1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra permgrps.spad}
\author{Gerhard Schneider, Holger Gollan, Johannes Grabmeier, M. Weller}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain PERMGRP PermutationGroup}
<<domain PERMGRP PermutationGroup>>=
)abbrev domain PERMGRP PermutationGroup
++ Authors: G. Schneider, H. Gollan, J. Grabmeier
++ Date Created: 13 February 1987
++ Date Last Updated: 24 May 1991
++ Basic Operations:
++ Related Constructors: PermutationGroupExamples, Permutation
++ Also See: RepresentationTheoryPackage1
++ AMS Classifications:
++ Keywords: permutation, permutation group, group operation, word problem
++ References:
++ C. Sims: Determining the conjugacy classes of a permutation group,
++ in Computers in Algebra and Number Theory, SIAM-AMS Proc., Vol. 4,
++ Amer. Math. Soc., Providence, R. I., 1971, pp. 191-195
++ Description:
++ PermutationGroup implements permutation groups acting
++ on a set S, i.e. all subgroups of the symmetric group of S,
++ represented as a list of permutations (generators). Note that
++ therefore the objects are not members of the \Language category
++ \spadtype{Group}.
++ Using the idea of base and strong generators by Sims,
++ basic routines and algorithms
++ are implemented so that the word problem for
++ permutation groups can be solved.
--++ Note: we plan to implement lattice operations on the subgroup
--++ lattice in a later release
PermutationGroup(S:SetCategory): public == private where
L ==> List
PERM ==> Permutation
FSET ==> Set
I ==> Integer
NNI ==> NonNegativeInteger
V ==> Vector
B ==> Boolean
OUT ==> OutputForm
SYM ==> Symbol
REC ==> Record ( orb : L NNI , svc : V I )
REC2 ==> Record(order:NNI,sgset:L V NNI,_
gpbase:L NNI,orbs:L REC,mp:L S,wd:L L NNI)
REC3 ==> Record(elt:V NNI,lst:L NNI)
REC4 ==> Record(bool:B,lst:L NNI)
public ==> SetCategory with
coerce : % -> L PERM S
++ coerce(gp) returns the generators of the group {\em gp}.
generators : % -> L PERM S
++ generators(gp) returns the generators of the group {\em gp}.
elt : (%,NNI) -> PERM S
++ elt(gp,i) returns the i-th generator of the group {\em gp}.
random : (%,I) -> PERM S
++ random(gp,i) returns a random product of maximal i generators
++ of the group {\em gp}.
random : % -> PERM S
++ random(gp) returns a random product of maximal 20 generators
++ of the group {\em gp}.
++ Note: {\em random(gp)=random(gp,20)}.
order : % -> NNI
++ order(gp) returns the order of the group {\em gp}.
degree : % -> NNI
++ degree(gp) returns the number of points moved by all permutations
++ of the group {\em gp}.
base : % -> L S
++ base(gp) returns a base for the group {\em gp}.
strongGenerators : % -> L PERM S
++ strongGenerators(gp) returns strong generators for
++ the group {\em gp}.
wordsForStrongGenerators : % -> L L NNI
++ wordsForStrongGenerators(gp) returns the words for the strong
++ generators of the group {\em gp} in the original generators of
++ {\em gp}, represented by their indices in the list, given by
++ {\em generators}.
coerce : L PERM S -> %
++ coerce(ls) coerces a list of permutations {\em ls} to the group
++ generated by this list.
permutationGroup : L PERM S -> %
++ permutationGroup(ls) coerces a list of permutations {\em ls} to
++ the group generated by this list.
orbit : (%,S) -> FSET S
++ orbit(gp,el) returns the orbit of the element {\em el} under the
++ group {\em gp}, i.e. the set of all points gained by applying
++ each group element to {\em el}.
orbits : % -> FSET FSET S
++ orbits(gp) returns the orbits of the group {\em gp}, i.e.
++ it partitions the (finite) of all moved points.
orbit : (%,FSET S)-> FSET FSET S
++ orbit(gp,els) returns the orbit of the unordered
++ set {\em els} under the group {\em gp}.
orbit : (%,L S) -> FSET L S
++ orbit(gp,ls) returns the orbit of the ordered
++ list {\em ls} under the group {\em gp}.
++ Note: return type is L L S temporarily because FSET L S has an error.
-- (GILT DAS NOCH?)
member? : (PERM S, %)-> B
++ member?(pp,gp) answers the question, whether the
++ permutation {\em pp} is in the group {\em gp} or not.
wordInStrongGenerators : (PERM S, %)-> L NNI
++ wordInStrongGenerators(p,gp) returns the word for the
++ permutation p in the strong generators of the group {\em gp},
++ represented by the indices of the list, given by {\em strongGenerators}.
wordInGenerators : (PERM S, %)-> L NNI
++ wordInGenerators(p,gp) returns the word for the permutation p
++ in the original generators of the group {\em gp},
++ represented by the indices of the list, given by {\em generators}.
support : % -> FSET S
++ support(gp) returns the points moved by the group {\em gp}.
< : (%,%) -> B
++ gp1 < gp2 returns true if and only if {\em gp1}
++ is a proper subgroup of {\em gp2}.
<= : (%,%) -> B
++ gp1 <= gp2 returns true if and only if {\em gp1}
++ is a subgroup of {\em gp2}.
++ Note: because of a bug in the parser you have to call this
++ function explicitly by {\em gp1 <=$(PERMGRP S) gp2}.
-- (GILT DAS NOCH?)
initializeGroupForWordProblem : % -> Void
++ initializeGroupForWordProblem(gp) initializes the group {\em gp}
++ for the word problem.
++ Notes: it calls the other function of this name with parameters
++ 0 and 1: {\em initializeGroupForWordProblem(gp,0,1)}.
