aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/sf.spad.pamphlet
blob: c64c6cba04a6bbdf9a16a7408027b8c1d8c6c33c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra sf.spad}
\author{Michael Monagan, Stephen M. Watt}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{category REAL RealConstant}
<<category REAL RealConstant>>=
)abbrev category REAL RealConstant
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ The category of real numeric domains, i.e. convertible to floats.
RealConstant(): Category ==
  Join(ConvertibleTo DoubleFloat, ConvertibleTo Float)

@
\section{category RADCAT RadicalCategory}
<<category RADCAT RadicalCategory>>=
)abbrev category RADCAT RadicalCategory
++ Author:
++ Date Created:
++ Change History:
++ Basic Operations: nthRoot, sqrt, **
++ Related Constructors:
++ Keywords: rational numbers
++ Description: The \spad{RadicalCategory} is a model for the rational numbers.
RadicalCategory(): Category == with
  sqrt   : % -> %
      ++ sqrt(x) returns the square root of x.
  nthRoot: (%, Integer) -> %
      ++ nthRoot(x,n) returns the nth root of x.
  **   : (%, Fraction Integer) -> %
      ++ x ** y is the rational exponentiation of x by the power y.
 add
  sqrt x        == x ** inv(2::Fraction(Integer))
  nthRoot(x, n) == x ** inv(n::Fraction(Integer))

@
\section{category RNS RealNumberSystem}
<<category RNS RealNumberSystem>>=
)abbrev category RNS RealNumberSystem
++ Author: Michael Monagan and Stephen M. Watt
++ Date Created:
++   January 1988
++ Change History:
++ Basic Operations: abs, ceiling, wholePart, floor, fractionPart, norm, round, truncate
++ Related Constructors:
++ Keywords: real numbers
++ Description:  
++ The real number system category is intended as a model for the real
++ numbers.  The real numbers form an ordered normed field.  Note that
++ we have purposely not included \spadtype{DifferentialRing} or the elementary
++ functions (see \spadtype{TranscendentalFunctionCategory}) in the definition.
RealNumberSystem(): Category ==
  Join(Field, OrderedRing, RealConstant, RetractableTo Integer,
       RetractableTo Fraction Integer, RadicalCategory,
        ConvertibleTo Pattern Float, PatternMatchable Float,
          CharacteristicZero) with
    norm : % -> %
      ++ norm x returns the same as absolute value.
    ceiling : % -> %
      ++ ceiling x returns the small integer \spad{>= x}.
    floor: % -> %
      ++ floor x returns the largest integer \spad{<= x}.
    wholePart  : % -> Integer
      ++ wholePart x returns the integer part of x.
    fractionPart : % -> %
      ++ fractionPart x returns the fractional part of x.
    truncate: % -> %
      ++ truncate x returns the integer between x and 0 closest to x.
    round: % -> %
      ++ round x computes the integer closest to x.

 add
   characteristic == 0
   fractionPart x           == x - truncate x
   truncate x          == (negative? x => -floor(-x); floor x)
   round x          == (negative? x => truncate(x-1/2::%); truncate(x+1/2::%))
   norm x           == abs x
   coerce(x:Fraction Integer):% == numer(x)::% / denom(x)::%
   convert(x:%):Pattern(Float)  == convert(x)@Float :: Pattern(Float)

   floor x ==
      x1 := (wholePart x) :: %
      x = x1 => x
      negative? x => (x1 - 1)
      x1

   ceiling x ==
      x1 := (wholePart x)::%
      x = x1 => x
      x >= 0 => (x1 + 1)
      x1

   patternMatch(x, p, l) ==
     generic? p => addMatch(p, x, l)
     constant? p =>
       (r := retractIfCan(p)@Union(Float, "failed")) case Float =>
         convert(x)@Float = r::Float => l
         failed()
       failed()
     failed()

