1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra suts.spad}
\author{Clifton J. Williamson}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain SUTS SparseUnivariateTaylorSeries}
<<domain SUTS SparseUnivariateTaylorSeries>>=
)abbrev domain SUTS SparseUnivariateTaylorSeries
++ Author: Clifton J. Williamson
++ Date Created: 16 February 1990
++ Date Last Updated: June 18, 2010
++ Basic Operations:
++ Related Domains: InnerSparseUnivariatePowerSeries,
++ SparseUnivariateLaurentSeries, SparseUnivariatePuiseuxSeries
++ Also See:
++ AMS Classifications:
++ Keywords: Taylor series, sparse power series
++ Examples:
++ References:
++ Description: Sparse Taylor series in one variable
++ \spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor
++ series in one variable with coefficients in an arbitrary ring. The
++ parameters of the type specify the coefficient ring, the power series
++ variable, and the center of the power series expansion. For example,
++ \spadtype{SparseUnivariateTaylorSeries}(Integer,x,3) represents Taylor
++ series in \spad{(x - 3)} with \spadtype{Integer} coefficients.
SparseUnivariateTaylorSeries(Coef,var,cen): Exports == Implementation where
Coef : Ring
var : Symbol
cen : Coef
COM ==> OrderedCompletion Integer
I ==> Integer
L ==> List
NNI ==> NonNegativeInteger
OUT ==> OutputForm
P ==> Polynomial Coef
REF ==> Reference OrderedCompletion Integer
RN ==> Fraction Integer
Term ==> Record(k:Integer,c:Coef)
SG ==> String
ST ==> Stream Term
UP ==> UnivariatePolynomial(var,Coef)
Exports ==> Join(UnivariateTaylorSeriesCategory(Coef),_
PartialDifferentialDomain(%,Variable var)) with
coerce: UP -> %
++\spad{coerce(p)} converts a univariate polynomial p in the variable
++\spad{var} to a univariate Taylor series in \spad{var}.
univariatePolynomial: (%,NNI) -> UP
++\spad{univariatePolynomial(f,k)} returns a univariate polynomial
++ consisting of the sum of all terms of f of degree \spad{<= k}.
coerce: Variable(var) -> %
++\spad{coerce(var)} converts the series variable \spad{var} into a
++ Taylor series.
if Coef has Algebra Fraction Integer then
integrate: (%,Variable(var)) -> %
++ \spad{integrate(f(x),x)} returns an anti-derivative of the power
++ series \spad{f(x)} with constant coefficient 0.
++ We may integrate a series when we can divide coefficients
++ by integers.
Implementation ==> InnerSparseUnivariatePowerSeries(Coef) add
import REF
Rep := InnerSparseUnivariatePowerSeries(Coef)
makeTerm: (Integer,Coef) -> Term
makeTerm(exp,coef) == [exp,coef]
getCoef: Term -> Coef
getCoef term == term.c
getExpon: Term -> Integer
getExpon term == term.k
monomial(coef,expon) == monomial(coef,expon)$Rep
extend(x,n) == extend(x,n)$Rep
0 == monomial(0,0)$Rep
1 == monomial(1,0)$Rep
recip uts == iExquo(1,uts,true)
if Coef has IntegralDomain then
uts1 exquo uts2 == iExquo(uts1,uts2,true)
quoByVar uts == taylorQuoByVar(uts)$Rep
differentiate(x:%,v:Variable(var)) == differentiate x
--% Creation and destruction of series
coerce(v: Variable(var)) ==
zero? cen => monomial(1,1)
monomial(1,1) + monomial(cen,0)
coerce(p:UP) ==
zero? p => 0
if not zero? cen then p := p(monomial(1,1)$UP + monomial(cen,0)$UP)
st : ST := empty()
while not zero? p repeat
st := concat(makeTerm(degree p,leadingCoefficient p),st)
p := reductum p
makeSeries(ref plusInfinity(),st)
univariatePolynomial(x,n) ==
extend(x,n); st := getStream x
ans : UP := 0; oldDeg : I := 0;
mon := monomial(1,1)$UP - monomial(center x,0)$UP; monPow : UP := 1
