1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra padiclib.spad}
\author{Clifton J. Williamson}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package IBPTOOLS IntegralBasisPolynomialTools}
<<package IBPTOOLS IntegralBasisPolynomialTools>>=
)abbrev package IBPTOOLS IntegralBasisPolynomialTools
++ Author: Clifton Williamson
++ Date Created: 13 August 1993
++ Date Last Updated: 17 August 1993
++ Basic Operations: mapUnivariate, mapBivariate
++ Related Domains: PAdicWildFunctionFieldIntegralBasis(K,R,UP,F)
++ Also See: WildFunctionFieldIntegralBasis, FunctionFieldIntegralBasis
++ AMS Classifications:
++ Keywords: function field, finite field, integral basis
++ Examples:
++ References:
++ Description: IntegralBasisPolynomialTools provides functions for
++ mapping functions on the coefficients of univariate and bivariate
++ polynomials.
IntegralBasisPolynomialTools(K,R,UP,L): Exports == Implementation where
K : Ring
R : UnivariatePolynomialCategory K
UP : UnivariatePolynomialCategory R
L : Ring
MAT ==> Matrix
SUP ==> SparseUnivariatePolynomial
Exports ==> with
mapUnivariate: (L -> K,SUP L) -> R
++ mapUnivariate(f,p(x)) applies the function \spad{f} to the
++ coefficients of \spad{p(x)}.
mapUnivariate: (K -> L,R) -> SUP L
++ mapUnivariate(f,p(x)) applies the function \spad{f} to the
++ coefficients of \spad{p(x)}.
mapUnivariateIfCan: (L -> Union(K,"failed"),SUP L) -> Union(R,"failed")
++ mapUnivariateIfCan(f,p(x)) applies the function \spad{f} to the
++ coefficients of \spad{p(x)}, if possible, and returns
++ \spad{"failed"} otherwise.
mapMatrixIfCan: (L -> Union(K,"failed"),MAT SUP L) -> Union(MAT R,"failed")
++ mapMatrixIfCan(f,mat) applies the function \spad{f} to the
++ coefficients of the entries of \spad{mat} if possible, and returns
++ \spad{"failed"} otherwise.
mapBivariate: (K -> L,UP) -> SUP SUP L
++ mapBivariate(f,p(x,y)) applies the function \spad{f} to the
++ coefficients of \spad{p(x,y)}.
Implementation ==> add
mapUnivariate(f:L -> K,poly:SUP L) ==
ans : R := 0
while not zero? poly repeat
ans := ans + monomial(f leadingCoefficient poly,degree poly)
poly := reductum poly
ans
mapUnivariate(f:K -> L,poly:R) ==
ans : SUP L := 0
while not zero? poly repeat
ans := ans + monomial(f leadingCoefficient poly,degree poly)
poly := reductum poly
ans
mapUnivariateIfCan(f,poly) ==
ans : R := 0
while not zero? poly repeat
(lc := f leadingCoefficient poly) case "failed" => return "failed"
ans := ans + monomial(lc :: K,degree poly)
poly := reductum poly
ans
mapMatrixIfCan(f,mat) ==
m := nrows mat; n := ncols mat
matOut : MAT R := new(m,n,0)
for i in 1..m repeat for j in 1..n repeat
(poly := mapUnivariateIfCan(f,qelt(mat,i,j))) case "failed" =>
return "failed"
qsetelt!(matOut,i,j,poly :: R)
matOut
mapBivariate(f,poly) ==
ans : SUP SUP L := 0
while not zero? poly repeat
ans :=
ans + monomial(mapUnivariate(f,leadingCoefficient poly),degree poly)
poly := reductum poly
ans
@
\section{package IBACHIN ChineseRemainderToolsForIntegralBases}
<<package IBACHIN ChineseRemainderToolsForIntegralBases>>=
)abbrev package IBACHIN ChineseRemainderToolsForIntegralBases
++ Author: Clifton Williamson
++ Date Created: 9 August 1993
++ Date Last Updated: 3 December 1993
