1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra odealg.spad}
\author{Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package ODESYS SystemODESolver}
<<package ODESYS SystemODESolver>>=
)abbrev package ODESYS SystemODESolver
++ Author: Manuel Bronstein
++ Date Created: 11 June 1991
++ Date Last Updated: 13 April 1994
++ Description: SystemODESolver provides tools for triangulating
++ and solving some systems of linear ordinary differential equations.
++ Keywords: differential equation, ODE, system
SystemODESolver(F, LO): Exports == Implementation where
F : Field
LO: LinearOrdinaryDifferentialOperatorCategory F
N ==> NonNegativeInteger
Z ==> Integer
MF ==> Matrix F
M ==> Matrix LO
V ==> Vector F
UF ==> Union(F, "failed")
UV ==> Union(V, "failed")
REC ==> Record(mat: M, vec: V)
FSL ==> Record(particular: UF, basis: List F)
VSL ==> Record(particular: UV, basis: List V)
SOL ==> Record(particular: F, basis: List F)
USL ==> Union(SOL, "failed")
ER ==> Record(C: MF, g: V, eq: LO, rh: F)
Exports ==> with
triangulate: (MF, V) -> Record(A:MF, eqs: List ER)
++ triangulate(M,v) returns
++ \spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]}
++ such that under the change of variable \spad{y = A z}, the first
++ order linear system \spad{D y = M y + v} is uncoupled as
++ \spad{D z_i = C_i z_i + g_i} and each \spad{C_i} is a companion
++ matrix corresponding to the scalar equation \spad{L_i z_j = h_i}.
triangulate: (M, V) -> REC
++ triangulate(m, v) returns \spad{[m_0, v_0]} such that \spad{m_0}
++ is upper triangular and the system \spad{m_0 x = v_0} is equivalent
++ to \spad{m x = v}.
solve: (MF,V,(LO,F)->USL) -> Union(Record(particular:V, basis:MF), "failed")
++ solve(m, v, solve) returns \spad{[[v_1,...,v_m], v_p]} such that
++ the solutions in \spad{F} of the system \spad{D x = m x + v} are
++ \spad{v_p + c_1 v_1 + ... + c_m v_m} where the \spad{c_i's} are
++ constants, and the \spad{v_i's} form a basis for the solutions of
++ \spad{D x = m x}.
++ Argument \spad{solve} is a function for solving a single linear
++ ordinary differential equation in \spad{F}.
solveInField: (M, V, (LO, F) -> FSL) -> VSL
++ solveInField(m, v, solve) returns \spad{[[v_1,...,v_m], v_p]} such that
++ the solutions in \spad{F} of the system \spad{m x = v} are
++ \spad{v_p + c_1 v_1 + ... + c_m v_m} where the \spad{c_i's} are
++ constants, and the \spad{v_i's} form a basis for the solutions of
++ \spad{m x = 0}.
++ Argument \spad{solve} is a function for solving a single linear
++ ordinary differential equation in \spad{F}.
Implementation ==> add
import PseudoLinearNormalForm F
applyLodo : (M, Z, V, N) -> F
applyLodo0 : (M, Z, Matrix F, Z, N) -> F
backsolve : (M, V, (LO, F) -> FSL) -> VSL
firstnonzero: (M, Z) -> Z
FSL2USL : FSL -> USL
M2F : M -> Union(MF, "failed")
diff := D()$LO
solve(mm, v, solve) ==
rec := triangulate(mm, v)
sols:List(SOL) := empty()
for e in rec.eqs repeat
(u := solve(e.eq, e.rh)) case "failed" => return "failed"
sols := concat(u::SOL, sols)
n := nrows(rec.A) -- dimension of original vectorspace
k:N := 0 -- sum of sizes of visited companionblocks
i:N := 0 -- number of companionblocks
m:N := 0 -- number of Solutions
part:V := new(n, 0)
-- count first the different solutions
for sol in sols repeat m := m + count(#1 ~= 0, sol.basis)$List(F)
SolMatrix:MF := new(n, m, 0)
m := 0
for sol in reverse! sols repeat
i := i+1
er := rec.eqs.i
nn := #(er.g) -- size of active companionblock
for s in sol.basis repeat
solVec:V := new(n, 0)
-- compute corresponding solution base with recursion (24)
solVec(k+1) := s
for l in 2..nn repeat solVec(k+l) := diff solVec(k+l-1)
m := m+1
setColumn!(SolMatrix, m, solVec)
-- compute with (24) the corresponding components of the part. sol.
