aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/sets.spad.pamphlet
blob: 6e57f8e4ea27abc40962d63eaa6e3434fb349dcc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra sets.spad}
\author{Michael Monagan, Richard Jenks}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain SET Set}
<<domain SET Set>>=
)abbrev domain SET Set
++ Author: Michael Monagan; revised by Richard Jenks
++ Date Created: August 87 through August 88
++ Date Last Updated: May 1991
++ Basic Operations:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ A set over a domain D models the usual mathematical notion of a finite set
++ of elements from D.
++ Sets are unordered collections of distinct elements
++ (that is, order and duplication does not matter).
++ The notation \spad{set [a,b,c]} can be used to create
++ a set and the usual operations such as union and intersection are available
++ to form new sets.
++ In our implementation, \Language{} maintains the entries in
++ sorted order.  Specifically, the parts function returns the entries
++ as a list in ascending order and
++ the extract operation returns the maximum entry.
++ Given two sets s and t where \spad{#s = m} and \spad{#t = n},
++ the complexity of
++   \spad{s = t} is \spad{O(min(n,m))}
++   \spad{s < t} is \spad{O(max(n,m))}
++   \spad{union(s,t)}, \spad{intersect(s,t)}, \spad{minus(s,t)}, \spad{symmetricDifference(s,t)} is \spad{O(max(n,m))}
++   \spad{member(x,t)} is \spad{O(n log n)}
++   \spad{insert(x,t)} and \spad{remove(x,t)} is \spad{O(n)}
Set(S:SetCategory): FiniteSetAggregate S == add
   Rep := FlexibleArray(S)
   # s       == _#$Rep s
   brace()   == empty()
   set()     == empty()
   empty()   == empty()$Rep
   copy s    == copy(s)$Rep
   parts s   == parts(s)$Rep
   inspect s == (empty? s => error "Empty set"; s(maxIndex s))

   extract! s ==
     x := inspect s
     delete!(s, maxIndex s)
     x

   find(f, s) == find(f, s)$Rep

   map(f, s) == map!(f,copy s)

   map!(f,s) ==
     map!(f,s)$Rep
     removeDuplicates! s

   reduce(f, s) == reduce(f, s)$Rep

   reduce(f, s, x) == reduce(f, s, x)$Rep

   reduce(f, s, x, y) == reduce(f, s, x, y)$Rep

   if S has ConvertibleTo InputForm then
     convert(x:%):InputForm ==
        convert [convert('set)@InputForm,
                          convert(parts x)@InputForm]

   if S has OrderedSet then
     s = t == s =$Rep t
     max s == inspect s
     min s == (empty? s => error "Empty set"; s(minIndex s))

     construct l ==
       zero?(n := #l) => empty()
       a := new(n, first l)
       for i in minIndex(a).. for x in l repeat a.i := x
       removeDuplicates! sort! a

     insert!(x, s) ==
       n := inc maxIndex s
       k := minIndex s
       while k < n and x > s.k repeat k := inc k
       k < n and s.k = x => s
       insert!(x, s, k)

     member?(x, s) == -- binary search
       empty? s => false
       t := maxIndex s
       b := minIndex s
       while b < t repeat
         m := (b+t) quo 2
         if x > s.m then b := m+1 else t := m
       x = s.t

     remove!(x:S, s:%) ==
       n := inc maxIndex s
       k := minIndex s
       while k < n and x > s.k repeat k := inc k
       k < n and x = s.k => delete!(s, k)
       s

     -- the set operations are implemented as variations of merging
     intersect(s, t) ==
       m := maxIndex s
       n := maxIndex t
       i := minIndex s
       j := minIndex t
       r := empty()
       while i <= m and j <= n repeat
         s.i = t.j => (concat!(r, s.i); i := i+1; j := j+1)
         if s.i < t.j then i := i+1 else j := j+1
       r

     difference(s:%, t:%) ==
       m := maxIndex s
       n := maxIndex t
       i := minIndex s
       j := minIndex t
       r := empty()
       while i <= m and j <= n repeat
         s.i = t.j => (i := i+1; j := j+1)
         s.i < t.j => (concat!(r, s.i); i := i+1)
         j := j+1
       while i <= m repeat (concat!(r, s.i); i := i+1)
       r

     symmetricDifference(s, t) ==
       m := maxIndex s
       n := maxIndex t
       i := minIndex s
       j := minIndex t
       r := empty()
       while i <= m and j <= n repeat
         s.i < t.j => (concat!(r, s.i); i := i+1)
         s.i > t.j => (concat!(r, t.j); j := j+1)
         i := i+1; j := j+1
       while i <= m repeat (concat!(r, s.i); i := i+1)
       while j <= n repeat (concat!(r, t.j); j := j+1)
       r

     subset?(s, t) ==
       m := maxIndex s
       n := maxIndex t
       m > n => false
       i := minIndex s
       j := minIndex t
       while i <= m and j <= n repeat
         s.i = t.j => (i := i+1; j := j+1)
         s.i > t.j => j := j+1
         return false
       i > m

     union(s:%, t:%) ==
       m := maxIndex s
       n := maxIndex t
       i := minIndex s
       j := minIndex t
       r := empty()
       while i <= m and j <= n repeat
         s.i = t.j => (concat!(r, s.i); i := i+1; j := j+1)
         s.i < t.j => (concat!(r, s.i); i := i+1)
         (concat!(r, t.j); j := j+1)
       while i <= m repeat (concat!(r, s.i); i := i+1)
       while j <= n repeat (concat!(r, t.j); j := j+1)
       r

    else
      insert!(x, s) ==
        for k in minIndex s .. maxIndex s repeat
          s.k = x => return s
        insert!(x, s, inc maxIndex s)

      remove!(x:S, s:%) ==
        n := inc maxIndex s
        k := minIndex s
        while k < n repeat
          x = s.k => return delete!(s, k)
          k := inc k
        s

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--Copyright (C) 2007-2009, Gabriel Dos Reis.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<domain SET Set>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}