1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
|
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra odeef.spad}
\author{Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package REDORDER ReductionOfOrder}
<<package REDORDER ReductionOfOrder>>=
)abbrev package REDORDER ReductionOfOrder
++ Author: Manuel Bronstein
++ Date Created: 4 November 1991
++ Date Last Updated: 3 February 1994
++ Description:
++ \spadtype{ReductionOfOrder} provides
++ functions for reducing the order of linear ordinary differential equations
++ once some solutions are known.
++ Keywords: differential equation, ODE
ReductionOfOrder(F, L): Exports == Impl where
F: Field
L: LinearOrdinaryDifferentialOperatorCategory F
Z ==> Integer
A ==> PrimitiveArray F
Exports ==> with
ReduceOrder: (L, F) -> L
++ ReduceOrder(op, s) returns \spad{op1} such that for any solution
++ \spad{z} of \spad{op1 z = 0}, \spad{y = s \int z} is a solution of
++ \spad{op y = 0}. \spad{s} must satisfy \spad{op s = 0}.
ReduceOrder: (L, List F) -> Record(eq:L, op:List F)
++ ReduceOrder(op, [f1,...,fk]) returns \spad{[op1,[g1,...,gk]]} such that
++ for any solution \spad{z} of \spad{op1 z = 0},
++ \spad{y = gk \int(g_{k-1} \int(... \int(g1 \int z)...)} is a solution
++ of \spad{op y = 0}. Each \spad{fi} must satisfy \spad{op fi = 0}.
Impl ==> add
ithcoef : (L, Z, A) -> F
locals : (A, Z, Z) -> F
localbinom: (Z, Z) -> Z
diff := D()$L
localbinom(j, i) == (j > i => binomial(j, i+1); 0)
locals(s, j, i) == (j > i => qelt(s, j - i - 1); 0)
ReduceOrder(l:L, sols:List F) ==
empty? sols => [l, empty()]
neweq := ReduceOrder(l, sol := first sols)
rec := ReduceOrder(neweq, [diff(s / sol) for s in rest sols])
[rec.eq, concat_!(rec.op, sol)]
ithcoef(eq, i, s) ==
ans:F := 0
while eq ~= 0 repeat
j := degree eq
ans := ans + localbinom(j, i) * locals(s,j,i) * leadingCoefficient eq
eq := reductum eq
ans
ReduceOrder(eq:L, sol:F) ==
s:A := new(n := degree eq, 0) -- will contain derivatives of sol
si := sol -- will run through the derivatives
qsetelt_!(s, 0, si)
for i in 1..(n-1)::NonNegativeInteger repeat
qsetelt_!(s, i, si := diff si)
ans:L := 0
for i in 0..(n-1)::NonNegativeInteger repeat
ans := ans + monomial(ithcoef(eq, i, s), i)
ans
@
\section{package LODEEF ElementaryFunctionLODESolver}
<<package LODEEF ElementaryFunctionLODESolver>>=
)abbrev package LODEEF ElementaryFunctionLODESolver
++ Author: Manuel Bronstein
++ Date Created: 3 February 1994
++ Date Last Updated: 9 March 1994
++ Description:
++ \spad{ElementaryFunctionLODESolver} provides the top-level
++ functions for finding closed form solutions of linear ordinary
++ differential equations and initial value problems.