part(k+1) := sol.particular
for l in 2..nn repeat part(k+l) := diff part(k+l-1) - (er.g)(l-1)
k := k+nn
-- transform these values back to the original system
[rec.A * part, rec.A * SolMatrix]
triangulate(m:MF, v:V) ==
k:N := 0 -- sum of companion-dimensions
rat := normalForm(m, 1, - diff #1)
l := companionBlocks(rat.R, rat.Ainv * v)
ler:List(ER) := empty()
for er in l repeat
n := nrows(er.C) -- dimension of this companion vectorspace
op:LO := 0 -- compute homogeneous equation
for j in 0..n-1 repeat op := op + monomial((er.C)(n, j + 1), j)
op := monomial(1, n) - op
sum:V := new(n::N, 0) -- compute inhomogen Vector (25)
for j in 1..n-1 repeat sum(j+1) := diff(sum j) + (er.g) j
h0:F := 0 -- compute inhomogenity (26)
for j in 1..n repeat h0 := h0 - (er.C)(n, j) * sum j
h0 := h0 + diff(sum n) + (er.g) n
ler := concat([er.C, er.g, op, h0], ler)
k := k + n
[rat.A, ler]
-- like solveInField, but expects a system already triangularized
backsolve(m, v, solve) ==
part:V
r := maxRowIndex m
offset := minIndex v - (mr := minRowIndex m)
while r >= mr and every?(zero?, row(m, r))$Vector(LO) repeat r := r - 1
r < mr => error "backsolve: system has a 0 matrix"
(c := firstnonzero(m, r)) ~= maxColIndex m =>
error "backsolve: undetermined system"
rec := solve(m(r, c), v(r + offset))
dim := (r - mr + 1)::N
if (part? := ((u := rec.particular) case F)) then
part := new(dim, 0) -- particular solution
part(r + offset) := u::F
-- hom is the basis for the homogeneous solutions, each column is a solution
hom:Matrix(F) := new(dim, #(rec.basis), 0)
for i in minColIndex hom .. maxColIndex hom for b in rec.basis repeat
hom(r, i) := b
n:N := 1 -- number of equations already solved
while r > mr repeat
r := r - 1
c := c - 1
firstnonzero(m, r) ~= c => error "backsolve: undetermined system"
positive? degree(eq := m(r, c)) => error "backsolve: pivot of order > 0"
a := leadingCoefficient(eq)::F
if part? then
part(r + offset) := (v(r + offset) - applyLodo(m, r, part, n)) / a
for i in minColIndex hom .. maxColIndex hom repeat
hom(r, i) := - applyLodo0(m, r, hom, i, n)
n := n + 1
bas:List(V) := [column(hom,i) for i in minColIndex hom..maxColIndex hom]
part? => [part, bas]
["failed", bas]
solveInField(m, v, solve) ==
((n := nrows m) = ncols m) and
((u := M2F(diagonalMatrix [diff for i in 1..n] - m)) case MF) =>
(uu := solve(u::MF, v, FSL2USL solve(#1, #2))) case "failed" =>
["failed", empty()]
rc := uu::Record(particular:V, basis:MF)
[rc.particular, [column(rc.basis, i) for i in 1..ncols(rc.basis)]]
rec := triangulate(m, v)
backsolve(rec.mat, rec.vec, solve)
M2F m ==
mf:MF := new(nrows m, ncols m, 0)
for i in minRowIndex m .. maxRowIndex m repeat
for j in minColIndex m .. maxColIndex m repeat
(u := retractIfCan(m(i, j))@Union(F, "failed")) case "failed" =>
return "failed"
mf(i, j) := u::F
mf
FSL2USL rec ==
rec.particular case "failed" => "failed"
[rec.particular::F, rec.basis]
-- returns the index of the first nonzero entry in row r of m
firstnonzero(m, r) ==
for c in minColIndex m .. maxColIndex m repeat
m(r, c) ~= 0 => return c
error "firstnonzero: zero row"
-- computes +/[m(r, i) v(i) for i ranging over the last n columns of m]
applyLodo(m, r, v, n) ==
ans:F := 0
c := maxColIndex m
cv := maxIndex v
for i in 1..n repeat
ans := ans + m(r, c) (v cv)
c := c - 1
cv := cv - 1
ans
-- computes +/[m(r, i) mm(i, c) for i ranging over the last n columns of m]
applyLodo0(m, r, mm, c, n) ==
ans: F := 0
rr := maxRowIndex mm
cc := maxColIndex m
for i in 1..n repeat
ans := ans + m(r, cc) mm(rr, c)
cc := cc - 1
rr := rr - 1
ans
triangulate(m:M, v:V) ==
x := copy m
w := copy v
nrows := maxRowIndex x
ncols := maxColIndex x
minr := i := minRowIndex x
offset := minIndex w - minr
for j in minColIndex x .. ncols repeat
if i > nrows then leave x
rown := minr - 1
for k in i .. nrows repeat
if (x(k, j) ~= 0) and ((rown = minr - 1) or
degree x(k,j) < degree x(rown,j)) then rown := k
rown = minr - 1 => "enuf"
x := swapRows!(x, i, rown)
swap!(w, i + offset, rown + offset)
for k in i+1 .. nrows | x(k, j) ~= 0 repeat
l := rightLcm(x(i,j), x(k,j))
a := rightQuotient(l, x(i, j))
b := rightQuotient(l, x(k, j))
-- l = a x(i,j) = b x(k,j)
for k1 in j+1 .. ncols repeat
x(k, k1) := a * x(i, k1) - b * x(k, k1)
x(k, j) := 0
w(k + offset) := a(w(i + offset)) - b(w(k + offset))
i := i+1
[x, w]
@
\section{package ODERED ReduceLODE}
<<package ODERED ReduceLODE>>=
)abbrev package ODERED ReduceLODE
++ Author: Manuel Bronstein
++ Date Created: 19 August 1991
++ Date Last Updated: 11 April 1994
++ Description: Elimination of an algebraic from the coefficentss
++ of a linear ordinary differential equation.
