlot(x:FE,y:FE,z:FE,colorFcn:SF -> SF,_
tRange:SEG SF,radFcn:SF -> SF,n:I,string:S) ==
-- check value of n
n < 3 => error "tubePlot: n should be at least 3"
-- check string
flag : B :=
string = "closed" => true
string = "open" => false
error "tubePlot: last argument should be open or closed"
-- check variables
t := getVariable(x,y,z)
-- coordinate functions
xFunc := makeFloatFunction(x,t)
yFunc := makeFloatFunction(y,t)
zFunc := makeFloatFunction(z,t)
-- derivatives of coordinate functions
xp := differentiate(x,t)
yp := differentiate(y,t)
zp := differentiate(z,t)
-- derivative of arc length
sp := sqrt(xp ** 2 + yp ** 2 + zp ** 2)
-- coordinates of unit tangent vector
Tx := xp/sp; Ty := yp/sp; Tz := zp/sp
-- derivatives of coordinates of unit tangent vector
Txp := differentiate(Tx,t)
Typ := differentiate(Ty,t)
Tzp := differentiate(Tz,t)
-- K = curvature = length of curvature vector
K := sqrt(Txp ** 2 + Typ ** 2 + Tzp ** 2)
-- coordinates of principal normal vector
Nx := Txp / K; Ny := Typ / K; Nz := Tzp / K
-- functions SF->SF giving coordinates of principal normal vector
NxFunc := makeFloatFunction(Nx,t);
NyFunc := makeFloatFunction(Ny,t);
NzFunc := makeFloatFunction(Nz,t);
-- coordinates of binormal vector
Bx := Ty * Nz - Tz * Ny
By := Tz * Nx - Tx * Nz
Bz := Tx * Ny - Ty * Nx
-- functions SF -> SF giving coordinates of binormal vector
BxFunc := makeFloatFunction(Bx,t);
ByFunc := makeFloatFunction(By,t);
BzFunc := makeFloatFunction(Bz,t);
-- create Plot3D
parPlot := plot(xFunc,yFunc,zFunc,colorFcn,tRange)
tvals := first tValues parPlot
curvePts := first listBranches parPlot
cosSin := cosSinInfo n
loopList : L L Pt := nil()
while not null tvals repeat
-- note: tvals and curvePts have the same number of elements
tval := first tvals; tvals := rest tvals
ctr := first curvePts; curvePts := rest curvePts
pNormList : L SF :=
[NxFunc tval,NyFunc tval,NzFunc tval,colorFcn tval]
pNorm : Pt := point pNormList
bNormList : L SF :=
[BxFunc tval,ByFunc tval,BzFunc tval,colorFcn tval]
bNorm : Pt := point bNormList
lps := loopPoints(ctr,pNorm,bNorm,radFcn tval,cosSin)
loopList := cons(lps,loopList)
tube(parPlot,reverse! loopList,flag)
tubePlot(x:FE,y:FE,z:FE,colorFcn:SF -> SF,_
tRange:SEG SF,radFcn:SF -> SF,n:I) ==
tubePlot(x,y,z,colorFcn,tRange,radFcn,n,"open")
--% tubes: constant radius
project: (SF,SF) -> SF
project(x,y) == x
constantToUnaryFunction x == project(x,#1)
tubePlot(x:FE,y:FE,z:FE,colorFcn:SF -> SF,_
tRange:SEG SF,rad:SF,n:I,s:S) ==
tubePlot(x,y,z,colorFcn,tRange,constantToUnaryFunction rad,n,s)
tubePlot(x:FE,y:FE,z:FE,colorFcn:SF -> SF,_
tRange:SEG SF,rad:SF,n:I) ==
tubePlot(x,y,z,colorFcn,tRange,rad,n,"open")
@
\section{package NUMTUBE NumericTubePlot}
<<package NUMTUBE NumericTubePlot>>=
)abbrev package NUMTUBE NumericTubePlot
++ Author: Clifton J. Williamson
++ Date Created: Bastille Day 1989
++ Date Last Updated: 5 June 1990
++ Keywords:
++ Examples:
++ Package for constructing tubes around 3-dimensional parametric curves.
NumericTubePlot(Curve): Exports == Implementation where
Curve : PlottableSpaceCurveCategory
B ==> Boolean
I ==> Integer
SF ==> DoubleFloat
L ==> List
S ==> String
SEG ==> Segment
Pt ==> Point SF
TUBE ==> TubePlot Curve
Triad ==> Record(tang:Pt,norm:Pt,bin:Pt)
Exports ==> with
tube: (Curve,SF,I) -> TUBE
++ tube(c,r,n) creates a tube of radius r around the curve c.
Implementation ==> add
import TubePlotTools
LINMAX := convert(0.995)@SF
XHAT := point(1,0,0,0)
YHAT := point(0,1,0,0)
PREV0 := point(1,1,0,0)
PREV := PREV0
colinearity: (Pt,Pt) -> SF
colinearity(x,y) == dot(x,y)**2/(dot(x,x) * dot(y,y))
orthog: (Pt,Pt) -> Pt
orthog(x,y) ==
if colinearity(x,y) > LINMAX then y := PREV
if colinearity(x,y) > LINMAX then
y := (colinearity(x,XHAT) < LINMAX => XHAT; YHAT)
a := -dot(x,y)/dot(x,x)
PREV := a*x + y
poTriad:(Pt,Pt,Pt) -> Triad
poTriad(pl,po,pr) ==
-- use divided difference for t.
t := unitVector(pr - pl)
-- compute n as orthogonal to t in plane containing po.
pol := pl - po
n := unitVector orthog(t,pol)
[t,n,cross(t,n)]
curveTriads: L Pt -> L Triad
curveTriads l ==
(k := #l) < 2 => error "Need at least 2 points to specify a curve"
PREV := PREV0
k = 2 =>
t := unitVector(second l - first l)
n := unitVector(t - XHAT)
b := cross(t,n)
triad : Triad := [t,n,b]
[triad,triad]
-- compute interior triads using divided differences
midtriads : L Triad :=
[poTriad(pl,po,pr) for pl in l for po in rest l _
for pr in rest rest l]
-- compute first triad using a forward difference
x := first midtriads
t := unitVector(second l - first l)
n := unitVector orthog(t,x.norm)
begtriad : Triad := [t,n,cross(t,n)]
-- compute last triad using a backward difference
x := last midtriads
-- efficiency!!
t := unitVector(l.k - l.(k-1))
n := unitVector orthog(t,x.norm)
endtriad : Triad := [t,n,cross(t,n)]
concat(begtriad,concat(midtriads,endtriad))
curveLoops: (L Pt,SF,I) -> L L Pt
curveLoops(pts,r,nn) ==
triads := curveTriads pts
cosSin := cosSinInfo nn
loops : L L Pt := nil()
for pt in pts for triad in triads repeat
n := triad.norm; b := triad.bin
loops := concat(loopPoints(pt,n,b,r,cosSin),loops)
reverse! loops
tube(curve,r,n) ==
n < 3 => error "tube: n should be at least 3"
brans := listBranches curve
loops : L L Pt := nil()
for bran in brans repeat
loops := concat(loops,curveLoops(bran,r,n))
tube(curve,loops,false)
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<domain TUBE TubePlot>>
<<package TUBETOOL TubePlotTools>>
<<package EXPRTUBE ExpressionTubePlot>>
<<package NUMTUBE NumericTubePlot>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|