++ Keywords: differential equation, ODE
ElementaryFunctionLODESolver(R, F, L): Exports == Implementation where
R: Join(OrderedSet, EuclideanDomain, RetractableTo Integer,
LinearlyExplicitRingOver Integer, CharacteristicZero)
F: Join(AlgebraicallyClosedFunctionSpace R, TranscendentalFunctionCategory,
PrimitiveFunctionCategory)
L: LinearOrdinaryDifferentialOperatorCategory F
SY ==> Symbol
N ==> NonNegativeInteger
K ==> Kernel F
V ==> Vector F
M ==> Matrix F
UP ==> SparseUnivariatePolynomial F
RF ==> Fraction UP
UPUP==> SparseUnivariatePolynomial RF
P ==> SparseMultivariatePolynomial(R, K)
P2 ==> SparseMultivariatePolynomial(P, K)
LQ ==> LinearOrdinaryDifferentialOperator1 RF
REC ==> Record(particular: F, basis: List F)
U ==> Union(REC, "failed")
Exports ==> with
solve: (L, F, SY) -> U
++ solve(op, g, x) returns either a solution of the ordinary differential
++ equation \spad{op y = g} or "failed" if no non-trivial solution can be
++ found; When found, the solution is returned in the form
++ \spad{[h, [b1,...,bm]]} where \spad{h} is a particular solution and
++ and \spad{[b1,...bm]} are linearly independent solutions of the
++ associated homogenuous equation \spad{op y = 0}.
++ A full basis for the solutions of the homogenuous equation
++ is not always returned, only the solutions which were found;
++ \spad{x} is the dependent variable.
solve: (L, F, SY, F, List F) -> Union(F, "failed")
++ solve(op, g, x, a, [y0,...,ym]) returns either the solution
++ of the initial value problem \spad{op y = g, y(a) = y0, y'(a) = y1,...}
++ or "failed" if the solution cannot be found;
++ \spad{x} is the dependent variable.
Implementation ==> add
macro ALGOP == '%alg
import Kovacic(F, UP)
import ODETools(F, L)
import RationalLODE(F, UP)
import RationalRicDE(F, UP)
import ODEIntegration(R, F)
import ConstantLODE(R, F, L)
import IntegrationTools(R, F)
import ReductionOfOrder(F, L)
import ReductionOfOrder(RF, LQ)
import PureAlgebraicIntegration(R, F, L)
import FunctionSpacePrimitiveElement(R, F)
import LinearSystemMatrixPackage(F, V, V, M)
import SparseUnivariatePolynomialFunctions2(RF, F)
import FunctionSpaceUnivariatePolynomialFactor(R, F, UP)
import LinearOrdinaryDifferentialOperatorFactorizer(F, UP)
import PolynomialCategoryQuotientFunctions(IndexedExponents K,
K, R, P, F)
upmp : (P, List K) -> P2
downmp : (P2, List K, List P) -> P
xpart : (F, SY) -> F
smpxpart : (P, SY, List K, List P) -> P
multint : (F, List F, SY) -> F
ulodo : (L, K) -> LQ
firstOrder : (F, F, F, SY) -> REC
rfSolve : (L, F, K, SY) -> U
ratlogsol : (LQ, List RF, K, SY) -> List F
expsols : (LQ, K, SY) -> List F
homosolve : (L, LQ, List RF, K, SY) -> List F
homosolve1 : (L, List F, K, SY) -> List F
norf1 : (L, K, SY, N) -> List F
kovode : (LQ, K, SY) -> List F
doVarParams: (L, F, List F, SY) -> U
localmap : (F -> F, L) -> L
algSolve : (L, F, K, List K, SY) -> U
palgSolve : (L, F, K, K, SY) -> U
lastChance : (L, F, SY) -> U
diff := D()$L
smpxpart(p, x, l, lp) == downmp(primitivePart upmp(p, l), l, lp)
downmp(p, l, lp) == ground eval(p, l, lp)
homosolve(lf, op, sols, k, x) == homosolve1(lf, ratlogsol(op,sols,k,x),k,x)
-- left hand side has algebraic (not necessarily pure) coefficients
algSolve(op, g, k, l, x) ==
