1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra numode.spad}
\author{Yurij Baransky}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package NUMODE NumericalOrdinaryDifferentialEquations}
<<package NUMODE NumericalOrdinaryDifferentialEquations>>=
)abbrev package NUMODE NumericalOrdinaryDifferentialEquations
++ Author: Yurij Baransky
++ Date Created: October 90
++ Date Last Updated: October 90
++ Basic Operations:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This package is a suite of functions for the numerical integration of an
++ ordinary differential equation of n variables:
++
++ \center{dy/dx = f(y,x)\space{5}y is an n-vector}
++
++ \par All the routines are based on a 4-th order Runge-Kutta kernel.
++ These routines generally have as arguments:
++ n, the number of dependent variables;
++ x1, the initial point;
++ h, the step size;
++ y, a vector of initial conditions of length n which upon exit contains the solution at \spad{x1 + h};
++ \spad{derivs}, a function which computes the right hand side of the
++ ordinary differential equation: \spad{derivs(dydx,y,x)} computes \spad{dydx},
++ a vector which contains the derivative information.
++
++ \par In order of increasing complexity:\begin{items}
++
++ \item \spad{rk4(y,n,x1,h,derivs)} advances the solution vector to
++ \spad{x1 + h} and return the values in y.
++
++ \item \spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as
++ \spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch
++ arrays t1-t4 of size n.
++
++ \item Starting with y at x1, \spad{rk4f(y,n,x1,x2,ns,derivs)}
++ uses \spad{ns} fixed
++ steps of a 4-th order Runge-Kutta integrator to advance the
++ solution vector to x2 and return the values in y.
++ Argument x2, is the final point, and
++ \spad{ns}, the number of steps to take.
++
++ \item \spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order
++ Runge-Kutta step with monitoring
++ of local truncation to ensure accuracy and adjust stepsize.
++ The function takes two half steps and one full step and scales
++ the difference in solutions at the final point. If the error is
++ within \spad{eps}, the step is taken and the result is returned.
++ If the error is not within \spad{eps}, the stepsize if decreased
++ and the procedure is tried again until the desired accuracy is
++ reached. Upon input, an trial step size must be given and upon
++ return, an estimate of the next step size to use is returned as
++ well as the step size which produced the desired accuracy.
++ The scaled error is computed as
++ \center{\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}}
++ and this is compared against \spad{eps}. If this is greater
++ than \spad{eps}, the step size is reduced accordingly to
++ \center{\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}}
++ If the error criterion is satisfied, then we check if the
++ step size was too fine and return a more efficient one. If
++ \spad{error > \spad{eps} * (6.0E-04)} then the next step size should be
++ \center{\spad{hnext = 0.9 * hdid * (error/\spad{eps})**(-1/5)}}
++ Otherwise \spad{hnext = 4.0 * hdid} is returned.
++ A more detailed discussion of this and related topics can be
++ found in the book "Numerical Recipies" by W.Press, B.P. Flannery,
++ S.A. Teukolsky, W.T. Vetterling published by Cambridge University Press.
++ Argument \spad{step} is a record of 3 floating point
++ numbers \spad{(try , did , next)},
++ \spad{eps} is the required accuracy,
++ \spad{yscal} is the scaling vector for the difference in solutions.
++ On input, \spad{step.try} should be the guess at a step
++ size to achieve the accuracy.
++ On output, \spad{step.did} contains the step size which achieved the
++ accuracy and \spad{step.next} is the next step size to use.
++
++ \item \spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the
++ same as \spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user
++ must provide the 7 scratch arrays \spad{t1-t7} of size n.
++
++ \item \spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)}
++ is a driver program which uses \spad{rk4qc} to integrate n ordinary
++ differential equations starting at x1 to x2, keeping the local
++ truncation error to within \spad{eps} by changing the local step size.
++ The scaling vector is defined as
++ \center{\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}}
++ where \spad{y(i)} is the solution at location x, \spad{dydx} is the
++ ordinary differential equation's right hand side, h is the current
++ step size and \spad{tiny} is 10 times the
++ smallest positive number representable.
++ The user must supply an estimate for a trial step size and
++ the maximum number of calls to \spad{rk4qc} to use.
++ Argument x2 is the final point,
++ \spad{eps} is local truncation,
++ \spad{ns} is the maximum number of call to \spad{rk4qc} to use.
++ \end{items}
NumericalOrdinaryDifferentialEquations(): Exports == Implementation where
L ==> List
V ==> Vector
B ==> Boolean
I ==> Integer
E ==> OutputForm
NF ==> Float
NNI ==> NonNegativeInteger
VOID ==> Void
OFORM ==> OutputForm
RK4STEP ==> Record(try:NF, did:NF, next:NF)
Exports ==> with
--header definitions here
rk4 : (V NF,I,NF,NF, (V NF,V NF,NF) -> VOID) -> VOID
++ rk4(y,n,x1,h,derivs) uses a 4-th order Runge-Kutta method
++ to numerically integrate the ordinary differential equation
++ {\em dy/dx = f(y,x)} of n variables, where y is an n-vector.
