aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/rdeef.spad.pamphlet
blob: b028efda6ec389259918557a9c52b1bbd356ffd9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra rdeef.spad}
\author{Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package INTTOOLS IntegrationTools}
<<package INTTOOLS IntegrationTools>>=
)abbrev package INTTOOLS IntegrationTools
++ Tools for the integrator
++ Author: Manuel Bronstein
++ Date Created: 25 April 1990
++ Date Last Updated: 9 June 1993
++ Keywords: elementary, function, integration.
IntegrationTools(R: SetCategory, F:FunctionSpace R): Exp == Impl where
  K   ==> Kernel F
  SE  ==> Symbol
  P   ==> SparseMultivariatePolynomial(R, K)
  UP  ==> SparseUnivariatePolynomial F
  IR  ==> IntegrationResult F
  ANS ==> Record(special:F, integrand:F)
  U   ==> Union(ANS, "failed")

  Exp ==> with
    varselect: (List K, SE) -> List K
      ++ varselect([k1,...,kn], x) returns the ki which involve x.
    kmax     : List K -> K
      ++ kmax([k1,...,kn]) returns the top-level ki for integration.
    ksec     : (K, List K, SE) -> K
      ++ ksec(k, [k1,...,kn], x) returns the second top-level ki
      ++ after k involving x.
    union    : (List K, List K) -> List K
      ++ union(l1, l2) returns set-theoretic union of l1 and l2.
    vark     : (List F, SE) -> List K
      ++ vark([f1,...,fn],x) returns the set-theoretic union of
      ++ \spad{(varselect(f1,x),...,varselect(fn,x))}.
    if R has IntegralDomain then
      removeConstantTerm: (F, SE) -> F
        ++ removeConstantTerm(f, x) returns f minus any additive constant
        ++ with respect to x.
    if R has GcdDomain and F has ElementaryFunctionCategory then
      mkPrim: (F, SE) -> F
        ++ mkPrim(f, x) makes the logs in f which are linear in x
        ++ primitive with respect to x.
      if R has ConvertibleTo Pattern Integer and R has PatternMatchable Integer
        and F has LiouvillianFunctionCategory and F has RetractableTo SE then
          intPatternMatch: (F, SE, (F, SE) -> IR, (F, SE) -> U) -> IR
            ++ intPatternMatch(f, x, int, pmint) tries to integrate \spad{f}
            ++ first by using the integration function \spad{int}, and then
            ++ by using the pattern match intetgration function \spad{pmint}
            ++ on any remaining unintegrable part.

  Impl ==> add
    macro ALGOP == '%alg
    better?: (K, K) -> Boolean

    union(l1, l2)   == setUnion(l1, l2)
    varselect(l, x) == [k for k in l | member?(x, variables(k::F))]
    ksec(k, l, x)   == kmax setUnion(remove(k, l), vark(argument k, x))

    vark(l, x) ==
      varselect(reduce("setUnion",[kernels f for f in l],empty()$List(K)), x)

    kmax l ==
      ans := first l
      for k in rest l repeat
        if better?(k, ans) then ans := k
      ans

-- true if x should be considered before y in the tower
    better?(x, y) ==
      height(y) ~= height(x) => height(y) < height(x)
      has?(operator y, ALGOP) or
              (is?(y,'exp) and not is?(x, 'exp)
                                 and not has?(operator x, ALGOP))

    if R has IntegralDomain then
      removeConstantTerm(f, x) ==
        not freeOf?((den := denom f)::F, x) => f
        (u := isPlus(num := numer f)) case "failed" =>
          freeOf?(num::F, x) => 0
          f
        ans:P := 0
        for term in u::List(P) repeat
          if not freeOf?(term::F, x) then ans := ans + term
        ans / den

    if R has GcdDomain and F has ElementaryFunctionCategory then
      psimp     : (P, SE) -> Record(coef:Integer, logand:F)
      cont      : (P, List K) -> P
      logsimp   : (F, SE) -> F
      linearLog?: (K, F, SE)  -> Boolean

      logsimp(f, x) ==
        r1 := psimp(numer f, x)
        r2 := psimp(denom f, x)
        g := gcd(r1.coef, r2.coef)
        g * log(r1.logand ** (r1.coef quo g) / r2.logand ** (r2.coef quo g))

