1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra naalg.spad}
\author{Johannes Grabmeier, Robert Wisbauer}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain ALGSC AlgebraGivenByStructuralConstants}
<<domain ALGSC AlgebraGivenByStructuralConstants>>=
)abbrev domain ALGSC AlgebraGivenByStructuralConstants
++ Authors: J. Grabmeier, R. Wisbauer
++ Date Created: 01 March 1991
++ Date Last Updated: 22 January 1992
++ Basic Operations:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords: algebra, structural constants
++ Reference:
++ R.D. Schafer: An Introduction to Nonassociative Algebras
++ Academic Press, New York, 1966
++ Description:
++ AlgebraGivenByStructuralConstants implements finite rank algebras
++ over a commutative ring, given by the structural constants \spad{gamma}
++ with respect to a fixed basis \spad{[a1,..,an]}, where
++ \spad{gamma} is an \spad{n}-vector of n by n matrices
++ \spad{[(gammaijk) for k in 1..rank()]} defined by
++ \spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}.
++ The symbols for the fixed basis
++ have to be given as a list of symbols.
AlgebraGivenByStructuralConstants(R:Field, n : PositiveInteger,_
ls : List Symbol, gamma: Vector Matrix R ): public == private where
V ==> Vector
M ==> Matrix
I ==> Integer
NNI ==> NonNegativeInteger
REC ==> Record(particular: Union(V R,"failed"),basis: List V R)
LSMP ==> LinearSystemMatrixPackage(R,V R,V R, M R)
--public ==> FramedNonAssociativeAlgebra(R) with
public ==> Join(FramedNonAssociativeAlgebra(R), _
LeftModule(SquareMatrix(n,R)) ) with
coerce : Vector R -> %
++ coerce(v) converts a vector to a member of the algebra
++ by forming a linear combination with the basis element.
++ Note: the vector is assumed to have length equal to the
++ dimension of the algebra.
private ==> DirectProduct(n,R) add
Rep := DirectProduct(n,R)
x,y : %
dp : DirectProduct(n,R)
v : V R
recip(x) == recip(x)$FiniteRankNonAssociativeAlgebra_&(%,R)
(m:SquareMatrix(n,R))*(x:%) == apply((m :: Matrix R),x)
coerce v == directProduct(v) :: %
structuralConstants() == gamma
coordinates(x) == vector(entries(x :: Rep)$Rep)$Vector(R)
coordinates(x,b) ==
--not (maxIndex b = n) =>
-- error("coordinates: your 'basis' has not the right length")
m : NonNegativeInteger := (maxIndex b) :: NonNegativeInteger
transitionMatrix : Matrix R := new(n,m,0$R)$Matrix(R)
for i in 1..m repeat
setColumn!(transitionMatrix,i,coordinates(b.i))
res : REC := solve(transitionMatrix,coordinates(x))$LSMP
if (not every?(zero?$R,first res.basis)) then
error("coordinates: warning your 'basis' is linearly dependent")
(res.particular case "failed") =>
error("coordinates: first argument is not in linear span of second argument")
(res.particular) :: (Vector R)
basis() == [unitVector(i::PositiveInteger)::% for i in 1..n]
someBasis() == basis()$%
rank() == n
elt(x,i) == elt(x:Rep,i)$Rep
coerce(x:%):OutputForm ==
zero?(x::Rep)$Rep => (0$R) :: OutputForm
le : List OutputForm := nil
for i in 1..n repeat
coef : R := elt(x::Rep,i)
not zero?(coef)$R =>
one?(coef)$R =>
-- sy : OutputForm := elt(ls,i)$(List Symbol) :: OutputForm
le := cons(elt(ls,i)$(List Symbol) :: OutputForm, le)
le := cons(coef :: OutputForm * elt(ls,i)$(List Symbol)_
:: OutputForm, le)
reduce("+",le)
x * y ==
v : Vector R := new(n,0)
for k in 1..n repeat
h : R := 0
for i in 1..n repeat
for j in 1..n repeat
h := h +$R elt(x,i) *$R elt(y,j) *$R elt(gamma.k,i,j )
v.k := h
directProduct v
alternative?() ==
for i in 1..n repeat
-- expression for check of left alternative is symmetric in i and j:
-- expression for check of right alternative is symmetric in j and k:
for j in 1..i-1 repeat
for k in j..n repeat
-- right check
for r in 1..n repeat
res := 0$R
for l in 1..n repeat
res := res - _
(elt(gamma.l,j,k)+elt(gamma.l,k,j))*elt(gamma.r,i,l)+_
(elt(gamma.l,i,j)*elt(gamma.r,l,k) + elt(gamma.l,i,k)*_
elt(gamma.r,l,j) )
not zero? res =>
messagePrint("algebra is not right alternative")$OutputForm
return false
for j in i..n repeat
for k in 1..j-1 repeat
-- left check