++ Notes: (1) be careful: invoking this routine will destroy the
++ possibly information about your group (but will recompute it again)
++ (2) users need not call this function normally for the soultion of
++ the word problem.
initializeGroupForWordProblem :(%,I,I) -> Void
++ initializeGroupForWordProblem(gp,m,n) initializes the group
++ {\em gp} for the word problem.
++ Notes: (1) with a small integer you get shorter words, but the
++ routine takes longer than the standard routine for longer words.
++ (2) be careful: invoking this routine will destroy the possibly stored
++ information about your group (but will recompute it again).
++ (3) users need not call this function normally for the soultion of
++ the word problem.
private ==> add
-- representation of the object:
Rep := Record ( gens : L PERM S , information : REC2 )
-- import of domains and packages
import Permutation S
import OutputForm
import Symbol
import Void
--first the local variables
sgs : L V NNI := []
baseOfGroup : L NNI := []
sizeOfGroup : NNI := 1
degree : NNI := 0
gporb : L REC := []
out : L L V NNI := []
outword : L L L NNI := []
wordlist : L L NNI := []
basePoint : NNI := 0
newBasePoint : B := true
supp : L S := []
ord : NNI := 1
wordProblem : B := true
--local functions first, signatures:
shortenWord:(L NNI, %)->L NNI
times:(V NNI, V NNI)->V NNI
strip:(V NNI,REC,L V NNI,L L NNI)->REC3
orbitInternal:(%,L S )->L L S
inv: V NNI->V NNI
ranelt:(L V NNI,L L NNI, I)->REC3
testIdentity:V NNI->B
pointList: %->L S
orbitWithSvc:(L V NNI ,NNI )->REC
cosetRep:(NNI ,REC ,L V NNI )->REC3
bsgs1:(L V NNI,NNI,L L NNI,I,%,I)->NNI
computeOrbits: I->L NNI
reduceGenerators: I->Void
bsgs:(%, I, I)->NNI
initialize: %->FSET PERM S
knownGroup?: %->Void
subgroup:(%, %)->B
memberInternal:(PERM S, %, B)->REC4
--local functions first, implementations:
shortenWord ( lw : L NNI , gp : % ) : L NNI ==
-- tries to shorten a word in the generators by removing identities
gpgens : L PERM S := coerce gp
orderList : L NNI := [ order gen for gen in gpgens ]
newlw : L NNI := copy lw
for i in 1.. maxIndex orderList repeat
if orderList.i = 1 then
while member?(i,newlw) repeat
-- removing the trivial element
pos := position(i,newlw)
newlw := delete(newlw,pos)
flag : B := true
while flag repeat
actualLength : NNI := (maxIndex newlw) pretend NNI
pointer := actualLength
test := newlw.pointer
anzahl : NNI := 1
flag := false
while pointer > 1 repeat
pointer := ( pointer - 1 )::NNI
if newlw.pointer ~= test then
-- don't get a trivial element, try next
test := newlw.pointer
anzahl := 1
else
anzahl := anzahl + 1
if anzahl = orderList.test then
-- we have an identity, so remove it
for i in (pointer+anzahl)..actualLength repeat
newlw.(i-anzahl) := newlw.i
newlw := first(newlw, (actualLength - anzahl) :: NNI)
flag := true
pointer := 1
newlw
times ( p : V NNI , q : V NNI ) : V NNI ==
-- internal multiplication of permutations
[ qelt(p,qelt(q,i)) for i in 1..degree ]
strip(element:V NNI,orbit:REC,group:L V NNI,words:L L NNI) : REC3 ==
-- strip an element into the stabilizer
actelt := element
schreierVector := orbit.svc
point := orbit.orb.1
outlist := nil()$(L NNI)
entryLessZero : B := false
while not entryLessZero repeat
entry := schreierVector.(actelt.point)
entryLessZero := negative? entry
if not entryLessZero then
actelt := times(group.entry, actelt)
if wordProblem then outlist := append ( words.(entry::NNI) , outlist )
[ actelt , reverse outlist ]
orbitInternal ( gp : % , startList : L S ) : L L S ==
orbitList : L L S := [ startList ]
pos : I := 1
while not zero? pos repeat
gpset : L PERM S := gp.gens
for gen in gpset repeat
newList := nil()$(L S)
workList := orbitList.pos
for j in #workList..1 by -1 repeat
newList := cons (gen(workList.j) , newList )
if not member?( newList , orbitList ) then
orbitList := cons ( newList , orbitList )
pos := pos + 1
pos := pos - 1
reverse orbitList
inv ( p : V NNI ) : V NNI ==
-- internal inverse of a permutation
q : V NNI := new(degree,0)$(V NNI)
for i in 1..degree repeat q.(qelt(p,i)) := i
q
ranelt ( group : L V NNI , word : L L NNI , maxLoops : I ) : REC3 ==
-- generate a "random" element
numberOfGenerators := # group
randomInteger : I := 1 + (random()$Integer rem numberOfGenerators)
randomElement : V NNI := group.randomInteger
words := nil()$(L NNI)
if wordProblem then words := word.(randomInteger::NNI)
if positive? maxLoops then
numberOfLoops : I := 1 + (random()$Integer rem maxLoops)
else
numberOfLoops : I := maxLoops
while positive? numberOfLoops repeat
randomInteger : I := 1 + (random()$Integer rem numberOfGenerators)
randomElement := times ( group.randomInteger , randomElement )
if wordProblem then words := append ( word.(randomInteger::NNI) , words)
numberOfLoops := numberOfLoops - 1
[ randomElement , words ]
testIdentity ( p : V NNI ) : B ==
-- internal test for identity
for i in 1..degree repeat qelt(p,i) ~= i => return false
true
pointList(group : %) : L S ==
s : FSET S := brace() -- empty set !!