      cont(p, l) ==
        empty? l => p
        q := univariate(p, first l)
        cont(unitNormal(leadingCoefficient q).unit * content q, rest l)

      linearLog?(k, f, x) ==
        is?(k, 'log) and
         ((u := retractIfCan(univariate(f,k))@Union(UP,"failed")) case UP)
             and one?(degree(u::UP))
                and not member?(x, variables leadingCoefficient(u::UP))

      mkPrim(f, x) ==
        lg := [k for k in kernels f | linearLog?(k, f, x)]
        eval(f, lg, [logsimp(first argument k, x) for k in lg])

      psimp(p, x) ==
        (u := isExpt(p := ((p exquo cont(p, varselect(variables p, x)))::P)))
          case "failed" => [1, p::F]
        [u.exponent, u.var::F]

      if R has Join(ConvertibleTo Pattern Integer, PatternMatchable Integer)
        and F has Join(LiouvillianFunctionCategory, RetractableTo SE) then
          intPatternMatch(f, x, int, pmint) ==
            ir := int(f, x)
            empty?(l := notelem ir) => ir
            ans := ratpart ir
            nl:List(Record(integrand:F, intvar:F)) := empty()
            lg := logpart ir
            for rec in l repeat
              u := pmint(rec.integrand, retract(rec.intvar))
              if u case ANS then
                 rc := u::ANS
                 ans := ans + rc.special
                 if rc.integrand ~= 0 then
                   ir0 := intPatternMatch(rc.integrand, x, int, pmint)
                   ans := ans + ratpart ir0
                   lg  := concat(logpart ir0, lg)
                   nl  := concat(notelem ir0, nl)
              else nl := concat(rec, nl)
            mkAnswer(ans, lg, nl)

@
\section{package RDEEF ElementaryRischDE}
<<package RDEEF ElementaryRischDE>>=
)abbrev package RDEEF ElementaryRischDE
++ Risch differential equation, elementary case.
++ Author: Manuel Bronstein
++ Date Created: 1 February 1988
++ Date Last Updated: 2 November 1995
++ Keywords: elementary, function, integration.
ElementaryRischDE(R, F): Exports == Implementation where
  R : Join(GcdDomain, CharacteristicZero,
           RetractableTo Integer, LinearlyExplicitRingOver Integer)
  F : Join(TranscendentalFunctionCategory, AlgebraicallyClosedField,
           FunctionSpace R)

  N   ==> NonNegativeInteger
  Z   ==> Integer
  SE  ==> Symbol
  LF  ==> List F
  K   ==> Kernel F
  LK  ==> List K
  P   ==> SparseMultivariatePolynomial(R, K)
  UP  ==> SparseUnivariatePolynomial F
  RF  ==> Fraction UP
  GP  ==> LaurentPolynomial(F, UP)
  Data ==> List Record(coeff:Z, argument:P)
  RRF ==> Record(mainpart:F,limitedlogs:List NL)
  NL  ==> Record(coeff:F,logand:F)
  U   ==> Union(RRF, "failed")
  UF  ==> Union(F, "failed")
  UUP ==> Union(UP, "failed")
  UGP ==> Union(GP, "failed")
  URF ==> Union(RF, "failed")
  UEX ==> Union(Record(ratpart:F,  coeff:F), "failed")
  PSOL==> Record(ans:F, right:F, sol?:Boolean)
  FAIL==> error("Function not supported by Risch d.e.")

  Exports ==> with
    rischDE: (Z, F, F, SE, (F, LF) -> U, (F, F) -> UEX) -> PSOL
         ++ rischDE(n, f, g, x, lim, ext) returns \spad{[y, h, b]} such that
         ++ \spad{dy/dx + n df/dx y = h} and \spad{b := h = g}.
         ++ The equation \spad{dy/dx + n df/dx y = g} has no solution
         ++ if \spad{h \~~= g} (y is a partial solution in that case).
         ++ Notes: lim is a limited integration function, and
         ++ ext is an extended integration function.

