1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
|
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra padic.spad}
\author{Clifton J. Williamson}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{category PADICCT PAdicIntegerCategory}
<<category PADICCT PAdicIntegerCategory>>=
)abbrev category PADICCT PAdicIntegerCategory
++ Author: Clifton J. Williamson
++ Date Created: 15 May 1990
++ Date Last Updated: 15 May 1990
++ Basic Operations:
++ Related Domains:
++ Also See:
++ AMS Classifications:
++ Keywords: p-adic, completion
++ Examples:
++ References:
++ Description: This is the catefory of stream-based representations of
++ the p-adic integers.
PAdicIntegerCategory(p): Category == Definition where
p : Integer
I ==> Integer
NNI ==> NonNegativeInteger
ST ==> Stream
SUP ==> SparseUnivariatePolynomial
Definition ==> Join(EuclideanDomain,CharacteristicZero) with
digits: % -> ST I
++ \spad{digits(x)} returns a stream of p-adic digits of x.
order: % -> NNI
++ \spad{order(x)} returns the exponent of the highest power of p
++ dividing x.
extend: (%,I) -> %
++ \spad{extend(x,n)} forces the computation of digits up to order n.
complete: % -> %
++ \spad{complete(x)} forces the computation of all digits.
modulus: () -> I
++ \spad{modulus()} returns the value of p.
moduloP: % -> I
++ \spad{modulo(x)} returns a, where \spad{x = a + b p}.
quotientByP: % -> %
++ \spad{quotientByP(x)} returns b, where \spad{x = a + b p}.
approximate: (%,I) -> I
++ \spad{approximate(x,n)} returns an integer y such that
++ \spad{y = x (mod p^n)}
++ when n is positive, and 0 otherwise.
sqrt: (%,I) -> %
++ \spad{sqrt(b,a)} returns a square root of b.
++ Argument \spad{a} is a square root of b \spad{(mod p)}.
root: (SUP I,I) -> %
++ \spad{root(f,a)} returns a root of the polynomial \spad{f}.
++ Argument \spad{a} must be a root of \spad{f} \spad{(mod p)}.
@
\section{domain IPADIC InnerPAdicInteger}
<<domain IPADIC InnerPAdicInteger>>=
)abbrev domain IPADIC InnerPAdicInteger
++ Author: Clifton J. Williamson
++ Date Created: 20 August 1989
++ Date Last Updated: 15 May 1990
++ Basic Operations:
++ Related Domains:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ Keywords: p-adic, completion
++ Examples:
++ References:
++ Description:
++ This domain implements Zp, the p-adic completion of the integers.
++ This is an internal domain.
InnerPAdicInteger(p,unBalanced?): Exports == Implementation where
p : Integer
unBalanced? : Boolean
I ==> Integer
NNI ==> NonNegativeInteger
OUT ==> OutputForm
L ==> List
ST ==> Stream
SUP ==> SparseUnivariatePolynomial
Exports ==> PAdicIntegerCategory p
Implementation ==> add
PEXPR := p :: OUT
Rep := ST I
characteristic == 0
euclideanSize(x) == order(x)
stream(x:%):ST I == x pretend ST(I)
padic(x:ST I):% == x pretend %
digits x == stream x
extend(x,n) == extend(x,n + 1)$Rep
complete x == complete(x)$Rep
-- notBalanced?:() -> Boolean
-- notBalanced?() == unBalanced?
