1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra rep1.spad}
\author{Holger Gollan, Johannes Grabmeier, Thorsten Werther}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package REP1 RepresentationPackage1}
<<package REP1 RepresentationPackage1>>=
)abbrev package REP1 RepresentationPackage1
++ Authors: Holger Gollan, Johannes Grabmeier, Thorsten Werther
++ Date Created: 12 September 1987
++ Date Last Updated: 24 May 1991
++ Basic Operations: antisymmetricTensors,symmetricTensors,
++ tensorProduct, permutationRepresentation
++ Related Constructors: RepresentationPackage1, Permutation
++ Also See: IrrRepSymNatPackage
++ AMS Classifications:
++ Keywords: representation, symmetrization, tensor product
++ References:
++ G. James, A. Kerber: The Representation Theory of the Symmetric
++ Group. Encycl. of Math. and its Appl. Vol 16., Cambr. Univ Press 1981;
++ J. Grabmeier, A. Kerber: The Evaluation of Irreducible
++ Polynomial Representations of the General Linear Groups
++ and of the Unitary Groups over Fields of Characteristic 0,
++ Acta Appl. Math. 8 (1987), 271-291;
++ H. Gollan, J. Grabmeier: Algorithms in Representation Theory and
++ their Realization in the Computer Algebra System Scratchpad,
++ Bayreuther Mathematische Schriften, Heft 33, 1990, 1-23
++ Description:
++ RepresentationPackage1 provides functions for representation theory
++ for finite groups and algebras.
++ The package creates permutation representations and uses tensor products
++ and its symmetric and antisymmetric components to create new
++ representations of larger degree from given ones.
++ Note: instead of having parameters from \spadtype{Permutation}
++ this package allows list notation of permutations as well:
++ e.g. \spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.
RepresentationPackage1(R): public == private where
R : Ring
OF ==> OutputForm
NNI ==> NonNegativeInteger
PI ==> PositiveInteger
I ==> Integer
L ==> List
M ==> Matrix
P ==> Polynomial
SM ==> SquareMatrix
V ==> Vector
ICF ==> IntegerCombinatoricFunctions Integer
SGCF ==> SymmetricGroupCombinatoricFunctions
PERM ==> Permutation
public ==> with
if R has commutative("*") then
antisymmetricTensors : (M R,PI) -> M R
++ antisymmetricTensors(a,n) applies to the square matrix
++ {\em a} the irreducible, polynomial representation of the
++ general linear group {\em GLm}, where m is the number of
++ rows of {\em a}, which corresponds to the partition
++ {\em (1,1,...,1,0,0,...,0)} of n.
++ Error: if n is greater than m.
++ Note: this corresponds to the symmetrization of the representation
++ with the sign representation of the symmetric group {\em Sn}.
++ The carrier spaces of the representation are the antisymmetric
++ tensors of the n-fold tensor product.
if R has commutative("*") then
antisymmetricTensors : (L M R, PI) -> L M R
++ antisymmetricTensors(la,n) applies to each
++ m-by-m square matrix in
++ the list {\em la} the irreducible, polynomial representation
++ of the general linear group {\em GLm}
++ which corresponds
++ to the partition {\em (1,1,...,1,0,0,...,0)} of n.
++ Error: if n is greater than m.
++ Note: this corresponds to the symmetrization of the representation
++ with the sign representation of the symmetric group {\em Sn}.
++ The carrier spaces of the representation are the antisymmetric
++ tensors of the n-fold tensor product.
createGenericMatrix : NNI -> M P R
++ createGenericMatrix(m) creates a square matrix of dimension k
++ whose entry at the i-th row and j-th column is the
++ indeterminate {\em x[i,j]} (double subscripted).
symmetricTensors : (M R, PI) -> M R
++ symmetricTensors(a,n) applies to the m-by-m
++ square matrix {\em a} the
++ irreducible, polynomial representation of the general linear
++ group {\em GLm}
++ which corresponds to the partition {\em (n,0,...,0)} of n.
++ Error: if {\em a} is not a square matrix.
++ Note: this corresponds to the symmetrization of the representation
++ with the trivial representation of the symmetric group {\em Sn}.