for perm in group.gens repeat
s := union(s, support perm)
parts s
orbitWithSvc ( group : L V NNI , point : NNI ) : REC ==
-- compute orbit with Schreier vector, "-2" means not in the orbit,
-- "-1" means starting point, the PI correspond to generators
newGroup := nil()$(L V NNI)
for el in group repeat
newGroup := cons ( inv el , newGroup )
newGroup := reverse newGroup
orbit : L NNI := [ point ]
schreierVector : V I := new ( degree , -2 )
schreierVector.point := -1
position : I := 1
while not zero? position repeat
for i in 1..#newGroup repeat
newPoint := orbit.position
newPoint := newGroup.i.newPoint
if not member? ( newPoint , orbit ) then
orbit := cons ( newPoint , orbit )
position := position + 1
schreierVector.newPoint := i
position := position - 1
[ reverse orbit , schreierVector ]
cosetRep ( point : NNI , o : REC , group : L V NNI ) : REC3 ==
ppt := point
xelt : V NNI := [ n for n in 1..degree ]
word := nil()$(L NNI)
oorb := o.orb
osvc := o.svc
while positive? degree repeat
p := osvc.ppt
negative? p => return [ xelt , word ]
x := group.p
xelt := times ( x , xelt )
if wordProblem then word := append ( wordlist.p , word )
ppt := x.ppt
[xelt,word]
bsgs1 (group:L V NNI,number1:NNI,words:L L NNI,maxLoops:I,gp:%,diff:I)_
: NNI ==
-- try to get a good approximation for the strong generators and base
ort: REC
k1: NNI
i : NNI
for i in number1..degree repeat
ort := orbitWithSvc ( group , i )
k := ort.orb
k1 := # k
if k1 ~= 1 then leave
gpsgs := nil()$(L V NNI)
words2 := nil()$(L L NNI)
gplength : NNI := #group
jj: NNI
for jj in 1..gplength repeat if (group.jj).i ~= i then leave
for k in 1..gplength repeat
el2 := group.k
if el2.i ~= i then
gpsgs := cons ( el2 , gpsgs )
if wordProblem then words2 := cons ( words.k , words2 )
else
gpsgs := cons ( times ( group.jj , el2 ) , gpsgs )
if wordProblem _
then words2 := cons ( append ( words.jj , words.k ) , words2 )
group2 := nil()$(L V NNI)
words3 := nil()$(L L NNI)
j : I := 15
while positive? j repeat
-- find generators for the stabilizer
ran := ranelt ( group , words , maxLoops )
str := strip ( ran.elt , ort , group , words )
el2 := str.elt
if not testIdentity el2 then
if not member?(el2,group2) then
group2 := cons ( el2 , group2 )
if wordProblem then
help : L NNI := append ( reverse str.lst , ran.lst )
help := shortenWord ( help , gp )
words3 := cons ( help , words3 )
j := j - 2
j := j - 1
-- this is for word length control
if wordProblem then maxLoops := maxLoops - diff
if ( null group2 ) or negative? maxLoops then
sizeOfGroup := k1
baseOfGroup := [ i ]
out := [ gpsgs ]
outword := [ words2 ]
return sizeOfGroup
k2 := bsgs1 ( group2 , i + 1 , words3 , maxLoops , gp , diff )
sizeOfGroup := k1 * k2
out := append ( out , [ gpsgs ] )
outword := append ( outword , [ words2 ] )
baseOfGroup := cons ( i , baseOfGroup )
sizeOfGroup
computeOrbits ( kkk : I ) : L NNI ==
-- compute the orbits for the stabilizers
sgs := nil()
orbitLength := nil()$(L NNI)
gporb := nil()
for i in 1..#baseOfGroup repeat
sgs := append ( sgs , out.i )
pt := #baseOfGroup - i + 1
obs := orbitWithSvc ( sgs , baseOfGroup.pt )
orbitLength := cons ( #obs.orb , orbitLength )
gporb := cons ( obs , gporb )
gporb := reverse gporb
reverse orbitLength
reduceGenerators ( kkk : I ) : Void ==
-- try to reduce number of strong generators
orbitLength := computeOrbits ( kkk )
sgs := nil()
wordlist := nil()
for i in 1..(kkk-1) repeat
sgs := append ( sgs , out.i )
if wordProblem then wordlist := append ( wordlist , outword.i )
removedGenerator := false
baseLength : NNI := #baseOfGroup
for nnn in kkk..(baseLength-1) repeat
sgs := append ( sgs , out.nnn )
if wordProblem then wordlist := append ( wordlist , outword.nnn )
pt := baseLength - nnn + 1
obs := orbitWithSvc ( sgs , baseOfGroup.pt )
i : NNI := 1
while not ( i > # out.nnn ) repeat
pos := position ( out.nnn.i , sgs )
sgs2 := delete(sgs, pos)
obs2 := orbitWithSvc ( sgs2 , baseOfGroup.pt )
if # obs2.orb = orbitLength.nnn then
test := true
for j in (nnn+1)..(baseLength-1) repeat
pt2 := baseLength - j + 1
sgs2 := append ( sgs2 , out.j )
obs2 := orbitWithSvc ( sgs2 , baseOfGroup.pt2 )
if # obs2.orb ~= orbitLength.j then
test := false
leave
if test then
removedGenerator := true
sgs := delete (sgs, pos)
if wordProblem then wordlist := delete(wordlist, pos)
out.nnn := delete (out.nnn, i)
if wordProblem then _
outword.nnn := delete(outword.nnn, i )
else
i := i + 1
else
i := i + 1
if removedGenerator then orbitLength := computeOrbits ( kkk )
bsgs ( group : % ,maxLoops : I , diff : I ) : NNI ==
-- the MOST IMPORTANT part of the package
supp := pointList group
degree := # supp
if degree = 0 then
sizeOfGroup := 1