modP:I -> I
modP n ==
unBalanced? or (p = 2) => positiveRemainder(n,p)
symmetricRemainder(n,p)
modPInfo:I -> Record(digit:I,carry:I)
modPInfo n ==
dv := divide(n,p)
r0 := dv.remainder; q := dv.quotient
if (r := modP r0) ~= r0 then q := q + ((r0 - r) quo p)
[r,q]
invModP: I -> I
invModP n == invmod(n,p)
modulus() == p
moduloP x == (empty? x => 0; frst x)
quotientByP x == (empty? x => x; rst x)
approximate(x,n) ==
n <= 0 or empty? x => 0
frst x + p * approximate(rst x,n - 1)
x = y ==
st : ST I := stream(x - y)
n : I := _$streamCount$Lisp
for i in 0..n repeat
empty? st => return true
frst st ~= 0 => return false
st := rst st
empty? st
order x ==
st := stream x
for i in 0..1000 repeat
empty? st => return 0
frst st ~= 0 => return i
st := rst st
error "order: series has more than 1000 leading zero coefs"
0 == padic concat(0$I,empty())
1 == padic concat(1$I,empty())
intToPAdic: I -> ST I
intToPAdic n == delay
n = 0 => empty()
modp := modPInfo n
concat(modp.digit,intToPAdic modp.carry)
intPlusPAdic: (I,ST I) -> ST I
intPlusPAdic(n,x) == delay
empty? x => intToPAdic n
modp := modPInfo(n + frst x)
concat(modp.digit,intPlusPAdic(modp.carry,rst x))
intMinusPAdic: (I,ST I) -> ST I
intMinusPAdic(n,x) == delay
empty? x => intToPAdic n
modp := modPInfo(n - frst x)
concat(modp.digit,intMinusPAdic(modp.carry,rst x))
plusAux: (I,ST I,ST I) -> ST I
plusAux(n,x,y) == delay
empty? x and empty? y => intToPAdic n
empty? x => intPlusPAdic(n,y)
empty? y => intPlusPAdic(n,x)
modp := modPInfo(n + frst x + frst y)
concat(modp.digit,plusAux(modp.carry,rst x,rst y))
minusAux: (I,ST I,ST I) -> ST I
minusAux(n,x,y) == delay
empty? x and empty? y => intToPAdic n
empty? x => intMinusPAdic(n,y)
empty? y => intPlusPAdic(n,x)
modp := modPInfo(n + frst x - frst y)
concat(modp.digit,minusAux(modp.carry,rst x,rst y))
x + y == padic plusAux(0,stream x,stream y)
x - y == padic minusAux(0,stream x,stream y)
- y == padic intMinusPAdic(0,stream y)
coerce(n:I) == padic intToPAdic n
intMult:(I,ST I) -> ST I
intMult(n,x) == delay
empty? x => empty()
modp := modPInfo(n * frst x)
concat(modp.digit,intPlusPAdic(modp.carry,intMult(n,rst x)))
(n:I) * (x:%) ==
padic intMult(n,stream x)
timesAux:(ST I,ST I) -> ST I
timesAux(x,y) == delay
empty? x or empty? y => empty()
modp := modPInfo(frst x * frst y)
car := modp.digit
cdr : ST I --!!
cdr := plusAux(modp.carry,intMult(frst x,rst y),timesAux(rst x,y))
concat(car,cdr)
(x:%) * (y:%) == padic timesAux(stream x,stream y)
quotientAux:(ST I,ST I) -> ST I
quotientAux(x,y) == delay
empty? x => error "quotientAux: first argument"
empty? y => empty()
modP frst x = 0 =>
modP frst y = 0 => quotientAux(rst x,rst y)
error "quotient: quotient not integral"
z0 := modP(invModP frst x * frst y)
yy : ST I --!!
