1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra numeric.spad}
\author{Manuel Bronstein, Mike Dewar}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package NUMERIC Numeric}
<<package NUMERIC Numeric>>=
)abbrev package NUMERIC Numeric
++ Author: Manuel Bronstein
++ Date Created: 21 Feb 1990
++ Date Last Updated: 17 August 1995, Mike Dewar
++ 24 January 1997, Miked Dewar (added partial operators)
++ Basic Operations: numeric, complexNumeric, numericIfCan, complexNumericIfCan
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description: Numeric provides real and complex numerical evaluation
++ functions for various symbolic types.
Numeric(S:ConvertibleTo Float): with
numeric: S -> Float
++ numeric(x) returns a real approximation of x.
numeric: (S, PositiveInteger) -> Float
++ numeric(x, n) returns a real approximation of x up to n decimal
++ places.
complexNumeric: S -> Complex Float
++ complexNumeric(x) returns a complex approximation of x.
complexNumeric: (S, PositiveInteger) -> Complex Float
++ complexNumeric(x, n) returns a complex approximation of x up
++ to n decimal places.
if S has CommutativeRing then
complexNumeric: Complex S -> Complex Float
++ complexNumeric(x) returns a complex approximation of x.
complexNumeric: (Complex S, PositiveInteger) -> Complex Float
++ complexNumeric(x, n) returns a complex approximation of x up
++ to n decimal places.
complexNumeric: Polynomial Complex S -> Complex Float
++ complexNumeric(x) returns a complex approximation of x.
complexNumeric: (Polynomial Complex S, PositiveInteger) -> Complex Float
++ complexNumeric(x, n) returns a complex approximation of x up
++ to n decimal places.
if S has Ring then
numeric: Polynomial S -> Float
++ numeric(x) returns a real approximation of x.
numeric: (Polynomial S, PositiveInteger) -> Float
++ numeric(x,n) returns a real approximation of x up to n decimal
++ places.
complexNumeric: Polynomial S -> Complex Float
++ complexNumeric(x) returns a complex approximation of x.
complexNumeric: (Polynomial S, PositiveInteger) -> Complex Float
++ complexNumeric(x, n) returns a complex approximation of x
++ up to n decimal places.
if S has IntegralDomain then
numeric: Fraction Polynomial S -> Float
++ numeric(x) returns a real approximation of x.
numeric: (Fraction Polynomial S, PositiveInteger) -> Float
++ numeric(x,n) returns a real approximation of x up to n decimal
++ places.
complexNumeric: Fraction Polynomial S -> Complex Float
++ complexNumeric(x) returns a complex approximation of x.
complexNumeric: (Fraction Polynomial S, PositiveInteger) -> Complex Float
++ complexNumeric(x, n) returns a complex approximation of x
complexNumeric: Fraction Polynomial Complex S -> Complex Float
++ complexNumeric(x) returns a complex approximation of x.
complexNumeric: (Fraction Polynomial Complex S, PositiveInteger) ->
Complex Float
++ complexNumeric(x, n) returns a complex approximation of x
++ up to n decimal places.
if S has OrderedSet then
numeric: Expression S -> Float
++ numeric(x) returns a real approximation of x.
numeric: (Expression S, PositiveInteger) -> Float
++ numeric(x, n) returns a real approximation of x up to n
++ decimal places.
complexNumeric: Expression S -> Complex Float
++ complexNumeric(x) returns a complex approximation of x.
complexNumeric: (Expression S, PositiveInteger) -> Complex Float
++ complexNumeric(x, n) returns a complex approximation of x
++ up to n decimal places.
complexNumeric: Expression Complex S -> Complex Float
++ complexNumeric(x) returns a complex approximation of x.
complexNumeric: (Expression Complex S, PositiveInteger) -> Complex Float
++ complexNumeric(x, n) returns a complex approximation of x
++ up to n decimal places.