  Implementation ==> add
    macro ALGOP == '%alg
    import IntegrationTools(R, F)
    import TranscendentalRischDE(F, UP)
    import TranscendentalIntegration(F, UP)
    import PureAlgebraicIntegration(R, F, F)
    import FunctionSpacePrimitiveElement(R, F)
    import ElementaryFunctionStructurePackage(R, F)
    import PolynomialCategoryQuotientFunctions(IndexedExponents K,
                                                             K, R, P, F)

    RF2GP:     RF -> GP
    makeData  : (F, SE, K)    -> Data
    normal0   : (Z, F, F, SE) -> UF
    normalise0: (Z, F, F, SE) -> PSOL
    normalise : (Z, F, F, F, SE, K, (F, LF) -> U, (F, F) -> UEX) -> PSOL
    rischDEalg: (Z, F, F, F, K, LK, SE, (F, LF) -> U, (F, F) -> UEX) -> PSOL
    rischDElog: (LK, RF, RF, SE, K, UP->UP,(F,LF)->U,(F,F)->UEX) -> URF
    rischDEexp: (LK, RF, RF, SE, K, UP->UP,(F,LF)->U,(F,F)->UEX) -> URF
    polyDElog : (LK, UP, UP,UP,SE,K,UP->UP,(F,LF)->U,(F,F)->UEX) -> UUP
    polyDEexp : (LK, UP, UP,UP,SE,K,UP->UP,(F,LF)->U,(F,F)->UEX) -> UUP
    gpolDEexp : (LK, UP, GP,GP,SE,K,UP->UP,(F,LF)->U,(F,F)->UEX) -> UGP
    boundAt0  : (LK, F, Z,  Z,    SE, K, (F, LF) -> U) -> Z
    boundInf  : (LK, F, Z,  Z, Z, SE, K, (F, LF) -> U) -> Z
    logdegrad : (LK, F, UP, Z, SE, K,(F,LF)->U, (F,F) -> UEX) -> UUP
    expdegrad : (LK, F, UP, Z, SE, K,(F,LF)->U, (F,F) -> UEX) -> UUP
    logdeg    : (UP, F, Z, SE, F, (F, LF) -> U, (F, F) -> UEX) -> UUP
    expdeg    : (UP, F, Z, SE, F, (F, LF) -> U, (F, F) -> UEX) -> UUP
    exppolyint: (UP, (Z, F) -> PSOL) -> UUP
    RRF2F     : RRF -> F
    logdiff   : (List K, List K) -> List K

    tab:AssociationList(F, Data) := table()

    RF2GP f == (numer(f)::GP exquo denom(f)::GP)::GP

    logdiff(twr, bad) ==
      [u for u in twr | is?(u, 'log) and not member?(u, bad)]

    rischDEalg(n, nfp, f, g, k, l, x, limint, extint) ==
      symbolIfCan(kx := ksec(k, l, x)) case SE =>
        (u := palgRDE(nfp, f, g, kx, k, normal0(n, #1, #2, #3))) case "failed"
             => [0, 0, false]
        [u::F, g, true]
      has?(operator kx, ALGOP) =>
        rec := primitiveElement(kx::F, k::F)
        y   := rootOf(rec.prim)
        lk:LK := [kx, k]
        lv:LF := [(rec.pol1) y, (rec.pol2) y]
        rc := rischDE(n, eval(f, lk, lv), eval(g, lk, lv), x, limint, extint)
        rc.sol? => [eval(rc.ans, retract(y)@K, rec.primelt), rc.right, true]
        [0, 0, false]
      FAIL

-- solve y' + n f'y = g for a rational function y
    rischDE(n, f, g, x, limitedint, extendedint) ==
      zero? g => [0, g, true]
      zero?(nfp := n * differentiate(f, x)) =>
        (u := limitedint(g, empty())) case "failed" => [0, 0, false]
        [u.mainpart, g, true]
      freeOf?(y := g / nfp, x) => [y, g, true]
      vl := varselect(union(kernels nfp, kernels g), x)
      symbolIfCan(k := kmax vl) case SE => normalise0(n, f, g, x)
      is?(k, 'log) or is?(k, 'exp) =>
        normalise(n, nfp, f, g, x, k, limitedint, extendedint)
      has?(operator k, ALGOP) =>
        rischDEalg(n, nfp, f, g, k, vl, x, limitedint, extendedint)
      FAIL

    normal0(n, f, g, x) ==
      rec := normalise0(n, f, g, x)
      rec.sol? => rec.ans
      "failed"

