1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra polset.spad}
\author{Marc Moreno Maza}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{category PSETCAT PolynomialSetCategory}
<<category PSETCAT PolynomialSetCategory>>=
)abbrev category PSETCAT PolynomialSetCategory
++ Author: Marc Moreno Maza
++ Date Created: 04/26/1994
++ Date Last Updated: 12/15/1998
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords: polynomial, multivariate, ordered variables set
++ References:
++ Description: A category for finite subsets of a polynomial ring.
++ Such a set is only regarded as a set of polynomials and not
++ identified to the ideal it generates. So two distinct sets may
++ generate the same the ideal. Furthermore, for \spad{R} being an
++ integral domain, a set of polynomials may be viewed as a representation
++ of the ideal it generates in the polynomial ring \spad{(R)^(-1) P},
++ or the set of its zeros (described for instance by the radical of the
++ previous ideal, or a split of the associated affine variety) and so on.
++ So this category provides operations about those different notions.
++ Version: 2
PolynomialSetCategory(R:Ring, E:OrderedAbelianMonoidSup,_
VarSet:OrderedSet, P:RecursivePolynomialCategory(R,E,VarSet)): Category ==
Join(SetCategory,Collection P,FiniteAggregate P,CoercibleTo List P) with
retractIfCan : List(P) -> Union($,"failed")
++ \axiom{retractIfCan(lp)} returns an element of the domain whose elements
++ are the members of \axiom{lp} if such an element exists, otherwise
++ \axiom{"failed"} is returned.
retract : List(P) -> $
++ \axiom{retract(lp)} returns an element of the domain whose elements
++ are the members of \axiom{lp} if such an element exists, otherwise
++ an error is produced.
mvar : $ -> VarSet
++ \axiom{mvar(ps)} returns the main variable of the non constant polynomial
++ with the greatest main variable, if any, else an error is returned.
variables : $ -> List VarSet
++ \axiom{variables(ps)} returns the decreasingly sorted list of the
++ variables which are variables of some polynomial in \axiom{ps}.
mainVariables : $ -> List VarSet
++ \axiom{mainVariables(ps)} returns the decreasingly sorted list of the
++ variables which are main variables of some polynomial in \axiom{ps}.
mainVariable? : (VarSet,$) -> Boolean
++ \axiom{mainVariable?(v,ps)} returns true iff \axiom{v} is the main variable
++ of some polynomial in \axiom{ps}.
collectUnder : ($,VarSet) -> $
++ \axiom{collectUnder(ps,v)} returns the set consisting of the
++ polynomials of \axiom{ps} with main variable less than \axiom{v}.
collect : ($,VarSet) -> $
++ \axiom{collect(ps,v)} returns the set consisting of the
++ polynomials of \axiom{ps} with \axiom{v} as main variable.
collectUpper : ($,VarSet) -> $
++ \axiom{collectUpper(ps,v)} returns the set consisting of the
++ polynomials of \axiom{ps} with main variable greater than \axiom{v}.
sort : ($,VarSet) -> Record(under:$,floor:$,upper:$)
++ \axiom{sort(v,ps)} returns \axiom{us,vs,ws} such that \axiom{us}
++ is \axiom{collectUnder(ps,v)}, \axiom{vs} is \axiom{collect(ps,v)}
++ and \axiom{ws} is \axiom{collectUpper(ps,v)}.
trivialIdeal?: $ -> Boolean
++ \axiom{trivialIdeal?(ps)} returns true iff \axiom{ps} does
++ not contain non-zero elements.
if R has IntegralDomain
then
roughBase? : $ -> Boolean
++ \axiom{roughBase?(ps)} returns true iff for every pair \axiom{{p,q}}
++ of polynomials in \axiom{ps} their leading monomials are
++ relatively prime.
roughSubIdeal? : ($,$) -> Boolean
++ \axiom{roughSubIdeal?(ps1,ps2)} returns true iff it can proved
++ that all polynomials in \axiom{ps1} lie in the ideal generated by
++ \axiom{ps2} in \axiom{\axiom{(R)^(-1) P}} without computing Groebner bases.