yy := rest minusAux(0,y,intMult(z0,x))
concat(z0,quotientAux(x,yy))
recip x ==
empty? x or modP frst x = 0 => "failed"
padic quotientAux(stream x,concat(1,empty()))
iExquo: (%,%,I) -> Union(%,"failed")
iExquo(xx,yy,n) ==
n > 1000 =>
error "exquo: quotient by series with many leading zero coefs"
empty? yy => "failed"
empty? xx => 0
zero? frst yy =>
zero? frst xx => iExquo(rst xx,rst yy,n + 1)
"failed"
(rec := recip yy) case "failed" => "failed"
xx * (rec :: %)
x exquo y == iExquo(stream x,stream y,0)
divide(x,y) ==
(z:=x exquo y) case "failed" => [0,x]
[z, 0]
iSqrt: (I,I,I,%) -> %
iSqrt(pn,an,bn,bSt) == delay
bn1 := (empty? bSt => bn; bn + pn * frst(bSt))
c := (bn1 - an*an) quo pn
aa := modP(c * invmod(2*an,p))
nSt := (empty? bSt => bSt; rst bSt)
concat(aa,iSqrt(pn*p,an + pn*aa,bn1,nSt))
sqrt(b,a) ==
p = 2 =>
error "sqrt: no square roots in Z2 yet"
not zero? modP(a*a - (bb := moduloP b)) =>
error "sqrt: not a square root (mod p)"
b := (empty? b => b; rst b)
a := modP a
concat(a,iSqrt(p,a,bb,b))
iRoot: (SUP I,I,I,I) -> ST I
iRoot(f,alpha,invFpx0,pPow) == delay
num := -((f(alpha) exquo pPow) :: I)
digit := modP(num * invFpx0)
concat(digit,iRoot(f,alpha + digit * pPow,invFpx0,p * pPow))
root(f,x0) ==
x0 := modP x0
not zero? modP f(x0) =>
error "root: not a root (mod p)"
fpx0 := modP (differentiate f)(x0)
zero? fpx0 =>
error "root: approximate root must be a simple root (mod p)"
invFpx0 := modP invModP fpx0
padic concat(x0,iRoot(f,x0,invFpx0,p))
termOutput:(I,I) -> OUT
termOutput(k,c) ==
k = 0 => c :: OUT
mon := (k = 1 => PEXPR; PEXPR ** (k :: OUT))
c = 1 => mon
c = -1 => -mon
(c :: OUT) * mon
showAll?:() -> Boolean
-- check a global Lisp variable
showAll?() == true
coerce(x:%):OUT ==
empty?(st := stream x) => 0 :: OUT
n : NNI ; count : NNI := _$streamCount$Lisp
l : L OUT := empty()
for n in 0..count while not empty? st repeat
if frst(st) ~= 0 then
l := concat(termOutput(n :: I,frst st),l)
st := rst st
if showAll?() then
for n in (count + 1).. while explicitEntries? st and _
not eq?(st,rst st) repeat
if frst(st) ~= 0 then
l := concat(termOutput(n pretend I,frst st),l)
st := rst st
l :=
explicitlyEmpty? st => l
eq?(st,rst st) and frst st = 0 => l
concat(prefix("O" :: OUT,[PEXPR ** (n :: OUT)]),l)
empty? l => 0 :: OUT
reduce("+",reverse_! l)
@
\section{domain PADIC PAdicInteger}
<<domain PADIC PAdicInteger>>=
)abbrev domain PADIC PAdicInteger
++ Author: Clifton J. Williamson
++ Date Created: 20 August 1989
++ Date Last Updated: 15 May 1990
++ Basic Operations:
++ Related Domains:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ Keywords: p-adic, completion
++ Examples:
++ References:
++ Description:
++ Stream-based implementation of Zp: p-adic numbers are represented as
++ sum(i = 0.., a[i] * p^i), where the a[i] lie in 0,1,...,(p - 1).
PAdicInteger(p:Integer) == InnerPAdicInteger(p,true$Boolean)
@
\section{domain BPADIC BalancedPAdicInteger}
<<domain BPADIC BalancedPAdicInteger>>=
)abbrev domain BPADIC BalancedPAdicInteger
++ Author: Clifton J. Williamson
++ Date Created: 15 May 1990
++ Date Last Updated: 15 May 1990
++ Basic Operations:
++ Related Domains:
++ Also See:
++ AMS Classifications:
++ Keywords: p-adic, complementation
++ Examples:
++ References:
++ Description:
++ Stream-based implementation of Zp: p-adic numbers are represented as
++ sum(i = 0.., a[i] * p^i), where the a[i] lie in -(p - 1)/2,...,(p - 1)/2.
BalancedPAdicInteger(p:Integer) == InnerPAdicInteger(p,false$Boolean)
@
\section{domain PADICRC PAdicRationalConstructor}
<<domain PADICRC PAdicRationalConstructor>>=
)abbrev domain PADICRC PAdicRationalConstructor
++ Author: Clifton J. Williamson
++ Date Created: 10 May 1990
++ Date Last Updated: 10 May 1990
++ Basic Operations:
++ Related Domains:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ Keywords: p-adic, completion
++ Examples:
++ References:
++ Description: This is the category of stream-based representations of Qp.
