aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/primelt.spad.pamphlet
blob: 1f18de1d6bf3a6636c01fa34698b75d064a11cbe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra primelt.spad}
\author{Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package PRIMELT PrimitiveElement}
<<package PRIMELT PrimitiveElement>>=
)abbrev package PRIMELT PrimitiveElement
++ Computation of primitive elements.
++ Author: Manuel Bronstein
++ Date Created: 6 Jun 1990
++ Date Last Updated: 25 April 1991
++ Description:
++   PrimitiveElement provides functions to compute primitive elements
++   in algebraic extensions;
++ Keywords: algebraic, extension, primitive.
PrimitiveElement(F): Exports == Implementation where
  F : Join(Field, CharacteristicZero)

  SY  ==> Symbol
  P   ==> Polynomial F
  UP  ==> SparseUnivariatePolynomial F
  RC  ==> Record(coef1: Integer, coef2: Integer, prim:UP)
  REC ==> Record(coef: List Integer, poly:List UP, prim: UP)

  Exports ==> with
    primitiveElement: (P, SY, P, SY) -> RC
      ++ primitiveElement(p1, a1, p2, a2) returns \spad{[c1, c2, q]}
      ++ such that \spad{k(a1, a2) = k(a)}
      ++ where \spad{a = c1 a1 + c2 a2, and q(a) = 0}.
      ++ The pi's are the defining polynomials for the ai's.
      ++ The p2 may involve a1, but p1 must not involve a2.
      ++ This operation uses \spadfun{resultant}.
    primitiveElement: (List P, List SY) -> REC
      ++ primitiveElement([p1,...,pn], [a1,...,an]) returns
      ++ \spad{[[c1,...,cn], [q1,...,qn], q]}
      ++ such that then \spad{k(a1,...,an) = k(a)},
      ++ where \spad{a = a1 c1 + ... + an cn},
      ++ \spad{ai = qi(a)}, and \spad{q(a) = 0}.
      ++ The pi's are the defining polynomials for the ai's.
      ++ This operation uses the technique of
      ++ \spadglossSee{groebner bases}{Groebner basis}.
    primitiveElement: (List P, List SY, SY) -> REC
      ++ primitiveElement([p1,...,pn], [a1,...,an], a) returns
      ++ \spad{[[c1,...,cn], [q1,...,qn], q]}
      ++ such that then \spad{k(a1,...,an) = k(a)},
      ++ where \spad{a = a1 c1 + ... + an cn},
      ++ \spad{ai = qi(a)}, and \spad{q(a) = 0}.
      ++ The pi's are the defining polynomials for the ai's.
      ++ This operation uses the technique of
      ++ \spadglossSee{groebner bases}{Groebner basis}.

  Implementation ==> add
    import PolyGroebner(F)

    multi     : (UP, SY) -> P
    randomInts: (NonNegativeInteger, NonNegativeInteger) -> List Integer
    findUniv  : (List P, SY, SY) -> Union(P, "failed")
    incl?     : (List SY, List SY) -> Boolean
    triangularLinearIfCan:(List P,List SY,SY) -> Union(List UP,"failed")
    innerPrimitiveElement: (List P, List SY, SY) -> REC

    multi(p, v)            == multivariate(map(#1, p), v)
    randomInts(n, m)       == [symmetricRemainder(random()$Integer, m) for i in 1..n]
    incl?(a, b)            == every?(member?(#1, b), a)
    primitiveElement(l, v) == primitiveElement(l, v, new()$SY)

    primitiveElement(p1, a1, p2, a2) ==
      one? degree(p2, a1) => [0, 1, univariate resultant(p1, p2, a1)]
      u := (new()$SY)::P
      b := a2::P
      for i in 10.. repeat
        c := symmetricRemainder(random()$Integer, i)
        w := u - c * b
        r := univariate resultant(eval(p1, a1, w), eval(p2, a1, w), a2)
        not zero? r and r = squareFreePart r => return [1, c, r]

    findUniv(l, v, opt) ==
      for p in l repeat
        degree(p, v) > 0 and incl?(variables p, [v, opt]) => return p
      "failed"

    triangularLinearIfCan(l, lv, w) ==
      (u := findUniv(l, w, w)) case "failed" => "failed"
      pw := univariate(u::P)
      ll := nil()$List(UP)
      for v in lv repeat
        ((u := findUniv(l, v, w)) case "failed") or
          (degree(p := univariate(u::P, v)) ~= 1) => return "failed"
        (bc := extendedEuclidean(univariate leadingCoefficient p, pw,1))
           case "failed" => error "Should not happen"
        ll := concat(map(#1,
                (- univariate(coefficient(p,0)) * bc.coef1) rem pw), ll)
      concat(map(#1, pw), reverse! ll)

    primitiveElement(l, vars, uu) ==
      u    := uu::P
      vv   := [v::P for v in vars]
      elim := concat(vars, uu)
      w    := uu::P
      n    := #l
      for i in 10.. repeat
        cf := randomInts(n, i)
        (tt := triangularLinearIfCan(lexGroebner(
             concat(w - +/[c * t for c in cf for t in vv], l), elim),
                vars, uu)) case List(UP) =>
                   ltt := tt::List(UP)
                   return([cf, rest ltt, first ltt])