++ The carrier spaces of the representation are the symmetric
++ tensors of the n-fold tensor product.
symmetricTensors : (L M R, PI) -> L M R
++ symmetricTensors(la,n) applies to each m-by-m square matrix in the
++ list {\em la} the irreducible, polynomial representation
++ of the general linear group {\em GLm}
++ which corresponds
++ to the partition {\em (n,0,...,0)} of n.
++ Error: if the matrices in {\em la} are not square matrices.
++ Note: this corresponds to the symmetrization of the representation
++ with the trivial representation of the symmetric group {\em Sn}.
++ The carrier spaces of the representation are the symmetric
++ tensors of the n-fold tensor product.
tensorProduct : (M R, M R) -> M R
++ tensorProduct(a,b) calculates the Kronecker product
++ of the matrices {\em a} and b.
++ Note: if each matrix corresponds to a group representation
++ (repr. of generators) of one group, then these matrices
++ correspond to the tensor product of the two representations.
tensorProduct : (L M R, L M R) -> L M R
++ tensorProduct([a1,...,ak],[b1,...,bk]) calculates the list of
++ Kronecker products of the matrices {\em ai} and {\em bi}
++ for {1 <= i <= k}.
++ Note: If each list of matrices corresponds to a group representation
++ (repr. of generators) of one group, then these matrices
++ correspond to the tensor product of the two representations.
tensorProduct : M R -> M R
++ tensorProduct(a) calculates the Kronecker product
++ of the matrix {\em a} with itself.
tensorProduct : L M R -> L M R
++ tensorProduct([a1,...ak]) calculates the list of
++ Kronecker products of each matrix {\em ai} with itself
++ for {1 <= i <= k}.
++ Note: If the list of matrices corresponds to a group representation
++ (repr. of generators) of one group, then these matrices correspond
++ to the tensor product of the representation with itself.
permutationRepresentation : (PERM I, I) -> M I
++ permutationRepresentation(pi,n) returns the matrix
++ {\em (deltai,pi(i))} (Kronecker delta) for a permutation
++ {\em pi} of {\em {1,2,...,n}}.
permutationRepresentation : L I -> M I
++ permutationRepresentation(pi,n) returns the matrix
++ {\em (deltai,pi(i))} (Kronecker delta) if the permutation
++ {\em pi} is in list notation and permutes {\em {1,2,...,n}}.
permutationRepresentation : (L PERM I, I) -> L M I
++ permutationRepresentation([pi1,...,pik],n) returns the list
++ of matrices {\em [(deltai,pi1(i)),...,(deltai,pik(i))]}
++ (Kronecker delta) for the permutations {\em pi1,...,pik}
++ of {\em {1,2,...,n}}.
permutationRepresentation : L L I -> L M I
++ permutationRepresentation([pi1,...,pik],n) returns the list
++ of matrices {\em [(deltai,pi1(i)),...,(deltai,pik(i))]}
++ if the permutations {\em pi1},...,{\em pik} are in
++ list notation and are permuting {\em {1,2,...,n}}.
