1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra nlode.spad}
\author{Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package NODE1 NonLinearFirstOrderODESolver}
<<package NODE1 NonLinearFirstOrderODESolver>>=
)abbrev package NODE1 NonLinearFirstOrderODESolver
++ Author: Manuel Bronstein
++ Date Created: 2 September 1991
++ Date Last Updated: 14 October 1994
++ Description: NonLinearFirstOrderODESolver provides a function
++ for finding closed form first integrals of nonlinear ordinary
++ differential equations of order 1.
++ Keywords: differential equation, ODE
NonLinearFirstOrderODESolver(R, F): Exports == Implementation where
R: Join(EuclideanDomain, RetractableTo Integer,
LinearlyExplicitRingOver Integer, CharacteristicZero)
F: Join(AlgebraicallyClosedFunctionSpace R, TranscendentalFunctionCategory,
PrimitiveFunctionCategory)
N ==> NonNegativeInteger
Q ==> Fraction Integer
UQ ==> Union(Q, "failed")
OP ==> BasicOperator
SY ==> Symbol
K ==> Kernel F
U ==> Union(F, "failed")
P ==> SparseMultivariatePolynomial(R, K)
REC ==> Record(coef:Q, logand:F)
SOL ==> Record(particular: F,basis: List F)
BER ==> Record(coef1:F, coefn:F, exponent:N)
Exports ==> with
solve: (F, F, OP, SY) -> U
++ solve(M(x,y), N(x,y), y, x) returns \spad{F(x,y)} such that
++ \spad{F(x,y) = c} for a constant \spad{c} is a first integral
++ of the equation \spad{M(x,y) dx + N(x,y) dy = 0}, or
++ "failed" if no first-integral can be found.
Implementation ==> add
import ODEIntegration(R, F)
import ElementaryFunctionODESolver(R, F) -- recursive dependency!
checkBernoulli : (F, F, K) -> Union(BER, "failed")
solveBernoulli : (BER, OP, SY, F) -> Union(F, "failed")
checkRiccati : (F, F, K) -> Union(List F, "failed")
solveRiccati : (List F, OP, SY, F) -> Union(F, "failed")
partSolRiccati : (List F, OP, SY, F) -> Union(F, "failed")
integratingFactor: (F, F, SY, SY) -> U
unk := new()$SY
kunk:K := kernel unk
solve(m, n, y, x) ==
-- first replace the operator y(x) by a new symbol z in m(x,y) and n(x,y)
lk:List(K) := [retract(yx := y(x::F))@K]
lv:List(F) := [kunk::F]
mm := eval(m, lk, lv)
nn := eval(n, lk, lv)
-- put over a common denominator (to balance m and n)
d := lcm(denom mm, denom nn)::F
mm := d * mm
nn := d * nn
-- look for an integrating factor mu
(u := integratingFactor(mm, nn, unk, x)) case F =>
mu := u::F
mm := mm * mu
nn := nn * mu
eval(int(mm,x) + int(nn-int(differentiate(mm,unk),x), unk),[kunk],[yx])
-- check for Bernoulli equation
(w := checkBernoulli(m, n, k1 := first lk)) case BER =>
solveBernoulli(w::BER, y, x, yx)
-- check for Riccati equation
(v := checkRiccati(m, n, k1)) case List(F) =>
solveRiccati(v::List(F), y, x, yx)
"failed"
-- look for an integrating factor
integratingFactor(m, n, y, x) ==
-- check first for exactness
zero?(d := differentiate(m, y) - differentiate(n, x)) => 1
-- look for an integrating factor involving x only
not member?(y, variables(f := d / n)) => expint(f, x)
-- look for an integrating factor involving y only
not member?(x, variables(f := - d / m)) => expint(f, y)
-- room for more techniques later on (e.g. Prelle-Singer etc...)