-- solve y' + n f' y = g
-- when f' and g are rational functions over a constant field
    normalise0(n, f, g, x) ==
      k := kernel(x)@K
      if (data1 := search(f, tab)) case "failed" then
        tab.f := data := makeData(f, x, k)
      else data := data1::Data
      f'  := nfprime := n * differentiate(f, x)
      p:P := 1
      for v in data | positive?(m := n * v.coeff) repeat
        p  := p * v.argument ** (m::N)
        f' := f' - m * differentiate(v.argument::F, x) / (v.argument::F)
      rec := baseRDE(univariate(f', k), univariate(p::F * g, k))
      y := multivariate(rec.ans, k) / p::F
      rec.nosol => [y, differentiate(y, x) + nfprime * y, false]
      [y, g, true]

-- make f weakly normalized, and solve y' + n f' y = g
    normalise(n, nfp, f, g, x, k, limitedint, extendedint) ==
      if (data1:= search(f, tab)) case "failed" then
        tab.f := data := makeData(f, x, k)
      else data := data1::Data
      p:P := 1
      for v in data | positive?(m := n * v.coeff) repeat
        p  := p * v.argument ** (m::N)
        f  := f - v.coeff * log(v.argument::F)
        nfp := nfp - m * differentiate(v.argument::F, x) / (v.argument::F)
      newf := univariate(nfp, k)
      newg := univariate(p::F * g, k)
      twr := union(logdiff(tower f, empty()), logdiff(tower g, empty()))
      ans1 :=
        is?(k, 'log) =>
          rischDElog(twr, newf, newg, x, k,
                       differentiate(#1, differentiate(#1, x),
                             differentiate(k::F, x)::UP),
                                            limitedint, extendedint)
        is?(k, 'exp) =>
          rischDEexp(twr, newf, newg, x, k,
                     differentiate(#1, differentiate(#1, x),
                      monomial(differentiate(first argument k, x), 1)),
                                                limitedint, extendedint)
      ans1 case "failed" => [0, 0, false]
      [multivariate(ans1::RF, k) / p::F, g, true]

-- find the n * log(P) appearing in f, where P is in P, n in Z
    makeData(f, x, k) ==
      disasters := empty()$Data
      fnum := numer f
      fden := denom f
      for u in varselect(kernels f, x) | is?(u, 'log) repeat
        logand := first argument u
        if zero?(degree univariate(fden, u)) and
           one?(degree(num := univariate(fnum, u))) then
            cf := (leadingCoefficient num) / fden
            if (n := retractIfCan(cf)@Union(Z, "failed")) case Z then
              if positive? degree(numer logand, k) then
                disasters := concat([n::Z, numer logand], disasters)
              if positive? degree(denom logand, k) then
                disasters := concat([-(n::Z), denom logand], disasters)
      disasters

    rischDElog(twr, f, g, x, theta, driv, limint, extint) ==
      (u := monomRDE(f, g, driv)) case "failed" => "failed"
      (v := polyDElog(twr, u.a, retract(u.b), retract(u.c), x, theta, driv,
                      limint, extint)) case "failed" => "failed"
      v::UP / u.t

    rischDEexp(twr, f, g, x, theta, driv, limint, extint) ==
      (u := monomRDE(f, g, driv)) case "failed" => "failed"
      (v := gpolDEexp(twr, u.a, RF2GP(u.b), RF2GP(u.c), x, theta, driv,
                      limint, extint)) case "failed" => "failed"
      convert(v::GP)@RF / u.t::RF

