1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra sign.spad}
\author{Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package TOOLSIGN ToolsForSign}
<<package TOOLSIGN ToolsForSign>>=
)abbrev package TOOLSIGN ToolsForSign
++ Tools for the sign finding utilities
++ Author: Manuel Bronstein
++ Date Created: 25 August 1989
++ Date Last Updated: 26 November 1991
++ Description: Tools for the sign finding utilities.
ToolsForSign(R:Ring): with
sign : R -> Union(Integer, "failed")
++ sign(r) \undocumented
nonQsign : R -> Union(Integer, "failed")
++ nonQsign(r) \undocumented
direction: String -> Integer
++ direction(s) \undocumented
== add
if R is AlgebraicNumber then
nonQsign r ==
sign((r pretend AlgebraicNumber)::Expression(
Integer))$ElementaryFunctionSign(Integer, Expression Integer)
else
nonQsign r == "failed"
if R has RetractableTo Fraction Integer then
sign r ==
(u := retractIfCan(r)@Union(Fraction Integer, "failed"))
case Fraction(Integer) => sign(u::Fraction Integer)
nonQsign r
else
if R has RetractableTo Integer then
sign r ==
(u := retractIfCan(r)@Union(Integer, "failed"))
case "failed" => "failed"
sign(u::Integer)
else
sign r ==
zero? r => 0
one? r => 1
r = -1 => -1
"failed"
direction st ==
st = "right" => 1
st = "left" => -1
error "Unknown option"
@
\section{package INPSIGN InnerPolySign}
<<package INPSIGN InnerPolySign>>=
)abbrev package INPSIGN InnerPolySign
--%% InnerPolySign
++ Author: Manuel Bronstein
++ Date Created: 23 Aug 1989
++ Date Last Updated: 19 Feb 1990
++ Description:
++ Find the sign of a polynomial around a point or infinity.
InnerPolySign(R, UP): Exports == Implementation where
R : Ring
UP: UnivariatePolynomialCategory R
U ==> Union(Integer, "failed")
Exports ==> with
signAround: (UP, Integer, R -> U) -> U
++ signAround(u,i,f) \undocumented
signAround: (UP, R, Integer, R -> U) -> U
++ signAround(u,r,i,f) \undocumented
signAround: (UP, R, R -> U) -> U
++ signAround(u,r,f) \undocumented
Implementation ==> add
signAround(p:UP, x:R, rsign:R -> U) ==
(ur := signAround(p, x, 1, rsign)) case "failed" => "failed"
(ul := signAround(p, x, -1, rsign)) case "failed" => "failed"
(ur::Integer) = (ul::Integer) => ur
"failed"
signAround(p, x, dir, rsign) ==
zero? p => 0
zero?(r := p x) =>
(u := signAround(differentiate p, x, dir, rsign)) case "failed"
=> "failed"
dir * u::Integer
rsign r
signAround(p:UP, dir:Integer, rsign:R -> U) ==
zero? p => 0
(u := rsign leadingCoefficient p) case "failed" => "failed"
positive? dir or (even? degree p) => u::Integer
- (u::Integer)
@
\section{package SIGNRF RationalFunctionSign}
<<package SIGNRF RationalFunctionSign>>=
)abbrev package SIGNRF RationalFunctionSign
--%% RationalFunctionSign
++ Author: Manuel Bronstein
++ Date Created: 23 August 1989
++ Date Last Updated: 26 November 1991
++ Description:
++ Find the sign of a rational function around a point or infinity.
RationalFunctionSign(R:GcdDomain): Exports == Implementation where
SE ==> Symbol
P ==> Polynomial R
RF ==> Fraction P
ORF ==> OrderedCompletion RF
UP ==> SparseUnivariatePolynomial RF
U ==> Union(Integer, "failed")
SGN ==> ToolsForSign(R)
Exports ==> with
sign: RF -> U
++ sign f returns the sign of f if it is constant everywhere.
sign: (RF, SE, ORF) -> U
++ sign(f, x, a) returns the sign of f as x approaches \spad{a},
++ from both sides if \spad{a} is finite.
sign: (RF, SE, RF, String) -> U
++ sign(f, x, a, s) returns the sign of f as x nears \spad{a} from
++ the left (below) if s is the string \spad{"left"},
++ or from the right (above) if s is the string \spad{"right"}.