sgs := [ [ 0 ] ]
baseOfGroup := nil()
gporb := nil()
return sizeOfGroup
newGroup := nil()$(L V NNI)
gp : L PERM S := group.gens
words := nil()$(L L NNI)
for ggg in 1..#gp repeat
q := new(degree,0)$(V NNI)
for i in 1..degree repeat
newEl := elt(gp.ggg,supp.i)
pos2 := position ( newEl , supp )
q.i := pos2 pretend NNI
newGroup := cons ( q , newGroup )
if wordProblem then words := cons(list ggg, words)
if maxLoops < 1 then
-- try to get the (approximate) base length
if zero? (# ((group.information).gpbase)) then
wordProblem := false
k := bsgs1 ( newGroup , 1 , words , 20 , group , 0 )
wordProblem := true
maxLoops := (# baseOfGroup) - 1
else
maxLoops := (# ((group.information).gpbase)) - 1
k := bsgs1 ( newGroup , 1 , words , maxLoops , group , diff )
kkk : I := 1
newGroup := reverse newGroup
noAnswer : B := true
z: V NNI
while noAnswer repeat
reduceGenerators kkk
-- *** Here is former "bsgs2" *** --
-- test whether we have a base and a strong generating set
sgs := nil()
wordlist := nil()
for i in 1..(kkk-1) repeat
sgs := append ( sgs , out.i )
if wordProblem then wordlist := append ( wordlist , outword.i )
noresult : B := true
word3: L NNI
word: L NNI
for i in kkk..#baseOfGroup while noresult repeat
sgs := append ( sgs , out.i )
if wordProblem then wordlist := append ( wordlist , outword.i )
gporbi := gporb.i
for pt in gporbi.orb while noresult repeat
ppp := cosetRep ( pt , gporbi , sgs )
y1 := inv ppp.elt
word3 := ppp.lst
for jjj in 1..#sgs while noresult repeat
word := nil()$(L NNI)
z := times ( sgs.jjj , y1 )
if wordProblem then word := append ( wordlist.jjj , word )
ppp := cosetRep ( (sgs.jjj).pt , gporbi , sgs )
z := times ( ppp.elt , z )
if wordProblem then word := append ( ppp.lst , word )
newBasePoint := false
for j in (i-1)..1 by -1 while noresult repeat
s := gporb.j.svc
p := gporb.j.orb.1
while positive? degree and noresult repeat
entry := s.(z.p)
if negative? entry then
if entry = -1 then leave
basePoint := j::NNI
noresult := false
else
ee := sgs.entry
z := times ( ee , z )
if wordProblem then word := append ( wordlist.entry , word )
if noresult then
basePoint := 1
newBasePoint := true
noresult := testIdentity z
noAnswer := not (testIdentity z)
if noAnswer then
-- we have missed something
word2 := nil()$(L NNI)
if wordProblem then
for wd in word3 repeat
ttt := newGroup.wd
while not (testIdentity ttt) repeat
word2 := cons ( wd , word2 )
ttt := times ( ttt , newGroup.wd )
word := append ( word , word2 )
word := shortenWord ( word , group )
if newBasePoint then
for i in 1..degree repeat
if z.i ~= i then
baseOfGroup := append ( baseOfGroup , [ i ] )
leave
out := cons (list z, out )
if wordProblem then outword := cons (list word , outword )
else
out.basePoint := cons ( z , out.basePoint )
if wordProblem then outword.basePoint := cons(word ,outword.basePoint )
kkk := basePoint
sizeOfGroup := 1
for j in 1..#baseOfGroup repeat
sizeOfGroup := sizeOfGroup * # gporb.j.orb
sizeOfGroup
initialize ( group : % ) : FSET PERM S ==
group2 := brace()$(FSET PERM S)
gp : L PERM S := group.gens
for gen in gp repeat
if positive? degree gen then insert!(gen, group2)
group2
knownGroup? (gp : %) : Void ==
-- do we know the group already?
result := gp.information
if result.order = 0 then
wordProblem := false
ord := bsgs ( gp , 20 , 0 )
result := [ ord , sgs , baseOfGroup , gporb , supp , [] ]
gp.information := result
else
ord := result.order
sgs := result.sgset
baseOfGroup := result.gpbase
gporb := result.orbs
supp := result.mp
wordlist := result.wd
subgroup ( gp1 : % , gp2 : % ) : B ==
gpset1 := initialize gp1
gpset2 := initialize gp2
empty? difference (gpset1, gpset2) => true
for el in parts gpset1 repeat
not member? (el, gp2) => return false
true
memberInternal ( p : PERM S , gp : % , flag : B ) : REC4 ==
-- internal membership testing
supp := pointList gp
outlist := nil()$(L NNI)
mP : L S := parts support p
for x in mP repeat
not member? (x, supp) => return [ false , nil()$(L NNI) ]
if flag then
member? ( p , gp.gens ) => return [ true , nil()$(L NNI) ]
knownGroup? gp
else
result := gp.information
if #(result.wd) = 0 then
initializeGroupForWordProblem gp
else
ord := result.order
sgs := result.sgset
baseOfGroup := result.gpbase
gporb := result.orbs
supp := result.mp
wordlist := result.wd
degree := # supp
pp := new(degree,0)$(V NNI)
for i in 1..degree repeat
el := p(supp.i)
pos := position ( el , supp )
pp.i := pos::NNI
words := nil()$(L L NNI)
if wordProblem then
for i in 1..#sgs repeat
lw : L NNI := [ (#sgs - i + 1)::NNI ]
words := cons ( lw , words )
for i in #baseOfGroup..1 by -1 repeat
str := strip ( pp , gporb.i , sgs , words )
pp := str.elt