for r in 1..n repeat
res := 0$R
for l in 1..n repeat
res := res + _
(elt(gamma.l,i,j)+elt(gamma.l,j,i))*elt(gamma.r,l,k)-_
(elt(gamma.l,j,k)*elt(gamma.r,i,l) + elt(gamma.l,i,k)*_
elt(gamma.r,j,l) )
not (zero? res) =>
messagePrint("algebra is not left alternative")$OutputForm
return false
for k in j..n repeat
-- left check
for r in 1..n repeat
res := 0$R
for l in 1..n repeat
res := res + _
(elt(gamma.l,i,j)+elt(gamma.l,j,i))*elt(gamma.r,l,k)-_
(elt(gamma.l,j,k)*elt(gamma.r,i,l) + elt(gamma.l,i,k)*_
elt(gamma.r,j,l) )
not (zero? res) =>
messagePrint("algebra is not left alternative")$OutputForm
return false
-- right check
for r in 1..n repeat
res := 0$R
for l in 1..n repeat
res := res - _
(elt(gamma.l,j,k)+elt(gamma.l,k,j))*elt(gamma.r,i,l)+_
(elt(gamma.l,i,j)*elt(gamma.r,l,k) + elt(gamma.l,i,k)*_
elt(gamma.r,l,j) )
not (zero? res) =>
messagePrint("algebra is not right alternative")$OutputForm
return false
messagePrint("algebra satisfies 2*associator(a,b,b) = 0 = 2*associator(a,a,b) = 0")$OutputForm
true
-- should be in the category, but is not exported
-- conditionsForIdempotents b ==
-- n := rank()
-- --gamma : Vector Matrix R := structuralConstants b
-- listOfNumbers : List String := [STRINGIMAGE(q)$Lisp for q in 1..n]
-- symbolsForCoef : Vector Symbol :=
-- [concat("%", concat("x", i))::Symbol for i in listOfNumbers]
-- conditions : List Polynomial R := []
-- for k in 1..n repeat
-- xk := symbolsForCoef.k
-- p : Polynomial R := monomial( - 1$Polynomial(R), [xk], [1] )
-- for i in 1..n repeat
-- for j in 1..n repeat
-- xi := symbolsForCoef.i
-- xj := symbolsForCoef.j
-- p := p + monomial(_
-- elt((gamma.k),i,j) :: Polynomial(R), [xi,xj], [1,1])
-- conditions := cons(p,conditions)
-- conditions
associative?() ==
for i in 1..n repeat
for j in 1..n repeat
for k in 1..n repeat
for r in 1..n repeat
res := 0$R
for l in 1..n repeat
res := res + elt(gamma.l,i,j)*elt(gamma.r,l,k)-_
elt(gamma.l,j,k)*elt(gamma.r,i,l)
not (zero? res) =>
messagePrint("algebra is not associative")$OutputForm
return false
messagePrint("algebra is associative")$OutputForm
true
antiAssociative?() ==
for i in 1..n repeat
for j in 1..n repeat
for k in 1..n repeat
for r in 1..n repeat
res := 0$R
for l in 1..n repeat
res := res + elt(gamma.l,i,j)*elt(gamma.r,l,k)+_
elt(gamma.l,j,k)*elt(gamma.r,i,l)
not (zero? res) =>
messagePrint("algebra is not anti-associative")$OutputForm
return false
messagePrint("algebra is anti-associative")$OutputForm
true
commutative?() ==
for i in 1..n repeat
for j in (i+1)..n repeat
for k in 1..n repeat
not ( elt(gamma.k,i,j)=elt(gamma.k,j,i) ) =>
messagePrint("algebra is not commutative")$OutputForm
return false
messagePrint("algebra is commutative")$OutputForm
true
antiCommutative?() ==
for i in 1..n repeat
for j in i..n repeat
for k in 1..n repeat
not zero? (i=j => elt(gamma.k,i,i); elt(gamma.k,i,j)+elt(gamma.k,j,i) ) =>
messagePrint("algebra is not anti-commutative")$OutputForm
return false
messagePrint("algebra is anti-commutative")$OutputForm
true
leftAlternative?() ==
for i in 1..n repeat
-- expression is symmetric in i and j:
for j in i..n repeat
for k in 1..n repeat
for r in 1..n repeat
res := 0$R
for l in 1..n repeat
res := res + (elt(gamma.l,i,j)+elt(gamma.l,j,i))*elt(gamma.r,l,k)-_
(elt(gamma.l,j,k)*elt(gamma.r,i,l) + elt(gamma.l,i,k)*elt(gamma.r,j,l) )
not (zero? res) =>
messagePrint("algebra is not left alternative")$OutputForm
return false
messagePrint("algebra is left alternative")$OutputForm
true
rightAlternative?() ==
for i in 1..n repeat
for j in 1..n repeat
-- expression is symmetric in j and k:
for k in j..n repeat
for r in 1..n repeat
res := 0$R
for l in 1..n repeat
res := res - (elt(gamma.l,j,k)+elt(gamma.l,k,j))*elt(gamma.r,i,l)+_
(elt(gamma.l,i,j)*elt(gamma.r,l,k) + elt(gamma.l,i,k)*elt(gamma.r,l,j) )
not (zero? res) =>
messagePrint("algebra is not right alternative")$OutputForm
return false
messagePrint("algebra is right alternative")$OutputForm
true
flexible?() ==
for i in 1..n repeat
for j in 1..n repeat