PAdicRationalConstructor(p,PADIC): Exports == Implementation where
p : Integer
PADIC : PAdicIntegerCategory p
CF ==> ContinuedFraction
I ==> Integer
NNI ==> NonNegativeInteger
OUT ==> OutputForm
L ==> List
RN ==> Fraction Integer
ST ==> Stream
Exports ==> QuotientFieldCategory(PADIC) with
approximate: (%,I) -> RN
++ \spad{approximate(x,n)} returns a rational number y such that
++ \spad{y = x (mod p^n)}.
continuedFraction: % -> CF RN
++ \spad{continuedFraction(x)} converts the p-adic rational number x
++ to a continued fraction.
removeZeroes: % -> %
++ \spad{removeZeroes(x)} removes leading zeroes from the
++ representation of the p-adic rational \spad{x}.
++ A p-adic rational is represented by (1) an exponent and
++ (2) a p-adic integer which may have leading zero digits.
++ When the p-adic integer has a leading zero digit, a 'leading zero'
++ is removed from the p-adic rational as follows:
++ the number is rewritten by increasing the exponent by 1 and
++ dividing the p-adic integer by p.
++ Note: \spad{removeZeroes(f)} removes all leading zeroes from f.
removeZeroes: (I,%) -> %
++ \spad{removeZeroes(n,x)} removes up to n leading zeroes from
++ the p-adic rational \spad{x}.
Implementation ==> add
PEXPR := p :: OUT
--% representation
Rep := Record(expon:I,pint:PADIC)
getExpon: % -> I
getZp : % -> PADIC
makeQp : (I,PADIC) -> %
getExpon x == x.expon
getZp x == x.pint
makeQp(r,int) == [r,int]
--% creation
0 == makeQp(0,0)
1 == makeQp(0,1)
coerce(x:I) == x :: PADIC :: %
coerce(r:RN) == (numer(r) :: %)/(denom(r) :: %)
coerce(x:PADIC) == makeQp(0,x)
--% normalizations
removeZeroes x ==
empty? digits(xx := getZp x) => 0
zero? moduloP xx =>
removeZeroes makeQp(getExpon x + 1,quotientByP xx)
x
removeZeroes(n,x) ==
n <= 0 => x
empty? digits(xx := getZp x) => 0
zero? moduloP xx =>
removeZeroes(n - 1,makeQp(getExpon x + 1,quotientByP xx))
x
--% arithmetic
x = y ==
EQ(x,y)$Lisp => true
n := getExpon(x) - getExpon(y)
n >= 0 =>
(p**(n :: NNI) * getZp(x)) = getZp(y)
(p**((- n) :: NNI) * getZp(y)) = getZp(x)
x + y ==
n := getExpon(x) - getExpon(y)
n >= 0 =>
makeQp(getExpon y,getZp(y) + p**(n :: NNI) * getZp(x))
makeQp(getExpon x,getZp(x) + p**((-n) :: NNI) * getZp(y))
-x == makeQp(getExpon x,-getZp(x))
x - y ==
n := getExpon(x) - getExpon(y)
n >= 0 =>
makeQp(getExpon y,p**(n :: NNI) * getZp(x) - getZp(y))
makeQp(getExpon x,getZp(x) - p**((-n) :: NNI) * getZp(y))
n:I * x:% == makeQp(getExpon x,n * getZp x)
x:% * y:% == makeQp(getExpon x + getExpon y,getZp x * getZp y)
x:% ** n:I ==
zero? n => 1
positive? n => expt(x,n :: PositiveInteger)$RepeatedSquaring(%)
inv expt(x,(-n) :: PositiveInteger)$RepeatedSquaring(%)
recip x ==
x := removeZeroes(1000,x)
zero? moduloP(xx := getZp x) => "failed"
(inv := recip xx) case "failed" => "failed"
makeQp(- getExpon x,inv :: PADIC)
inv x ==
(inv := recip x) case "failed" => error "inv: no inverse"
inv :: %
x:% / y:% == x * inv y
x:PADIC / y:PADIC == (x :: %) / (y :: %)