if wordProblem then outlist := append ( outlist , str.lst )
[ testIdentity pp , reverse outlist ]
--now the exported functions
coerce ( gp : % ) : L PERM S == gp.gens
generators ( gp : % ) : L PERM S == gp.gens
strongGenerators ( group ) ==
knownGroup? group
degree := # supp
strongGens := nil()$(L PERM S)
for i in sgs repeat
pairs := nil()$(L L S)
for j in 1..degree repeat
pairs := cons ( [ supp.j , supp.(i.j) ] , pairs )
strongGens := cons ( coerceListOfPairs pairs , strongGens )
reverse strongGens
elt ( gp , i ) == (gp.gens).i
support ( gp ) == brace pointList gp
random ( group , maximalNumberOfFactors ) ==
maximalNumberOfFactors < 1 => 1$(PERM S)
gp : L PERM S := group.gens
numberOfGenerators := # gp
randomInteger : I := 1 + (random()$Integer rem numberOfGenerators)
randomElement := gp.randomInteger
numberOfLoops : I := 1 + (random()$Integer rem maximalNumberOfFactors)
while positive? numberOfLoops repeat
randomInteger : I := 1 + (random()$Integer rem numberOfGenerators)
randomElement := gp.randomInteger * randomElement
numberOfLoops := numberOfLoops - 1
randomElement
random ( group ) == random ( group , 20 )
order ( group ) ==
knownGroup? group
ord
degree ( group ) == # pointList group
base ( group ) ==
knownGroup? group
groupBase := nil()$(L S)
for i in baseOfGroup repeat
groupBase := cons ( supp.i , groupBase )
reverse groupBase
wordsForStrongGenerators ( group ) ==
knownGroup? group
wordlist
coerce ( gp : L PERM S ) : % ==
result : REC2 := [ 0 , [] , [] , [] , [] , [] ]
group := [ gp , result ]
permutationGroup ( gp : L PERM S ) : % ==
result : REC2 := [ 0 , [] , [] , [] , [] , [] ]
group := [ gp , result ]
coerce(group: %) : OUT ==
outList := nil()$(L OUT)
gp : L PERM S := group.gens
for i in (maxIndex gp)..1 by -1 repeat
outList := cons(coerce gp.i, outList)
postfix(outputForm(">":SYM),postfix(commaSeparate outList,outputForm("<":SYM)))
orbit ( gp : % , el : S ) : FSET S ==
elList : L S := [ el ]
outList := orbitInternal ( gp , elList )
outSet := brace()$(FSET S)
for i in 1..#outList repeat
insert! ( outList.i.1 , outSet )
outSet
orbits ( gp ) ==
spp := support gp
orbits := nil()$(L FSET S)
while positive? cardinality spp repeat
el := extract! spp
orbitSet := orbit ( gp , el )
orbits := cons ( orbitSet , orbits )
spp := difference ( spp , orbitSet )
brace orbits
member? (p, gp) ==
wordProblem := false
mi := memberInternal ( p , gp , true )
mi.bool
wordInStrongGenerators (p, gp ) ==
mi := memberInternal ( inv p , gp , false )
not mi.bool => error "p is not an element of gp"
mi.lst
wordInGenerators (p, gp) ==
lll : L NNI := wordInStrongGenerators (p, gp)
outlist := nil()$(L NNI)
for wd in lll repeat
outlist := append ( outlist , wordlist.wd )
shortenWord ( outlist , gp )
gp1 < gp2 ==
not empty? difference ( support gp1 , support gp2 ) => false
not subgroup ( gp1 , gp2 ) => false
order gp1 = order gp2 => false
true
gp1 <= gp2 ==
not empty? difference ( support gp1 , support gp2 ) => false
subgroup ( gp1 , gp2 )
gp1 = gp2 ==
support gp1 ~= support gp2 => false
if #(gp1.gens) <= #(gp2.gens) then
not subgroup ( gp1 , gp2 ) => return false
else
not subgroup ( gp2 , gp1 ) => return false
order gp1 = order gp2 => true
false
orbit ( gp : % , startSet : FSET S ) : FSET FSET S ==
startList : L S := parts startSet
outList := orbitInternal ( gp , startList )
outSet := brace()$(FSET FSET S)
for i in 1..#outList repeat
newSet : FSET S := brace outList.i
insert! ( newSet , outSet )
outSet
orbit ( gp : % , startList : L S ) : FSET L S ==
brace orbitInternal(gp, startList)
initializeGroupForWordProblem ( gp , maxLoops , diff ) ==
wordProblem := true
ord := bsgs ( gp , maxLoops , diff )
gp.information := [ ord , sgs , baseOfGroup , gporb , supp , wordlist ]
initializeGroupForWordProblem ( gp ) == initializeGroupForWordProblem ( gp , 0 , 1 )
@
\section{package PGE PermutationGroupExamples}
<<package PGE PermutationGroupExamples>>=
)abbrev package PGE PermutationGroupExamples
++ Authors: M. Weller, G. Schneider, J. Grabmeier
++ Date Created: 20 February 1990
++ Date Last Updated: 09 June 1990
++ Basic Operations:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ J. Conway, R. Curtis, S. Norton, R. Parker, R. Wilson:
++ Atlas of Finite Groups, Oxford, Clarendon Press, 1987
++ Description:
++ PermutationGroupExamples provides permutation groups for
++ some classes of groups: symmetric, alternating, dihedral, cyclic,
++ direct products of cyclic, which are in fact the finite abelian groups
++ of symmetric groups called Young subgroups.
++ Furthermore, Rubik's group as permutation group of 48 integers and a list
++ of sporadic simple groups derived from the atlas of finite groups.