symbolIfCan(kx := ksec(k, l, x)) case SY => palgSolve(op, g, kx, k, x)
has?(operator kx, ALGOP) =>
rec := primitiveElement(kx::F, k::F)
z := rootOf(rec.prim)
lk:List K := [kx, k]
lv:List F := [(rec.pol1) z, (rec.pol2) z]
(u := solve(localmap(eval(#1, lk, lv), op), eval(g, lk, lv), x))
case "failed" => "failed"
rc := u::REC
kz := retract(z)@K
[eval(rc.particular, kz, rec.primelt),
[eval(f, kz, rec.primelt) for f in rc.basis]]
lastChance(op, g, x)
doVarParams(eq, g, bas, x) ==
(u := particularSolution(eq, g, bas, int(#1, x))) case "failed" =>
lastChance(eq, g, x)
[u::F, bas]
lastChance(op, g, x) ==
one? degree op => firstOrder(coefficient(op,0), leadingCoefficient op,g,x)
"failed"
-- solves a0 y + a1 y' = g
-- does not check whether there is a solution in the field generated by
-- a0, a1 and g
firstOrder(a0, a1, g, x) ==
h := xpart(expint(- a0 / a1, x), x)
[h * int((g / h) / a1, x), [h]]
-- xpart(f,x) removes any constant not involving x from f
xpart(f, x) ==
l := reverse_! varselect(tower f, x)
lp := [k::P for k in l]
smpxpart(numer f, x, l, lp) / smpxpart(denom f, x, l, lp)
upmp(p, l) ==
empty? l => p::P2
up := univariate(p, k := first l)
l := rest l
ans:P2 := 0
while up ~= 0 repeat
ans := ans + monomial(upmp(leadingCoefficient up, l), k, degree up)
up := reductum up
ans
-- multint(a, [g1,...,gk], x) returns gk \int(g(k-1) \int(....g1 \int(a))...)
multint(a, l, x) ==
for g in l repeat a := g * xpart(int(a, x), x)
a
expsols(op, k, x) ==
one? degree op =>
firstOrder(multivariate(coefficient(op, 0), k),
multivariate(leadingCoefficient op, k), 0, x).basis
[xpart(expint(multivariate(h, k), x), x) for h in ricDsolve(op, ffactor)]
-- Finds solutions with rational logarithmic derivative
ratlogsol(oper, sols, k, x) ==
bas := [xpart(multivariate(h, k), x) for h in sols]
degree(oper) = #bas => bas -- all solutions are found already
rec := ReduceOrder(oper, sols)
le := expsols(rec.eq, k, x)
int:List(F) := [xpart(multivariate(h, k), x) for h in rec.op]
concat_!([xpart(multivariate(h, k), x) for h in sols],
[multint(e, int, x) for e in le])
homosolve1(oper, sols, k, x) ==
zero?(n := (degree(oper) - #sols)::N) => sols -- all solutions found
rec := ReduceOrder(oper, sols)
int:List(F) := [xpart(h, x) for h in rec.op]
concat_!(sols, [multint(e, int, x) for e in norf1(rec.eq, k, x, n::N)])
-- if the coefficients are rational functions, then the equation does not
-- not have a proper 1st-order right factor over the rational functions
norf1(op, k, x, n) ==
one? n => firstOrder(coefficient(op, 0), leadingCoefficient op,0,x).basis
-- for order > 2, we check that the coeffs are still rational functions
symbolIfCan(kmax vark(coefficients op, x)) case SY =>
eq := ulodo(op, k)
n = 2 => kovode(eq, k, x)
eq := last factor1 eq -- eq cannot have order 1
degree(eq) = 2 =>
empty?(bas := kovode(eq, k, x)) => empty()
homosolve1(op, bas, k, x)
empty()
empty()
kovode(op, k, x) ==
b := coefficient(op, 1)
a := coefficient(op, 2)
(u := kovacic(coefficient(op, 0), b, a, ffactor)) case "failed" => empty()
p := map(multivariate(#1, k), u::UPUP)
ba := multivariate(- b / a, k)
-- if p has degree 2 (case 2), then it must be squarefree since the
-- ode is irreducible over the rational functions, so the 2 roots of p
-- are distinct and must yield 2 independent solutions.