@

\section{category FPS FloatingPointSystem}
<<category FPS FloatingPointSystem>>=
)abbrev category FPS FloatingPointSystem
++ Author:
++ Date Created:
++ Change History:
++ Basic Operations: approximate, base, bits, digits, exponent, float,
++    mantissa, order, precision, round?
++ Related Constructors:
++ Keywords: float, floating point
++ Description:  
++ This category is intended as a model for floating point systems.
++ A floating point system is a model for the real numbers.  In fact,
++ it is an approximation in the sense that not all real numbers are
++ exactly representable by floating point numbers.
++ A floating point system is characterized by the following:
++
++   1: \spadfunFrom{base}{FloatingPointSystem} of the \spadfunFrom{exponent}{FloatingPointSystem}.
++          (actual implemenations are usually binary or decimal)
++   2: \spadfunFrom{precision}{FloatingPointSystem} of the \spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)
++   3: rounding error for operations
--++   4:  when, and what happens if exponent overflow/underflow occurs
++
++ Because a Float is an approximation to the real numbers, even though
++ it is defined to be a join of a Field and OrderedRing, some of
++ the attributes do not hold.  In particular associative("+")
++ does not hold.  Algorithms defined over a field need special
++ considerations when the field is a floating point system.
FloatingPointSystem(): Category == RealNumberSystem() with
   approximate
      ++ \spad{approximate} means "is an approximation to the real numbers".
   float: (Integer,Integer) -> %
      ++ float(a,e) returns \spad{a * base() ** e}.
   float: (Integer,Integer,PositiveInteger) -> %
      ++ float(a,e,b) returns \spad{a * b ** e}.
   order: % -> Integer
      ++ order x is the order of magnitude of x.
      ++ Note: \spad{base ** order x <= |x| < base ** (1 + order x)}.
   base: () -> PositiveInteger
      ++ base() returns the base of the \spadfunFrom{exponent}{FloatingPointSystem}.
   exponent: % -> Integer
      ++ exponent(x) returns the \spadfunFrom{exponent}{FloatingPointSystem} part of x.
   mantissa: % -> Integer
      ++ mantissa(x) returns the mantissa part of x.
  -- round?: () -> B
  --    ++ round?() returns the rounding or chopping.

   bits: () -> PositiveInteger
      ++ bits() returns ceiling's precision in bits.
   digits: () -> PositiveInteger
      ++ digits() returns ceiling's precision in decimal digits.
   precision: () -> PositiveInteger
      ++ precision() returns the precision in digits base.

   if % has arbitraryPrecision then
      bits: PositiveInteger -> PositiveInteger
        ++ bits(n) set the \spadfunFrom{precision}{FloatingPointSystem} to n bits.
      digits: PositiveInteger -> PositiveInteger
        ++ digits(d) set the \spadfunFrom{precision}{FloatingPointSystem} to d digits.
      precision: PositiveInteger -> PositiveInteger
        ++ precision(n) set the precision in the base to n decimal digits.
      increasePrecision: Integer -> PositiveInteger
        ++ increasePrecision(n) increases the current
        ++ \spadfunFrom{precision}{FloatingPointSystem} by n decimal digits.
      decreasePrecision: Integer -> PositiveInteger
        ++ decreasePrecision(n) decreases the current
        ++ \spadfunFrom{precision}{FloatingPointSystem} precision by n decimal digits.
   if not (% has arbitraryExponent) then
    --  overflow: (()->Exit) -> Void
    --    ++ overflow() returns the Exponent overflow of float
    --  underflow: (()->Exit) -> Void
    --    ++ underflow() returns the Exponent underflow of float
    --  maxExponent: () -> Integer
    --    ++ maxExponent() returns the max Exponent of float
      if not (% has arbitraryPrecision) then
         min: () -> %
          ++ min() returns the minimum floating point number.
         max: () -> %
          ++ max() returns the maximum floating point number.
 add
   float(ma, ex) == float(ma, ex, base())
   digits() == max(1,4004 * (bits()-1) quo 13301)::PositiveInteger

