aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/modring.spad.pamphlet
blob: a802176d08bbc2e86c1dbc6111b20ec8ce810524 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra modring.spad}
\author{Patrizia Gianni, Barry Trager}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain MODRING ModularRing}
<<domain MODRING ModularRing>>=
)abbrev domain MODRING ModularRing
++ Author: P.Gianni, B.Trager
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ These domains are used for the factorization and gcds
++ of univariate polynomials over the integers in order to work modulo
++ different  primes.
++ See \spadtype{EuclideanModularRing} ,\spadtype{ModularField}

ModularRing(R,Mod,reduction:(R,Mod) -> R,
               merge:(Mod,Mod) -> Union(Mod,"failed"),
                      exactQuo : (R,R,Mod) -> Union(R,"failed")) : C == T
 where
  R    :  CommutativeRing
  Mod  :  AbelianMonoid

  C == Ring with
                modulus :   %     -> Mod
			++ modulus(x) \undocumented
                coerce  :   %     -> R
			++ coerce(x) \undocumented
                reduce  : (R,Mod) -> %
			++ reduce(r,m) \undocumented
                exQuo   :  (%,%)  -> Union(%,"failed")
			++ exQuo(x,y) \undocumented
                inv     :    %    -> %
			++ inv(x) \undocumented

  T == add
    --representation
      Rep:= Record(val:R,modulo:Mod)
    --declarations
      x,y: %

    --define
      modulus(x)   == x.modulo
      coerce(x: %): R == x.val
      coerce(i:Integer):% == [i::R,0]$Rep
      i:Integer * x:% == (i::%)*x
      coerce(x):OutputForm == (x.val)::OutputForm
      reduce (a:R,m:Mod) == [reduction(a,m),m]$Rep

      characteristic:NonNegativeInteger == characteristic$R
      0 == [0$R,0$Mod]$Rep
      1 == [1$R,0$Mod]$Rep
      zero? x == zero? x.val
      one? x == one? x.val

      newmodulo(m1:Mod,m2:Mod) : Mod ==
        r:=merge(m1,m2)
        r case "failed" => error "incompatible moduli"
        r::Mod

      x=y ==
        x.val = y.val => true
        x.modulo = y.modulo => false
        (x-y).val = 0
      x+y == reduce((x.val +$R y.val),newmodulo(x.modulo,y.modulo))
      x-y == reduce((x.val -$R y.val),newmodulo(x.modulo,y.modulo))
      -x  == reduce ((-$R x.val),x.modulo)
      x*y == reduce((x.val *$R y.val),newmodulo(x.modulo,y.modulo))

      exQuo(x,y) ==
        xm:=x.modulo
        if xm ~=$Mod y.modulo then xm:=newmodulo(xm,y.modulo)
        r:=exactQuo(x.val,y.val,xm)
        r case "failed"=> "failed"
        [r::R,xm]$Rep

      --if R has EuclideanDomain then
      recip x ==
        r:=exactQuo(1$R,x.val,x.modulo)
        r case "failed" => "failed"
        [r,x.modulo]$Rep

      inv x ==
        if (u:=recip x) case "failed" then error("not invertible")
        else u::%

@
\section{domain EMR EuclideanModularRing}
<<domain EMR EuclideanModularRing>>=
)abbrev domain EMR EuclideanModularRing
++ Description:
++ These domains are used for the factorization and gcds
++ of univariate polynomials over the integers in order to work modulo
++ different  primes.
++ See \spadtype{ModularRing}, \spadtype{ModularField}
EuclideanModularRing(S,R,Mod,reduction:(R,Mod) -> R,
                     merge:(Mod,Mod) -> Union(Mod,"failed"),
                      exactQuo : (R,R,Mod) -> Union(R,"failed")) : C == T
 where
  S    :  CommutativeRing
  R    :  UnivariatePolynomialCategory S
  Mod  :  AbelianMonoid