-- expression is symmetric in i and k:
for k in i..n repeat
for r in 1..n repeat
res := 0$R
for l in 1..n repeat
res := res + elt(gamma.l,i,j)*elt(gamma.r,l,k)-_
elt(gamma.l,j,k)*elt(gamma.r,i,l)+_
elt(gamma.l,k,j)*elt(gamma.r,l,i)-_
elt(gamma.l,j,i)*elt(gamma.r,k,l)
not (zero? res) =>
messagePrint("algebra is not flexible")$OutputForm
return false
messagePrint("algebra is flexible")$OutputForm
true
lieAdmissible?() ==
for i in 1..n repeat
for j in 1..n repeat
for k in 1..n repeat
for r in 1..n repeat
res := 0$R
for l in 1..n repeat
res := res_
+ (elt(gamma.l,i,j)-elt(gamma.l,j,i))*(elt(gamma.r,l,k)-elt(gamma.r,k,l)) _
+ (elt(gamma.l,j,k)-elt(gamma.l,k,j))*(elt(gamma.r,l,i)-elt(gamma.r,i,l)) _
+ (elt(gamma.l,k,i)-elt(gamma.l,i,k))*(elt(gamma.r,l,j)-elt(gamma.r,j,l))
not (zero? res) =>
messagePrint("algebra is not Lie admissible")$OutputForm
return false
messagePrint("algebra is Lie admissible")$OutputForm
true
jordanAdmissible?() ==
recip(2 * 1$R) case "failed" =>
messagePrint("this algebra is not Jordan admissible, as 2 is not invertible in the ground ring")$OutputForm
false
for i in 1..n repeat
for j in 1..n repeat
for k in 1..n repeat
for w in 1..n repeat
for t in 1..n repeat
res := 0$R
for l in 1..n repeat
for r in 1..n repeat
res := res_
+ (elt(gamma.l,i,j)+elt(gamma.l,j,i))_
* (elt(gamma.r,w,k)+elt(gamma.r,k,w))_
* (elt(gamma.t,l,r)+elt(gamma.t,r,l))_
- (elt(gamma.r,w,k)+elt(gamma.r,k,w))_
* (elt(gamma.l,j,r)+elt(gamma.l,r,j))_
* (elt(gamma.t,i,l)+elt(gamma.t,l,i))_
+ (elt(gamma.l,w,j)+elt(gamma.l,j,w))_
* (elt(gamma.r,k,i)+elt(gamma.r,i,k))_
* (elt(gamma.t,l,r)+elt(gamma.t,r,l))_
- (elt(gamma.r,k,i)+elt(gamma.r,k,i))_
* (elt(gamma.l,j,r)+elt(gamma.l,r,j))_
* (elt(gamma.t,w,l)+elt(gamma.t,l,w))_
+ (elt(gamma.l,k,j)+elt(gamma.l,j,k))_
* (elt(gamma.r,i,w)+elt(gamma.r,w,i))_
* (elt(gamma.t,l,r)+elt(gamma.t,r,l))_
- (elt(gamma.r,i,w)+elt(gamma.r,w,i))_
* (elt(gamma.l,j,r)+elt(gamma.l,r,j))_
* (elt(gamma.t,k,l)+elt(gamma.t,l,k))
not (zero? res) =>
messagePrint("algebra is not Jordan admissible")$OutputForm
return false
messagePrint("algebra is Jordan admissible")$OutputForm
true
jordanAlgebra?() ==
recip(2 * 1$R) case "failed" =>
messagePrint("this is not a Jordan algebra, as 2 is not invertible in the ground ring")$OutputForm
false
not commutative?() =>
messagePrint("this is not a Jordan algebra")$OutputForm
false
for i in 1..n repeat
for j in 1..n repeat
for k in 1..n repeat
for l in 1..n repeat
for t in 1..n repeat
res := 0$R
for r in 1..n repeat
for s in 1..n repeat
res := res + _
elt(gamma.r,i,j)*elt(gamma.s,l,k)*elt(gamma.t,r,s) - _
elt(gamma.r,l,k)*elt(gamma.s,j,r)*elt(gamma.t,i,s) + _
elt(gamma.r,l,j)*elt(gamma.s,k,k)*elt(gamma.t,r,s) - _
elt(gamma.r,k,i)*elt(gamma.s,j,r)*elt(gamma.t,l,s) + _
elt(gamma.r,k,j)*elt(gamma.s,i,k)*elt(gamma.t,r,s) - _
elt(gamma.r,i,l)*elt(gamma.s,j,r)*elt(gamma.t,k,s)
not zero? res =>
messagePrint("this is not a Jordan algebra")$OutputForm
return false
messagePrint("this is a Jordan algebra")$OutputForm
true
jacobiIdentity?() ==
for i in 1..n repeat
for j in 1..n repeat
for k in 1..n repeat
for r in 1..n repeat
res := 0$R
for s in 1..n repeat
res := res + elt(gamma.r,i,j)*elt(gamma.s,j,k) +_
elt(gamma.r,j,k)*elt(gamma.s,k,i) +_
elt(gamma.r,k,i)*elt(gamma.s,i,j)
not zero? res =>
messagePrint("Jacobi identity does not hold")$OutputForm
return false
messagePrint("Jacobi identity holds")$OutputForm
true
@
\section{package SCPKG StructuralConstantsPackage}
<<package SCPKG StructuralConstantsPackage>>=
)abbrev package SCPKG StructuralConstantsPackage
++ Authors: J. Grabmeier
++ Date Created: 02 April 1992
++ Date Last Updated: 14 April 1992
++ Basic Operations:
++ Related Constructors: AlgebraPackage, AlgebraGivenByStructuralConstants
++ Also See:
++ AMS Classifications:
++ Keywords: structural constants
++ Reference:
++ Description:
++ StructuralConstantsPackage provides functions creating
++ structural constants from a multiplication tables or a basis
++ of a matrix algebra and other useful functions in this context.