Implementation ==> add
import SGN
import InnerPolySign(RF, UP)
import PolynomialCategoryQuotientFunctions(IndexedExponents SE,
SE, R, P, RF)
psign : P -> U
sqfrSign : P -> U
termSign : P -> U
listSign : (List P, Integer) -> U
finiteSign: (Fraction UP, RF) -> U
sign f ==
(un := psign numer f) case "failed" => "failed"
(ud := psign denom f) case "failed" => "failed"
(un::Integer) * (ud::Integer)
finiteSign(g, a) ==
(ud := signAround(denom g, a, sign$%)) case "failed" => "failed"
(un := signAround(numer g, a, sign$%)) case "failed" => "failed"
(un::Integer) * (ud::Integer)
sign(f, x, a) ==
g := univariate(f, x)
zero?(n := whatInfinity a) => finiteSign(g, retract a)
(ud := signAround(denom g, n, sign$%)) case "failed" => "failed"
(un := signAround(numer g, n, sign$%)) case "failed" => "failed"
(un::Integer) * (ud::Integer)
sign(f, x, a, st) ==
(ud := signAround(denom(g := univariate(f, x)), a,
d := direction st, sign$%)) case "failed" => "failed"
(un := signAround(numer g, a, d, sign$%)) case "failed" => "failed"
(un::Integer) * (ud::Integer)
psign p ==
(r := retractIfCan(p)@Union(R, "failed")) case R => sign(r::R)$SGN
(u := sign(retract(unit(s := squareFree p))@R)$SGN) case "failed" =>
"failed"
ans := u::Integer
for term in factors s | odd?(term.exponent) repeat
(u := sqfrSign(term.factor)) case "failed" => return "failed"
ans := ans * (u::Integer)
ans
sqfrSign p ==
(u := termSign first(l := monomials p)) case "failed" => "failed"
listSign(rest l, u::Integer)
listSign(l, s) ==
for term in l repeat
(u := termSign term) case "failed" => return "failed"
u::Integer ~= s => return "failed"
s
termSign term ==
for var in variables term repeat
odd? degree(term, var) => return "failed"
sign(leadingCoefficient term)$SGN
@
\section{package LIMITRF RationalFunctionLimitPackage}
<<package LIMITRF RationalFunctionLimitPackage>>=
)abbrev package LIMITRF RationalFunctionLimitPackage
++ Computation of limits for rational functions
++ Author: Manuel Bronstein
++ Date Created: 4 October 1989
++ Date Last Updated: 26 November 1991
++ Description: Computation of limits for rational functions.
++ Keywords: limit, rational function.
RationalFunctionLimitPackage(R:GcdDomain):Exports==Implementation where
Z ==> Integer
P ==> Polynomial R
RF ==> Fraction P
EQ ==> Equation
ORF ==> OrderedCompletion RF
OPF ==> OnePointCompletion RF
UP ==> SparseUnivariatePolynomial RF
SE ==> Symbol
QF ==> Fraction SparseUnivariatePolynomial RF
Result ==> Union(ORF, "failed")
TwoSide ==> Record(leftHandLimit:Result, rightHandLimit:Result)
U ==> Union(ORF, TwoSide, "failed")
RFSGN ==> RationalFunctionSign(R)
Exports ==> with
-- The following are the one we really want, but the interpreter cannot
-- handle them...
-- limit: (RF,EQ ORF) -> U
-- ++ limit(f(x),x,a) computes the real two-sided limit lim(x -> a,f(x))
-- complexLimit: (RF,EQ OPF) -> OPF
-- ++ complexLimit(f(x),x,a) computes the complex limit lim(x -> a,f(x))
-- ... so we replace them by the following 4:
limit: (RF,EQ OrderedCompletion P) -> U
++ limit(f(x),x = a) computes the real two-sided limit
++ of f as its argument x approaches \spad{a}.
limit: (RF,EQ RF) -> U
++ limit(f(x),x = a) computes the real two-sided limit
++ of f as its argument x approaches \spad{a}.
complexLimit: (RF,EQ OnePointCompletion P) -> OPF
++ \spad{complexLimit(f(x),x = a)} computes the complex limit
++ of \spad{f} as its argument x approaches \spad{a}.
complexLimit: (RF,EQ RF) -> OPF
++ complexLimit(f(x),x = a) computes the complex limit
++ of f as its argument x approaches \spad{a}.
limit: (RF,EQ RF,String) -> Result
++ limit(f(x),x,a,"left") computes the real limit
++ of f as its argument x approaches \spad{a} from the left;
++ limit(f(x),x,a,"right") computes the corresponding limit as x
++ approaches \spad{a} from the right.