roughEqualIdeals? : ($,$) -> Boolean
++ \axiom{roughEqualIdeals?(ps1,ps2)} returns true iff it can
++ proved that \axiom{ps1} and \axiom{ps2} generate the same ideal
++ in \axiom{(R)^(-1) P} without computing Groebner bases.
roughUnitIdeal? : $ -> Boolean
++ \axiom{roughUnitIdeal?(ps)} returns true iff \axiom{ps} contains some
++ non null element lying in the base ring \axiom{R}.
headRemainder : (P,$) -> Record(num:P,den:R)
++ \axiom{headRemainder(a,ps)} returns \axiom{[b,r]} such that the leading
++ monomial of \axiom{b} is reduced in the sense of Groebner bases w.r.t.
++ \axiom{ps} and \axiom{r*a - b} lies in the ideal generated by \axiom{ps}.
remainder : (P,$) -> Record(rnum:R,polnum:P,den:R)
++ \axiom{remainder(a,ps)} returns \axiom{[c,b,r]} such that \axiom{b} is fully
++ reduced in the sense of Groebner bases w.r.t. \axiom{ps},
++ \axiom{r*a - c*b} lies in the ideal generated by \axiom{ps}.
++ Furthermore, if \axiom{R} is a gcd-domain, \axiom{b} is primitive.
rewriteIdealWithHeadRemainder : (List(P),$) -> List(P)
++ \axiom{rewriteIdealWithHeadRemainder(lp,cs)} returns \axiom{lr} such that
++ the leading monomial of every polynomial in \axiom{lr} is reduced
++ in the sense of Groebner bases w.r.t. \axiom{cs} and \axiom{(lp,cs)}
++ and \axiom{(lr,cs)} generate the same ideal in \axiom{(R)^(-1) P}.
rewriteIdealWithRemainder : (List(P),$) -> List(P)
++ \axiom{rewriteIdealWithRemainder(lp,cs)} returns \axiom{lr} such that
++ every polynomial in \axiom{lr} is fully reduced in the sense
++ of Groebner bases w.r.t. \axiom{cs} and \axiom{(lp,cs)} and
++ \axiom{(lr,cs)} generate the same ideal in \axiom{(R)^(-1) P}.
triangular? : $ -> Boolean
++ \axiom{triangular?(ps)} returns true iff \axiom{ps} is a triangular set,
++ i.e. two distinct polynomials have distinct main variables
++ and no constant lies in \axiom{ps}.
add
NNI ==> NonNegativeInteger
B ==> Boolean
elements: $ -> List(P)
elements(ps:$):List(P) ==
lp : List(P) := members(ps)$$
variables1(lp:List(P)):(List VarSet) ==
lvars : List(List(VarSet)) := [variables(p)$P for p in lp]
sort(#1 > #2, removeDuplicates(concat(lvars)$List(VarSet)))
variables2(lp:List(P)):(List VarSet) ==
lvars : List(VarSet) := [mvar(p)$P for p in lp]
sort(#1 > #2, removeDuplicates(lvars)$List(VarSet))
variables (ps:$) ==
variables1(elements(ps))
mainVariables (ps:$) ==
variables2(remove(ground?,elements(ps)))
mainVariable? (v,ps) ==
lp : List(P) := remove(ground?,elements(ps))
while (not empty? lp) and (not (mvar(first(lp)) = v)) repeat
lp := rest lp
(not empty? lp)
collectUnder (ps,v) ==
lp : List P := elements(ps)
lq : List P := []
while (not empty? lp) repeat
p := first lp
lp := rest lp
if (ground?(p)) or (mvar(p) < v)
then
lq := cons(p,lq)
construct(lq)$$
collectUpper (ps,v) ==
lp : List P := elements(ps)
lq : List P := []
while (not empty? lp) repeat
p := first lp
lp := rest lp
if (not ground?(p)) and (mvar(p) > v)
then
lq := cons(p,lq)
construct(lq)$$