@

\section{domain DFLOAT DoubleFloat}

\end{quote}
<<domain DFLOAT DoubleFloat>>=
)abbrev domain DFLOAT DoubleFloat
++ Author: Michael Monagan
++ Date Created:
++   January 1988
++ Date Last Modified: June 26, 2011.
++ Change History:
++ Basic Operations: exp1, hash, log2, log10, rationalApproximation, / , **
++ Related Constructors:
++ Keywords: small float
++ Description:  \spadtype{DoubleFloat} is intended to make accessible
++ hardware floating point arithmetic in \Language{}, either native double
++ precision, or IEEE. On most machines, there will be hardware support for
++ the arithmetic operations:
++ \spadfunFrom{+}{DoubleFloat}, \spadfunFrom{*}{DoubleFloat},
++ \spadfunFrom{/}{DoubleFloat} and possibly also the
++ \spadfunFrom{sqrt}{DoubleFloat} operation.
++ The operations \spadfunFrom{exp}{DoubleFloat},
++ \spadfunFrom{log}{DoubleFloat}, \spadfunFrom{sin}{DoubleFloat},
++ \spadfunFrom{cos}{DoubleFloat},
++ \spadfunFrom{atan}{DoubleFloat} are normally coded in
++ software based on minimax polynomial/rational approximations.
++ Note that under Lisp/VM, \spadfunFrom{atan}{DoubleFloat}
++ is not available at this time.
++ Some general comments about the accuracy of the operations:
++ the operations \spadfunFrom{+}{DoubleFloat},
++ \spadfunFrom{*}{DoubleFloat}, \spadfunFrom{/}{DoubleFloat} and
++ \spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate.
++ The operations \spadfunFrom{exp}{DoubleFloat},
++ \spadfunFrom{log}{DoubleFloat}, \spadfunFrom{sin}{DoubleFloat},
++ \spadfunFrom{cos}{DoubleFloat} and
++ \spadfunFrom{atan}{DoubleFloat} are not expected to be
++ fully accurate.  In particular, \spadfunFrom{sin}{DoubleFloat}
++ and \spadfunFrom{cos}{DoubleFloat}
++ will lose all precision for large arguments.
++
++ The \spadtype{Float} domain provides an alternative to the \spad{DoubleFloat} domain.
++ It provides an arbitrary precision model of floating point arithmetic.
++ This means that accuracy problems like those above are eliminated
++ by increasing the working precision where necessary.  \spadtype{Float}
++ provides some special functions such as \spadfunFrom{erf}{DoubleFloat},
++ the error function
++ in addition to the elementary functions.  The disadvantage of
++ \spadtype{Float} is that it is much more expensive than small floats when the latter can be used.
-- I've put some timing comparisons in the notes for the Float
-- domain about the difference in speed between the two domains.
DoubleFloat(): Join(FloatingPointSystem, DifferentialRing,
   TranscendentalFunctionCategory, ConvertibleTo InputForm) with
      /   : (%, Integer) -> %
        ++ x / i computes the division from x by an integer i.
      ** : (%,%) -> %
        ++ x ** y returns the yth power of x (equal to \spad{exp(y log x)}).
      exp1 : () -> %
        ++ exp1() returns the natural log base \spad{2.718281828...}.
      log2 :  % -> %
        ++ log2(x) computes the logarithm with base 2 for x.
      log10: % -> %
        ++ log10(x) computes the logarithm with base 10 for x.
      atan : (%,%) -> %
        ++ atan(x,y) computes the arc tangent from x with phase y.
      Gamma: % -> %
        ++ Gamma(x) is the Euler Gamma function.
      Beta : (%,%) -> %
        ++ Beta(x,y) is \spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.
      rationalApproximation: (%, NonNegativeInteger) -> Fraction Integer
        ++ rationalApproximation(f, n) computes a rational approximation
        ++ r to f with relative error \spad{< 10**(-n)}.
      rationalApproximation: (%, NonNegativeInteger, NonNegativeInteger) -> Fraction Integer
         ++ rationalApproximation(f, n, b) computes a rational
         ++ approximation r to f with relative error \spad{< b**(-n)}
         ++ (that is, \spad{|(r-f)/f| < b**(-n)}).
      nan?: % -> Boolean
         ++ \spad{nan? x} holds if \spad{x} is a Not a Number floating
         ++ point data in the IEEE 754 sense.