    polyDElog(twr, aa, bb, cc, x, t, driv, limint, extint) ==
      zero? cc => 0
      t' := differentiate(t::F, x)
      zero? bb =>
        (u := cc exquo aa) case "failed" => "failed"
        primintfldpoly(u::UP, extint(#1, t'), t')
      n := degree(cc)::Z - (db := degree(bb)::Z)
      if ((da := degree(aa)::Z) = db) and positive? da then
        lk0 := tower(f0 :=
                      - (leadingCoefficient bb) / (leadingCoefficient aa))
        lk1 := logdiff(twr, lk0)
        (if0 := limint(f0, [first argument u for u in lk1]))
                       case "failed" => error "Risch's theorem violated"
        (alph := validExponential(lk0, RRF2F(if0::RRF), x)) case F =>
          return
            (ans := polyDElog(twr, alph::F * aa,
              differentiate(alph::F, x) * aa + alph::F * bb,
               cc, x, t, driv, limint, extint)) case "failed" => "failed"
            alph::F * ans::UP
      if (da > db + 1) then n := max(0, degree(cc)::Z - da + 1)
      if (da = db + 1) then
        i := limint(- (leadingCoefficient bb) / (leadingCoefficient aa),
                    [first argument t])
        if not(i case "failed") then
          r :=
            null(i.limitedlogs) => 0$F
            i.limitedlogs.first.coeff
          if (nn := retractIfCan(r)@Union(Z, "failed")) case Z then
            n := max(nn::Z, n)
      (v := polyRDE(aa, bb, cc, n, driv)) case ans =>
           v.ans.nosol => "failed"
           v.ans.ans
      w := v.eq
      zero?(w.b) =>
        degree(w.c) > w.m => "failed"
        (u := primintfldpoly(w.c, extint(#1,t'), t')) case "failed" => "failed"
        degree(u::UP) > w.m => "failed"
        w.alpha * u::UP + w.beta
      (u := logdegrad(twr, retract(w.b), w.c, w.m, x, t, limint, extint))
        case "failed" => "failed"
      w.alpha * u::UP + w.beta

    gpolDEexp(twr, a, b, c, x, t, driv, limint, extint) ==
      zero? c => 0
      zero? b =>
        (u := c exquo (a::GP)) case "failed" => "failed"
        expintfldpoly(u::GP,
                   rischDE(#1, first argument t, #2, x, limint, extint))
      lb := boundAt0(twr, - coefficient(b, 0) / coefficient(a, 0),
                     nb := order b, nc := order c, x, t, limint)
      tm := monomial(1, (m := max(0, max(-nb, lb - nc)))::N)$UP
      (v := polyDEexp(twr,a * tm,lb * differentiate(first argument t, x)
           * a * tm + retract(b * tm::GP)@UP,
               retract(c * monomial(1, m - lb))@UP,
                  x, t, driv, limint, extint)) case "failed" => "failed"
      v::UP::GP * monomial(1, lb)

    polyDEexp(twr, aa, bb, cc, x, t, driv, limint, extint) ==
      zero? cc => 0
      zero? bb =>
        (u := cc exquo aa) case "failed" => "failed"
        exppolyint(u::UP, rischDE(#1, first argument t, #2, x, limint, extint))
      n := boundInf(twr,-leadingCoefficient(bb) / (leadingCoefficient aa),
                 degree(aa)::Z, degree(bb)::Z, degree(cc)::Z, x, t, limint)
      (v := polyRDE(aa, bb, cc, n, driv)) case ans =>
           v.ans.nosol => "failed"
           v.ans.ans
      w := v.eq
      zero?(w.b) =>
        degree(w.c) > w.m => "failed"
        (u := exppolyint(w.c,
                  rischDE(#1, first argument t, #2, x, limint, extint)))
                         case "failed" => "failed"
        w.alpha * u::UP + w.beta
      (u := expdegrad(twr, retract(w.b), w.c, w.m, x, t, limint, extint))
        case "failed" => "failed"
      w.alpha * u::UP + w.beta

    exppolyint(p, rischdiffeq) ==
      (u := expintfldpoly(p::GP, rischdiffeq)) case "failed" => "failed"
      retractIfCan(u::GP)@Union(UP, "failed")

    boundInf(twr, f0, da, db, dc, x, t, limitedint) ==
      da < db => dc - db
      da > db => max(0, dc - da)
      l1 := logdiff(twr, l0 := tower f0)
      (if0 := limitedint(f0, [first argument u for u in l1]))
                       case "failed" => error "Risch's theorem violated"
      (alpha := validExponential(concat(t, l0), RRF2F(if0::RRF), x))
       case F =>
        al := separate(univariate(alpha::F, t))$GP
        zero?(al.fracPart) and monomial?(al.polyPart) =>
                               max(0, max(degree(al.polyPart), dc - db))
        dc - db
      dc - db

    boundAt0(twr, f0, nb, nc, x, t, limitedint) ==
      nb ~= 0 => min(0, nc - min(0, nb))
      l1 := logdiff(twr, l0 := tower f0)
      (if0 := limitedint(f0, [first argument u for u in l1]))
                       case "failed" => error "Risch's theorem violated"
      (alpha := validExponential(concat(t, l0), RRF2F(if0::RRF), x))
       case F =>
        al := separate(univariate(alpha::F, t))$GP
        zero?(al.fracPart) and monomial?(al.polyPart) =>
                                    min(0, min(degree(al.polyPart), nc))
        min(0, nc)
      min(0, nc)