  C == Join(EuclideanDomain, Eltable(R,R)) with
                modulus :   %     -> Mod
			++ modulus(x) \undocumented
                coerce  :   %     -> R
			++ coerce(x) \undocumented
                reduce  : (R,Mod) -> %
			++ reduce(r,m) \undocumented
                exQuo   :  (%,%)  -> Union(%,"failed")
			++ exQuo(x,y) \undocumented
                inv     :    %    -> %
			++ inv(x) \undocumented

  T == ModularRing(R,Mod,reduction,merge,exactQuo) add

    --representation
      Rep:= Record(val:R,modulo:Mod)
    --declarations
      x,y,z: %

      divide(x,y) ==
        t:=merge(x.modulo,y.modulo)
        t case "failed" => error "incompatible moduli"
        xm:=t::Mod
        yv:=y.val
        invlcy:R
        if one? leadingCoefficient yv then invlcy:=1
        else
          invlcy:=(inv reduce((leadingCoefficient yv)::R,xm)).val
          yv:=reduction(invlcy*yv,xm)
        r:=monicDivide(x.val,yv)
        [reduce(invlcy*r.quotient,xm),reduce(r.remainder,xm)]

      if R has fmecg:(R,NonNegativeInteger,S,R)->R
         then x rem y  ==
           t:=merge(x.modulo,y.modulo)
           t case "failed" => error "incompatible moduli"
           xm:=t::Mod
           yv:=y.val
           invlcy:R
           if not one? leadingCoefficient yv then
             invlcy:=(inv reduce((leadingCoefficient yv)::R,xm)).val
             yv:=reduction(invlcy*yv,xm)
           dy:=degree yv
           xv:=x.val
           while (d:=degree xv - dy)>=0 repeat
                 xv:=reduction(fmecg(xv,d::NonNegativeInteger,
                                     leadingCoefficient xv,yv),xm)
                 xv = 0 => return [xv,xm]$Rep
           [xv,xm]$Rep
         else x rem y  == 
           t:=merge(x.modulo,y.modulo)
           t case "failed" => error "incompatible moduli"
           xm:=t::Mod
           yv:=y.val
           invlcy:R
           if not one? leadingCoefficient yv then
             invlcy:=(inv reduce((leadingCoefficient yv)::R,xm)).val
             yv:=reduction(invlcy*yv,xm)
           r:=monicDivide(x.val,yv)
           reduce(r.remainder,xm)

      euclideanSize x == degree x.val

      unitCanonical x ==
        zero? x => x
        degree(x.val) = 0 => 1
        one? leadingCoefficient(x.val) => x
        invlcx:%:=inv reduce((leadingCoefficient(x.val))::R,x.modulo)
        invlcx * x

      unitNormal x ==
        zero?(x) or one?(leadingCoefficient(x.val)) => [1, x, 1]
        lcx := reduce((leadingCoefficient(x.val))::R,x.modulo)
        invlcx:=inv lcx
        degree(x.val) = 0 => [lcx, 1, invlcx]
        [lcx, invlcx * x, invlcx]

      elt(x : %,s : R) : R == reduction(elt(x.val,s),x.modulo)

@
\section{domain MODFIELD ModularField}
<<domain MODFIELD ModularField>>=
)abbrev domain MODFIELD ModularField
++ These domains are used for the factorization and gcds
++ of univariate polynomials over the integers in order to work modulo
++ different  primes.
++ See \spadtype{ModularRing}, \spadtype{EuclideanModularRing} 
ModularField(R,Mod,reduction:(R,Mod) -> R,
               merge:(Mod,Mod) -> Union(Mod,"failed"),
                      exactQuo : (R,R,Mod) -> Union(R,"failed")) : C == T
 where
  R    :  CommutativeRing
  Mod  :  AbelianMonoid

  C == Field with
                modulus :   %     -> Mod
			++ modulus(x) \undocumented
                coerce  :   %     -> R
			++ coerce(x) \undocumented
                reduce  : (R,Mod) -> %
			++ reduce(r,m) \undocumented
                exQuo   :  (%,%)  -> Union(%,"failed")
			++ exQuo(x,y) \undocumented

  T == ModularRing(R,Mod,reduction,merge,exactQuo)

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<domain MODRING ModularRing>>
<<domain EMR EuclideanModularRing>>
<<domain MODFIELD ModularField>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}