degree(p) = 2 => [xpart(expint(ba/(2::F) + e, x), x) for e in zerosOf p]
-- otherwise take 1 root of p and find the 2nd solution by reduction of order
y1 := xpart(expint(ba / (2::F) + zeroOf p, x), x)
[y1, y1 * xpart(int(expint(ba, x) / y1**2, x), x)]
solve(op:L, g:F, x:SY) ==
empty?(l := vark(coefficients op, x)) => constDsolve(op, g, x)
symbolIfCan(k := kmax l) case SY => rfSolve(op, g, k, x)
has?(operator k, ALGOP) => algSolve(op, g, k, l, x)
lastChance(op, g, x)
ulodo(eq, k) ==
op:LQ := 0
while eq ~= 0 repeat
op := op + monomial(univariate(leadingCoefficient eq, k), degree eq)
eq := reductum eq
op
-- left hand side has rational coefficients
rfSolve(eq, g, k, x) ==
op := ulodo(eq, k)
empty? remove_!(k, varselect(kernels g, x)) => -- i.e. rhs is rational
rc := ratDsolve(op, univariate(g, k))
rc.particular case "failed" => -- this implies g ~= 0
doVarParams(eq, g, homosolve(eq, op, rc.basis, k, x), x)
[multivariate(rc.particular::RF, k), homosolve(eq, op, rc.basis, k, x)]
doVarParams(eq, g, homosolve(eq, op, ratDsolve(op, 0).basis, k, x), x)
solve(op, g, x, a, y0) ==
(u := solve(op, g, x)) case "failed" => "failed"
hp := h := (u::REC).particular
b := (u::REC).basis
v:V := new(n := #y0, 0)
kx:K := kernel x
for i in minIndex v .. maxIndex v for yy in y0 repeat
v.i := yy - eval(h, kx, a)
h := diff h
(sol := particularSolution(map_!(eval(#1,kx,a),wronskianMatrix(b,n)), v))
case "failed" => "failed"
for f in b for i in minIndex(s := sol::V) .. repeat
hp := hp + s.i * f
hp
localmap(f, op) ==
ans:L := 0
while op ~= 0 repeat
ans := ans + monomial(f leadingCoefficient op, degree op)
op := reductum op
ans
-- left hand side has pure algebraic coefficients
palgSolve(op, g, kx, k, x) ==
rec := palgLODE(op, g, kx, k, x) -- finds solutions in the coef. field
rec.particular case "failed" =>
doVarParams(op, g, homosolve1(op, rec.basis, k, x), x)
[(rec.particular)::F, homosolve1(op, rec.basis, k, x)]
@
\section{package ODEEF ElementaryFunctionODESolver}
<<package ODEEF ElementaryFunctionODESolver>>=
)abbrev package ODEEF ElementaryFunctionODESolver
++ Author: Manuel Bronstein
++ Date Created: 18 March 1991
++ Date Last Updated: 8 March 1994
++ Description:
++ \spad{ElementaryFunctionODESolver} provides the top-level
++ functions for finding closed form solutions of ordinary
++ differential equations and initial value problems.
++ Keywords: differential equation, ODE
ElementaryFunctionODESolver(R, F): Exports == Implementation where
R: Join(OrderedSet, EuclideanDomain, RetractableTo Integer,
LinearlyExplicitRingOver Integer, CharacteristicZero)
F: Join(AlgebraicallyClosedFunctionSpace R, TranscendentalFunctionCategory,
PrimitiveFunctionCategory)
N ==> NonNegativeInteger
OP ==> BasicOperator
SY ==> Symbol
K ==> Kernel F
EQ ==> Equation F
V ==> Vector F
M ==> Matrix F
UP ==> SparseUnivariatePolynomial F
P ==> SparseMultivariatePolynomial(R, K)
LEQ ==> Record(left:UP, right:F)
NLQ ==> Record(dx:F, dy:F)
REC ==> Record(particular: F, basis: List F)
VEC ==> Record(particular: V, basis: List V)
ROW ==> Record(index: Integer, row: V, rh: F)
SYS ==> Record(mat:M, vec: V)
U ==> Union(REC, F, "failed")
UU ==> Union(F, "failed")
Exports ==> with
solve: (M, V, SY) -> Union(VEC, "failed")
++ solve(m, v, x) returns \spad{[v_p, [v_1,...,v_m]]} such that
++ the solutions of the system \spad{D y = m y + v} are
++ \spad{v_p + c_1 v_1 + ... + c_m v_m} where the \spad{c_i's} are
++ constants, and the \spad{v_i's} form a basis for the solutions of
++ \spad{D y = m y}.