"failed"
-- check whether the equation is of the form
-- dy/dx + p(x)y + q(x)y^N = 0 with N > 1
-- i.e. whether m/n is of the form p(x) y + q(x) y^N
-- returns [p, q, N] if the equation is in that form
checkBernoulli(m, n, ky) ==
r := denom(f := m / n)::F
(not freeOf?(r, y := ky::F))
or (d := degree(p := univariate(numer f, ky))) < 2
or degree(pp := reductum p) ~= 1 or reductum(pp) ~= 0
or (not freeOf?(a := (leadingCoefficient(pp)::F), y))
or (not freeOf?(b := (leadingCoefficient(p)::F), y)) => "failed"
[a / r, b / r, d]
-- solves the equation dy/dx + rec.coef1 y + rec.coefn y^rec.exponent = 0
-- the change of variable v = y^{1-n} transforms the above equation to
-- dv/dx + (1 - n) p v + (1 - n) q = 0
solveBernoulli(rec, y, x, yx) ==
n1 := 1 - rec.exponent::Integer
deq := differentiate(yx, x) + n1 * rec.coef1 * yx + n1 * rec.coefn
sol := solve(deq, y, x)::SOL -- can always solve for order 1
-- if v = vp + c v0 is the general solution of the linear equation, then
-- the general first integral for the Bernoulli equation is
-- (y^{1-n} - vp) / v0 = c for any constant c
(yx**n1 - sol.particular) / first(sol.basis)
-- check whether the equation is of the form
-- dy/dx + q0(x) + q1(x)y + q2(x)y^2 = 0
-- i.e. whether m/n is a quadratic polynomial in y.
-- returns the list [q0, q1, q2] if the equation is in that form
checkRiccati(m, n, ky) ==
q := denom(f := m / n)::F
(not freeOf?(q, y := ky::F)) or degree(p := univariate(numer f, ky)) > 2
or (not freeOf?(a0 := (coefficient(p, 0)::F), y))
or (not freeOf?(a1 := (coefficient(p, 1)::F), y))
or (not freeOf?(a2 := (coefficient(p, 2)::F), y)) => "failed"
[a0 / q, a1 / q, a2 / q]
-- solves the equation dy/dx + l.1 + l.2 y + l.3 y^2 = 0
solveRiccati(l, y, x, yx) ==
-- get first a particular solution
(u := partSolRiccati(l, y, x, yx)) case "failed" => "failed"
-- once a particular solution yp is known, the general solution is of the
-- form y = yp + 1/v where v satisfies the linear 1st order equation
-- v' - (l.2 + 2 l.3 yp) v = l.3
deq := differentiate(yx, x) - (l.2 + 2 * l.3 * u::F) * yx - l.3
gsol := solve(deq, y, x)::SOL -- can always solve for order 1
-- if v = vp + c v0 is the general solution of the above equation, then
-- the general first integral for the Riccati equation is
-- (1/(y - yp) - vp) / v0 = c for any constant c
(inv(yx - u::F) - gsol.particular) / first(gsol.basis)
-- looks for a particular solution of dy/dx + l.1 + l.2 y + l.3 y^2 = 0
partSolRiccati(l, y, x, yx) ==
-- we first do the change of variable y = z / l.3, which transforms
-- the equation into dz/dx + l.1 l.3 + (l.2 - l.3'/l.3) z + z^2 = 0
q0 := l.1 * (l3 := l.3)
q1 := l.2 - differentiate(l3, x) / l3
-- the equation dz/dx + q0 + q1 z + z^2 = 0 is transformed by the change
-- of variable z = w'/w into the linear equation w'' + q1 w' + q0 w = 0
lineq := differentiate(yx, x, 2) + q1 * differentiate(yx, x) + q0 * yx
-- should be made faster by requesting a particular nonzero solution only
(not((gsol := solve(lineq, y, x)) case SOL))
or empty?(bas := (gsol::SOL).basis) => "failed"
differentiate(first bas, x) / (l3 * first bas)
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
-- Compile order for the differential equation solver:
-- oderf.spad odealg.spad nlode.spad nlinsol.spad riccati.spad odeef.spad
<<package NODE1 NonLinearFirstOrderODESolver>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|