ReduceLODE(F, L, UP, A, LO): Exports == Implementation where
F : Field
L : LinearOrdinaryDifferentialOperatorCategory F
UP: UnivariatePolynomialCategory F
A : MonogenicAlgebra(F, UP)
LO: LinearOrdinaryDifferentialOperatorCategory A
V ==> Vector F
M ==> Matrix L
Exports ==> with
reduceLODE: (LO, A) -> Record(mat:M, vec:V)
++ reduceLODE(op, g) returns \spad{[m, v]} such that
++ any solution in \spad{A} of \spad{op z = g}
++ is of the form \spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where
++ the \spad{b_i's} are the basis of \spad{A} over \spad{F} returned
++ by \spadfun{basis}() from \spad{A}, and the \spad{z_i's} satisfy the
++ differential system \spad{M.z = v}.
Implementation ==> add
matF2L: Matrix F -> M
diff := D()$L
-- coerces a matrix of elements of F into a matrix of (order 0) L.O.D.O's
matF2L m ==
map(#1::L, m)$MatrixCategoryFunctions2(F, V, V, Matrix F,
L, Vector L, Vector L, M)
-- This follows the algorithm and notation of
-- "The Risch Differential Equation on an Algebraic Curve", M. Bronstein,
-- in 'Proceedings of ISSAC '91', Bonn, BRD, ACM Press, pp.241-246, July 1991.
reduceLODE(l, g) ==
n := rank()$A
-- md is the basic differential matrix (D x I + Dy)
md := matF2L transpose derivationCoordinates(basis(), diff #1)
for i in minRowIndex md .. maxRowIndex md
for j in minColIndex md .. maxColIndex md repeat
md(i, j) := diff + md(i, j)
-- mdi will go through the successive powers of md
mdi := copy md
sys := matF2L(transpose regularRepresentation coefficient(l, 0))
for i in 1..degree l repeat
sys := sys +
matF2L(transpose regularRepresentation coefficient(l, i)) * mdi
mdi := md * mdi
[sys, coordinates g]
@
\section{package ODEPAL PureAlgebraicLODE}
<<package ODEPAL PureAlgebraicLODE>>=
)abbrev package ODEPAL PureAlgebraicLODE
++ Author: Manuel Bronstein
++ Date Created: 21 August 1991
++ Date Last Updated: 3 February 1994
++ Description: In-field solution of an linear ordinary differential equation,
++ pure algebraic case.
PureAlgebraicLODE(F, UP, UPUP, R): Exports == Implementation where
F : Join(Field, CharacteristicZero,
RetractableTo Integer, RetractableTo Fraction Integer)
UP : UnivariatePolynomialCategory F
UPUP: UnivariatePolynomialCategory Fraction UP
R : FunctionFieldCategory(F, UP, UPUP)
RF ==> Fraction UP
V ==> Vector RF
U ==> Union(R, "failed")
REC ==> Record(particular: Union(RF, "failed"), basis: List RF)
L ==> LinearOrdinaryDifferentialOperator1 R
LQ ==> LinearOrdinaryDifferentialOperator1 RF
Exports ==> with
algDsolve: (L, R) -> Record(particular: U, basis: List R)
++ algDsolve(op, g) returns \spad{["failed", []]} if the equation
++ \spad{op y = g} has no solution in \spad{R}. Otherwise, it returns
++ \spad{[f, [y1,...,ym]]} where \spad{f} is a particular rational
++ solution and the \spad{y_i's} form a basis for the solutions in
++ \spad{R} of the homogeneous equation.
Implementation ==> add
import RationalLODE(F, UP)
import SystemODESolver(RF, LQ)
import ReduceLODE(RF, LQ, UPUP, R, L)
algDsolve(l, g) ==
rec := reduceLODE(l, g)
sol := solveInField(rec.mat, rec.vec, ratDsolve)
bas:List(R) := [represents v for v in sol.basis]
(u := sol.particular) case V => [represents(u::V), bas]
["failed", bas]
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
-- Compile order for the differential equation solver:
-- oderf.spad odealg.spad nlode.spad nlinsol.spad riccati.spad odeef.spad
<<package ODESYS SystemODESolver>>
<<package ODERED ReduceLODE>>
<<package ODEPAL PureAlgebraicLODE>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|