while explicitEntries? st repeat
(xExpon := getExpon(xTerm := frst st)) > n => return ans
pow := (xExpon - oldDeg) :: NNI; oldDeg := xExpon
monPow := monPow * mon ** pow
ans := ans + getCoef(xTerm) * monPow
st := rst st
ans
polynomial(x,n) ==
extend(x,n); st := getStream x
ans : P := 0; oldDeg : I := 0;
mon := (var :: P) - (center(x) :: P); monPow : P := 1
while explicitEntries? st repeat
(xExpon := getExpon(xTerm := frst st)) > n => return ans
pow := (xExpon - oldDeg) :: NNI; oldDeg := xExpon
monPow := monPow * mon ** pow
ans := ans + getCoef(xTerm) * monPow
st := rst st
ans
polynomial(x,n1,n2) == polynomial(truncate(x,n1,n2),n2)
truncate(x,n) == truncate(x,n)$Rep
truncate(x,n1,n2) == truncate(x,n1,n2)$Rep
iCoefficients: (ST,REF,I) -> Stream Coef
iCoefficients(x,refer,n) == delay
-- when this function is called, we are computing the nth order
-- coefficient of the series
explicitlyEmpty? x => empty()
-- if terms up to order n have not been computed,
-- apply lazy evaluation
nn := n :: COM
while (nx := elt refer) < nn repeat lazyEvaluate x
-- must have nx >= n
explicitEntries? x =>
xCoef := getCoef(xTerm := frst x); xExpon := getExpon xTerm
xExpon = n => concat(xCoef,iCoefficients(rst x,refer,n + 1))
-- must have nx > n
concat(0,iCoefficients(x,refer,n + 1))
concat(0,iCoefficients(x,refer,n + 1))
coefficients uts ==
refer := getRef uts; x := getStream uts
iCoefficients(x,refer,0)
terms uts == terms(uts)$Rep pretend Stream Record(k:NNI,c:Coef)
iSeries: (Stream Coef,I,REF) -> ST
iSeries(st,n,refer) == delay
-- when this function is called, we are creating the nth order
-- term of a series
empty? st => (setelt(refer,plusInfinity()); empty())
setelt(refer,n :: COM)
zero? (coef := frst st) => iSeries(rst st,n + 1,refer)
concat(makeTerm(n,coef),iSeries(rst st,n + 1,refer))
series(st:Stream Coef) ==
refer := ref(-1)
makeSeries(refer,iSeries(st,0,refer))
nniToI: Stream Record(k:NNI,c:Coef) -> ST
nniToI st ==
empty? st => empty()
term : Term := [(frst st).k,(frst st).c]
concat(term,nniToI rst st)
series(st:Stream Record(k:NNI,c:Coef)) == series(nniToI st)$Rep
--% Values
variable x == var
center x == cen
coefficient(x,n) == coefficient(x,n)$Rep
elt(x:%,n:NonNegativeInteger) == coefficient(x,n)
pole? x == false
order x == (order(x)$Rep) :: NNI
order(x,n) == (order(x,n)$Rep) :: NNI
--% Composition
elt(uts1:%,uts2:%) ==
zero? uts2 => coefficient(uts1,0) :: %
not zero? coefficient(uts2,0) =>
error "elt: second argument must have positive order"
iCompose(uts1,uts2)
--% Integration
if Coef has Algebra Fraction Integer then
integrate(x:%,v:Variable(var)) == integrate x
--% Transcendental functions
(uts1:%) ** (uts2:%) == exp(log(uts1) * uts2)
if Coef has CommutativeRing then
(uts:%) ** (r:RN) == cRationalPower(uts,r)
exp uts == cExp uts
log uts == cLog uts
sin uts == cSin uts
cos uts == cCos uts
tan uts == cTan uts
cot uts == cCot uts
sec uts == cSec uts
csc uts == cCsc uts
asin uts == cAsin uts
acos uts == cAcos uts
atan uts == cAtan uts
acot uts == cAcot uts
asec uts == cAsec uts
acsc uts == cAcsc uts
sinh uts == cSinh uts
cosh uts == cCosh uts
tanh uts == cTanh uts
coth uts == cCoth uts
sech uts == cSech uts
csch uts == cCsch uts
asinh uts == cAsinh uts
acosh uts == cAcosh uts
atanh uts == cAtanh uts
acoth uts == cAcoth uts
asech uts == cAsech uts
acsch uts == cAcsch uts
else
ZERO : SG := "series must have constant coefficient zero"
ONE : SG := "series must have constant coefficient one"
NPOWERS : SG := "series expansion has terms of negative degree"
