aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/suls.spad.pamphlet
blob: 112f103b53d858398540093604199a77baa8e0e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra suls.spad}
\author{Clifton J. Williamson}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain SULS SparseUnivariateLaurentSeries}
<<domain SULS SparseUnivariateLaurentSeries>>=
)abbrev domain SULS SparseUnivariateLaurentSeries
++ Author: Clifton J. Williamson
++ Date Created: 11 November 1994
++ Date Last Updated: June 18, 2010
++ Basic Operations:
++ Related Domains: InnerSparseUnivariatePowerSeries,
++   SparseUnivariateTaylorSeries, SparseUnivariatePuiseuxSeries
++ Also See:
++ AMS Classifications:
++ Keywords: sparse, series
++ Examples:
++ References:
++ Description: Sparse Laurent series in one variable
++   \spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent
++   series in one variable with coefficients in an arbitrary ring.  The
++   parameters of the type specify the coefficient ring, the power series
++   variable, and the center of the power series expansion.  For example,
++   \spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent
++   series in \spad{(x - 3)} with integer coefficients.
SparseUnivariateLaurentSeries(Coef,var,cen): Exports == Implementation where
  Coef : Ring
  var  : Symbol
  cen  : Coef
  I     ==> Integer
  NNI   ==> NonNegativeInteger
  OUT   ==> OutputForm
  P     ==> Polynomial Coef
  RF    ==> Fraction Polynomial Coef
  RN    ==> Fraction Integer
  S     ==> String
  SUTS  ==> SparseUnivariateTaylorSeries(Coef,var,cen)
  EFULS ==> ElementaryFunctionsUnivariateLaurentSeries(Coef,SUTS,%)

  Exports ==> Join(UnivariateLaurentSeriesConstructorCategory(Coef,SUTS),_
                   PartialDifferentialDomain(%,Variable var)) with
    coerce: Variable(var) -> %
      ++ \spad{coerce(var)} converts the series variable \spad{var} into a
      ++ Laurent series.
    if Coef has Algebra Fraction Integer then
      integrate: (%,Variable(var)) -> %
        ++ \spad{integrate(f(x))} returns an anti-derivative of the power
        ++ series \spad{f(x)} with constant coefficient 0.
        ++ We may integrate a series when we can divide coefficients
        ++ by integers.

  Implementation ==> InnerSparseUnivariatePowerSeries(Coef) add

    Rep := InnerSparseUnivariatePowerSeries(Coef)

    variable x == var
    center   x == cen

    coerce(v: Variable(var)) ==
      zero? cen => monomial(1,1)
      monomial(1,1) + monomial(cen,0)

    pole? x == negative? order(x,0)

--% operations with Taylor series

    coerce(uts:SUTS) == uts pretend %

    taylorIfCan uls ==
      pole? uls => "failed"
      uls pretend SUTS

    taylor uls ==
      (uts := taylorIfCan uls) case "failed" =>
        error "taylor: Laurent series has a pole"
      uts :: SUTS

    retractIfCan(x:%):Union(SUTS,"failed") == taylorIfCan x

    laurent(n,uts) == monomial(1,n) * (uts :: %)

    removeZeroes uls    == uls
    removeZeroes(n,uls) == uls

    taylorRep uls == taylor(monomial(1,-order(uls,0)) * uls)
    degree uls    == order(uls,0)

    numer uls == taylorRep uls
    denom uls == monomial(1,(-order(uls,0)) :: NNI)$SUTS