StructuralConstantsPackage(R:Field): public == private where
L ==> List
S ==> Symbol
FRAC ==> Fraction
POLY ==> Polynomial
V ==> Vector
M ==> Matrix
REC ==> Record(particular: Union(V R,"failed"),basis: List V R)
LSMP ==> LinearSystemMatrixPackage(R,V R,V R, M R)
public ==> with
-- what we really want to have here is a matrix over
-- linear polynomials in the list of symbols, having arbitrary
-- coefficients from a ring extension of R, e.g. FRAC POLY R.
structuralConstants : (L S, M FRAC POLY R) -> V M FRAC POLY R
++ structuralConstants(ls,mt) determines the structural constants
++ of an algebra with generators ls and multiplication table mt, the
++ entries of which must be given as linear polynomials in the
++ indeterminates given by ls. The result is in particular useful
++ as fourth argument for \spadtype{AlgebraGivenByStructuralConstants}
++ and \spadtype{GenericNonAssociativeAlgebra}.
structuralConstants : (L S, M POLY R) -> V M POLY R
++ structuralConstants(ls,mt) determines the structural constants
++ of an algebra with generators ls and multiplication table mt, the
++ entries of which must be given as linear polynomials in the
++ indeterminates given by ls. The result is in particular useful
++ as fourth argument for \spadtype{AlgebraGivenByStructuralConstants}
++ and \spadtype{GenericNonAssociativeAlgebra}.
structuralConstants: L M R -> V M R
++ structuralConstants(basis) takes the basis of a matrix
++ algebra, e.g. the result of \spadfun{basisOfCentroid} and calculates
++ the structural constants.
++ Note, that the it is not checked, whether basis really is a
++ basis of a matrix algebra.
coordinates: (M R, L M R) -> V R
++ coordinates(a,[v1,...,vn]) returns the coordinates of \spad{a}
++ with respect to the \spad{R}-module basis \spad{v1},...,\spad{vn}.
private ==> add
matrix2Vector: M R -> V R
matrix2Vector m ==
lili : L L R := listOfLists m
--li : L R := reduce(concat, listOfLists m)
li : L R := reduce(concat, lili)
construct(li)$(V R)
coordinates(x,b) ==
m : NonNegativeInteger := (maxIndex b) :: NonNegativeInteger
n : NonNegativeInteger := nrows(b.1) * ncols(b.1)
transitionMatrix : Matrix R := new(n,m,0$R)$Matrix(R)
for i in 1..m repeat
setColumn!(transitionMatrix,i,matrix2Vector(b.i))
res : REC := solve(transitionMatrix,matrix2Vector(x))$LSMP
if (not every?(zero?$R,first res.basis)) then
error("coordinates: the second argument is linearly dependent")
(res.particular case "failed") =>
error("coordinates: first argument is not in linear span of _
second argument")
(res.particular) :: (Vector R)
structuralConstants b ==
--n := rank()
-- be careful with the possibility that b is not a basis
m : NonNegativeInteger := (maxIndex b) :: NonNegativeInteger
sC : Vector Matrix R := [new(m,m,0$R) for k in 1..m]
for i in 1..m repeat
for j in 1..m repeat
covec : Vector R := coordinates(b.i * b.j, b)$%
for k in 1..m repeat
setelt( sC.k, i, j, covec.k )
sC
structuralConstants(ls:L S, mt: M POLY R) ==
nn := #(ls)
nrows(mt) ~= nn or ncols(mt) ~= nn =>
error "structuralConstants: size of second argument does not _
agree with number of generators"
gamma : L M POLY R := []
lscopy : L S := copy ls
while not null lscopy repeat
mat : M POLY R := new(nn,nn,0)
s : S := first lscopy
for i in 1..nn repeat
for j in 1..nn repeat
p := qelt(mt,i,j)
totalDegree(p,ls) > 1 =>
error "structuralConstants: entries of second argument _
must be linear polynomials in the generators"
if (c := coefficient(p, s, 1) ) ~= 0 then qsetelt!(mat,i,j,c)
gamma := cons(mat, gamma)
lscopy := rest lscopy
vector reverse gamma
structuralConstants(ls:L S, mt: M FRAC POLY R) ==
nn := #(ls)
nrows(mt) ~= nn or ncols(mt) ~= nn =>
error "structuralConstants: size of second argument does not _
agree with number of generators"
gamma : L M FRAC(POLY R) := []
lscopy : L S := copy ls
while not null lscopy repeat
mat : M FRAC(POLY R) := new(nn,nn,0)
s : S := first lscopy
for i in 1..nn repeat
for j in 1..nn repeat
r := qelt(mt,i,j)
q := denom(r)
totalDegree(q,ls) ~= 0 =>
error "structuralConstants: entries of second argument _
must be (linear) polynomials in the generators"
p := numer(r)
totalDegree(p,ls) > 1 =>
error "structuralConstants: entries of second argument _
must be linear polynomials in the generators"
if (c := coefficient(p, s, 1) ) ~= 0 then qsetelt!(mat,i,j,c/q)
gamma := cons(mat, gamma)
lscopy := rest lscopy
vector reverse gamma
@
\section{package ALGPKG AlgebraPackage}
<<package ALGPKG AlgebraPackage>>=
)abbrev package ALGPKG AlgebraPackage
++ Authors: J. Grabmeier, R. Wisbauer
++ Date Created: 04 March 1991
++ Date Last Updated: 04 April 1992
++ Basic Operations:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords: rank, nucleus, nucloid, structural constants
++ Reference:
++ R.S. Pierce: Associative Algebras
++ Graduate Texts in Mathematics 88
++ Springer-Verlag, Heidelberg, 1982, ISBN 0-387-90693-2
++
++ R.D. Schafer: An Introduction to Nonassociative Algebras
++ Academic Press, New York, 1966
++
++ A. Woerz-Busekros: Algebra in Genetics
++ Lectures Notes in Biomathematics 36,
++ Springer-Verlag, Heidelberg, 1980
++ Description:
++ AlgebraPackage assembles a variety of useful functions for
++ general algebras.