++ \spad{x} is the dependent variable.
solve: (M, SY) -> Union(List V, "failed")
++ solve(m, x) returns a basis for the solutions of \spad{D y = m y}.
++ \spad{x} is the dependent variable.
solve: (List EQ, List OP, SY) -> Union(VEC, "failed")
++ solve([eq_1,...,eq_n], [y_1,...,y_n], x) returns either "failed"
++ or, if the equations form a fist order linear system, a solution
++ of the form \spad{[y_p, [b_1,...,b_n]]} where \spad{h_p} is a
++ particular solution and \spad{[b_1,...b_m]} are linearly independent
++ solutions of the associated homogenuous system.
++ error if the equations do not form a first order linear system
solve: (List F, List OP, SY) -> Union(VEC, "failed")
++ solve([eq_1,...,eq_n], [y_1,...,y_n], x) returns either "failed"
++ or, if the equations form a fist order linear system, a solution
++ of the form \spad{[y_p, [b_1,...,b_n]]} where \spad{h_p} is a
++ particular solution and \spad{[b_1,...b_m]} are linearly independent
++ solutions of the associated homogenuous system.
++ error if the equations do not form a first order linear system
solve: (EQ, OP, SY) -> U
++ solve(eq, y, x) returns either a solution of the ordinary differential
++ equation \spad{eq} or "failed" if no non-trivial solution can be found;
++ If the equation is linear ordinary, a solution is of the form
++ \spad{[h, [b1,...,bm]]} where \spad{h} is a particular solution
++ and \spad{[b1,...bm]} are linearly independent solutions of the
++ associated homogenuous equation \spad{f(x,y) = 0};
++ A full basis for the solutions of the homogenuous equation
++ is not always returned, only the solutions which were found;
++ If the equation is of the form {dy/dx = f(x,y)}, a solution is of
++ the form \spad{h(x,y)} where \spad{h(x,y) = c} is a first integral
++ of the equation for any constant \spad{c};
++ error if the equation is not one of those 2 forms;
solve: (F, OP, SY) -> U
++ solve(eq, y, x) returns either a solution of the ordinary differential
++ equation \spad{eq} or "failed" if no non-trivial solution can be found;
++ If the equation is linear ordinary, a solution is of the form
++ \spad{[h, [b1,...,bm]]} where \spad{h} is a particular solution and
++ and \spad{[b1,...bm]} are linearly independent solutions of the
++ associated homogenuous equation \spad{f(x,y) = 0};
++ A full basis for the solutions of the homogenuous equation
++ is not always returned, only the solutions which were found;
++ If the equation is of the form {dy/dx = f(x,y)}, a solution is of
++ the form \spad{h(x,y)} where \spad{h(x,y) = c} is a first integral
++ of the equation for any constant \spad{c};
solve: (EQ, OP, EQ, List F) -> UU
++ solve(eq, y, x = a, [y0,...,ym]) returns either the solution
++ of the initial value problem \spad{eq, y(a) = y0, y'(a) = y1,...}
++ or "failed" if the solution cannot be found;
++ error if the equation is not one linear ordinary or of the form
++ \spad{dy/dx = f(x,y)};
solve: (F, OP, EQ, List F) -> UU