++ Argument y is a vector of initial conditions of length n which upon exit
++ contains the solution at \spad{x1 + h}, n is the number of dependent
++ variables, x1 is the initial point, h is the step size, and
++ \spad{derivs} is a function which computes the right hand side of the
++ ordinary differential equation.
++ For details, see \spadtype{NumericalOrdinaryDifferentialEquations}.
rk4 : (V NF,I,NF,NF, (V NF,V NF,NF) -> VOID
,V NF,V NF,V NF,V NF) -> VOID
++ rk4(y,n,x1,h,derivs,t1,t2,t3,t4) is the same as
++ \spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch
++ arrays t1-t4 of size n.
++ For details, see \con{NumericalOrdinaryDifferentialEquations}.
rk4a : (V NF,I,NF,NF,NF,NF,I,(V NF,V NF,NF) -> VOID ) -> VOID
++ rk4a(y,n,x1,x2,eps,h,ns,derivs) is a driver function for the
++ numerical integration of an ordinary differential equation
++ {\em dy/dx = f(y,x)} of n variables, where y is an n-vector
++ using a 4-th order Runge-Kutta method.
++ For details, see \con{NumericalOrdinaryDifferentialEquations}.
rk4qc : (V NF,I,NF,RK4STEP,NF,V NF,(V NF,V NF,NF) -> VOID) -> VOID
++ rk4qc(y,n,x1,step,eps,yscal,derivs) is a subfunction for the
++ numerical integration of an ordinary differential equation
++ {\em dy/dx = f(y,x)} of n variables, where y is an n-vector
++ using a 4-th order Runge-Kutta method.
++ This function takes a 5-th order Runge-Kutta step with monitoring
++ of local truncation to ensure accuracy and adjust stepsize.
++ For details, see \con{NumericalOrdinaryDifferentialEquations}.
rk4qc : (V NF,I,NF,RK4STEP,NF,V NF,(V NF,V NF,NF) -> VOID
,V NF,V NF,V NF,V NF,V NF,V NF,V NF) -> VOID
++ rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7) is a subfunction for the
++ numerical integration of an ordinary differential equation
++ {\em dy/dx = f(y,x)} of n variables, where y is an n-vector
++ using a 4-th order Runge-Kutta method.
++ This function takes a 5-th order Runge-Kutta step with monitoring
++ of local truncation to ensure accuracy and adjust stepsize.
++ For details, see \con{NumericalOrdinaryDifferentialEquations}.
rk4f : (V NF,I,NF,NF,I,(V NF,V NF,NF) -> VOID ) -> VOID
++ rk4f(y,n,x1,x2,ns,derivs) uses a 4-th order Runge-Kutta method
++ to numerically integrate the ordinary differential equation
++ {\em dy/dx = f(y,x)} of n variables, where y is an n-vector.
++ Starting with y at x1, this function uses \spad{ns} fixed
++ steps of a 4-th order Runge-Kutta integrator to advance the
++ solution vector to x2 and return the values in y.
++ For details, see \con{NumericalOrdinaryDifferentialEquations}.
Implementation ==> add
--some local function definitions here
rk4qclocal : (V NF,V NF,I,NF,RK4STEP,NF,V NF,(V NF,V NF,NF) -> VOID
,V NF,V NF,V NF,V NF,V NF,V NF) -> VOID
rk4local : (V NF,V NF,I,NF,NF,V NF,(V NF,V NF,NF) -> VOID
,V NF,V NF,V NF) -> VOID
import OutputPackage
------------------------------------------------------------
rk4a(ystart,nvar,x1,x2,eps,htry,nstep,derivs) ==
y : V NF := new(nvar::NNI,0.0)
yscal : V NF := new(nvar::NNI,1.0)
dydx : V NF := new(nvar::NNI,0.0)
t1 : V NF := new(nvar::NNI,0.0)
t2 : V NF := new(nvar::NNI,0.0)
t3 : V NF := new(nvar::NNI,0.0)
t4 : V NF := new(nvar::NNI,0.0)
t5 : V NF := new(nvar::NNI,0.0)
t6 : V NF := new(nvar::NNI,0.0)
step : RK4STEP := [htry,0.0,0.0]
x : NF := x1
tiny : NF := 10.0**(-(digits()+1)::I)
m : I := nvar
outlist : L OFORM := [x::E,x::E,x::E]
i : I
eps := 1.0/eps
for i in 1..m repeat
y(i) := ystart(i)
iter : I := 1
while iter <= nstep repeat
--compute the derivative
derivs(dydx,y,x)
--if overshoot, the set h accordingly
if (x + step.try - x2) > 0.0 then
step.try := x2 - x
--find the correct scaling
for i in 1..m repeat
yscal(i) := abs(y(i)) + abs(step.try * dydx(i)) + tiny
--take a quality controlled runge-kutta step
rk4qclocal(y,dydx,nvar,x,step,eps,yscal,derivs