++ Basic Operations: chineseRemainder, factorList
++ Related Domains: PAdicWildFunctionFieldIntegralBasis(K,R,UP,F)
++ Also See: WildFunctionFieldIntegralBasis, FunctionFieldIntegralBasis
++ AMS Classifications:
++ Keywords: function field, finite field, integral basis
++ Examples:
++ References:
++ Description:
ChineseRemainderToolsForIntegralBases(K,R,UP): Exports == Implementation where
K : FiniteFieldCategory
R : UnivariatePolynomialCategory K
UP : UnivariatePolynomialCategory R
DDFACT ==> DistinctDegreeFactorize
I ==> Integer
L ==> List
L2 ==> ListFunctions2
Mat ==> Matrix R
NNI ==> NonNegativeInteger
PI ==> PositiveInteger
Q ==> Fraction R
SAE ==> SimpleAlgebraicExtension
SUP ==> SparseUnivariatePolynomial
SUP2 ==> SparseUnivariatePolynomialFunctions2
Result ==> Record(basis: Mat, basisDen: R, basisInv: Mat)
Exports ==> with
factorList: (K,NNI,NNI,NNI) -> L SUP K
++ factorList(k,n,m,j) \undocumented
listConjugateBases: (Result,NNI,NNI) -> List Result
++ listConjugateBases(bas,q,n) returns the list
++ \spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]}, where
++ \spad{Frob} raises the coefficients of all polynomials
++ appearing in the basis \spad{bas} to the \spad{q}th power.
chineseRemainder: (List UP, List Result, NNI) -> Result
++ chineseRemainder(lu,lr,n) \undocumented
Implementation ==> add
import ModularHermitianRowReduction(R)
import TriangularMatrixOperations(R, Vector R, Vector R, Matrix R)
applyFrobToMatrix: (Matrix R,NNI) -> Matrix R
applyFrobToMatrix(mat,q) ==
-- raises the coefficients of the polynomial entries of 'mat'
-- to the qth power
m := nrows mat; n := ncols mat
ans : Matrix R := new(m,n,0)
for i in 1..m repeat for j in 1..n repeat
qsetelt!(ans,i,j,map(#1 ** q,qelt(mat,i,j)))
ans
listConjugateBases(bas,q,n) ==
outList : List Result := list bas
b := bas.basis; bInv := bas.basisInv; bDen := bas.basisDen
for i in 1..(n-1) repeat
b := applyFrobToMatrix(b,q)
bInv := applyFrobToMatrix(bInv,q)
bDen := map(#1 ** q,bDen)
newBasis : Result := [b,bDen,bInv]
outList := concat(newBasis,outList)
reverse! outList
factorList(a,q,n,k) ==
coef : SUP K := monomial(a,0); xx : SUP K := monomial(1,1)
outList : L SUP K := list((xx - coef)**k)
for i in 1..(n-1) repeat
coef := coef ** q
outList := concat((xx - coef)**k,outList)
reverse! outList
basisInfoToPolys: (Mat,R,R) -> L UP
basisInfoToPolys(mat,lcm,den) ==
n := nrows(mat) :: I; n1 := n - 1
outList : L UP := empty()
for i in 1..n repeat
pp : UP := 0
for j in 0..n1 repeat
pp := pp + monomial((lcm quo den) * qelt(mat,i,j+1),j)
outList := concat(pp,outList)
reverse! outList
basesToPolyLists: (L Result,R) -> L L UP
basesToPolyLists(basisList,lcm) ==
[basisInfoToPolys(b.basis,lcm,b.basisDen) for b in basisList]
OUT ==> OutputForm
approximateExtendedEuclidean: (UP,UP,R,NNI) -> Record(coef1:UP,coef2:UP)
approximateExtendedEuclidean(f,g,p,n) ==
-- f and g are monic and relatively prime (mod p)
-- function returns [coef1,coef2] such that
-- coef1 * f + coef2 * g = 1 (mod p^n)
sae := SAE(K,R,p)
fSUP : SUP R := makeSUP f; gSUP : SUP R := makeSUP g
fBar : SUP sae := map(convert(#1)@sae,fSUP)$SUP2(R,sae)
gBar : SUP sae := map(convert(#1)@sae,gSUP)$SUP2(R,sae)
ee := extendedEuclidean(fBar,gBar)
not one?(ee.generator) =>
error "polynomials aren't relatively prime"