 == add
   macro MER == Record(MANTISSA:Integer,EXPONENT:Integer)
   import %hash: % -> SingleInteger     from Foreign Builtin
   import %fminval: () -> %             from Foreign Builtin
   import %fmaxval: () -> %             from Foreign Builtin
   import %fbase: () -> PositiveInteger from Foreign Builtin
   import %fprec: () -> PositiveInteger from Foreign Builtin
   import %i2f: Integer -> %            from Foreign Builtin
   import %fabs: % -> %                 from Foreign Builtin
   import %fneg: % -> %                 from Foreign Builtin
   import %ftrunc: % -> Integer         from Foreign Builtin
   import %fmul: (%,%) -> %             from Foreign Builtin
   import %imulf: (Integer,%) -> %      from Foreign Builtin
   import %fadd: (%,%) -> %             from Foreign Builtin
   import %fsub: (%,%) -> %             from Foreign Builtin
   import %fdiv: (%,%) -> %             from Foreign Builtin
   import %fdivi: (%,Integer) -> %      from Foreign Builtin
   import %fmin: (%,%) -> %             from Foreign Builtin
   import %fmax: (%,%) -> %             from Foreign Builtin
   import %feq: (%,%) -> Boolean        from Foreign Builtin
   import %flt: (%,%) -> Boolean        from Foreign Builtin
   import %fle: (%,%) -> Boolean        from Foreign Builtin
   import %fgt: (%,%) -> Boolean        from Foreign Builtin
   import %fge: (%,%) -> Boolean        from Foreign Builtin
   import %fpowi: (%,Integer) -> %      from Foreign Builtin
   import %fpowf: (%,%) -> %            from Foreign Builtin
   import %fsqrt: % -> %                from Foreign Builtin
   import %fexp: % -> %                 from Foreign Builtin
   import %flog: % -> %                 from Foreign Builtin
   import %flog2: % -> %                from Foreign Builtin
   import %flog10: % -> %               from Foreign Builtin
   import %fsin: % -> %                 from Foreign Builtin
   import %fcos: % -> %                 from Foreign Builtin
   import %ftan: % -> %                 from Foreign Builtin
   import %fcot: % -> %                 from Foreign Builtin
   import %fasin: % -> %                from Foreign Builtin
   import %facos: % -> %                from Foreign Builtin
   import %fatan: % -> %                from Foreign Builtin
   import %facot: % -> %                from Foreign Builtin
   import %fsinh: % -> %                from Foreign Builtin
   import %fcosh: % -> %                from Foreign Builtin
   import %ftanh: % -> %                from Foreign Builtin
   import %fasinh: % -> %               from Foreign Builtin
   import %facosh: % -> %               from Foreign Builtin
   import %fatanh: % -> %               from Foreign Builtin
   import %fcstpi: () -> %              from Foreign Builtin
   import %fNaN?: % -> Boolean          from Foreign Builtin
   import %fdecode: % -> List Integer   from Foreign Builtin
   import %lfirst: List Integer -> Integer from Foreign Builtin
   import %lsecond: List Integer -> Integer from Foreign Builtin
   import %lthird: List Integer -> Integer from Foreign Builtin

   base()           == %fbase()
   mantissa x       ==
     fp := %fdecode x
     %lfirst fp * %lthird fp
   exponent x       == %lsecond %fdecode x
   precision()      == %fprec()
   bits()           ==
     base() = 2 => precision()
     base() = 16 => 4*precision()
     wholePart(precision() * log2 %i2f base())::PositiveInteger
   max()            == %fmaxval()
   min()            == %fminval()
   order(a) == precision() + exponent a - 1
   0                == %i2f(0@Integer)
   1                == %i2f(1@Integer)
   -- rational approximation to e accurate to 23 digits
   exp1()           == %i2f(534625820200) / %i2f(196677847971)
   pi()             == %fcstpi()
   coerce(x:%):OutputForm == outputForm x
   convert(x:%):InputForm == convert(x pretend DoubleFloat)$InputForm
   x < y            == %flt(x,y)
   x > y            == %fgt(x,y)
   x <= y           == %fle(x,y)
   x >= y           == %fge(x,y)
   - x              == %fneg x
   x + y            == %fadd(x,y)
   x:% - y:%        == %fsub(x,y)
   x:% * y:%        == %fmul(x,y)
   i:Integer * x:%  == %imulf(i,x)
   max(x,y)         == %fmax(x,y)
   min(x,y)         == %fmin(x,y)
   x = y            == %feq(x,y)
   x:% / i:Integer  == %fdivi(x,i)
   sqrt x           == %fsqrt x
   log10 x          == %flog10 x
   x:% ** i:Integer == %fpowi(x,i)
   x:% ** y:%       == %fpowf(x,y)
   coerce(i:Integer):% == %i2f i
   exp x            == %fexp x
   log x            == %flog x
   log2 x           == %flog2 x
   sin x            == %fsin x
   cos x            == %fcos x
   tan x            == %ftan x
   cot x            == %fcot x
   sec x            == 1/cos(x)
   csc x            == 1/sin(x)
   asin x           == %fasin x
   acos x           == %facos x
   atan x           == %fatan x
   acsc x           == asin(1/x)
   acot x           == %facot x
   asec x           == acos(1/x)
   sinh x           == %fsinh x
   cosh x           == %fcosh x
   tanh x           == %ftanh x
   csch x           == 1/sinh(x)
   coth x           == 1/tanh(x)
   sech x           == 1/cosh(x)
   asinh x          == %fasinh x
   acosh x          == %facosh x
   atanh x          == %fatanh x
   acsch x          == asinh(1/x)
   acoth x          == atanh(1/x)
   asech x          == acosh(1/x)
   x:% / y:%        == %fdiv(x,y)
   negative? x      == sign x < 0
   zero? x          == x = 0
   one? x           == x = 1
   hash x           == %hash x
   recip(x)         == (zero? x => "failed"; 1 / x)
   differentiate x  == 0