if S has CommutativeRing then
complexNumericIfCan: Polynomial Complex S -> Union(Complex Float,"failed")
++ complexNumericIfCan(x) returns a complex approximation of x,
++ or "failed" if \axiom{x} is not constant.
complexNumericIfCan: (Polynomial Complex S, PositiveInteger) -> Union(Complex Float,"failed")
++ complexNumericIfCan(x, n) returns a complex approximation of x up
++ to n decimal places, or "failed" if \axiom{x} is not a constant.
if S has Ring then
numericIfCan: Polynomial S -> Union(Float,"failed")
++ numericIfCan(x) returns a real approximation of x,
++ or "failed" if \axiom{x} is not a constant.
numericIfCan: (Polynomial S, PositiveInteger) -> Union(Float,"failed")
++ numericIfCan(x,n) returns a real approximation of x up to n decimal
++ places, or "failed" if \axiom{x} is not a constant.
complexNumericIfCan: Polynomial S -> Union(Complex Float,"failed")
++ complexNumericIfCan(x) returns a complex approximation of x,
++ or "failed" if \axiom{x} is not a constant.
complexNumericIfCan: (Polynomial S, PositiveInteger) -> Union(Complex Float,"failed")
++ complexNumericIfCan(x, n) returns a complex approximation of x
++ up to n decimal places, or "failed" if \axiom{x} is not a constant.
if S has IntegralDomain then
numericIfCan: Fraction Polynomial S -> Union(Float,"failed")
++ numericIfCan(x) returns a real approximation of x,
++ or "failed" if \axiom{x} is not a constant.
numericIfCan: (Fraction Polynomial S, PositiveInteger) -> Union(Float,"failed")
++ numericIfCan(x,n) returns a real approximation of x up to n decimal
++ places, or "failed" if \axiom{x} is not a constant.
complexNumericIfCan: Fraction Polynomial S -> Union(Complex Float,"failed")
++ complexNumericIfCan(x) returns a complex approximation of x,
++ or "failed" if \axiom{x} is not a constant.
complexNumericIfCan: (Fraction Polynomial S, PositiveInteger) -> Union(Complex Float,"failed")
++ complexNumericIfCan(x, n) returns a complex approximation of x,
++ or "failed" if \axiom{x} is not a constant.
complexNumericIfCan: Fraction Polynomial Complex S -> Union(Complex Float,"failed")
++ complexNumericIfCan(x) returns a complex approximation of x,
++ or "failed" if \axiom{x} is not a constant.
complexNumericIfCan: (Fraction Polynomial Complex S, PositiveInteger) ->
Union(Complex Float,"failed")
++ complexNumericIfCan(x, n) returns a complex approximation of x
++ up to n decimal places, or "failed" if \axiom{x} is not a constant.
if S has OrderedSet then
numericIfCan: Expression S -> Union(Float,"failed")
++ numericIfCan(x) returns a real approximation of x,
++ or "failed" if \axiom{x} is not a constant.
numericIfCan: (Expression S, PositiveInteger) -> Union(Float,"failed")
++ numericIfCan(x, n) returns a real approximation of x up to n
++ decimal places, or "failed" if \axiom{x} is not a constant.
complexNumericIfCan: Expression S -> Union(Complex Float,"failed")
++ complexNumericIfCan(x) returns a complex approximation of x,
++ or "failed" if \axiom{x} is not a constant.
complexNumericIfCan: (Expression S, PositiveInteger) ->
Union(Complex Float,"failed")
++ complexNumericIfCan(x, n) returns a complex approximation of x
++ up to n decimal places, or "failed" if \axiom{x} is not a constant.
complexNumericIfCan: Expression Complex S -> Union(Complex Float,"failed")
++ complexNumericIfCan(x) returns a complex approximation of x,
++ or "failed" if \axiom{x} is not a constant.
complexNumericIfCan: (Expression Complex S, PositiveInteger) ->
Union(Complex Float,"failed")
++ complexNumericIfCan(x, n) returns a complex approximation of x
++ up to n decimal places, or "failed" if \axiom{x} is not a constant.
