aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/nsregset.spad.pamphlet
blob: 21052cc842f3bbb8561a5620894277a1545e0192 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra nsregset.spad}
\author{Marc Moreno Maza}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{category SNTSCAT SquareFreeNormalizedTriangularSetCategory}
<<category SNTSCAT SquareFreeNormalizedTriangularSetCategory>>=
)abbrev category SNTSCAT SquareFreeNormalizedTriangularSetCategory
++ Author: Marc Moreno Maza
++ Date Created: 10/07/1998
++ Date Last Updated: 12/16/1998
++ Basic Functions:
++ Related Constructors:
++ Also See: essai Graphisme
++ AMS Classifications:
++ Keywords: polynomial, multivariate, ordered variables set
++ Description:
++ The category of square-free and normalized triangular sets.
++ Thus, up to the primitivity axiom of [1], these sets are Lazard
++ triangular sets.\newline
++ References :
++  [1] D. LAZARD "A new method for solving algebraic systems of 
++      positive dimension" Discr. App. Math. 33:147-160,1991
SquareFreeNormalizedTriangularSetCategory(R:GcdDomain,E:OrderedAbelianMonoidSup,_
 V:OrderedSet,P:RecursivePolynomialCategory(R,E,V)):
         Category == 
   Join(SquareFreeRegularTriangularSetCategory(R,E,V,P), NormalizedTriangularSetCategory(R,E,V,P))

@
\section{package LAZM3PK LazardSetSolvingPackage}
<<package LAZM3PK LazardSetSolvingPackage>>=
)abbrev package LAZM3PK LazardSetSolvingPackage
++ Author: Marc Moreno Maza
++ Date Created: 10/02/1998
++ Date Last Updated: 12/16/1998
++ Basic Functions:
++ Related Constructors:
++ Also See: 
++ AMS Classifications:
++ Keywords:
++ Description: 
++ A package for solving polynomial systems by means of Lazard triangular
++ sets [1]. 
++ This package provides two operations. One for solving in the sense
++ of the regular zeros, and the other for solving in the sense of
++ the Zariski closure. Both produce square-free regular sets. 
++ Moreover, the decompositions do not contain any redundant component.
++ However, only zero-dimensional regular sets are normalized, since
++ normalization may be time consumming in positive dimension.
++ The decomposition process is that of [2].\newline
++ References :
++  [1] D. LAZARD "A new method for solving algebraic systems of 
++      positive dimension" Discr. App. Math. 33:147-160,1991
++  [2] M. MORENO MAZA "A new algorithm for computing triangular
++      decomposition of algebraic varieties" NAG Tech. Rep. 4/98.
++ Version: 1. 

LazardSetSolvingPackage(R,E,V,P,TS,ST): Exports == Implementation where

  R : GcdDomain
  E : OrderedAbelianMonoidSup
  V : OrderedSet
  P : RecursivePolynomialCategory(R,E,V)
  TS: RegularTriangularSetCategory(R,E,V,P)
  ST : SquareFreeRegularTriangularSetCategory(R,E,V,P)
  N ==> NonNegativeInteger
  Z ==> Integer
  B ==> Boolean
  S ==> String
  K ==> Fraction R
  LP ==> List P
  PWT ==> Record(val : P, tower : TS)
  BWT ==> Record(val : Boolean, tower : TS)
  LpWT ==> Record(val : (List P), tower : TS)
  Split ==> List TS
  --KeyGcd ==> Record(arg1: P, arg2: P, arg3: TS, arg4: B)
  --EntryGcd ==> List PWT
  --HGcd ==> TabulatedComputationPackage(KeyGcd, EntryGcd)
  --KeyInvSet ==> Record(arg1: P, arg3: TS)
  --EntryInvSet ==> List TS
  --HInvSet ==> TabulatedComputationPackage(KeyInvSet, EntryInvSet)
  polsetpack ==> PolynomialSetUtilitiesPackage(R,E,V,P)
  regsetgcdpack ==> SquareFreeRegularTriangularSetGcdPackage(R,E,V,P,ST)
  quasicomppack ==> SquareFreeQuasiComponentPackage(R,E,V,P,ST)
  normalizpack ==> NormalizationPackage(R,E,V,P,ST)

  Exports ==  with

     normalizeIfCan: ST -> ST
       ++ \axiom{normalizeIfCan(ts)} returns \axiom{ts} in an normalized shape
       ++ if \axiom{ts} is zero-dimensional.
     zeroSetSplit: (LP, B) -> List ST
       ++ \axiom{zeroSetSplit(lp,clos?)} has the same specifications as
       ++ \axiomOpFrom{zeroSetSplit(lp,clos?)}{RegularTriangularSetCategory}.

  Implementation == add

     convert(st: ST): TS ==
       ts: TS := empty()
       lp: LP := members(st)$ST
       lp := sort(infRittWu?,lp)
       for p in lp repeat
         ts := internalAugment(p,ts)$TS
       ts

     squareFree(ts: TS): List ST ==
       empty? ts => [empty()$ST]
       lp: LP := members(ts)$TS
       lp := sort(infRittWu?,lp)
       newts: ST := empty()$ST
       toSee: List ST := [newts]
       toSave: List ST
       for p in lp repeat
         toSave := []
         while (not empty? toSee) repeat
           us := first toSee; toSee := rest toSee
           lpwt := stoseSquareFreePart(p,us)$regsetgcdpack
           for pwt in lpwt repeat
             newus := internalAugment(pwt.val,pwt.tower)$ST
             toSave := cons(newus,toSave)
         toSee := toSave
       toSave

     normalizeIfCan(ts: ST): ST ==
       empty? ts => ts
       lp: LP := members(ts)$ST
       lp := sort(infRittWu?,lp)
       p: P := first lp
       not univariate?(p)$polsetpack => ts
       lp := rest lp
       newts: ST := empty()$ST
       newts := internalAugment(p,newts)$ST
       while (not empty? lp) repeat
         p := first lp
         lv := variables(p)
         for v in lv repeat
           v = mvar(p) => "leave"
           not algebraic?(v,newts) => return internalAugment(lp,newts)$ST
         lp := rest lp
         p := normalizedAssociate(p,newts)$normalizpack
         newts := internalAugment(p,newts)$ST
       newts

     zeroSetSplit(lp:List(P), clos?:B): List ST ==
       -- if clos? then SOLVE in the closure sense 
       toSee: Split := zeroSetSplit(lp, clos?)$TS
       toSave: List ST := []
       for ts in toSee repeat 
         toSave := concat(squareFree(ts),toSave)
       toSave := removeSuperfluousQuasiComponents(toSave)$quasicomppack
       [normalizeIfCan(ts) for ts in toSave]

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<category SNTSCAT SquareFreeNormalizedTriangularSetCategory>>
<<package LAZM3PK LazardSetSolvingPackage>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}