AlgebraPackage(R:IntegralDomain, A: FramedNonAssociativeAlgebra(R)): _
public == private where
V ==> Vector
M ==> Matrix
I ==> Integer
NNI ==> NonNegativeInteger
REC ==> Record(particular: Union(V R,"failed"),basis: List V R)
LSMP ==> LinearSystemMatrixPackage(R,V R,V R, M R)
public ==> with
leftRank: A -> NonNegativeInteger
++ leftRank(x) determines the number of linearly independent elements
++ in \spad{x*b1},...,\spad{x*bn},
++ where \spad{b=[b1,...,bn]} is a basis.
rightRank: A -> NonNegativeInteger
++ rightRank(x) determines the number of linearly independent elements
++ in \spad{b1*x},...,\spad{bn*x},
++ where \spad{b=[b1,...,bn]} is a basis.
doubleRank: A -> NonNegativeInteger
++ doubleRank(x) determines the number of linearly
++ independent elements
++ in \spad{b1*x},...,\spad{x*bn},
++ where \spad{b=[b1,...,bn]} is a basis.
weakBiRank: A -> NonNegativeInteger
++ weakBiRank(x) determines the number of
++ linearly independent elements
++ in the \spad{bi*x*bj}, \spad{i,j=1,...,n},
++ where \spad{b=[b1,...,bn]} is a basis.
biRank: A -> NonNegativeInteger
++ biRank(x) determines the number of linearly independent elements
++ in \spad{x}, \spad{x*bi}, \spad{bi*x}, \spad{bi*x*bj},
++ \spad{i,j=1,...,n},
++ where \spad{b=[b1,...,bn]} is a basis.
++ Note: if \spad{A} has a unit,
++ then \spadfunFrom{doubleRank}{AlgebraPackage},
++ \spadfunFrom{weakBiRank}{AlgebraPackage}
++ and \spadfunFrom{biRank}{AlgebraPackage} coincide.
basisOfCommutingElements: () -> List A
++ basisOfCommutingElements() returns a basis of the space of
++ all x of \spad{A} satisfying \spad{0 = commutator(x,a)} for all
++ \spad{a} in \spad{A}.
basisOfLeftAnnihilator: A -> List A
++ basisOfLeftAnnihilator(a) returns a basis of the space of
++ all x of \spad{A} satisfying \spad{0 = x*a}.
basisOfRightAnnihilator: A -> List A
++ basisOfRightAnnihilator(a) returns a basis of the space of
++ all x of \spad{A} satisfying \spad{0 = a*x}.
basisOfLeftNucleus: () -> List A
++ basisOfLeftNucleus() returns a basis of the space of
++ all x of \spad{A} satisfying \spad{0 = associator(x,a,b)}
++ for all \spad{a},b in \spad{A}.
basisOfRightNucleus: () -> List A
++ basisOfRightNucleus() returns a basis of the space of
++ all x of \spad{A} satisfying \spad{0 = associator(a,b,x)}
++ for all \spad{a},b in \spad{A}.
basisOfMiddleNucleus: () -> List A
++ basisOfMiddleNucleus() returns a basis of the space of
++ all x of \spad{A} satisfying \spad{0 = associator(a,x,b)}
++ for all \spad{a},b in \spad{A}.
basisOfNucleus: () -> List A
++ basisOfNucleus() returns a basis of the space of all x of \spad{A} satisfying
++ \spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0}
++ for all \spad{a},b in \spad{A}.
basisOfCenter: () -> List A
++ basisOfCenter() returns a basis of the space of
++ all x of \spad{A} satisfying \spad{commutator(x,a) = 0} and
++ \spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0}
++ for all \spad{a},b in \spad{A}.
basisOfLeftNucloid:()-> List Matrix R
++ basisOfLeftNucloid() returns a basis of the space of
++ endomorphisms of \spad{A} as right module.
++ Note: left nucloid coincides with left nucleus if \spad{A} has a unit.
basisOfRightNucloid:()-> List Matrix R
++ basisOfRightNucloid() returns a basis of the space of
++ endomorphisms of \spad{A} as left module.