ss1 := ee.coef1; tt1 := ee.coef2
s1 : SUP R := map(convert(#1)@R,ss1)$SUP2(sae,R); s := s1
t1 : SUP R := map(convert(#1)@R,tt1)$SUP2(sae,R); t := t1
pPower := p
for i in 2..n repeat
num := 1 - s * fSUP - t * gSUP
rhs := (num exquo pPower) :: SUP R
sigma := map(#1 rem p,s1 * rhs); tau := map(#1 rem p,t1 * rhs)
s := s + pPower * sigma; t := t + pPower * tau
quorem := monicDivide(s,gSUP)
pPower := pPower * p
s := map(#1 rem pPower,quorem.remainder)
t := map(#1 rem pPower,t + fSUP * (quorem.quotient))
[unmakeSUP s,unmakeSUP t]
--mapChineseToList: (L SUP Q,L SUP Q,I) -> L SUP Q
--mapChineseToList(list,polyList,i) ==
mapChineseToList: (L UP,L UP,I,R) -> L UP
mapChineseToList(list,polyList,i,den) ==
-- 'polyList' consists of MONIC polynomials
-- computes a polynomial p such that p = pp (modulo polyList[i])
-- and p = 0 (modulo polyList[j]) for j ~= i for each 'pp' in 'list'
-- create polynomials
q : UP := 1
for j in 1..(i-1) repeat
q := q * first polyList
polyList := rest polyList
p := first polyList
polyList := rest polyList
for j in (i+1).. while not empty? polyList repeat
q := q * first polyList
polyList := rest polyList
--p := map((numer(#1) rem den)/1, p)
--q := map((numer(#1) rem den)/1, q)
-- 'den' is a power of an irreducible polynomial
--!! make this computation more efficient!!
factoredDen := factor(den)$DDFACT(K,R)
prime := nthFactor(factoredDen,1)
n := nthExponent(factoredDen,1) :: NNI
invPoly := approximateExtendedEuclidean(q,p,prime,n).coef1
-- monicDivide may be inefficient?
[monicDivide(pp * invPoly * q,p * q).remainder for pp in list]
polyListToMatrix: (L UP,NNI) -> Mat
polyListToMatrix(polyList,n) ==
mat : Mat := new(n,n,0)
for i in 1..n for poly in polyList repeat
while not zero? poly repeat
mat(i,degree(poly) + 1) := leadingCoefficient poly
poly := reductum poly
mat
chineseRemainder(factors,factorBases,n) ==
denLCM : R := reduce("lcm",[base.basisDen for base in factorBases])
denLCM = 1 => [scalarMatrix(n,1),1,scalarMatrix(n,1)]
-- compute local basis polynomials with denominators cleared
factorBasisPolyLists := basesToPolyLists(factorBases,denLCM)
-- use Chinese remainder to compute basis polynomials w/o denominators
basisPolyLists : L L UP := empty()
for i in 1.. for pList in factorBasisPolyLists repeat
polyList := mapChineseToList(pList,factors,i,denLCM)
basisPolyLists := concat(polyList,basisPolyLists)
basisPolys := concat reverse! basisPolyLists
mat := squareTop rowEchelon(polyListToMatrix(basisPolys,n),denLCM)
matInv := UpTriBddDenomInv(mat,denLCM)
[mat,denLCM,matInv]
@
\section{package PWFFINTB PAdicWildFunctionFieldIntegralBasis}
<<package PWFFINTB PAdicWildFunctionFieldIntegralBasis>>=
)abbrev package PWFFINTB PAdicWildFunctionFieldIntegralBasis
++ Author: Clifton Williamson
++ Date Created: 5 July 1993
++ Date Last Updated: 17 August 1993
++ Basic Operations: integralBasis, localIntegralBasis
++ Related Domains: WildFunctionFieldIntegralBasis(K,R,UP,F)
++ Also See: FunctionFieldIntegralBasis
++ AMS Classifications:
++ Keywords: function field, finite field, integral basis
++ Examples:
++ References:
++ Description:
++ In this package K is a finite field, R is a ring of univariate
++ polynomials over K, and F is a monogenic algebra over R.