   SFSFUN           ==> DoubleFloatSpecialFunctions()
   sfx              ==> x pretend DoubleFloat
   sfy              ==> y pretend DoubleFloat
   Gamma x          == Gamma(sfx)$SFSFUN pretend %
   Beta(x,y)        == Beta(sfx,sfy)$SFSFUN pretend %

   wholePart x      == %ftrunc x
   float(ma,ex,b)   == ma * %i2f(b)**ex
   convert(x:%):DoubleFloat == x pretend DoubleFloat
   convert(x:%):Float == convert(x pretend DoubleFloat)$Float
   rationalApproximation(x, d) == rationalApproximation(x, d, 10)

   atan(x,y) ==
      zero? x =>
         positive? y => pi()/2
         negative? y => -pi()/2
         0
      -- Only count on first quadrant being on principal branch.
      theta := atan abs(y/x)
      if negative? x then theta := pi() - theta
      if negative? y then theta := - theta
      theta

   retract(x:%):Fraction(Integer) ==
     rationalApproximation(x, (precision() - 1)::NonNegativeInteger, base())

   retractIfCan(x:%):Union(Fraction Integer, "failed") ==
     rationalApproximation(x, (precision() - 1)::NonNegativeInteger, base())

   retract(x:%):Integer ==
     x = (%i2f(n := wholePart x)) => n
     error "Not an integer"

   retractIfCan(x:%):Union(Integer, "failed") ==
     x = (%i2f(n := wholePart x)) => n
     "failed"

   sign(x) == %lthird %fdecode x
   abs x   == %fabs x
   positive? x == sign x > 0
   manexp(x: %): MER ==
      fp := %fdecode x
      m := %lfirst fp
      zero? m => [m,0]
      [%lfirst fp * %lthird fp, %lsecond fp]

-- rationalApproximation(y,d,b) ==
--    this is the quotient remainder algorithm (requires wholePart operation)
--    x := y
--    if b < 2 then error "base must be > 1"
--    tol := (b::%)**d
--    p0,p1,q0,q1 : Integer
--    p0 := 0; p1 := 1; q0 := 1; q1 := 0
--    repeat
--       a := wholePart x
--       x := fractionPart x
--       p2 := p0+a*p1
--       q2 := q0+a*q1
--       if x = 0 or tol*abs(q2*y-(p2::%)) < abs(q2*y) then
--          return (p2/q2)
--       (p0,p1) := (p1,p2)
--       (q0,q1) := (q1,q2)
--       x := 1/x

   rationalApproximation(f,d,b) ==
      -- this algorithm expresses f as n / d where d = BASE ** k
      -- then all arithmetic operations are done over the integers
      (nu, ex) := manexp f
      BASE := base()
      ex >= 0 => (nu * BASE ** (ex::NonNegativeInteger))::Fraction(Integer)
      de :Integer := BASE**((-ex)::NonNegativeInteger)
      b < 2 => error "base must be > 1"
      tol := b**d
      s := nu; t := de
      p0:Integer := 0; p1:Integer := 1; q0:Integer := 1; q1:Integer := 0
      repeat
         (q,r) := divide(s, t)
         p2 := q*p1+p0
         q2 := q*q1+q0
         r = 0 or tol*abs(nu*q2-de*p2) < de*abs(p2) => return(p2/q2)
         (p0,p1) := (p1,p2)
         (q0,q1) := (q1,q2)
         (s,t) := (t,r)

   x:% ** r:Fraction Integer ==
      zero? x =>
         zero? r => error "0**0 is undefined"
         negative? r => error "division by 0"
         0
      zero? r or one? x => 1
      one?  r => x
      n := numer r
      d := denom r
      negative? x =>
         odd? d =>
            odd? n => return -((-x)**r)
            return ((-x)**r)
         error "negative root"
      d = 2 => sqrt(x) ** n
      x ** (n::% / d::%)

   nan? x == %fNaN? x
   opposite?(x,y) == x = -y
   annihilate?(x,y) == zero? x or zero? y
@

\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
-- Copyright (C) 2007-2010, Gabriel Dos Reis.
-- All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<category REAL RealConstant>>
<<category RADCAT RadicalCategory>>
<<category RNS RealNumberSystem>>
<<category FPS FloatingPointSystem>>
<<domain DFLOAT DoubleFloat>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} Steele, Guy L. Jr. ``Common Lisp The Language''
Second Edition 1990 ISBN 1-55558-041-6 Digital Press
\end{thebibliography}
\end{document}