x:PADIC * y:% == makeQp(getExpon y,x * getZp y)
approximate(x,n) ==
k := getExpon x
(p :: RN) ** k * approximate(getZp x,n - k)
cfStream: % -> Stream RN
cfStream x == delay
-- zero? x => empty()
invx := inv x; x0 := approximate(invx,1)
concat(x0,cfStream(invx - (x0 :: %)))
continuedFraction x ==
x0 := approximate(x,1)
reducedContinuedFraction(x0,cfStream(x - (x0 :: %)))
termOutput:(I,I) -> OUT
termOutput(k,c) ==
k = 0 => c :: OUT
mon := (k = 1 => PEXPR; PEXPR ** (k :: OUT))
c = 1 => mon
c = -1 => -mon
(c :: OUT) * mon
showAll?:() -> Boolean
-- check a global Lisp variable
showAll?() == true
coerce(x:%):OUT ==
x := removeZeroes(_$streamCount$Lisp,x)
m := getExpon x; zp := getZp x
uu := digits zp
l : L OUT := empty()
empty? uu => 0 :: OUT
n : NNI ; count : NNI := _$streamCount$Lisp
for n in 0..count while not empty? uu repeat
if frst(uu) ~= 0 then
l := concat(termOutput((n :: I) + m,frst(uu)),l)
uu := rst uu
if showAll?() then
for n in (count + 1).. while explicitEntries? uu and _
not eq?(uu,rst uu) repeat
if frst(uu) ~= 0 then
l := concat(termOutput((n::I) + m,frst(uu)),l)
uu := rst uu
l :=
explicitlyEmpty? uu => l
eq?(uu,rst uu) and frst uu = 0 => l
concat(prefix("O" :: OUT,[PEXPR ** ((n :: I) + m) :: OUT]),l)
empty? l => 0 :: OUT
reduce("+",reverse_! l)
@
\section{domain PADICRAT PAdicRational}
<<domain PADICRAT PAdicRational>>=
)abbrev domain PADICRAT PAdicRational
++ Author: Clifton J. Williamson
++ Date Created: 15 May 1990
++ Date Last Updated: 15 May 1990
++ Keywords: p-adic, complementation
++ Basic Operations:
++ Related Domains:
++ Also See:
++ AMS Classifications:
++ Keywords: p-adic, completion
++ Examples:
++ References:
++ Description:
++ Stream-based implementation of Qp: numbers are represented as
++ sum(i = k.., a[i] * p^i) where the a[i] lie in 0,1,...,(p - 1).
PAdicRational(p:Integer) == PAdicRationalConstructor(p,PAdicInteger p)
@
\section{domain BPADICRT BalancedPAdicRational}
<<domain BPADICRT BalancedPAdicRational>>=
)abbrev domain BPADICRT BalancedPAdicRational
++ Author: Clifton J. Williamson
++ Date Created: 15 May 1990
++ Date Last Updated: 15 May 1990
++ Keywords: p-adic, complementation
++ Basic Operations:
++ Related Domains:
++ Also See:
++ AMS Classifications:
++ Keywords: p-adic, completion
++ Examples:
++ References:
++ Description:
++ Stream-based implementation of Qp: numbers are represented as
++ sum(i = k.., a[i] * p^i), where the a[i] lie in -(p - 1)/2,...,(p - 1)/2.
BalancedPAdicRational(p:Integer) ==
PAdicRationalConstructor(p,BalancedPAdicInteger p)
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<category PADICCT PAdicIntegerCategory>>
<<domain IPADIC InnerPAdicInteger>>
<<domain PADIC PAdicInteger>>
<<domain BPADIC BalancedPAdicInteger>>
<<domain PADICRC PAdicRationalConstructor>>
<<domain PADICRAT PAdicRational>>
<<domain BPADICRT BalancedPAdicRational>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|