1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra realzero.spad}
\author{Andy Neff}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package REAL0 RealZeroPackage}
<<package REAL0 RealZeroPackage>>=
)abbrev package REAL0 RealZeroPackage
++ Author: Andy Neff
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors: UnivariatePolynomial, RealZeroPackageQ
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This package provides functions for finding the real zeros
++ of univariate polynomials over the integers to arbitrary user-specified
++ precision. The results are returned as a list of
++ isolating intervals which are expressed as records with "left" and "right" rational number
++ components.
RealZeroPackage(Pol): T == C where
Pol: UnivariatePolynomialCategory Integer
RN ==> Fraction Integer
Interval ==> Record(left : RN, right : RN)
isoList ==> List(Interval)
T == with
-- next two functions find isolating intervals
realZeros: (Pol) -> isoList
++ realZeros(pol) returns a list of isolating intervals for
++ all the real zeros of the univariate polynomial pol.
realZeros: (Pol, Interval) -> isoList
++ realZeros(pol, range) returns a list of isolating intervals
++ for all the real zeros of the univariate polynomial pol which
++ lie in the interval expressed by the record range.
-- next two functions return intervals smaller then tolerence
realZeros: (Pol, RN) -> isoList
++ realZeros(pol, eps) returns a list of intervals of length less
++ than the rational number eps for all the real roots of the
++ polynomial pol.
realZeros: (Pol, Interval, RN) -> isoList
++ realZeros(pol, int, eps) returns a list of intervals of length
++ less than the rational number eps for all the real roots of the
++ polynomial pol which lie in the interval expressed by the
++ record int.
refine: (Pol, Interval, RN) -> Interval
++ refine(pol, int, eps) refines the interval int containing
++ exactly one root of the univariate polynomial pol to size less
++ than the rational number eps.
refine: (Pol, Interval, Interval) -> Union(Interval,"failed")
++ refine(pol, int, range) takes a univariate polynomial pol and
++ and isolating interval int containing exactly one real
++ root of pol; the operation returns an isolating interval which
++ is contained within range, or "failed" if no such isolating interval exists.
midpoint: Interval -> RN
++ midpoint(int) returns the midpoint of the interval int.
midpoints: isoList -> List RN
++ midpoints(isolist) returns the list of midpoints for the list
++ of intervals isolist.
C == add
--Local Functions
makeSqfr: Pol -> Pol
ReZeroSqfr: (Pol) -> isoList
PosZero: (Pol) -> isoList
Zero1: (Pol) -> isoList
transMult: (Integer, Pol) -> Pol
transMultInv: (Integer, Pol) -> Pol
transAdd1: (Pol) -> Pol
invert: (Pol) -> Pol
minus: (Pol) -> Pol
negate: Interval -> Interval
rootBound: (Pol) -> Integer
var: (Pol) -> Integer
negate(int : Interval):Interval == [-int.right,-int.left]
midpoint(i : Interval):RN == (1/2)*(i.left + i.right)
midpoints(li : isoList) : List RN ==
[midpoint x for x in li]
makeSqfr(F : Pol):Pol ==
sqfr := squareFree F
F := */[s.factor for s in factors(sqfr)]
realZeros(F : Pol) ==
ReZeroSqfr makeSqfr F
realZeros(F : Pol, rn : RN) ==
F := makeSqfr F
[refine(F,int,rn) for int in ReZeroSqfr(F)]
realZeros(F : Pol, bounds : Interval) ==
F := makeSqfr F
[rint::Interval for int in ReZeroSqfr(F) |
(rint:=refine(F,int,bounds)) case Interval]
realZeros(F : Pol, bounds : Interval, rn : RN) ==
F := makeSqfr F
[refine(F,int,rn) for int in realZeros(F,bounds)]
ReZeroSqfr(F : Pol) ==
F = 0 => error "ReZeroSqfr: zero polynomial"
L : isoList := []
degree(F) = 0 => L
if (r := minimumDegree(F)) > 0 then
L := [[0,0]$Interval]
tempF := F exquo monomial(1, r)
if not (tempF case "failed") then
F := tempF
J:isoList := [negate int for int in reverse(PosZero(minus(F)))]
K : isoList := PosZero(F)
append(append(J, L), K)
PosZero(F : Pol) == --F is square free, primitive
--and F(0) ~= 0; returns isoList for positive
--roots of F
b : Integer := rootBound(F)
F := transMult(b,F)
L : isoList := Zero1(F)
int : Interval
L := [[b*int.left, b*int.right]$Interval for int in L]
Zero1(F : Pol) == --returns isoList for roots of F in (0,1)
J : isoList
K : isoList
L : isoList
L := []