++ We require that F is monogenic, i.e. that \spad{F = K[x,y]/(f(x,y))},
++ because the integral basis algorithm used will factor the polynomial
++ \spad{f(x,y)}. The package provides a function to compute the integral
++ closure of R in the quotient field of F as well as a function to compute
++ a "local integral basis" at a specific prime.
PAdicWildFunctionFieldIntegralBasis(K,R,UP,F): Exports == Implementation where
K : FiniteFieldCategory
R : UnivariatePolynomialCategory K
UP : UnivariatePolynomialCategory R
F : MonogenicAlgebra(R,UP)
I ==> Integer
L ==> List
L2 ==> ListFunctions2
Mat ==> Matrix R
NNI ==> NonNegativeInteger
PI ==> PositiveInteger
Q ==> Fraction R
SAE ==> SimpleAlgebraicExtension
SUP ==> SparseUnivariatePolynomial
CDEN ==> CommonDenominator
DDFACT ==> DistinctDegreeFactorize
WFFINTBS ==> WildFunctionFieldIntegralBasis
Result ==> Record(basis: Mat, basisDen: R, basisInv:Mat)
IResult ==> Record(basis: Mat, basisDen: R, basisInv:Mat,discr: R)
IBPTOOLS ==> IntegralBasisPolynomialTools
IBACHIN ==> ChineseRemainderToolsForIntegralBases
IRREDFFX ==> IrredPolyOverFiniteField
GHEN ==> GeneralHenselPackage
Exports ==> with
integralBasis : () -> Result
++ \spad{integralBasis()} returns a record
++ \spad{[basis,basisDen,basisInv] } containing information regarding
++ the integral closure of R in the quotient field of the framed
++ algebra F. F is a framed algebra with R-module basis
++ \spad{w1,w2,...,wn}.
++ If 'basis' is the matrix \spad{(aij, i = 1..n, j = 1..n)}, then
++ the \spad{i}th element of the integral basis is
++ \spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)}, i.e. the
++ \spad{i}th row of 'basis' contains the coordinates of the
++ \spad{i}th basis vector. Similarly, the \spad{i}th row of the
++ matrix 'basisInv' contains the coordinates of \spad{wi} with respect
++ to the basis \spad{v1,...,vn}: if 'basisInv' is the matrix
++ \spad{(bij, i = 1..n, j = 1..n)}, then
++ \spad{wi = sum(bij * vj, j = 1..n)}.
localIntegralBasis : R -> Result
++ \spad{integralBasis(p)} returns a record
++ \spad{[basis,basisDen,basisInv] } containing information regarding
++ the local integral closure of R at the prime \spad{p} in the quotient
++ field of the framed algebra F. F is a framed algebra with R-module
++ basis \spad{w1,w2,...,wn}.
++ If 'basis' is the matrix \spad{(aij, i = 1..n, j = 1..n)}, then
++ the \spad{i}th element of the local integral basis is
++ \spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)}, i.e. the
++ \spad{i}th row of 'basis' contains the coordinates of the
++ \spad{i}th basis vector. Similarly, the \spad{i}th row of the
++ matrix 'basisInv' contains the coordinates of \spad{wi} with respect
++ to the basis \spad{v1,...,vn}: if 'basisInv' is the matrix
++ \spad{(bij, i = 1..n, j = 1..n)}, then
++ \spad{wi = sum(bij * vj, j = 1..n)}.
reducedDiscriminant: UP -> R
++ reducedDiscriminant(up) \undocumented
Implementation ==> add
import IntegralBasisTools(R, UP, F)
import GeneralHenselPackage(R,UP)
import ModularHermitianRowReduction(R)
import TriangularMatrixOperations(R, Vector R, Vector R, Matrix R)
reducedDiscriminant f ==
ff : SUP Q := mapUnivariate(#1 :: Q,f)$IBPTOOLS(R,UP,SUP UP,Q)
ee := extendedEuclidean(ff,differentiate ff)
cc := concat(coefficients(ee.coef1),coefficients(ee.coef2))
cden := splitDenominator(cc)$CDEN(R,Q,L Q)
denom := cden.den
gg := gcd map(numer,cden.num)$L2(Q,R)
(ans := denom exquo gg) case "failed" =>
error "PWFFINTB: error in reduced discriminant computation"
ans :: R
compLocalBasis: (UP,R) -> Result
compLocalBasis(poly,prime) ==
-- compute a local integral basis at 'prime' for k[x,y]/(poly(x,y)).