== add
if S has CommutativeRing then
complexNumericIfCan(p:Polynomial Complex S) ==
p' : Union(Complex(S),"failed") := retractIfCan p
p' case "failed" => "failed"
complexNumeric(p')
complexNumericIfCan(p:Polynomial Complex S,n:PositiveInteger) ==
p' : Union(Complex(S),"failed") := retractIfCan p
p' case "failed" => "failed"
complexNumeric(p',n)
if S has Ring then
numericIfCan(p:Polynomial S) ==
p' : Union(S,"failed") := retractIfCan p
p' case "failed" => "failed"
numeric(p')
complexNumericIfCan(p:Polynomial S) ==
p' : Union(S,"failed") := retractIfCan p
p' case "failed" => "failed"
complexNumeric(p')
complexNumericIfCan(p:Polynomial S, n:PositiveInteger) ==
p' : Union(S,"failed") := retractIfCan p
p' case "failed" => "failed"
complexNumeric(p', n)
numericIfCan(p:Polynomial S, n:PositiveInteger) ==
old := digits(n)$Float
ans := numericIfCan p
digits(old)$Float
ans
if S has IntegralDomain then
numericIfCan(f:Fraction Polynomial S)==
num := numericIfCan(numer(f))
num case "failed" => "failed"
den := numericIfCan(denom f)
den case "failed" => "failed"
num/den
complexNumericIfCan(f:Fraction Polynomial S) ==
num := complexNumericIfCan(numer f)
num case "failed" => "failed"
den := complexNumericIfCan(denom f)
den case "failed" => "failed"
num/den
complexNumericIfCan(f:Fraction Polynomial S, n:PositiveInteger) ==
num := complexNumericIfCan(numer f, n)
num case "failed" => "failed"
den := complexNumericIfCan(denom f, n)
den case "failed" => "failed"
num/den
numericIfCan(f:Fraction Polynomial S, n:PositiveInteger) ==
old := digits(n)$Float
ans := numericIfCan f
digits(old)$Float
ans
complexNumericIfCan(f:Fraction Polynomial Complex S) ==
num := complexNumericIfCan(numer f)
num case "failed" => "failed"
den := complexNumericIfCan(denom f)
den case "failed" => "failed"
num/den
complexNumericIfCan(f:Fraction Polynomial Complex S, n:PositiveInteger) ==
num := complexNumericIfCan(numer f, n)
num case "failed" => "failed"
den := complexNumericIfCan(denom f, n)
den case "failed" => "failed"
num/den
if S has OrderedSet then
numericIfCan(x:Expression S) ==
retractIfCan(map(convert, x)$ExpressionFunctions2(S, Float))
--s2cs(u:S):Complex(S) == complex(u,0)
complexNumericIfCan(x:Expression S) ==
complexNumericIfCan map(coerce, x)$ExpressionFunctions2(S,Complex S)
numericIfCan(x:Expression S, n:PositiveInteger) ==
old := digits(n)$Float
x' : Expression Float := map(convert, x)$ExpressionFunctions2(S, Float)
ans : Union(Float,"failed") := retractIfCan x'
digits(old)$Float
ans
complexNumericIfCan(x:Expression S, n:PositiveInteger) ==
old := digits(n)$Float
x' : Expression Complex S := map(coerce, x)$ExpressionFunctions2(S, Complex S)
ans : Union(Complex Float,"failed") := complexNumericIfCan(x')
digits(old)$Float
ans
if S has RealConstant then
complexNumericIfCan(x:Expression Complex S) ==
retractIfCan(map(convert, x)$ExpressionFunctions2(Complex S,Complex Float))
complexNumericIfCan(x:Expression Complex S, n:PositiveInteger) ==
old := digits(n)$Float
x' : Expression Complex Float :=
map(convert, x)$ExpressionFunctions2(Complex S,Complex Float)
ans : Union(Complex Float,"failed") := retractIfCan x'
digits(old)$Float
ans
else
convert(x:Complex S):Complex(Float)==map(convert,x)$ComplexFunctions2(S,Float)