,t1,t2,t3,t4,t5,t6)
x := x + step.did
--check to see if done
if (x-x2) >= 0.0 then
leave
--next stepsize to use
step.try := step.next
iter := iter + 1
--end nstep repeat
if iter = (nstep+1) then
output("ode: ERROR ")
outlist.1 := nstep::E
outlist.2 := " steps to small, last h = "::E
outlist.3 := step.did::E
output(blankSeparate(outlist))
output(" y= ",y::E)
for i in 1..m repeat
ystart(i) := y(i)
----------------------------------------------------------------
rk4qc(y,n,x,step,eps,yscal,derivs) ==
t1 : V NF := new(n::NNI,0.0)
t2 : V NF := new(n::NNI,0.0)
t3 : V NF := new(n::NNI,0.0)
t4 : V NF := new(n::NNI,0.0)
t5 : V NF := new(n::NNI,0.0)
t6 : V NF := new(n::NNI,0.0)
t7 : V NF := new(n::NNI,0.0)
derivs(t7,y,x)
eps := 1.0/eps
rk4qclocal(y,t7,n,x,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6)
--------------------------------------------------------
rk4qc(y,n,x,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,dydx) ==
derivs(dydx,y,x)
eps := 1.0/eps
rk4qclocal(y,dydx,n,x,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6)
--------------------------------------------------------
rk4qclocal(y,dydx,n,x,step,eps,yscal,derivs
,t1,t2,t3,ysav,dysav,ytemp) ==
xsav : NF := x
h : NF := step.try
fcor : NF := 1.0/15.0
safety : NF := 0.9
grow : NF := -0.20
shrink : NF := -0.25
errcon : NF := 0.6E-04 --(this is 4/safety)**(1/grow)
hh : NF
errmax : NF
i : I
m : I := n
--
for i in 1..m repeat
dysav(i) := dydx(i)
ysav(i) := y(i)
--cut down step size till error criterion is met
repeat
--take two little steps to get to x + h
hh := 0.5 * h
rk4local(ysav,dysav,n,xsav,hh,ytemp,derivs,t1,t2,t3)
x := xsav + hh
derivs(dydx,ytemp,x)
rk4local(ytemp,dydx,n,x,hh,y,derivs,t1,t2,t3)
x := xsav + h
--take one big step get to x + h
rk4local(ysav,dysav,n,xsav,h,ytemp,derivs,t1,t2,t3)
--compute the maximum scaled difference
errmax := 0.0
for i in 1..m repeat
ytemp(i) := y(i) - ytemp(i)
errmax := max(errmax,abs(ytemp(i)/yscal(i)))
--scale relative to required accuracy
errmax := errmax * eps
--update integration stepsize
if (errmax > 1.0) then
h := safety * h * (errmax ** shrink)
else
step.did := h
if errmax > errcon then
step.next := safety * h * (errmax ** grow)
else
step.next := 4 * h
leave
--make fifth order with 4-th order error estimate
for i in 1..m repeat
y(i) := y(i) + ytemp(i) * fcor
--------------------------------------------
rk4f(y,nvar,x1,x2,nstep,derivs) ==
yt : V NF := new(nvar::NNI,0.0)
dyt : V NF := new(nvar::NNI,0.0)
dym : V NF := new(nvar::NNI,0.0)
dydx : V NF := new(nvar::NNI,0.0)
ynew : V NF := new(nvar::NNI,0.0)
h : NF := (x2-x1) / (nstep::NF)
x : NF := x1
i : I
j : I
-- start integrating
for i in 1..nstep repeat
derivs(dydx,y,x)
rk4local(y,dydx,nvar,x,h,y,derivs,yt,dyt,dym)
x := x + h
--------------------------------------------------------
rk4(y,n,x,h,derivs) ==
t1 : V NF := new(n::NNI,0.0)
t2 : V NF := new(n::NNI,0.0)
t3 : V NF := new(n::NNI,0.0)
t4 : V NF := new(n::NNI,0.0)
derivs(t1,y,x)
rk4local(y,t1,n,x,h,y,derivs,t2,t3,t4)
------------------------------------------------------------
rk4(y,n,x,h,derivs,t1,t2,t3,t4) ==
derivs(t1,y,x)
rk4local(y,t1,n,x,h,y,derivs,t2,t3,t4)
------------------------------------------------------------
rk4local(y,dydx,n,x,h,yout,derivs,yt,dyt,dym) ==
hh : NF := h*0.5
h6 : NF := h/6.0
xh : NF := x+hh
m : I := n
i : I
-- first step
for i in 1..m repeat
yt(i) := y(i) + hh*dydx(i)
-- second step
derivs(dyt,yt,xh)
for i in 1..m repeat
yt(i) := y(i) + hh*dyt(i)
-- third step
derivs(dym,yt,xh)
for i in 1..m repeat
yt(i) := y(i) + h*dym(i)
dym(i) := dyt(i) + dym(i)
-- fourth step
derivs(dyt,yt,x+h)
for i in 1..m repeat
yout(i) := y(i) + h6*( dydx(i) + 2.0*dym(i) + dyt(i) )
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package NUMODE NumericalOrdinaryDifferentialEquations>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|