PermutationGroupExamples():public == private where
L ==> List
I ==> Integer
PI ==> PositiveInteger
NNI ==> NonNegativeInteger
PERM ==> Permutation
PERMGRP ==> PermutationGroup
public ==> with
symmetricGroup: PI -> PERMGRP I
++ symmetricGroup(n) constructs the symmetric group {\em Sn}
++ acting on the integers 1,...,n, generators are the
++ {\em n}-cycle {\em (1,...,n)} and the 2-cycle {\em (1,2)}.
symmetricGroup: L I -> PERMGRP I
++ symmetricGroup(li) constructs the symmetric group acting on
++ the integers in the list {\em li}, generators are the
++ cycle given by {\em li} and the 2-cycle {\em (li.1,li.2)}.
++ Note: duplicates in the list will be removed.
alternatingGroup: PI -> PERMGRP I
++ alternatingGroup(n) constructs the alternating group {\em An}
++ acting on the integers 1,...,n, generators are in general the
++ {\em n-2}-cycle {\em (3,...,n)} and the 3-cycle {\em (1,2,3)}
++ if n is odd and the product of the 2-cycle {\em (1,2)} with
++ {\em n-2}-cycle {\em (3,...,n)} and the 3-cycle {\em (1,2,3)}
++ if n is even.
alternatingGroup: L I -> PERMGRP I
++ alternatingGroup(li) constructs the alternating group acting
++ on the integers in the list {\em li}, generators are in general the
++ {\em n-2}-cycle {\em (li.3,...,li.n)} and the 3-cycle
++ {\em (li.1,li.2,li.3)}, if n is odd and
++ product of the 2-cycle {\em (li.1,li.2)} with
++ {\em n-2}-cycle {\em (li.3,...,li.n)} and the 3-cycle
++ {\em (li.1,li.2,li.3)}, if n is even.
++ Note: duplicates in the list will be removed.
abelianGroup: L PI -> PERMGRP I
++ abelianGroup([n1,...,nk]) constructs the abelian group that
++ is the direct product of cyclic groups with order {\em ni}.
cyclicGroup: PI -> PERMGRP I
++ cyclicGroup(n) constructs the cyclic group of order n acting
++ on the integers 1,...,n.
cyclicGroup: L I -> PERMGRP I
++ cyclicGroup([i1,...,ik]) constructs the cyclic group of
++ order k acting on the integers {\em i1},...,{\em ik}.
++ Note: duplicates in the list will be removed.
dihedralGroup: PI -> PERMGRP I
++ dihedralGroup(n) constructs the dihedral group of order 2n
++ acting on integers 1,...,N.
dihedralGroup: L I -> PERMGRP I
++ dihedralGroup([i1,...,ik]) constructs the dihedral group of
++ order 2k acting on the integers out of {\em i1},...,{\em ik}.
++ Note: duplicates in the list will be removed.
mathieu11: L I -> PERMGRP I
++ mathieu11(li) constructs the mathieu group acting on the 11
++ integers given in the list {\em li}.
++ Note: duplicates in the list will be removed.
++ error, if {\em li} has less or more than 11 different entries.
mathieu11: () -> PERMGRP I
++ mathieu11 constructs the mathieu group acting on the
++ integers 1,...,11.
mathieu12: L I -> PERMGRP I
++ mathieu12(li) constructs the mathieu group acting on the 12
++ integers given in the list {\em li}.
++ Note: duplicates in the list will be removed
++ Error: if {\em li} has less or more than 12 different entries.
mathieu12: () -> PERMGRP I
++ mathieu12 constructs the mathieu group acting on the
++ integers 1,...,12.
mathieu22: L I -> PERMGRP I
++ mathieu22(li) constructs the mathieu group acting on the 22
++ integers given in the list {\em li}.
++ Note: duplicates in the list will be removed.
++ Error: if {\em li} has less or more than 22 different entries.
mathieu22: () -> PERMGRP I
++ mathieu22 constructs the mathieu group acting on the
++ integers 1,...,22.
mathieu23: L I -> PERMGRP I
++ mathieu23(li) constructs the mathieu group acting on the 23
++ integers given in the list {\em li}.
++ Note: duplicates in the list will be removed.
++ Error: if {\em li} has less or more than 23 different entries.
mathieu23: () -> PERMGRP I
++ mathieu23 constructs the mathieu group acting on the
++ integers 1,...,23.
mathieu24: L I -> PERMGRP I
++ mathieu24(li) constructs the mathieu group acting on the 24
++ integers given in the list {\em li}.
++ Note: duplicates in the list will be removed.
++ Error: if {\em li} has less or more than 24 different entries.
mathieu24: () -> PERMGRP I
++ mathieu24 constructs the mathieu group acting on the
++ integers 1,...,24.
janko2: L I -> PERMGRP I
++ janko2(li) constructs the janko group acting on the 100
++ integers given in the list {\em li}.
++ Note: duplicates in the list will be removed.
++ Error: if {\em li} has less or more than 100 different entries
janko2: () -> PERMGRP I
++ janko2 constructs the janko group acting on the
++ integers 1,...,100.
rubiksGroup: () -> PERMGRP I
++ rubiksGroup constructs the permutation group representing
++ Rubic's Cube acting on integers {\em 10*i+j} for
++ {\em 1 <= i <= 6}, {\em 1 <= j <= 8}.
++ The faces of Rubik's Cube are labelled in the obvious way
++ Front, Right, Up, Down, Left, Back and numbered from 1 to 6
++ in this given ordering, the pieces on each face
++ (except the unmoveable center piece) are clockwise numbered
++ from 1 to 8 starting with the piece in the upper left
++ corner. The moves of the cube are represented as permutations
++ on these pieces, represented as a two digit
++ integer {\em ij} where i is the numer of theface (1 to 6)
++ and j is the number of the piece on this face.
++ The remaining ambiguities are resolved by looking
++ at the 6 generators, which represent a 90 degree turns of the
++ faces, or from the following pictorial description.
++ Permutation group representing Rubic's Cube acting on integers
++ 10*i+j for 1 <= i <= 6, 1 <= j <=8.