++ solve(eq, y, x = a, [y0,...,ym]) returns either the solution
++ of the initial value problem \spad{eq, y(a) = y0, y'(a) = y1,...}
++ or "failed" if the solution cannot be found;
++ error if the equation is not one linear ordinary or of the form
++ \spad{dy/dx = f(x,y)};
Implementation ==> add
macro OPDIFF == '%diff
import ODEIntegration(R, F)
import IntegrationTools(R, F)
import NonLinearFirstOrderODESolver(R, F)
getfreelincoeff : (F, K, SY) -> F
getfreelincoeff1: (F, K, List F) -> F
getlincoeff : (F, K) -> F
getcoeff : (F, K) -> UU
parseODE : (F, OP, SY) -> Union(LEQ, NLQ)
parseLODE : (F, List K, UP, SY) -> LEQ
parseSYS : (List F, List OP, SY) -> Union(SYS, "failed")
parseSYSeq : (F, List K, List K, List F, SY) -> Union(ROW, "failed")
solve(diffeq:EQ, y:OP, x:SY) == solve(lhs diffeq - rhs diffeq, y, x)
solve(leq: List EQ, lop: List OP, x:SY) ==
solve([lhs eq - rhs eq for eq in leq], lop, x)
solve(diffeq:EQ, y:OP, center:EQ, y0:List F) ==
solve(lhs diffeq - rhs diffeq, y, center, y0)
solve(m:M, x:SY) ==
(u := solve(m, new(nrows m, 0), x)) case "failed" => "failed"
u.basis
solve(m:M, v:V, x:SY) ==
Lx := LinearOrdinaryDifferentialOperator(F, diff x)
uu := solve(m, v, solve(#1, #2,
x)$ElementaryFunctionLODESolver(R, F, Lx))$SystemODESolver(F, Lx)
uu case "failed" => "failed"
rec := uu::Record(particular: V, basis: M)
[rec.particular, [column(rec.basis, i) for i in 1..ncols(rec.basis)]]
solve(diffeq:F, y:OP, center:EQ, y0:List F) ==
a := rhs center
kx:K := kernel(x := retract(lhs(center))@SY)
(ur := parseODE(diffeq, y, x)) case NLQ =>
not one?(#y0) => error "solve: more than one initial condition!"
rc := ur::NLQ
(u := solve(rc.dx, rc.dy, y, x)) case "failed" => "failed"
u::F - eval(u::F, [kx, retract(y(x::F))@K], [a, first y0])
rec := ur::LEQ
p := rec.left
Lx := LinearOrdinaryDifferentialOperator(F, diff x)
op:Lx := 0
while p ~= 0 repeat
op := op + monomial(leadingCoefficient p, degree p)
p := reductum p
solve(op, rec.right, x, a, y0)$ElementaryFunctionLODESolver(R, F, Lx)
solve(leq: List F, lop: List OP, x:SY) ==
(u := parseSYS(leq, lop, x)) case SYS =>
rec := u::SYS
solve(rec.mat, rec.vec, x)
error "solve: not a first order linear system"
solve(diffeq:F, y:OP, x:SY) ==
(u := parseODE(diffeq, y, x)) case NLQ =>
rc := u::NLQ
(uu := solve(rc.dx, rc.dy, y, x)) case "failed" => "failed"
uu::F
rec := u::LEQ
p := rec.left
Lx := LinearOrdinaryDifferentialOperator(F, diff x)
op:Lx := 0
while p ~= 0 repeat
op := op + monomial(leadingCoefficient p, degree p)
p := reductum p
(uuu := solve(op, rec.right, x)$ElementaryFunctionLODESolver(R, F, Lx))
case "failed" => "failed"
uuu::REC
-- returns [M, v] s.t. the equations are D x = M x + v
parseSYS(eqs, ly, x) ==
(n := #eqs) ~= #ly => "failed"
m:M := new(n, n, 0)
v:V := new(n, 0)
xx := x::F
lf := [y xx for y in ly]
lk0:List(K) := [retract(f)@K for f in lf]
lk1:List(K) := [retract(differentiate(f, x))@K for f in lf]
for eq in eqs repeat
(u := parseSYSeq(eq,lk0,lk1,lf,x)) case "failed" => return "failed"