private ==> add
-- import of domains and packages
import OutputForm
-- declaration of local functions:
calcCoef : (L I, M I) -> I
-- calcCoef(beta,C) calculates the term
-- |S(beta) gamma S(alpha)| / |S(beta)|
invContent : L I -> V I
-- invContent(alpha) calculates the weak monoton function f with
-- f : m -> n with invContent alpha. f is stored in the returned
-- vector
-- definition of local functions
calcCoef(beta,C) ==
prod : I := 1
for i in 1..maxIndex beta repeat
prod := prod * multinomial(beta(i), entries row(C,i))$ICF
prod
invContent(alpha) ==
n : NNI := (+/alpha)::NNI
f : V I := new(n,0)
i : NNI := 1
j : I := - 1
for og in alpha repeat
j := j + 1
for k in 1..og repeat
f(i) := j
i := i + 1
f
-- exported functions:
if R has commutative("*") then
antisymmetricTensors ( a : M R , k : PI ) ==
n : NNI := nrows a
k = 1 => a
k > n =>
error("second parameter for antisymmetricTensors is too large")
m : I := binomial(n,k)$ICF
il : L L I := [subSet(n,k,i)$SGCF for i in 0..m-1]
b : M R := zero(m::NNI, m::NNI)
for i in 1..m repeat
for j in 1..m repeat
c : M R := zero(k,k)
lr: L I := il.i
lt: L I := il.j
for r in 1..k repeat
for t in 1..k repeat
rr : I := lr.r
tt : I := lt.t
--c.r.t := a.(1+rr).(1+tt)
setelt(c,r,t,elt(a, 1+rr, 1+tt))
setelt(b, i, j, determinant c)
b
if R has commutative("*") then
antisymmetricTensors(la: L M R, k: PI) ==
[antisymmetricTensors(ma,k) for ma in la]
symmetricTensors (a : M R, n : PI) ==
m : NNI := nrows a
m ~= ncols a =>
error("Input to symmetricTensors is no square matrix")
n = 1 => a
dim : NNI := (binomial(m+n-1,n)$ICF)::NNI
c : M R := new(dim,dim,0)
f : V I := new(n,0)
g : V I := new(n,0)
nullMatrix : M I := new(1,1,0)
colemanMatrix : M I
for i in 1..dim repeat
-- unrankImproperPartitions1 starts counting from 0
alpha := unrankImproperPartitions1(n,m,i-1)$SGCF
f := invContent(alpha)
for j in 1..dim repeat
-- unrankImproperPartitions1 starts counting from 0
beta := unrankImproperPartitions1(n,m,j-1)$SGCF
g := invContent(beta)
colemanMatrix := nextColeman(alpha,beta,nullMatrix)$SGCF
while colemanMatrix ~= nullMatrix repeat
gamma := inverseColeman(alpha,beta,colemanMatrix)$SGCF
help : R := calcCoef(beta,colemanMatrix)::R
for k in 1..n repeat
help := help * a( (1+f k)::NNI, (1+g(gamma k))::NNI )
c(i,j) := c(i,j) + help
colemanMatrix := nextColeman(alpha,beta,colemanMatrix)$SGCF
-- end of while
-- end of j-loop
-- end of i-loop
c
symmetricTensors(la : L M R, k : PI) ==
[symmetricTensors (ma, k) for ma in la]
tensorProduct(a: M R, b: M R) ==
n : NNI := nrows a
m : NNI := nrows b
nc : NNI := ncols a
mc : NNI := ncols b
c : M R := zero(n * m, nc * mc)
indexr : NNI := 1 -- row index
for i in 1..n repeat
for k in 1..m repeat
indexc : NNI := 1 -- column index
for j in 1..nc repeat
for l in 1..mc repeat
c(indexr,indexc) := a(i,j) * b(k,l)
indexc := indexc + 1
indexr := indexr + 1
c
tensorProduct (la: L M R, lb: L M R) ==
[tensorProduct(la.i, lb.i) for i in 1..maxIndex la]
tensorProduct(a : M R) == tensorProduct(a, a)
tensorProduct(la : L M R) ==
tensorProduct(la :: L M R, la :: L M R)
permutationRepresentation (p : PERM I, n : I) ==
-- permutations are assumed to permute {1,2,...,n}
a : M I := zero(n :: NNI, n :: NNI)
for i in 1..n repeat
a(p.i,i) := 1
a
permutationRepresentation (p : L I) ==
-- permutations are assumed to permute {1,2,...,n}
n : I := #p
a : M I := zero(n::NNI, n::NNI)
for i in 1..n repeat
a(p.i,i) := 1
a
permutationRepresentation(listperm : L PERM I, n : I) ==
-- permutations are assumed to permute {1,2,...,n}
[permutationRepresentation(perm, n) for perm in listperm]
permutationRepresentation (listperm : L L I) ==
-- permutations are assumed to permute {1,2,...,n}
[permutationRepresentation perm for perm in listperm]
createGenericMatrix(m) ==
res : M P R := new(m,m,0$(P R))
for i in 1..m repeat
for j in 1..m repeat
iof : OF := coerce(i)$Integer
jof : OF := coerce(j)$Integer
le : L OF := cons(iof,list jof)
sy : Symbol := subscript(x::Symbol, le)$Symbol
res(i,j) := (sy :: P R)
res
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package REP1 RepresentationPackage1>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|