sae := SAE(R,UP,poly)
localIntegralBasis(prime)$WFFINTBS(K,R,UP,sae)
compLocalBasisOverExt: (UP,R,UP,NNI) -> Result
compLocalBasisOverExt(poly0,prime0,irrPoly0,k) ==
-- poly0 = irrPoly0**k (mod prime0)
n := degree poly0; disc0 := discriminant poly0
(disc0 exquo prime0) case "failed" =>
[scalarMatrix(n,1), 1, scalarMatrix(n,1)]
r := degree irrPoly0
-- extend scalars:
-- construct irreducible polynomial of degree r over K
irrPoly := generateIrredPoly(r :: PI)$IRREDFFX(K)
-- construct extension of degree r over K
E := SAE(K,SUP K,irrPoly)
-- lift coefficients to elements of E
poly := mapBivariate(#1 :: E,poly0)$IBPTOOLS(K,R,UP,E)
redDisc0 := reducedDiscriminant poly0
redDisc := mapUnivariate(#1 :: E,redDisc0)$IBPTOOLS(K,R,UP,E)
prime := mapUnivariate(#1 :: E,prime0)$IBPTOOLS(K,R,UP,E)
sae := SAE(E,SUP E,prime)
-- reduction (mod prime) of polynomial of which poly is the kth power
redIrrPoly :=
pp := mapBivariate(#1 :: E,irrPoly0)$IBPTOOLS(K,R,UP,E)
mapUnivariate(reduce,pp)$IBPTOOLS(SUP E,SUP SUP E,SUP SUP SUP E,sae)
-- factor the reduction
factorListSAE := factors factor(redIrrPoly)$DDFACT(sae,SUP sae)
-- list the 'primary factors' of the reduction of poly
redFactors : List SUP sae := [(f.factor)**k for f in factorListSAE]
-- lift these factors to elements of SUP SUP E
primaries : List SUP SUP E :=
[mapUnivariate(lift,ff)$IBPTOOLS(SUP E,SUP SUP E,SUP SUP SUP E,sae) _
for ff in redFactors]
-- lift the factors to factors modulo a suitable power of 'prime'
deg := (1 + order(redDisc,prime) * degree(prime)) :: PI
henselInfo := HenselLift(poly,primaries,prime,deg)$GHEN(SUP E,SUP SUP E)
henselFactors := henselInfo.plist
psi1 := first henselFactors
FF := SAE(SUP E,SUP SUP E,psi1)
factorIb := localIntegralBasis(prime)$WFFINTBS(E,SUP E,SUP SUP E,FF)
bs := listConjugateBases(factorIb,size()$K,r)$IBACHIN(E,SUP E,SUP SUP E)
ib := chineseRemainder(henselFactors,bs,n)$IBACHIN(E,SUP E,SUP SUP E)
b : Matrix R :=
bas := mapMatrixIfCan(retractIfCan,ib.basis)$IBPTOOLS(K,R,UP,E)
bas case "failed" => error "retraction of basis failed"
bas :: Matrix R
bInv : Matrix R :=
--bas := mapMatrixIfCan(ric,ib.basisInv)$IBPTOOLS(K,R,UP,E)
bas := mapMatrixIfCan(retractIfCan,ib.basisInv)$IBPTOOLS(K,R,UP,E)
bas case "failed" => error "retraction of basis inverse failed"
bas :: Matrix R
bDen : R :=
p := mapUnivariateIfCan(retractIfCan,ib.basisDen)$IBPTOOLS(K,R,UP,E)
p case "failed" => error "retraction of basis denominator failed"
p :: R
[b,bDen,bInv]
padicLocalIntegralBasis: (UP,R,R,R) -> IResult
padicLocalIntegralBasis(p,disc,redDisc,prime) ==
-- polynomials in x modulo 'prime'
sae := SAE(K,R,prime)
-- find the factorization of 'p' modulo 'prime' and lift the
-- prime powers to elements of UP:
-- reduce 'p' modulo 'prime'
reducedP := mapUnivariate(reduce,p)$IBPTOOLS(R,UP,SUP UP,sae)
-- factor the reduced polynomial
factorListSAE := factors factor(reducedP)$DDFACT(sae,SUP sae)
-- if only one prime factor, perform usual integral basis computation
(# factorListSAE) = 1 =>
ib := localIntegralBasis(prime)$WFFINTBS(K,R,UP,F)
index := diagonalProduct(ib.basisInv)
[ib.basis,ib.basisDen,ib.basisInv,disc quo (index * index)]
-- list the 'prime factors' of the reduced polynomial