-- case a = 1, deg(B) = 0, B <> 0
-- cancellation at infinity is possible
    logdegrad(twr, b, c, n, x, t, limitedint, extint) ==
      t'  := differentiate(t::F, x)
      lk1 := logdiff(twr, lk0 := tower(f0 := - b))
      (if0 := limitedint(f0, [first argument u for u in lk1]))
                       case "failed" => error "Risch's theorem violated"
      (alpha := validExponential(lk0, RRF2F(if0::RRF), x)) case F =>
        (u1 := primintfldpoly(inv(alpha::F) * c, extint(#1, t'), t'))
                                               case "failed" => "failed"
        degree(u1::UP)::Z > n => "failed"
        alpha::F * u1::UP
      logdeg(c, - if0.mainpart -
               +/[v.coeff * log(v.logand) for v in if0.limitedlogs],
                                           n, x, t', limitedint, extint)

-- case a = 1, degree(b) = 0, and (exp integrate b) is not in F
-- this implies no cancellation at infinity
    logdeg(c, f, n, x, t', limitedint, extint) ==
      answr:UP := 0
      repeat
        zero? c => return answr
        negative? n or ((m := degree c)::Z > n) => return "failed"
        u := rischDE(1, f, leadingCoefficient c, x, limitedint, extint)
        ~u.sol? => return "failed"
        zero? m => return(answr + u.ans::UP)
        n   := m::Z - 1
        c   := (reductum c) - monomial(m::Z * t' * u.ans, (m - 1)::N)
        answr := answr + monomial(u.ans, m)

-- case a = 1, deg(B) = 0, B <> 0
-- cancellation at infinity is possible
    expdegrad(twr, b, c, n, x, t, limint, extint) ==
      lk1 := logdiff(twr, lk0 := tower(f0 := - b))
      (if0 := limint(f0, [first argument u for u in lk1]))
                       case "failed" => error "Risch's theorem violated"
      intf0 := - if0.mainpart -
                    +/[v.coeff * log(v.logand) for v in if0.limitedlogs]
      (alpha := validExponential(concat(t, lk0), RRF2F(if0::RRF), x))
       case F =>
        al := separate(univariate(alpha::F, t))$GP
        zero?(al.fracPart) and monomial?(al.polyPart) and
         (degree(al.polyPart) >= 0) =>
          (u1 := expintfldpoly(c::GP * recip(al.polyPart)::GP,
                  rischDE(#1, first argument t, #2, x, limint, extint)))
                                               case "failed" => "failed"
          degree(u1::GP) > n => "failed"
          retractIfCan(al.polyPart * u1::GP)@Union(UP, "failed")
        expdeg(c, intf0, n, x, first argument t, limint,extint)
      expdeg(c, intf0, n, x, first argument t, limint, extint)

-- case a = 1, degree(b) = 0, and (exp integrate b) is not a monomial
-- this implies no cancellation at infinity
    expdeg(c, f, n, x, eta, limitedint, extint) ==
      answr:UP := 0
      repeat
        zero? c => return answr
        negative? n or ((m := degree c)::Z > n) => return "failed"
        u := rischDE(1, f + m * eta, leadingCoefficient c, x,limitedint,extint)
        ~u.sol? => return "failed"
        zero? m => return(answr + u.ans::UP)
        n   := m::Z - 1
        c   := reductum c
        answr := answr + monomial(u.ans, m)

    RRF2F rrf ==
      rrf.mainpart + +/[v.coeff*log(v.logand) for v in rrf.limitedlogs]

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

-- SPAD files for the integration world should be compiled in the
-- following order:
--
--   intaux  rderf  intrf  curve  curvepkg  divisor  pfo
--   intalg  intaf  efstruc  RDEEF  intef  irexpand  integrat

<<package INTTOOLS IntegrationTools>>
<<package RDEEF ElementaryRischDE>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}