++ Note: right nucloid coincides with right nucleus if \spad{A} has a unit.
basisOfCentroid:()-> List Matrix R
++ basisOfCentroid() returns a basis of the centroid, i.e. the
++ endomorphism ring of \spad{A} considered as \spad{(A,A)}-bimodule.
radicalOfLeftTraceForm: () -> List A
++ radicalOfLeftTraceForm() returns basis for null space of
++ \spad{leftTraceMatrix()}, if the algebra is
++ associative, alternative or a Jordan algebra, then this
++ space equals the radical (maximal nil ideal) of the algebra.
if R has EuclideanDomain then
basis : V A -> V A
++ basis(va) selects a basis from the elements of va.
private ==> add
-- constants
n : PositiveInteger := rank()$A
n2 : PositiveInteger := n*n
n3 : PositiveInteger := n*n2
gamma : Vector Matrix R := structuralConstants()$A
-- local functions
convVM : Vector R -> Matrix R
-- converts n2-vector to (n,n)-matrix row by row
convMV : Matrix R -> Vector R
-- converts n-square matrix to n2-vector row by row
convVM v ==
cond : Matrix(R) := new(n,n,0$R)$M(R)
z : Integer := 0
for i in 1..n repeat
for j in 1..n repeat
z := z+1
setelt(cond,i,j,v.z)
cond
-- convMV m ==
-- vec : Vector(R) := new(n*n,0$R)
-- z : Integer := 0
-- for i in 1..n repeat
-- for j in 1..n repeat
-- z := z+1
-- setelt(vec,z,elt(m,i,j))
-- vec
radicalOfLeftTraceForm() ==
ma : M R := leftTraceMatrix()$A
map(represents, nullSpace ma)$ListFunctions2(Vector R, A)
basisOfLeftAnnihilator a ==
ca : M R := transpose (coordinates(a) :: M R)
cond : M R := reduce(vertConcat$(M R),
[ca*transpose(gamma.i) for i in 1..#gamma])
map(represents, nullSpace cond)$ListFunctions2(Vector R, A)
basisOfRightAnnihilator a ==
ca : M R := transpose (coordinates(a) :: M R)
cond : M R := reduce(vertConcat$(M R),
[ca*(gamma.i) for i in 1..#gamma])
map(represents, nullSpace cond)$ListFunctions2(Vector R, A)
basisOfLeftNucloid() ==
cond : Matrix(R) := new(n3,n2,0$R)$M(R)
condo: Matrix(R) := new(n3,n2,0$R)$M(R)
z : Integer := 0
for i in 1..n repeat
for j in 1..n repeat
r1 : Integer := 0
for k in 1..n repeat
z := z + 1
-- z equals (i-1)*n*n+(j-1)*n+k (loop-invariant)
r2 : Integer := i
for r in 1..n repeat
r1 := r1 + 1
-- here r1 equals (k-1)*n+r (loop-invariant)
setelt(cond,z,r1,elt(gamma.r,i,j))
-- here r2 equals (r-1)*n+i (loop-invariant)
setelt(condo,z,r2,-elt(gamma.k,r,j))
r2 := r2 + n
[convVM(sol) for sol in nullSpace(cond+condo)]
basisOfCommutingElements() ==
--gamma1 := first gamma
--gamma1 := gamma1 - transpose gamma1
--cond : Matrix(R) := gamma1 :: Matrix(R)
--for i in 2..n repeat
-- gammak := gamma.i
-- gammak := gammak - transpose gammak
-- cond := vertConcat(cond, gammak :: Matrix(R))$Matrix(R)
--map(represents, nullSpace cond)$ListFunctions2(Vector R, A)
cond : M R := reduce(vertConcat$(M R),
[(gam := gamma.i) - transpose gam for i in 1..#gamma])
map(represents, nullSpace cond)$ListFunctions2(Vector R, A)
basisOfLeftNucleus() ==
condi: Matrix(R) := new(n3,n,0$R)$Matrix(R)
z : Integer := 0
for k in 1..n repeat
for j in 1..n repeat
for s in 1..n repeat
z := z+1
for i in 1..n repeat
entry : R := 0
for l in 1..n repeat
entry := entry+elt(gamma.l,j,k)*elt(gamma.s,i,l)_
-elt(gamma.l,i,j)*elt(gamma.s,l,k)
setelt(condi,z,i,entry)$Matrix(R)
map(represents, nullSpace condi)$ListFunctions2(Vector R,A)
basisOfRightNucleus() ==
condo : Matrix(R) := new(n3,n,0$R)$Matrix(R)
z : Integer := 0
for k in 1..n repeat
for j in 1..n repeat
for s in 1..n repeat
z := z+1
for i in 1..n repeat
entry : R := 0
for l in 1..n repeat
entry := entry+elt(gamma.l,k,i)*elt(gamma.s,j,l) _
-elt(gamma.l,j,k)*elt(gamma.s,l,i)
setelt(condo,z,i,entry)$Matrix(R)
map(represents, nullSpace condo)$ListFunctions2(Vector R,A)
basisOfMiddleNucleus() ==
conda : Matrix(R) := new(n3,n,0$R)$Matrix(R)
z : Integer := 0
for k in 1..n repeat
for j in 1..n repeat