++
++ \begin{verbatim}
++ Rubik's Cube: +-----+ +-- B where: marks Side # :
++ / U /|/
++ / / | F(ront) <-> 1
++ L --> +-----+ R| R(ight) <-> 2
++ | | + U(p) <-> 3
++ | F | / D(own) <-> 4
++ | |/ L(eft) <-> 5
++ +-----+ B(ack) <-> 6
++ ^
++ |
++ D
++
++ The Cube's surface:
++ The pieces on each side
++ +---+ (except the unmoveable center
++ |567| piece) are clockwise numbered
++ |4U8| from 1 to 8 starting with the
++ |321| piece in the upper left
++ +---+---+---+ corner (see figure on the
++ |781|123|345| left). The moves of the cube
++ |6L2|8F4|2R6| are represented as
++ |543|765|187| permutations on these pieces.
++ +---+---+---+ Each of the pieces is
++ |123| represented as a two digit
++ |8D4| integer ij where i is the
++ |765| # of the side ( 1 to 6 for
++ +---+ F to B (see table above ))
++ |567| and j is the # of the piece.
++ |4B8|
++ |321|
++ +---+
++ \end{verbatim}
youngGroup: L I -> PERMGRP I
++ youngGroup([n1,...,nk]) constructs the direct product of the
++ symmetric groups {\em Sn1},...,{\em Snk}.
youngGroup: Partition -> PERMGRP I
++ youngGroup(lambda) constructs the direct product of the symmetric
++ groups given by the parts of the partition {\em lambda}.
private ==> add
-- import the permutation and permutation group domains:
import PERM I
import PERMGRP I
-- import the needed map function:
import ListFunctions2(L L I,PERM I)
-- the internal functions:
llli2gp(l:L L L I):PERMGRP I ==
--++ Converts an list of permutations each represented by a list
--++ of cycles ( each of them represented as a list of Integers )
--++ to the permutation group generated by these permutations.
(map(cycles,l))::PERMGRP I
li1n(n:I):L I ==
--++ constructs the list of integers from 1 to n
[i for i in 1..n]
-- definition of the exported functions:
youngGroup(l:L I):PERMGRP I ==
gens:= nil()$(L L L I)
element:I:= 1
for n in l | n > 1 repeat
gens:=cons(list [i for i in element..(element+n-1)], gens)
if n >= 3 then gens := cons([[element,element+1]],gens)
element:=element+n
llli2gp
#gens = 0 => [[[1]]]
gens
youngGroup(lambda : Partition):PERMGRP I ==
youngGroup(lambda::L(PI) pretend L I)
rubiksGroup():PERMGRP I ==
-- each generator represents a 90 degree turn of the appropriate
-- side.
f:L L I:=
[[11,13,15,17],[12,14,16,18],[51,31,21,41],[53,33,23,43],[52,32,22,42]]
r:L L I:=
[[21,23,25,27],[22,24,26,28],[13,37,67,43],[15,31,61,45],[14,38,68,44]]
u:L L I:=
[[31,33,35,37],[32,34,36,38],[13,51,63,25],[11,57,61,23],[12,58,62,24]]
d:L L I:=
[[41,43,45,47],[42,44,46,48],[17,21,67,55],[15,27,65,53],[16,28,66,54]]
l:L L I:=
[[51,53,55,57],[52,54,56,58],[11,41,65,35],[17,47,63,33],[18,48,64,34]]
b:L L I:=
[[61,63,65,67],[62,64,66,68],[45,25,35,55],[47,27,37,57],[46,26,36,56]]
llli2gp [f,r,u,d,l,b]
mathieu11(l:L I):PERMGRP I ==
-- permutations derived from the ATLAS
l:=removeDuplicates l
#l ~= 11 => error "Exactly 11 integers for mathieu11 needed !"
a:L L I:=[[l.1,l.10],[l.2,l.8],[l.3,l.11],[l.5,l.7]]
llli2gp [a,[[l.1,l.4,l.7,l.6],[l.2,l.11,l.10,l.9]]]
mathieu11():PERMGRP I == mathieu11 li1n 11
mathieu12(l:L I):PERMGRP I ==
-- permutations derived from the ATLAS
l:=removeDuplicates l
#l ~= 12 => error "Exactly 12 integers for mathieu12 needed !"
a:L L I:=
[[l.1,l.2,l.3,l.4,l.5,l.6,l.7,l.8,l.9,l.10,l.11]]
llli2gp [a,[[l.1,l.6,l.5,l.8,l.3,l.7,l.4,l.2,l.9,l.10],[l.11,l.12]]]
mathieu12():PERMGRP I == mathieu12 li1n 12
mathieu22(l:L I):PERMGRP I ==
-- permutations derived from the ATLAS
l:=removeDuplicates l
#l ~= 22 => error "Exactly 22 integers for mathieu22 needed !"
a:L L I:=[[l.1,l.2,l.4,l.8,l.16,l.9,l.18,l.13,l.3,l.6,l.12], _
[l.5,l.10,l.20,l.17,l.11,l.22,l.21,l.19,l.15,l.7,l.14]]
b:L L I:= [[l.1,l.2,l.6,l.18],[l.3,l.15],[l.5,l.8,l.21,l.13], _
[l.7,l.9,l.20,l.12],[l.10,l.16],[l.11,l.19,l.14,l.22]]
llli2gp [a,b]
mathieu22():PERMGRP I == mathieu22 li1n 22
mathieu23(l:L I):PERMGRP I ==
-- permutations derived from the ATLAS
l:=removeDuplicates l
#l ~= 23 => error "Exactly 23 integers for mathieu23 needed !"
