1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra smith.spad}
\author{Patrizia Gianni}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package SMITH SmithNormalForm}
<<package SMITH SmithNormalForm>>=
)abbrev package SMITH SmithNormalForm
++ Author: Patrizia Gianni
++ Date Created: October 1992
++ Date Last Updated:
++ Basic Operations:
++ Related Domains: Matrix(R)
++ Also See:
++ AMS Classifications:
++ Keywords: matrix, canonical forms, linear algebra
++ Examples:
++ References:
++ Description:
++ \spadtype{SmithNormalForm} is a package
++ which provides some standard canonical forms for matrices.
SmithNormalForm(R,Row,Col,M) : Exports == Implementation where
R : EuclideanDomain
Row : FiniteLinearAggregate R
Col : FiniteLinearAggregate R
M : MatrixCategory(R,Row,Col)
I ==> Integer
NNI ==> NonNegativeInteger
HermiteForm ==> Record(Hermite:M,eqMat:M)
SmithForm ==> Record(Smith : M, leftEqMat : M, rightEqMat : M)
PartialV ==> Union(Col, "failed")
Both ==> Record(particular: PartialV, basis: List Col)
Exports == with
hermite : M -> M
++ \spad{hermite(m)} returns the Hermite normal form of the
++ matrix m.
completeHermite : M -> HermiteForm
++ \spad{completeHermite} returns a record that contains
++ the Hermite normal form H of the matrix and the equivalence matrix
++ U such that U*m = H
smith : M -> M
++ \spad{smith(m)} returns the Smith Normal form of the matrix m.
completeSmith : M -> SmithForm
++ \spad{completeSmith} returns a record that contains
++ the Smith normal form H of the matrix and the left and right
++ equivalence matrices U and V such that U*m*v = H
diophantineSystem : (M,Col) -> Both
++ \spad{diophantineSystem(A,B)} returns a particular integer solution and
++ an integer basis of the equation \spad{AX = B}.
Implementation == add
MATCAT1 ==> MatrixCategoryFunctions2(R,Row,Col,M,QF,Row2,Col2,M2)
MATCAT2 ==> MatrixCategoryFunctions2(QF,Row2,Col2,M2,R,Row,Col,M)
QF ==> Fraction R
Row2 ==> Vector QF
Col2 ==> Vector QF
M2 ==> Matrix QF
------ Local Functions -----
elRow1 : (M,I,I) -> M
elRow2 : (M,R,I,I) -> M
elColumn2 : (M,R,I,I) -> M
isDiagonal? : M -> Boolean
ijDivide : (SmithForm ,I,I) -> SmithForm
lastStep : SmithForm -> SmithForm
test1 : (M,Col,NNI) -> Union(NNI, "failed")
test2 : (M, Col,NNI,NNI) -> Union( Col, "failed")
-- inconsistent system : case 0 = c --
test1(sm:M,b:Col,m1 : NNI) : Union(NNI , "failed") ==
km:=m1
while zero? sm(km,km) repeat
if not zero?(b(km)) then return "failed"
km:= (km - 1) :: NNI
km
if Col has ShallowlyMutableAggregate R then
test2(sm : M ,b : Col, n1:NNI,dk:NNI) : Union( Col, "failed") ==
-- test divisibility --
sol:Col := new(n1,0)
for k in 1..dk repeat
if (c:=(b(k) exquo sm(k,k))) case "failed" then return "failed"
sol(k):= c::R
sol
-- test if the matrix is diagonal or pseudo-diagonal --
isDiagonal?(m : M) : Boolean ==
m1:= nrows m
n1:= ncols m
for i in 1..m1 repeat
for j in 1..n1 | (j ~= i) repeat
if not zero?(m(i,j)) then return false
true
-- elementary operation of first kind: exchange two rows --
elRow1(m:M,i:I,j:I) : M ==
vec:=row(m,i)
setRow!(m,i,row(m,j))
setRow!(m,j,vec)
m
-- elementary operation of second kind: add to row i--
-- a*row j (i~=j) --
elRow2(m : M,a:R,i:I,j:I) : M ==
vec:= map(a*#1,row(m,j))
vec:=map("+",row(m,i),vec)
setRow!(m,i,vec)
m
-- elementary operation of second kind: add to column i --
-- a*column j (i~=j) --
elColumn2(m : M,a:R,i:I,j:I) : M ==
vec:= map(a*#1,column(m,j))
vec:=map("+",column(m,i),vec)
setColumn!(m,i,vec)
m
-- modify SmithForm in such a way that the term m(i,i) --