(v := var(transAdd1(invert(F)))) = 0 => []
v = 1 => L := [[0,1]$Interval]
G : Pol := transMultInv(2, F)
H : Pol := transAdd1(G)
if minimumDegree H > 0 then
-- H has a root at 0 => F has one at 1/2, and G at 1
L := [[1/2,1/2]$Interval]
Q : Pol := monomial(1, 1)
tempH : Union(Pol, "failed") := H exquo Q
if not (tempH case "failed") then H := tempH
Q := Q + monomial(-1, 0)
tempG : Union(Pol, "failed") := G exquo Q
if not (tempG case "failed") then G := tempG
int : Interval
J := [[(int.left+1)* (1/2),(int.right+1) * (1/2)]$Interval
for int in Zero1(H)]
K := [[int.left * (1/2), int.right * (1/2)]$Interval
for int in Zero1(G)]
append(append(J, L), K)
rootBound(F : Pol) == --returns power of 2 that is a bound
--for the positive roots of F
if leadingCoefficient(F) < 0 then F := -F
lcoef := leadingCoefficient(F)
F := reductum(F)
i : Integer := 0
while not (F = 0) repeat
if (an := leadingCoefficient(F)) < 0 then i := i - an
F := reductum(F)
b : Integer := 1
while (b * lcoef) <= i repeat
b := 2 * b
b
transMult(c : Integer, F : Pol) ==
--computes Pol G such that G(x) = F(c*x)
G : Pol := 0
while not (F = 0) repeat
n := degree(F)
G := G + monomial((c**n) * leadingCoefficient(F), n)
F := reductum(F)
G
transMultInv(c : Integer, F : Pol) ==
--computes Pol G such that G(x) = (c**n) * F(x/c)
d := degree(F)
cc : Integer := 1
G : Pol := monomial(leadingCoefficient F,d)
while (F:=reductum(F)) ~= 0 repeat
n := degree(F)
cc := cc*(c**(d-n):NonNegativeInteger)
G := G + monomial(cc * leadingCoefficient(F), n)
d := n
G
-- otransAdd1(F : Pol) ==
-- --computes Pol G such that G(x) = F(x+1)
-- G : Pol := F
-- n : Integer := 1
-- while (F := differentiate(F)) ~= 0 repeat
-- if not ((tempF := F exquo n) case "failed") then F := tempF
-- G := G + F
-- n := n + 1
-- G
transAdd1(F : Pol) ==
--computes Pol G such that G(x) = F(x+1)
n := degree F
v := vectorise(F, n+1)
for i in 0..(n-1) repeat
for j in (n-i)..n repeat
qsetelt!(v,j, qelt(v,j) + qelt(v,(j+1)))
ans : Pol := 0
for i in 0..n repeat
ans := ans + monomial(qelt(v,(i+1)),i)
ans
minus(F : Pol) ==
--computes Pol G such that G(x) = F(-x)
G : Pol := 0
while not (F = 0) repeat
n := degree(F)
coef := leadingCoefficient(F)
odd? n =>
G := G + monomial(-coef, n)
F := reductum(F)
G := G + monomial(coef, n)
F := reductum(F)
G
invert(F : Pol) ==
--computes Pol G such that G(x) = (x**n) * F(1/x)
G : Pol := 0
n := degree(F)
while not (F = 0) repeat
G := G + monomial(leadingCoefficient(F),
(n-degree(F))::NonNegativeInteger)
F := reductum(F)
G
var(F : Pol) == --number of sign variations in coefs of F
i : Integer := 0
LastCoef : Boolean
next : Boolean
LastCoef := leadingCoefficient(F) < 0
while not ((F := reductum(F)) = 0) repeat
next := leadingCoefficient(F) < 0
if ((not LastCoef) and next) or
((not next) and LastCoef) then i := i+1
LastCoef := next
i
refine(F : Pol, int : Interval, bounds : Interval) ==
lseg := min(int.right,bounds.right) - max(int.left,bounds.left)
lseg < 0 => "failed"
lseg = 0 =>
pt :=
int.left = bounds.right => int.left
int.right
elt(transMultInv(denom(pt),F),numer pt) = 0 => [pt,pt]
"failed"
lseg = int.right - int.left => int
refine(F, refine(F, int, lseg), bounds)
refine(F : Pol, int : Interval, eps : RN) ==
a := int.left
b := int.right
a=b => [a,b]$Interval
an : Integer := numer(a)
ad : Integer := denom(a)
bn : Integer := numer(b)
bd : Integer := denom(b)
xfl : Boolean := false
if (u:=elt(transMultInv(ad, F), an)) = 0 then
F := (F exquo (monomial(ad,1)-monomial(an,0)))::Pol
u:=elt(transMultInv(ad, F), an)
if (v:=elt(transMultInv(bd, F), bn)) = 0 then
F := (F exquo (monomial(bd,1)-monomial(bn,0)))::Pol
v:=elt(transMultInv(bd, F), bn)
u:=elt(transMultInv(ad, F), an)
if u > 0 then (F:=-F;v:=-v)
if v < 0 then
error [int, "is not a valid isolation interval for", F]
if eps <= 0 then error "precision must be positive"
while (b - a) >= eps repeat
mid : RN := (b + a) * (1/2)
midn : Integer := numer(mid)
midd : Integer := denom(mid)
(v := elt(transMultInv(midd, F), midn)) < 0 =>
a := mid
an := midn
ad := midd
v > 0 =>
b := mid
bn := midn
bd := midd
v = 0 =>
a := mid
b := mid
an := midn
ad := midd
xfl := true
[a, b]$Interval
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package REAL0 RealZeroPackage>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|