(uts:%) ** (r:RN) ==
not one? coefficient(uts,0) =>
error "**: constant coefficient must be one"
onePlusX : % := monomial(1,0) + monomial(1,1)
ratPow := cPower(uts,r :: Coef)
iCompose(ratPow,uts - 1)
exp uts ==
zero? coefficient(uts,0) =>
expx := cExp monomial(1,1)
iCompose(expx,uts)
error concat("exp: ",ZERO)
log uts ==
one? coefficient(uts,0) =>
log1PlusX := cLog(monomial(1,0) + monomial(1,1))
iCompose(log1PlusX,uts - 1)
error concat("log: ",ONE)
sin uts ==
zero? coefficient(uts,0) =>
sinx := cSin monomial(1,1)
iCompose(sinx,uts)
error concat("sin: ",ZERO)
cos uts ==
zero? coefficient(uts,0) =>
cosx := cCos monomial(1,1)
iCompose(cosx,uts)
error concat("cos: ",ZERO)
tan uts ==
zero? coefficient(uts,0) =>
tanx := cTan monomial(1,1)
iCompose(tanx,uts)
error concat("tan: ",ZERO)
cot uts ==
zero? uts => error "cot: cot(0) is undefined"
zero? coefficient(uts,0) => error concat("cot: ",NPOWERS)
error concat("cot: ",ZERO)
sec uts ==
zero? coefficient(uts,0) =>
secx := cSec monomial(1,1)
iCompose(secx,uts)
error concat("sec: ",ZERO)
csc uts ==
zero? uts => error "csc: csc(0) is undefined"
zero? coefficient(uts,0) => error concat("csc: ",NPOWERS)
error concat("csc: ",ZERO)
asin uts ==
zero? coefficient(uts,0) =>
asinx := cAsin monomial(1,1)
iCompose(asinx,uts)
error concat("asin: ",ZERO)
atan uts ==
zero? coefficient(uts,0) =>
atanx := cAtan monomial(1,1)
iCompose(atanx,uts)
error concat("atan: ",ZERO)
acos z == error "acos: acos undefined on this coefficient domain"
acot z == error "acot: acot undefined on this coefficient domain"
asec z == error "asec: asec undefined on this coefficient domain"
acsc z == error "acsc: acsc undefined on this coefficient domain"
sinh uts ==
zero? coefficient(uts,0) =>
sinhx := cSinh monomial(1,1)
iCompose(sinhx,uts)
error concat("sinh: ",ZERO)
cosh uts ==
zero? coefficient(uts,0) =>
coshx := cCosh monomial(1,1)
iCompose(coshx,uts)
error concat("cosh: ",ZERO)
tanh uts ==
zero? coefficient(uts,0) =>
tanhx := cTanh monomial(1,1)
iCompose(tanhx,uts)
error concat("tanh: ",ZERO)
coth uts ==
zero? uts => error "coth: coth(0) is undefined"
zero? coefficient(uts,0) => error concat("coth: ",NPOWERS)
error concat("coth: ",ZERO)
sech uts ==
zero? coefficient(uts,0) =>
sechx := cSech monomial(1,1)
iCompose(sechx,uts)
error concat("sech: ",ZERO)
csch uts ==
zero? uts => error "csch: csch(0) is undefined"
zero? coefficient(uts,0) => error concat("csch: ",NPOWERS)
error concat("csch: ",ZERO)
asinh uts ==
zero? coefficient(uts,0) =>
asinhx := cAsinh monomial(1,1)
iCompose(asinhx,uts)
error concat("asinh: ",ZERO)
atanh uts ==
zero? coefficient(uts,0) =>
atanhx := cAtanh monomial(1,1)
iCompose(atanhx,uts)
error concat("atanh: ",ZERO)
acosh uts == error "acosh: acosh undefined on this coefficient domain"
acoth uts == error "acoth: acoth undefined on this coefficient domain"
asech uts == error "asech: asech undefined on this coefficient domain"
acsch uts == error "acsch: acsch undefined on this coefficient domain"
if Coef has Field then
if Coef has Algebra Fraction Integer then
(uts:%) ** (r:Coef) ==
not one? coefficient(uts,1) =>
error "**: constant coefficient should be 1"
cPower(uts,r)
--% OutputForms
coerce(x:%): OUT ==
count : NNI := _$streamCount$Lisp
extend(x,count)
seriesToOutputForm(getStream x,getRef x,variable x,center x,1)
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<domain SUTS SparseUnivariateTaylorSeries>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|