1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra suls.spad}
\author{Clifton J. Williamson}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain SULS SparseUnivariateLaurentSeries}
<<domain SULS SparseUnivariateLaurentSeries>>=
)abbrev domain SULS SparseUnivariateLaurentSeries
++ Author: Clifton J. Williamson
++ Date Created: 11 November 1994
++ Date Last Updated: June 18, 2010
++ Basic Operations:
++ Related Domains: InnerSparseUnivariatePowerSeries,
++ SparseUnivariateTaylorSeries, SparseUnivariatePuiseuxSeries
++ Also See:
++ AMS Classifications:
++ Keywords: sparse, series
++ Examples:
++ References:
++ Description: Sparse Laurent series in one variable
++ \spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent
++ series in one variable with coefficients in an arbitrary ring. The
++ parameters of the type specify the coefficient ring, the power series
++ variable, and the center of the power series expansion. For example,
++ \spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent
++ series in \spad{(x - 3)} with integer coefficients.
SparseUnivariateLaurentSeries(Coef,var,cen): Exports == Implementation where
Coef : Ring
var : Symbol
cen : Coef
I ==> Integer
NNI ==> NonNegativeInteger
OUT ==> OutputForm
P ==> Polynomial Coef
RF ==> Fraction Polynomial Coef
RN ==> Fraction Integer
S ==> String
SUTS ==> SparseUnivariateTaylorSeries(Coef,var,cen)
EFULS ==> ElementaryFunctionsUnivariateLaurentSeries(Coef,SUTS,%)
Exports ==> Join(UnivariateLaurentSeriesConstructorCategory(Coef,SUTS),_
PartialDifferentialDomain(%,Variable var)) with
coerce: Variable(var) -> %
++ \spad{coerce(var)} converts the series variable \spad{var} into a
++ Laurent series.
if Coef has Algebra Fraction Integer then
integrate: (%,Variable(var)) -> %
++ \spad{integrate(f(x))} returns an anti-derivative of the power
++ series \spad{f(x)} with constant coefficient 0.
++ We may integrate a series when we can divide coefficients
++ by integers.
Implementation ==> InnerSparseUnivariatePowerSeries(Coef) add
Rep := InnerSparseUnivariatePowerSeries(Coef)
variable x == var
center x == cen
coerce(v: Variable(var)) ==
zero? cen => monomial(1,1)
monomial(1,1) + monomial(cen,0)
pole? x == negative? order(x,0)
--% operations with Taylor series
coerce(uts:SUTS) == uts pretend %
taylorIfCan uls ==
pole? uls => "failed"
uls pretend SUTS
taylor uls ==
(uts := taylorIfCan uls) case "failed" =>
error "taylor: Laurent series has a pole"
uts :: SUTS
retractIfCan(x:%):Union(SUTS,"failed") == taylorIfCan x
laurent(n,uts) == monomial(1,n) * (uts :: %)
removeZeroes uls == uls
removeZeroes(n,uls) == uls
taylorRep uls == taylor(monomial(1,-order(uls,0)) * uls)
degree uls == order(uls,0)
numer uls == taylorRep uls
denom uls == monomial(1,(-order(uls,0)) :: NNI)$SUTS
(uts:SUTS) * (uls:%) == (uts :: %) * uls
(uls:%) * (uts:SUTS) == uls * (uts :: %)
if Coef has Field then
(uts1:SUTS) / (uts2:SUTS) == (uts1 :: %) / (uts2 :: %)
recip(uls) == iExquo(1,uls,false)
if Coef has IntegralDomain then
uls1 exquo uls2 == iExquo(uls1,uls2,false)
if Coef has Field then
uls1:% / uls2:% ==
(q := uls1 exquo uls2) case "failed" =>
error "quotient cannot be computed"
q :: %
differentiate(uls:%,v:Variable(var)) == differentiate uls
elt(uls1:%,uls2:%) ==
order(uls2,1) < 1 =>
error "elt: second argument must have positive order"
negative?(ord := order(uls1,0)) =>
(recipr := recip uls2) case "failed" =>
error "elt: second argument not invertible"
uls3 := uls1 * monomial(1,-ord)
iCompose(uls3,uls2) * (recipr :: %) ** ((-ord) :: NNI)
iCompose(uls1,uls2)
if Coef has IntegralDomain then
rationalFunction(uls,n) ==
zero?(e := order(uls,0)) =>
negative? n => 0
polynomial(taylor uls,n :: NNI) :: RF
negative?(m := n - e) => 0
poly := polynomial(taylor(monomial(1,-e) * uls),m :: NNI) :: RF
v := variable(uls) :: RF; c := center(uls) :: P :: RF
poly / (v - c) ** ((-e) :: NNI)
rationalFunction(uls,n1,n2) == rationalFunction(truncate(uls,n1,n2),n2)
if Coef has Algebra Fraction Integer then
integrate uls ==
zero? coefficient(uls,-1) =>
error "integrate: series has term of order -1"
integrate(uls)$Rep
integrate(uls:%,v:Variable(var)) == integrate uls
(uls1:%) ** (uls2:%) == exp(log(uls1) * uls2)
exp uls == exp(uls)$EFULS
log uls == log(uls)$EFULS
sin uls == sin(uls)$EFULS
cos uls == cos(uls)$EFULS
tan uls == tan(uls)$EFULS
cot uls == cot(uls)$EFULS
sec uls == sec(uls)$EFULS
csc uls == csc(uls)$EFULS
asin uls == asin(uls)$EFULS
acos uls == acos(uls)$EFULS
atan uls == atan(uls)$EFULS
acot uls == acot(uls)$EFULS
asec uls == asec(uls)$EFULS
acsc uls == acsc(uls)$EFULS
sinh uls == sinh(uls)$EFULS
cosh uls == cosh(uls)$EFULS
tanh uls == tanh(uls)$EFULS
coth uls == coth(uls)$EFULS
sech uls == sech(uls)$EFULS
csch uls == csch(uls)$EFULS
asinh uls == asinh(uls)$EFULS
acosh uls == acosh(uls)$EFULS
atanh uls == atanh(uls)$EFULS
acoth uls == acoth(uls)$EFULS
asech uls == asech(uls)$EFULS
acsch uls == acsch(uls)$EFULS
if Coef has CommutativeRing then
(uls:%) ** (r:RN) == cRationalPower(uls,r)
else
(uls:%) ** (r:RN) ==
negative?(ord0 := order(uls,0)) =>
order := ord0 :: I
(n := order exquo denom(r)) case "failed" =>
error "**: rational power does not exist"
uts := retract(uls * monomial(1,-order))@SUTS
utsPow := (uts ** r) :: %
monomial(1,(n :: I) * numer(r)) * utsPow
uts := retract(uls)@SUTS
(uts ** r) :: %
--% OutputForms
coerce(uls:%): OUT ==
st := getStream uls
if not(explicitlyEmpty? st or explicitEntries? st) _
and (nx := retractIfCan(deref getRef uls))@Union(I,"failed") case I then
count : NNI := _$streamCount$Lisp
degr := min(count,(nx :: I) + count + 1)
extend(uls,degr)
seriesToOutputForm(st,getRef uls,variable uls,center uls,1)
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<domain SULS SparseUnivariateLaurentSeries>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|