for s in 1..n repeat
z := z+1
for i in 1..n repeat
entry : R := 0
for l in 1..n repeat
entry := entry+elt(gamma.l,j,i)*elt(gamma.s,l,k)
-elt(gamma.l,i,k)*elt(gamma.s,j,l)
setelt(conda,z,i,entry)$Matrix(R)
map(represents, nullSpace conda)$ListFunctions2(Vector R,A)
basisOfNucleus() ==
condi: Matrix(R) := new(3*n3,n,0$R)$Matrix(R)
z : Integer := 0
u : Integer := n3
w : Integer := 2*n3
for k in 1..n repeat
for j in 1..n repeat
for s in 1..n repeat
z := z+1
u := u+1
w := w+1
for i in 1..n repeat
entry : R := 0
enter : R := 0
ent : R := 0
for l in 1..n repeat
entry := entry + elt(gamma.l,j,k)*elt(gamma.s,i,l) _
- elt(gamma.l,i,j)*elt(gamma.s,l,k)
enter := enter + elt(gamma.l,k,i)*elt(gamma.s,j,l) _
- elt(gamma.l,j,k)*elt(gamma.s,l,i)
ent := ent + elt(gamma.l,j,k)*elt(gamma.s,i,l) _
- elt(gamma.l,j,i)*elt(gamma.s,l,k)
setelt(condi,z,i,entry)$Matrix(R)
setelt(condi,u,i,enter)$Matrix(R)
setelt(condi,w,i,ent)$Matrix(R)
map(represents, nullSpace condi)$ListFunctions2(Vector R,A)
basisOfCenter() ==
gamma1 := first gamma
gamma1 := gamma1 - transpose gamma1
cond : Matrix(R) := gamma1 :: Matrix(R)
for i in 2..n repeat
gammak := gamma.i
gammak := gammak - transpose gammak
cond := vertConcat(cond, gammak :: Matrix(R))$Matrix(R)
B := cond :: Matrix(R)
condi: Matrix(R) := new(2*n3,n,0$R)$Matrix(R)
z : Integer := 0
u : Integer := n3
for k in 1..n repeat
for j in 1..n repeat
for s in 1..n repeat
z := z+1
u := u+1
for i in 1..n repeat
entry : R := 0
enter : R := 0
for l in 1..n repeat
entry := entry + elt(gamma.l,j,k)*elt(gamma.s,i,l) _
- elt(gamma.l,i,j)*elt(gamma.s,l,k)
enter := enter + elt(gamma.l,k,i)*elt(gamma.s,j,l) _
- elt(gamma.l,j,k)*elt(gamma.s,l,i)
setelt(condi,z,i,entry)$Matrix(R)
setelt(condi,u,i,enter)$Matrix(R)
D := vertConcat(condi,B)$Matrix(R)
map(represents, nullSpace D)$ListFunctions2(Vector R, A)
basisOfRightNucloid() ==
cond : Matrix(R) := new(n3,n2,0$R)$M(R)
condo: Matrix(R) := new(n3,n2,0$R)$M(R)
z : Integer := 0
for i in 1..n repeat
for j in 1..n repeat
r1 : Integer := 0
for k in 1..n repeat
z := z + 1
-- z equals (i-1)*n*n+(j-1)*n+k (loop-invariant)
r2 : Integer := i
for r in 1..n repeat
r1 := r1 + 1
-- here r1 equals (k-1)*n+r (loop-invariant)
setelt(cond,z,r1,elt(gamma.r,j,i))
-- here r2 equals (r-1)*n+i (loop-invariant)
setelt(condo,z,r2,-elt(gamma.k,j,r))
r2 := r2 + n
[convVM(sol) for sol in nullSpace(cond+condo)]
basisOfCentroid() ==
cond : Matrix(R) := new(2*n3,n2,0$R)$M(R)
condo: Matrix(R) := new(2*n3,n2,0$R)$M(R)
z : Integer := 0
u : Integer := n3
for i in 1..n repeat
for j in 1..n repeat
r1 : Integer := 0
for k in 1..n repeat
z := z + 1
u := u + 1
-- z equals (i-1)*n*n+(j-1)*n+k (loop-invariant)
-- u equals n**3 + (i-1)*n*n+(j-1)*n+k (loop-invariant)
r2 : Integer := i
for r in 1..n repeat
r1 := r1 + 1
-- here r1 equals (k-1)*n+r (loop-invariant)
setelt(cond,z,r1,elt(gamma.r,i,j))
setelt(cond,u,r1,elt(gamma.r,j,i))
-- here r2 equals (r-1)*n+i (loop-invariant)
setelt(condo,z,r2,-elt(gamma.k,r,j))
setelt(condo,u,r2,-elt(gamma.k,j,r))
r2 := r2 + n
[convVM(sol) for sol in nullSpace(cond+condo)]
doubleRank x ==
cond : Matrix(R) := new(2*n,n,0$R)
for k in 1..n repeat
z : Integer := 0
u : Integer := n
for j in 1..n repeat
z := z+1
u := u+1
entry : R := 0
enter : R := 0
for i in 1..n repeat
entry := entry + elt(x,i)*elt(gamma.k,j,i)
enter := enter + elt(x,i)*elt(gamma.k,i,j)
setelt(cond,z,k,entry)$Matrix(R)
setelt(cond,u,k,enter)$Matrix(R)
rank(cond)$(M R)
weakBiRank(x) ==
cond : Matrix(R) := new(n2,n,0$R)$Matrix(R)
z : Integer := 0
for i in 1..n repeat
for j in 1..n repeat
z := z+1
for k in 1..n repeat
entry : R := 0
for l in 1..n repeat
for s in 1..n repeat
entry:=entry+elt(x,l)*elt(gamma.s,i,l)*elt(gamma.k,s,j)
setelt(cond,z,k,entry)$Matrix(R)
rank(cond)$(M R)