Implementation ==> add
import ToolsForSign R
import InnerPolySign(RF, UP)
import RFSGN
import PolynomialCategoryQuotientFunctions(IndexedExponents SE,
SE, R, P, RF)
finiteComplexLimit: (QF, RF) -> OPF
finiteLimit : (QF, RF) -> U
fLimit : (Z, UP, RF, Z) -> Result
-- These 2 should be exported, see comment above
locallimit : (RF, SE, ORF) -> U
locallimitcomplex: (RF, SE, OPF) -> OPF
limit(f:RF,eq:EQ RF) ==
(xx := retractIfCan(lhs eq)@Union(SE,"failed")) case "failed" =>
error "limit: left hand side must be a variable"
x := xx :: SE; a := rhs eq
locallimit(f,x,a::ORF)
complexLimit(f:RF,eq:EQ RF) ==
(xx := retractIfCan(lhs eq)@Union(SE,"failed")) case "failed" =>
error "limit: left hand side must be a variable"
x := xx :: SE; a := rhs eq
locallimitcomplex(f,x,a::OPF)
limit(f:RF,eq:EQ OrderedCompletion P) ==
(p := retractIfCan(lhs eq)@Union(P,"failed")) case "failed" =>
error "limit: left hand side must be a variable"
(xx := retractIfCan(p)@Union(SE,"failed")) case "failed" =>
error "limit: left hand side must be a variable"
x := xx :: SE
a := map(#1::RF,rhs eq)$OrderedCompletionFunctions2(P,RF)
locallimit(f,x,a)
complexLimit(f:RF,eq:EQ OnePointCompletion P) ==
(p := retractIfCan(lhs eq)@Union(P,"failed")) case "failed" =>
error "limit: left hand side must be a variable"
(xx := retractIfCan(p)@Union(SE,"failed")) case "failed" =>
error "limit: left hand side must be a variable"
x := xx :: SE
a := map(#1::RF,rhs eq)$OnePointCompletionFunctions2(P,RF)
locallimitcomplex(f,x,a)
fLimit(n, d, a, dir) ==
(s := signAround(d, a, dir, sign$RFSGN)) case "failed" => "failed"
n * (s::Z) * plusInfinity()
finiteComplexLimit(f, a) ==
zero?(n := (numer f) a) => 0
zero?(d := (denom f) a) => infinity()
(n / d)::OPF
finiteLimit(f, a) ==
zero?(n := (numer f) a) => 0
zero?(d := (denom f) a) =>
(s := sign(n)$RFSGN) case "failed" => "failed"
rhsl := fLimit(s::Z, denom f, a, 1)
lhsl := fLimit(s::Z, denom f, a, -1)
rhsl case "failed" =>
lhsl case "failed" => "failed"
[lhsl, rhsl]
lhsl case "failed" => [lhsl, rhsl]
rhsl::ORF = lhsl::ORF => lhsl::ORF
[lhsl, rhsl]
(n / d)::ORF
locallimit(f,x,a) ==
g := univariate(f, x)
zero?(n := whatInfinity a) => finiteLimit(g, retract a)
(dn := degree numer g) > (dd := degree denom g) =>
(sn := signAround(numer g, n, sign$RFSGN)) case "failed" => "failed"
(sd := signAround(denom g, n, sign$RFSGN)) case "failed" => "failed"
(sn::Z) * (sd::Z) * plusInfinity()
dn < dd => 0
((leadingCoefficient numer g) / (leadingCoefficient denom g))::ORF
limit(f,eq,st) ==
(xx := retractIfCan(lhs eq)@Union(SE,"failed")) case "failed" =>
error "limit: left hand side must be a variable"
x := xx :: SE; a := rhs eq
zero?(n := (numer(g := univariate(f, x))) a) => 0
zero?(d := (denom g) a) =>
(s := sign(n)$RFSGN) case "failed" => "failed"
fLimit(s::Z, denom g, a, direction st)
(n / d)::ORF
locallimitcomplex(f,x,a) ==
g := univariate(f, x)
(r := retractIfCan(a)@Union(RF, "failed")) case RF =>
finiteComplexLimit(g, r::RF)
(dn := degree numer g) > (dd := degree denom g) => infinity()
dn < dd => 0
((leadingCoefficient numer g) / (leadingCoefficient denom g))::OPF
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package TOOLSIGN ToolsForSign>>
<<package INPSIGN InnerPolySign>>
<<package SIGNRF RationalFunctionSign>>
<<package LIMITRF RationalFunctionLimitPackage>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|