    (uts:SUTS) * (uls:%) == (uts :: %) * uls
    (uls:%) * (uts:SUTS) == uls * (uts :: %)

    if Coef has Field then
      (uts1:SUTS) / (uts2:SUTS) == (uts1 :: %) / (uts2 :: %)

    recip(uls) == iExquo(1,uls,false)

    if Coef has IntegralDomain then
      uls1 exquo uls2 == iExquo(uls1,uls2,false)

    if Coef has Field then
      uls1:% / uls2:% ==
        (q := uls1 exquo uls2) case "failed" =>
          error "quotient cannot be computed"
        q :: %

    differentiate(uls:%,v:Variable(var)) == differentiate uls

    elt(uls1:%,uls2:%) ==
      order(uls2,1) < 1 =>
        error "elt: second argument must have positive order"
      negative?(ord := order(uls1,0)) =>
        (recipr := recip uls2) case "failed" =>
          error "elt: second argument not invertible"
        uls3 := uls1 * monomial(1,-ord)
        iCompose(uls3,uls2) * (recipr :: %) ** ((-ord) :: NNI)
      iCompose(uls1,uls2)

    if Coef has IntegralDomain then
      rationalFunction(uls,n) ==
        zero?(e := order(uls,0)) =>
          negative? n => 0
          polynomial(taylor uls,n :: NNI) :: RF
        negative?(m := n - e) => 0
        poly := polynomial(taylor(monomial(1,-e) * uls),m :: NNI) :: RF
        v := variable(uls) :: RF; c := center(uls) :: P :: RF
        poly / (v - c) ** ((-e) :: NNI)

      rationalFunction(uls,n1,n2) == rationalFunction(truncate(uls,n1,n2),n2)

    if Coef has Algebra Fraction Integer then

      integrate uls ==
        zero? coefficient(uls,-1) =>
          error "integrate: series has term of order -1"
        integrate(uls)$Rep

      integrate(uls:%,v:Variable(var)) == integrate uls

      (uls1:%) ** (uls2:%) == exp(log(uls1) * uls2)

      exp uls   == exp(uls)$EFULS
      log uls   == log(uls)$EFULS
      sin uls   == sin(uls)$EFULS
      cos uls   == cos(uls)$EFULS
      tan uls   == tan(uls)$EFULS
      cot uls   == cot(uls)$EFULS
      sec uls   == sec(uls)$EFULS
      csc uls   == csc(uls)$EFULS
      asin uls  == asin(uls)$EFULS
      acos uls  == acos(uls)$EFULS
      atan uls  == atan(uls)$EFULS
      acot uls  == acot(uls)$EFULS
      asec uls  == asec(uls)$EFULS
      acsc uls  == acsc(uls)$EFULS
      sinh uls  == sinh(uls)$EFULS
      cosh uls  == cosh(uls)$EFULS
      tanh uls  == tanh(uls)$EFULS
      coth uls  == coth(uls)$EFULS
      sech uls  == sech(uls)$EFULS
      csch uls  == csch(uls)$EFULS
      asinh uls == asinh(uls)$EFULS
      acosh uls == acosh(uls)$EFULS
      atanh uls == atanh(uls)$EFULS
      acoth uls == acoth(uls)$EFULS
      asech uls == asech(uls)$EFULS
      acsch uls == acsch(uls)$EFULS

      if Coef has CommutativeRing then

        (uls:%) ** (r:RN) == cRationalPower(uls,r)

      else

        (uls:%) ** (r:RN) ==
          negative?(ord0 := order(uls,0)) =>
            order := ord0 :: I
            (n := order exquo denom(r)) case "failed" =>
              error "**: rational power does not exist"
            uts := retract(uls * monomial(1,-order))@SUTS
            utsPow := (uts ** r) :: %
            monomial(1,(n :: I) * numer(r)) * utsPow
          uts := retract(uls)@SUTS
          (uts ** r) :: %

--% OutputForms

    coerce(uls:%): OUT ==
      st := getStream uls
      if not(explicitlyEmpty? st or explicitEntries? st) _
        and (nx := retractIfCan(deref getRef uls))@Union(I,"failed") case I then
        count : NNI := _$streamCount$Lisp
        degr := min(count,(nx :: I) + count + 1)
        extend(uls,degr)
      seriesToOutputForm(st,getRef uls,variable uls,center uls,1)

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<domain SULS SparseUnivariateLaurentSeries>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}