biRank(x) ==
cond : Matrix(R) := new(n2+2*n+1,n,0$R)$Matrix(R)
z : Integer := 0
for j in 1..n repeat
for i in 1..n repeat
z := z+1
for k in 1..n repeat
entry : R := 0
for l in 1..n repeat
for s in 1..n repeat
entry:=entry+elt(x,l)*elt(gamma.s,i,l)*elt(gamma.k,s,j)
setelt(cond,z,k,entry)$Matrix(R)
u : Integer := n*n
w : Integer := n*(n+1)
c := n2 + 2*n + 1
for j in 1..n repeat
u := u+1
w := w+1
for k in 1..n repeat
entry : R := 0
enter : R := 0
for i in 1..n repeat
entry := entry + elt(x,i)*elt(gamma.k,j,i)
enter := enter + elt(x,i)*elt(gamma.k,i,j)
setelt(cond,u,k,entry)$Matrix(R)
setelt(cond,w,k,enter)$Matrix(R)
setelt(cond,c,j, elt(x,j))
rank(cond)$(M R)
leftRank x ==
cond : Matrix(R) := new(n,n,0$R)
for k in 1..n repeat
for j in 1..n repeat
entry : R := 0
for i in 1..n repeat
entry := entry + elt(x,i)*elt(gamma.k,i,j)
setelt(cond,j,k,entry)$Matrix(R)
rank(cond)$(M R)
rightRank x ==
cond : Matrix(R) := new(n,n,0$R)
for k in 1..n repeat
for j in 1..n repeat
entry : R := 0
for i in 1..n repeat
entry := entry + elt(x,i)*elt(gamma.k,j,i)
setelt(cond,j,k,entry)$Matrix(R)
rank(cond)$(M R)
if R has EuclideanDomain then
basis va ==
v : V A := remove(zero?, va)$(V A)
v : V A := removeDuplicates v
empty? v => [0$A]
m : Matrix R := coerce(coordinates(v.1))$(Matrix R)
for i in 2..maxIndex v repeat
m := horizConcat(m,coerce(coordinates(v.i))$(Matrix R) )
m := rowEchelon m
lj : List Integer := []
h : Integer := 1
mRI : Integer := maxRowIndex m
mCI : Integer := maxColIndex m
finished? : Boolean := false
j : Integer := 1
while not finished? repeat
not zero? m(h,j) => -- corner found
lj := cons(j,lj)
h := mRI
while zero? m(h,j) repeat h := h-1
finished? := (h = mRI)
if not finished? then h := h+1
if j < mCI then
j := j + 1
else
finished? := true
[v.j for j in reverse lj]
@
\section{package FRNAAF2 FramedNonAssociativeAlgebraFunctions2}
<<package FRNAAF2 FramedNonAssociativeAlgebraFunctions2>>=
)abbrev package FRNAAF2 FramedNonAssociativeAlgebraFunctions2
++ Author: Johannes Grabmeier
++ Date Created: 28 February 1992
++ Date Last Updated: 28 February 1992
++ Basic Operations: map
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords: non-associative algebra
++ References:
++ Description:
++ FramedNonAssociativeAlgebraFunctions2 implements functions between
++ two framed non associative algebra domains defined over different rings.
++ The function map is used to coerce between algebras over different
++ domains having the same structural constants.
FramedNonAssociativeAlgebraFunctions2(AR,R,AS,S) : Exports ==
Implementation where
R : CommutativeRing
S : CommutativeRing
AR : FramedNonAssociativeAlgebra R
AS : FramedNonAssociativeAlgebra S
V ==> Vector
Exports ==> with
map: (R -> S, AR) -> AS
++ map(f,u) maps f onto the coordinates of u to get an element
++ in \spad{AS} via identification of the basis of \spad{AR}
++ as beginning part of the basis of \spad{AS}.
Implementation ==> add
map(fn : R -> S, u : AR): AS ==
rank()$AR > rank()$AS => error("map: ranks of algebras do not fit")
vr : V R := coordinates u
vs : V S := map(fn,vr)$VectorFunctions2(R,S)
@
This line used to read:
\begin{verbatim}
rank()$AR = rank()$AR => represents(vs)$AS
\end{verbatim}
but the test is clearly always true and cannot be what was intended.
Gregory Vanuxem supplied the fix below.
<<package FRNAAF2 FramedNonAssociativeAlgebraFunctions2>>=
rank()$AR = rank()$AS => represents(vs)$AS
ba := basis()$AS
represents(vs,[ba.i for i in 1..rank()$AR])
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<domain ALGSC AlgebraGivenByStructuralConstants>>
<<package ALGPKG AlgebraPackage>>
<<package SCPKG StructuralConstantsPackage>>
<<package FRNAAF2 FramedNonAssociativeAlgebraFunctions2>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|