-- divides the term m(j,j). m is diagonal --
ijDivide(sf : SmithForm , i : I,j : I) : SmithForm ==
m:=sf.Smith
mii:=m(i,i)
mjj:=m(j,j)
extGcd:=extendedEuclidean(mii,mjj)
d := extGcd.generator
mii:=(mii exquo d)::R
mjj := (mjj exquo d) :: R
-- add to row j extGcd.coef1*row i --
lMat:=elRow2(sf.leftEqMat,extGcd.coef1,j,i)
-- switch rows i and j --
lMat:=elRow1(lMat,i,j)
-- add to row j -mii*row i --
lMat := elRow2(lMat,-mii,j,i)
-- lMat := ijModify(mii,mjj,extGcd.coef1,extGcd.coef2,sf.leftEqMat,i,j)
m(j,j):= m(i,i) * mjj
m(i,i):= d
-- add to column i extGcd.coef2 * column j --
rMat := elColumn2(sf.rightEqMat,extGcd.coef2,i,j)
-- add to column j -mjj*column i --
rMat:=elColumn2(rMat,-mjj,j,i)
-- multiply by -1 column j --
setColumn!(rMat,j,map(-1 * #1,column(rMat,j)))
[m,lMat,rMat]
-- given a diagonal matrix compute its Smith form --
lastStep(sf : SmithForm) : SmithForm ==
m:=sf.Smith
m1:=min(nrows m,ncols m)
for i in 1..m1 while not zero?(mii:=m(i,i)) repeat
for j in i+1..m1 repeat
if (m(j,j) exquo mii) case "failed" then return
lastStep(ijDivide(sf,i,j))
sf
-- given m and t row-equivalent matrices, with t in upper triangular --
-- form compute the matrix u such that u*m=t --
findEqMat(m : M,t : M) : Record(Hermite : M, eqMat : M) ==
m1:=nrows m
n1:=ncols m
"and"/[zero? t(m1,j) for j in 1..n1] => -- there are 0 rows
if "and"/[zero? t(1,j) for j in 1..n1]
then return [m,scalarMatrix(m1,1)] -- m is the zero matrix
mm:=horizConcat(m,scalarMatrix(m1,1))
mmh:=rowEchelon mm
[subMatrix(mmh,1,m1,1,n1), subMatrix(mmh,1,m1,n1+1,n1+m1)]
u:M:=zero(m1,m1)
j: Integer :=1
while t(1,j)=0 repeat j:=j+1 -- there are 0 columns
t1:=copy t
mm:=copy m
if j>1 then
t1:=subMatrix(t,1,m1,j,n1)
mm:=subMatrix(m,1,m1,j,n1)
t11:=t1(1,1)
for i in 1..m1 repeat
u(i,1) := (mm(i,1) exquo t11) :: R
for j: local in 2..m1 repeat
j0:=j
tjj : R
while zero?(tjj:=t1(j,j0)) repeat j0:=j0+1
u(i,j) :=((mm(i,j0) - ("+"/[u(i,k) * t1(k,j0) for k in 1..(j-1)])) exquo
tjj) :: R
u1:M2:= map(#1 :: QF,u)$MATCAT1
[t,map(retract$QF,(inverse u1)::M2)$MATCAT2]
--- Hermite normal form of m ---
hermite(m:M) : M == rowEchelon m
-- Hermite normal form and equivalence matrix --
completeHermite(m : M) : Record(Hermite : M, eqMat : M) ==
findEqMat(m,rowEchelon m)
smith(m : M) : M == completeSmith(m).Smith
completeSmith(m : M) : Record(Smith : M, leftEqMat : M, rightEqMat : M) ==
cm1:=completeHermite m
leftm:=cm1.eqMat
m1:=cm1.Hermite
isDiagonal? m1 => lastStep([m1,leftm,scalarMatrix(ncols m,1)])
nr:=nrows m
cm1:=completeHermite transpose m1
rightm:= transpose cm1.eqMat
m1:=cm1.Hermite
isDiagonal? m1 =>
cm2:=lastStep([m1,leftm,rightm])
nrows(m:=cm2.Smith) = nr => cm2
[transpose m,cm2.leftEqMat, cm2.rightEqMat]
cm2:=completeSmith m1
cm2:=lastStep([cm2.Smith,transpose(cm2.rightEqMat)*leftm,
rightm*transpose(cm2.leftEqMat)])
nrows(m:=cm2.Smith) = nr => cm2
[transpose m, cm2.leftEqMat, cm2.rightEqMat]
-- Find the solution in R of the linear system mX = b --
diophantineSystem(m : M, b : Col) : Both ==
sf:=completeSmith m
sm:=sf.Smith
m1:=nrows sm
lm:=sf.leftEqMat
b1:Col:= lm* b
(t1:=test1(sm,b1,m1)) case "failed" => ["failed",empty()]
dk:=t1 :: NNI
n1:=ncols sm
(t2:=test2(sm,b1,n1,dk)) case "failed" => ["failed",empty()]
rm := sf.rightEqMat
sol:=rm*(t2 :: Col) -- particular solution
dk = n1 => [sol,list new(n1,0)]
lsol:List Col := [column(rm,i) for i in (dk+1)..n1]
[sol,lsol]
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package SMITH SmithNormalForm>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|