complexNumericIfCan(x:Expression Complex S) ==
retractIfCan(map(convert, x)$ExpressionFunctions2(Complex S,Complex Float))
complexNumericIfCan(x:Expression Complex S, n:PositiveInteger) ==
old := digits(n)$Float
x' : Expression Complex Float :=
map(convert, x)$ExpressionFunctions2(Complex S,Complex Float)
ans : Union(Complex Float,"failed") := retractIfCan x'
digits(old)$Float
ans
numeric(s:S) == convert(s)@Float
if S has ConvertibleTo Complex Float then
complexNumeric(s:S) == convert(s)@Complex(Float)
complexNumeric(s:S, n:PositiveInteger) ==
old := digits(n)$Float
ans := complexNumeric s
digits(old)$Float
ans
else
complexNumeric(s:S) == convert(s)@Float :: Complex(Float)
complexNumeric(s:S,n:PositiveInteger) ==
numeric(s, n)::Complex(Float)
if S has CommutativeRing then
complexNumeric(p:Polynomial Complex S) ==
p' : Union(Complex(S),"failed") := retractIfCan p
p' case "failed" =>
error "Cannot compute the numerical value of a non-constant polynomial"
complexNumeric(p')
complexNumeric(p:Polynomial Complex S,n:PositiveInteger) ==
p' : Union(Complex(S),"failed") := retractIfCan p
p' case "failed" =>
error "Cannot compute the numerical value of a non-constant polynomial"
complexNumeric(p',n)
if S has RealConstant then
complexNumeric(s:Complex S) == convert(s)$Complex(S)
complexNumeric(s:Complex S, n:PositiveInteger) ==
old := digits(n)$Float
ans := complexNumeric s
digits(old)$Float
ans
else if Complex(S) has ConvertibleTo(Complex Float) then
complexNumeric(s:Complex S) == convert(s)@Complex(Float)
complexNumeric(s:Complex S, n:PositiveInteger) ==
old := digits(n)$Float
ans := complexNumeric s
digits(old)$Float
ans
else
complexNumeric(s:Complex S) ==
s' : Union(S,"failed") := retractIfCan s
s' case "failed" =>
error "Cannot compute the numerical value of a non-constant object"
complexNumeric(s')
complexNumeric(s:Complex S, n:PositiveInteger) ==
s' : Union(S,"failed") := retractIfCan s
s' case "failed" =>
error "Cannot compute the numerical value of a non-constant object"
old := digits(n)$Float
ans := complexNumeric s'
digits(old)$Float
ans
numeric(s:S, n:PositiveInteger) ==
old := digits(n)$Float
ans := numeric s
digits(old)$Float
ans
if S has Ring then
numeric(p:Polynomial S) ==
p' : Union(S,"failed") := retractIfCan p
p' case "failed" => error
"Can only compute the numerical value of a constant, real-valued polynomial"
numeric(p')
complexNumeric(p:Polynomial S) ==
p' : Union(S,"failed") := retractIfCan p
p' case "failed" =>
error "Cannot compute the numerical value of a non-constant polynomial"
complexNumeric(p')
complexNumeric(p:Polynomial S, n:PositiveInteger) ==
p' : Union(S,"failed") := retractIfCan p
p' case "failed" =>
error "Cannot compute the numerical value of a non-constant polynomial"
complexNumeric(p', n)
numeric(p:Polynomial S, n:PositiveInteger) ==
old := digits(n)$Float
ans := numeric p
digits(old)$Float
ans
if S has IntegralDomain then
numeric(f:Fraction Polynomial S)==
numeric(numer(f)) / numeric(denom f)
complexNumeric(f:Fraction Polynomial S) ==
complexNumeric(numer f)/complexNumeric(denom f)
complexNumeric(f:Fraction Polynomial S, n:PositiveInteger) ==
complexNumeric(numer f, n)/complexNumeric(denom f, n)
numeric(f:Fraction Polynomial S, n:PositiveInteger) ==
old := digits(n)$Float
ans := numeric f