rec := u::ROW
setRow_!(m, rec.index, rec.row)
v(rec.index) := rec.rh
[m, v]
parseSYSeq(eq, l0, l1, lf, x) ==
l := [k for k in varselect(kernels eq, x) | is?(k, OPDIFF)]
empty? l or not empty? rest l or zero?(n := position(k := first l,l1)) =>
"failed"
c := getfreelincoeff1(eq, k, lf)
eq := eq - c * k::F
v:V := new(#l0, 0)
for y in l0 for i in 1.. repeat
ci := getfreelincoeff1(eq, y, lf)
v.i := - ci / c
eq := eq - ci * y::F
[n, v, -eq]
-- returns either [p, g] where the equation (diffeq) is of the form p(D)(y) = g
-- or [p, q] such that the equation (diffeq) is of the form p dx + q dy = 0
parseODE(diffeq, y, x) ==
f := y(x::F)
l:List(K) := [retract(f)@K]
n:N := 2
for k in varselect(kernels diffeq, x) | is?(k, OPDIFF) repeat
if (m := height k) > n then n := m
n := (n - 2)::N
-- build a list of kernels in the order [y^(n)(x),...,y''(x),y'(x),y(x)]
for i in 1..n repeat
l := concat(retract(f := differentiate(f, x))@K, l)
k:K -- #$^#& compiler requires this line and the next one too...
c:F
while not(empty? l) and zero?(c := getlincoeff(diffeq, k := first l))
repeat l := rest l
empty? l or empty? rest l => error "parseODE: equation has order 0"
diffeq := diffeq - c * (k::F)
ny := name y
l := rest l
height(k) > 3 => parseLODE(diffeq, l, monomial(c, #l), ny)
(u := getcoeff(diffeq, k := first l)) case "failed" => [diffeq, c]
eqrhs := (d := u::F) * (k::F) - diffeq
freeOf?(eqrhs, ny) and freeOf?(c, ny) and freeOf?(d, ny) =>
[monomial(c, 1) + d::UP, eqrhs]
[diffeq, c]
-- returns [p, g] where the equation (diffeq) is of the form p(D)(y) = g
parseLODE(diffeq, l, p, y) ==
not freeOf?(leadingCoefficient p, y) =>
error "parseLODE: not a linear ordinary differential equation"
d := degree(p)::Integer - 1
for k in l repeat
p := p + monomial(c := getfreelincoeff(diffeq, k, y), d::N)
d := d - 1
diffeq := diffeq - c * (k::F)
freeOf?(diffeq, y) => [p, - diffeq]
error "parseLODE: not a linear ordinary differential equation"
getfreelincoeff(f, k, y) ==
freeOf?(c := getlincoeff(f, k), y) => c
error "getfreelincoeff: not a linear ordinary differential equation"
getfreelincoeff1(f, k, ly) ==
c := getlincoeff(f, k)
for y in ly repeat
not freeOf?(c, y) =>
error "getfreelincoeff: not a linear ordinary differential equation"
c
getlincoeff(f, k) ==
(u := getcoeff(f, k)) case "failed" =>
error "getlincoeff: not an appropriate ordinary differential equation"
u::F
getcoeff(f, k) ==
(r := retractIfCan(univariate(denom f, k))@Union(P, "failed"))
case "failed" or degree(p := univariate(numer f, k)) > 1 => "failed"
coefficient(p, 1) / (r::P)
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
-- Compile order for the differential equation solver:
-- oderf.spad odealg.spad nlode.spad nlinsol.spad riccati.spad
-- kovacic.spad lodof.spad odeef.spad
<<package REDORDER ReductionOfOrder>>
<<package LODEEF ElementaryFunctionLODESolver>>
<<package ODEEF ElementaryFunctionODESolver>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|