redPrimes : List SUP sae :=
[f.factor for f in factorListSAE]
-- lift these factors to elements of UP
primes : List UP :=
[mapUnivariate(lift,ff)$IBPTOOLS(R,UP,SUP UP,sae) for ff in redPrimes]
-- list the exponents
expons : List NNI := [((f.exponent) :: NNI) for f in factorListSAE]
-- list the 'primary factors' of the reduced polynomial
redPrimaries : List SUP sae :=
[(f.factor) **((f.exponent) :: NNI) for f in factorListSAE]
-- lift these factors to elements of UP
primaries : List UP :=
[mapUnivariate(lift,ff)$IBPTOOLS(R,UP,SUP UP,sae) for ff in redPrimaries]
-- lift the factors to factors modulo a suitable power of 'prime'
deg := (1 + order(redDisc,prime) * degree(prime)) :: PI
henselInfo := HenselLift(p,primaries,prime,deg)
henselFactors := henselInfo.plist
-- compute integral bases for the factors
factorBases : List Result := empty(); degPrime := degree prime
for pp in primes for k in expons for qq in henselFactors repeat
base :=
degPp := degree pp
degPp > 1 and gcd(degPp,degPrime) = 1 =>
compLocalBasisOverExt(qq,prime,pp,k)
compLocalBasis(qq,prime)
factorBases := concat(base,factorBases)
factorBases := reverse! factorBases
ib := chineseRemainder(henselFactors,factorBases,rank()$F)$IBACHIN(K,R,UP)
index := diagonalProduct(ib.basisInv)
[ib.basis,ib.basisDen,ib.basisInv,disc quo (index * index)]
localIntegralBasis prime ==
p := definingPolynomial()$F; disc := discriminant p
--disc := determinant traceMatrix()$F
redDisc := reducedDiscriminant p
ib := padicLocalIntegralBasis(p,disc,redDisc,prime)
[ib.basis,ib.basisDen,ib.basisInv]
listSquaredFactors: R -> List R
listSquaredFactors px ==
-- returns a list of the factors of px which occur with
-- exponent > 1
ans : List R := empty()
factored := factor(px)$DistinctDegreeFactorize(K,R)
for f in factors(factored) repeat
if f.exponent > 1 then ans := concat(f.factor,ans)
ans
integralBasis() ==
p := definingPolynomial()$F; disc := discriminant p; n := rank()$F
--traceMat := traceMatrix()$F; n := rank()$F
--disc := determinant traceMat -- discriminant of current order
singList := listSquaredFactors disc -- singularities of relative Spec
redDisc := reducedDiscriminant p
runningRb := runningRbinv := scalarMatrix(n,1)$Mat
-- runningRb = basis matrix of current order
-- runningRbinv = inverse basis matrix of current order
-- these are wrt the original basis for F
runningRbden : R := 1
-- runningRbden = denominator for current basis matrix
empty? singList => [runningRb, runningRbden, runningRbinv]
for prime in singList repeat
lb := padicLocalIntegralBasis(p,disc,redDisc,prime)
rb := lb.basis; rbinv := lb.basisInv; rbden := lb.basisDen
disc := lb.discr
mat := vertConcat(rbden * runningRb,runningRbden * rb)
runningRbden := runningRbden * rbden
runningRb := squareTop rowEchelon(mat,runningRbden)
--runningRb := squareTop rowEch mat
runningRbinv := UpTriBddDenomInv(runningRb,runningRbden)
[runningRb, runningRbden, runningRbinv]
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package IBPTOOLS IntegralBasisPolynomialTools>>
<<package IBACHIN ChineseRemainderToolsForIntegralBases>>
<<package PWFFINTB PAdicWildFunctionFieldIntegralBasis>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|