collect (ps,v) ==
lp : List P := elements(ps)
lq : List P := []
while (not empty? lp) repeat
p := first lp
lp := rest lp
if (not ground?(p)) and (mvar(p) = v)
then
lq := cons(p,lq)
construct(lq)$$
sort (ps,v) ==
lp : List P := elements(ps)
us : List P := []
vs : List P := []
ws : List P := []
while (not empty? lp) repeat
p := first lp
lp := rest lp
if (ground?(p)) or (mvar(p) < v)
then
us := cons(p,us)
else
if (mvar(p) = v)
then
vs := cons(p,vs)
else
ws := cons(p,ws)
[construct(us)$$,construct(vs)$$,construct(ws)$$]$Record(under:$,floor:$,upper:$)
ps1 = ps2 ==
{p for p in elements(ps1)} =$(Set P) {p for p in elements(ps2)}
localInf? (p:P,q:P):B ==
degree(p) <$E degree(q)
localTriangular? (lp:List(P)):B ==
lp := remove(zero?, lp)
empty? lp => true
any? (ground?, lp) => false
lp := sort(mvar(#1)$P > mvar(#2)$P, lp)
p,q : P
p := first lp
lp := rest lp
while (not empty? lp) and (mvar(p) > mvar((q := first(lp)))) repeat
p := q
lp := rest lp
empty? lp
triangular? ps ==
localTriangular? elements ps
trivialIdeal? ps ==
empty?(remove(zero?,elements(ps))$(List(P)))$(List(P))
if R has IntegralDomain
then
roughUnitIdeal? ps ==
any?(ground?,remove(zero?,elements(ps))$(List(P)))$(List P)
relativelyPrimeLeadingMonomials? (p:P,q:P):B ==
dp : E := degree(p)
dq : E := degree(q)
(sup(dp,dq)$E =$E dp +$E dq)@B
roughBase? ps ==
lp := remove(zero?,elements(ps))$(List(P))
empty? lp => true
rB? : B := true
while (not empty? lp) and rB? repeat
p := first lp
lp := rest lp
copylp := lp
while (not empty? copylp) and rB? repeat
rB? := relativelyPrimeLeadingMonomials?(p,first(copylp))
copylp := rest copylp
rB?
roughSubIdeal?(ps1,ps2) ==
lp: List(P) := rewriteIdealWithRemainder(elements(ps1),ps2)
empty? (remove(zero?,lp))
roughEqualIdeals? (ps1,ps2) ==
ps1 =$$ ps2 => true
roughSubIdeal?(ps1,ps2) and roughSubIdeal?(ps2,ps1)
if (R has GcdDomain) and (VarSet has ConvertibleTo (Symbol))
then
LPR ==> List Polynomial R
LS ==> List Symbol
exactQuo(r:R,s:R):R ==
if R has EuclideanDomain then r quo$R s
else (r exquo$R s)::R
headRemainder (a,ps) ==
lp1 : List(P) := remove(zero?, elements(ps))$(List(P))
empty? lp1 => [a,1$R]
any?(ground?,lp1) => [reductum(a),1$R]
r : R := 1$R
lp1 := sort(localInf?, reverse elements(ps))
lp2 := lp1
e : Union(E, "failed")
while (not zero? a) and (not empty? lp2) repeat
p := first lp2
if ((e:= subtractIfCan(degree(a),degree(p))) case E)
then
g := gcd((lca := leadingCoefficient(a)),(lcp := leadingCoefficient(p)))$R
(lca,lcp) := (exactQuo(lca,g),exactQuo(lcp,g))
a := lcp * reductum(a) - monomial(lca, e::E)$P * reductum(p)
r := r * lcp
lp2 := lp1
else
lp2 := rest lp2
[a,r]
makeIrreducible! (frac:Record(num:P,den:R)):Record(num:P,den:R) ==
g := gcd(frac.den,frac.num)$P
one? g => frac
frac.num := exactQuotient!(frac.num,g)
frac.den := exactQuo(frac.den,g)
frac
remainder (a,ps) ==
hRa := makeIrreducible! headRemainder (a,ps)
a := hRa.num
r : R := hRa.den
zero? a => [1$R,a,r]
b : P := monomial(1$R,degree(a))$P