digits(old)$Float
ans
complexNumeric(f:Fraction Polynomial Complex S) ==
complexNumeric(numer f)/complexNumeric(denom f)
complexNumeric(f:Fraction Polynomial Complex S, n:PositiveInteger) ==
complexNumeric(numer f, n)/complexNumeric(denom f, n)
if S has OrderedSet then
numeric(x:Expression S) ==
x' : Union(Float,"failed") :=
retractIfCan(map(convert, x)$ExpressionFunctions2(S, Float))
x' case "failed" => error
"Can only compute the numerical value of a constant, real-valued Expression"
x'
complexNumeric(x:Expression S) ==
x' : Union(Complex Float,"failed") := retractIfCan(
map(complexNumeric, x)$ExpressionFunctions2(S,Complex Float))
x' case "failed" =>
error "Cannot compute the numerical value of a non-constant expression"
x'
numeric(x:Expression S, n:PositiveInteger) ==
old := digits(n)$Float
x' : Expression Float := map(convert, x)$ExpressionFunctions2(S, Float)
ans : Union(Float,"failed") := retractIfCan x'
digits(old)$Float
ans case "failed" => error
"Can only compute the numerical value of a constant, real-valued Expression"
ans
complexNumeric(x:Expression S, n:PositiveInteger) ==
old := digits(n)$Float
x' : Expression Complex Float :=
map(complexNumeric, x)$ExpressionFunctions2(S,Complex Float)
ans : Union(Complex Float,"failed") := retractIfCan x'
digits(old)$Float
ans case "failed" =>
error "Cannot compute the numerical value of a non-constant expression"
ans
complexNumeric(x:Expression Complex S) ==
x' : Union(Complex Float,"failed") := retractIfCan(
map(complexNumeric, x)$ExpressionFunctions2(Complex S,Complex Float))
x' case "failed" =>
error "Cannot compute the numerical value of a non-constant expression"
x'
complexNumeric(x:Expression Complex S, n:PositiveInteger) ==
old := digits(n)$Float
x' : Expression Complex Float :=
map(complexNumeric, x)$ExpressionFunctions2(Complex S,Complex Float)
ans : Union(Complex Float,"failed") := retractIfCan x'
digits(old)$Float
ans case "failed" =>
error "Cannot compute the numerical value of a non-constant expression"
ans
@
\section{package DRAWHACK DrawNumericHack}
<<package DRAWHACK DrawNumericHack>>=
)abbrev package DRAWHACK DrawNumericHack
++ Author: Manuel Bronstein
++ Date Created: 21 Feb 1990
++ Date Last Updated: 21 Feb 1990
++ Basic Operations: coerce
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description: Hack for the draw interface. DrawNumericHack provides
++ a "coercion" from something of the form \spad{x = a..b} where \spad{a}
++ and b are
++ formal expressions to a binding of the form \spad{x = c..d} where c and d
++ are the numerical values of \spad{a} and b. This "coercion" fails if
++ \spad{a} and b contains symbolic variables, but is meant for expressions
++ involving %pi.
++ NOTE: This is meant for internal use only.
DrawNumericHack(R:Join(OrderedSet,IntegralDomain,ConvertibleTo Float)):
with coerce: SegmentBinding Expression R -> SegmentBinding Float
++ coerce(x = a..b) returns \spad{x = c..d} where c and d are the
++ numerical values of \spad{a} and b.
== add
coerce s ==
map(numeric$Numeric(R),s)$SegmentBindingFunctions2(Expression R, Float)
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package NUMERIC Numeric>>
<<package DRAWHACK DrawNumericHack>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|