a:L L I:= [[l.1,l.2,l.3,l.4,l.5,l.6,l.7,l.8,l.9,l.10,l.11,l.12,l.13,l.14,_
l.15,l.16,l.17,l.18,l.19,l.20,l.21,l.22,l.23]]
b:L L I:= [[l.2,l.16,l.9,l.6,l.8],[l.3,l.12,l.13,l.18,l.4], _
[l.7,l.17,l.10,l.11,l.22],[l.14,l.19,l.21,l.20,l.15]]
llli2gp [a,b]
mathieu23():PERMGRP I == mathieu23 li1n 23
mathieu24(l:L I):PERMGRP I ==
-- permutations derived from the ATLAS
l:=removeDuplicates l
#l ~= 24 => error "Exactly 24 integers for mathieu24 needed !"
a:L L I:= [[l.1,l.16,l.10,l.22,l.24],[l.2,l.12,l.18,l.21,l.7], _
[l.4,l.5,l.8,l.6,l.17],[l.9,l.11,l.13,l.19,l.15]]
b:L L I:= [[l.1,l.22,l.13,l.14,l.6,l.20,l.3,l.21,l.8,l.11],[l.2,l.10], _
[l.4,l.15,l.18,l.17,l.16,l.5,l.9,l.19,l.12,l.7],[l.23,l.24]]
llli2gp [a,b]
mathieu24():PERMGRP I == mathieu24 li1n 24
janko2(l:L I):PERMGRP I ==
-- permutations derived from the ATLAS
l:=removeDuplicates l
#l ~= 100 => error "Exactly 100 integers for janko2 needed !"
a:L L I:=[ _
[l.2,l.3,l.4,l.5,l.6,l.7,l.8], _
[l.9,l.10,l.11,l.12,l.13,l.14,l.15], _
[l.16,l.17,l.18,l.19,l.20,l.21,l.22], _
[l.23,l.24,l.25,l.26,l.27,l.28,l.29], _
[l.30,l.31,l.32,l.33,l.34,l.35,l.36], _
[l.37,l.38,l.39,l.40,l.41,l.42,l.43], _
[l.44,l.45,l.46,l.47,l.48,l.49,l.50], _
[l.51,l.52,l.53,l.54,l.55,l.56,l.57], _
[l.58,l.59,l.60,l.61,l.62,l.63,l.64], _
[l.65,l.66,l.67,l.68,l.69,l.70,l.71], _
[l.72,l.73,l.74,l.75,l.76,l.77,l.78], _
[l.79,l.80,l.81,l.82,l.83,l.84,l.85], _
[l.86,l.87,l.88,l.89,l.90,l.91,l.92], _
[l.93,l.94,l.95,l.96,l.97,l.98,l.99] ]
b:L L I:=[
[l.1,l.74,l.83,l.21,l.36,l.77,l.44,l.80,l.64,l.2,l.34,l.75,l.48,l.17,l.100],_
[l.3,l.15,l.31,l.52,l.19,l.11,l.73,l.79,l.26,l.56,l.41,l.99,l.39,l.84,l.90],_
[l.4,l.57,l.86,l.63,l.85,l.95,l.82,l.97,l.98,l.81,l.8,l.69,l.38,l.43,l.58],_
[l.5,l.66,l.49,l.59,l.61],_
[l.6,l.68,l.89,l.94,l.92,l.20,l.13,l.54,l.24,l.51,l.87,l.27,l.76,l.23,l.67],_
[l.7,l.72,l.22,l.35,l.30,l.70,l.47,l.62,l.45,l.46,l.40,l.28,l.65,l.93,l.42],_
[l.9,l.71,l.37,l.91,l.18,l.55,l.96,l.60,l.16,l.53,l.50,l.25,l.32,l.14,l.33],_
[l.10,l.78,l.88,l.29,l.12] ]
llli2gp [a,b]
janko2():PERMGRP I == janko2 li1n 100
abelianGroup(l:L PI):PERMGRP I ==
gens:= nil()$(L L L I)
element:I:= 1
for n in l | n > 1 repeat
gens:=cons( list [i for i in element..(element+n-1) ], gens )
element:=element+n
llli2gp
#gens = 0 => [[[1]]]
gens
alternatingGroup(l:L I):PERMGRP I ==
l:=removeDuplicates l
#l = 0 =>
error "Cannot construct alternating group on empty set"
#l < 3 => llli2gp [[[l.1]]]
#l = 3 => llli2gp [[[l.1,l.2,l.3]]]
tmp:= [l.i for i in 3..(#l)]
gens:L L L I:=[[tmp],[[l.1,l.2,l.3]]]
odd?(#l) => llli2gp gens
gens.1 := cons([l.1,l.2],gens.1)
llli2gp gens
alternatingGroup(n:PI):PERMGRP I == alternatingGroup li1n n
symmetricGroup(l:L I):PERMGRP I ==
l:=removeDuplicates l
#l = 0 => error "Cannot construct symmetric group on empty set !"
#l < 3 => llli2gp [[l]]
llli2gp [[l],[[l.1,l.2]]]
symmetricGroup(n:PI):PERMGRP I == symmetricGroup li1n n
cyclicGroup(l:L I):PERMGRP I ==
l:=removeDuplicates l
#l = 0 => error "Cannot construct cyclic group on empty set"
llli2gp [[l]]
cyclicGroup(n:PI):PERMGRP I == cyclicGroup li1n n
dihedralGroup(l:L I):PERMGRP I ==
l:=removeDuplicates l
#l < 3 => error "in dihedralGroup: Minimum of 3 elements needed !"
tmp := [[l.i, l.(#l-i+1) ] for i in 1..(#l quo 2)]
llli2gp [ [ l ], tmp ]
dihedralGroup(n:PI):PERMGRP I ==
n = 1 => symmetricGroup (2::PI)
n = 2 => llli2gp [[[1,2]],[[3,4]]]
dihedralGroup li1n n
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
-- Copyright (C) 2007-2010, Gabriel Dos Reis.
-- All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<domain PERMGRP PermutationGroup>>
<<package PGE PermutationGroupExamples>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|