@
\section{package FSPRMELT FunctionSpacePrimitiveElement}
<<package FSPRMELT FunctionSpacePrimitiveElement>>=
)abbrev package FSPRMELT FunctionSpacePrimitiveElement
++ Computation of primitive elements.
++ Author: Manuel Bronstein
++ Date Created: 6 Jun 1990
++ Date Last Updated: 25 April 1991
++ Description:
++   FunctionsSpacePrimitiveElement provides functions to compute
++   primitive elements in functions spaces;
++ Keywords: algebraic, extension, primitive.
FunctionSpacePrimitiveElement(R, F): Exports == Implementation where
  R: Join(IntegralDomain, CharacteristicZero)
  F: FunctionSpace R

  SY  ==> Symbol
  P   ==> Polynomial F
  K   ==> Kernel F
  UP  ==> SparseUnivariatePolynomial F
  REC ==> Record(primelt:F, poly:List UP, prim:UP)

  Exports ==> with
    primitiveElement: List F -> Record(primelt:F, poly:List UP, prim:UP)
      ++ primitiveElement([a1,...,an]) returns \spad{[a, [q1,...,qn], q]}
      ++ such that then \spad{k(a1,...,an) = k(a)},
      ++ \spad{ai = qi(a)}, and \spad{q(a) = 0}.
      ++ This operation uses the technique of
      ++ \spadglossSee{groebner bases}{Groebner basis}.
    if F has AlgebraicallyClosedField then
      primitiveElement: (F,F)->Record(primelt:F,pol1:UP,pol2:UP,prim:UP)
        ++ primitiveElement(a1, a2) returns \spad{[a, q1, q2, q]}
        ++ such that \spad{k(a1, a2) = k(a)},
        ++ \spad{ai = qi(a)}, and \spad{q(a) = 0}.
        ++ The minimal polynomial for a2 may involve a1, but the
        ++ minimal polynomial for a1 may not involve a2;
        ++ This operations uses \spadfun{resultant}.

  Implementation ==> add
    import PrimitiveElement(F)
    import AlgebraicManipulations(R, F)
    import PolynomialCategoryLifting(IndexedExponents K,
                            K, R, SparseMultivariatePolynomial(R, K), P)

    F2P: (F, List SY) -> P
    K2P: (K, List SY) -> P

    F2P(f, l) == inv(denom(f)::F) * map(K2P(#1, l), #1::F::P, numer f)

    K2P(k, l) ==
      ((v := symbolIfCan k) case SY) and member?(v::SY, l) => v::SY::P
      k::F::P

    primitiveElement l ==
      u    := string(uu := new()$SY)
      vars := [concat(u, string i)::SY for i in 1..#l]
      vv   := [kernel(v)$K :: F for v in vars]
      kers := [retract(a)@K for a in l]
      pols := [F2P(subst(ratDenom((minPoly k) v, kers), kers, vv), vars)
                                              for k in kers for v in vv]
      rec := primitiveElement(pols, vars, uu)
      [+/[c * a for c in rec.coef for a in l], rec.poly, rec.prim]

    if F has AlgebraicallyClosedField then
      import PolynomialCategoryQuotientFunctions(IndexedExponents K,
                            K, R, SparseMultivariatePolynomial(R, K), F)

      F2UP: (UP, K, UP) -> UP
      getpoly: (UP, F) -> UP

      F2UP(p, k, q) ==
        ans:UP := 0
        while not zero? p repeat
          f   := univariate(leadingCoefficient p, k)
          ans := ans + ((numer f) q)
                       * monomial(inv(retract(denom f)@F), degree p)
          p   := reductum p
        ans

      primitiveElement(a1, a2) ==
        a   := (aa := new()$SY)::F
        b   := (bb := new()$SY)::F
        l   := [aa, bb]$List(SY)
        p1  := minPoly(k1 := retract(a1)@K)
        p2  := map(subst(ratDenom(#1, [k1]), [k1], [a]),
                                                 minPoly(retract(a2)@K))
        rec := primitiveElement(F2P(p1 a, l), aa, F2P(p2 b, l), bb)
        w   := rec.coef1 * a1 + rec.coef2 * a2
        g   := rootOf(rec.prim)
        zero?(rec.coef1) =>
          c2g := inv(rec.coef2 :: F) * g
          r := gcd(p1, univariate(p2 c2g, retract(a)@K, p1))
          q := getpoly(r, g)
          [w, q, rec.coef2 * monomial(1, 1)$UP, rec.prim]
        ic1 := inv(rec.coef1 :: F)
        gg  := (ic1 * g)::UP - monomial(rec.coef2 * ic1, 1)$UP
        kg  := retract(g)@K
        r   := gcd(p1 gg, F2UP(p2, retract(a)@K, gg))
        q   := getpoly(r, g)
        [w, monomial(ic1, 1)$UP - rec.coef2 * ic1 * q, q, rec.prim]

      getpoly(r, g) ==
        one? degree r =>
          k := retract(g)@K
          univariate(-coefficient(r,0)/leadingCoefficient r,k,minPoly k)
        error "GCD not of degree 1"

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<package PRIMELT PrimitiveElement>>
<<package FSPRMELT FunctionSpacePrimitiveElement>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}