c : R := leadingCoefficient(a)
while not zero?(a := reductum a) repeat
hRa := makeIrreducible! headRemainder (a,ps)
a := hRa.num
r := r * hRa.den
g := gcd(c,(lca := leadingCoefficient(a)))$R
b := ((hRa.den) * exactQuo(c,g)) * b + monomial(exactQuo(lca,g),degree(a))$P
c := g
[c,b,r]
rewriteIdealWithHeadRemainder(ps,cs) ==
trivialIdeal? cs => ps
roughUnitIdeal? cs => [0$P]
ps := remove(zero?,ps)
empty? ps => ps
any?(ground?,ps) => [1$P]
rs : List P := []
while not empty? ps repeat
p := first ps
ps := rest ps
p := (headRemainder(p,cs)).num
if not zero? p
then
if ground? p
then
ps := []
rs := [1$P]
else
primitivePart! p
rs := cons(p,rs)
removeDuplicates rs
rewriteIdealWithRemainder(ps,cs) ==
trivialIdeal? cs => ps
roughUnitIdeal? cs => [0$P]
ps := remove(zero?,ps)
empty? ps => ps
any?(ground?,ps) => [1$P]
rs : List P := []
while not empty? ps repeat
p := first ps
ps := rest ps
p := (remainder(p,cs)).polnum
if not zero? p
then
if ground? p
then
ps := []
rs := [1$P]
else
rs := cons(unitCanonical(p),rs)
removeDuplicates rs
@
\section{domain GPOLSET GeneralPolynomialSet}
<<domain GPOLSET GeneralPolynomialSet>>=
)abbrev domain GPOLSET GeneralPolynomialSet
++ Author: Marc Moreno Maza
++ Date Created: 04/26/1994
++ Date Last Updated: 12/15/1998
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords: polynomial, multivariate, ordered variables set
++ References:
++ Description: A domain for polynomial sets.
++ Version: 1
GeneralPolynomialSet(R,E,VarSet,P) : Exports == Implementation where
R:Ring
VarSet:OrderedSet
E:OrderedAbelianMonoidSup
P:RecursivePolynomialCategory(R,E,VarSet)
LP ==> List P
PtoP ==> P -> P
Exports == Join(PolynomialSetCategory(R,E,VarSet,P),FiniteAggregate P) with
convert : LP -> $
++ \axiom{convert(lp)} returns the polynomial set whose members
++ are the polynomials of \axiom{lp}.
shallowlyMutable
Implementation == add
Rep := List P
construct lp ==
(removeDuplicates(lp)$List(P))::$
copy ps ==
construct(copy(members(ps)$$)$LP)$$
empty() ==
[]
parts ps ==
ps pretend LP
map (f : PtoP, ps : $) : $ ==
construct(map(f,members(ps))$LP)$$
map! (f : PtoP, ps : $) : $ ==
construct(map!(f,members(ps))$LP)$$
member? (p,ps) ==
member?(p,members(ps))$LP
ps1 = ps2 ==
{p for p in parts(ps1)} =$(Set P) {p for p in parts(ps2)}
coerce(ps:$) : OutputForm ==
lp : List(P) := sort(infRittWu?,members(ps))$(List P)
brace([p::OutputForm for p in lp]$List(OutputForm))$OutputForm
mvar ps ==
empty? ps => error"Error from GPOLSET in mvar : #1 is empty"
lv : List VarSet := variables(ps)
empty? lv => error"Error from GPOLSET in mvar : every polynomial in #1 is constant"
reduce(max,lv)$(List VarSet)
retractIfCan(lp) ==
(construct(lp))::Union($,"failed")
coerce(ps:$) : (List P) ==
ps pretend (List P)
convert(lp:LP) : $ ==
construct lp
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<category PSETCAT PolynomialSetCategory>>
<<domain GPOLSET GeneralPolynomialSet>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|