1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra modring.spad}
\author{Patrizia Gianni, Barry Trager}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain MODRING ModularRing}
<<domain MODRING ModularRing>>=
)abbrev domain MODRING ModularRing
++ Author: P.Gianni, B.Trager
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ These domains are used for the factorization and gcds
++ of univariate polynomials over the integers in order to work modulo
++ different primes.
++ See \spadtype{EuclideanModularRing} ,\spadtype{ModularField}
ModularRing(R,Mod,reduction:(R,Mod) -> R,
merge:(Mod,Mod) -> Union(Mod,"failed"),
exactQuo : (R,R,Mod) -> Union(R,"failed")) : C == T
where
R : CommutativeRing
Mod : AbelianMonoid
C == Ring with
modulus : % -> Mod
++ modulus(x) \undocumented
coerce : % -> R
++ coerce(x) \undocumented
reduce : (R,Mod) -> %
++ reduce(r,m) \undocumented
exQuo : (%,%) -> Union(%,"failed")
++ exQuo(x,y) \undocumented
recip : % -> Union(%,"failed")
++ recip(x) \undocumented
inv : % -> %
++ inv(x) \undocumented
T == add
--representation
Rep:= Record(val:R,modulo:Mod)
--declarations
x,y: %
--define
modulus(x) == x.modulo
coerce(x: %): R == x.val
coerce(i:Integer):% == [i::R,0]$Rep
i:Integer * x:% == (i::%)*x
coerce(x):OutputForm == (x.val)::OutputForm
reduce (a:R,m:Mod) == [reduction(a,m),m]$Rep
characteristic:NonNegativeInteger == characteristic$R
0 == [0$R,0$Mod]$Rep
1 == [1$R,0$Mod]$Rep
zero? x == zero? x.val
one? x == one? x.val
newmodulo(m1:Mod,m2:Mod) : Mod ==
r:=merge(m1,m2)
r case "failed" => error "incompatible moduli"
r::Mod
x=y ==
x.val = y.val => true
x.modulo = y.modulo => false
(x-y).val = 0
x+y == reduce((x.val +$R y.val),newmodulo(x.modulo,y.modulo))
x-y == reduce((x.val -$R y.val),newmodulo(x.modulo,y.modulo))
-x == reduce ((-$R x.val),x.modulo)
x*y == reduce((x.val *$R y.val),newmodulo(x.modulo,y.modulo))
exQuo(x,y) ==
xm:=x.modulo
if xm ~=$Mod y.modulo then xm:=newmodulo(xm,y.modulo)
r:=exactQuo(x.val,y.val,xm)
r case "failed"=> "failed"
[r::R,xm]$Rep
--if R has EuclideanDomain then
recip x ==
r:=exactQuo(1$R,x.val,x.modulo)
r case "failed" => "failed"
[r,x.modulo]$Rep
inv x ==
if (u:=recip x) case "failed" then error("not invertible")
else u::%
@
\section{domain EMR EuclideanModularRing}
<<domain EMR EuclideanModularRing>>=
)abbrev domain EMR EuclideanModularRing
++ Description:
++ These domains are used for the factorization and gcds
++ of univariate polynomials over the integers in order to work modulo
++ different primes.
++ See \spadtype{ModularRing}, \spadtype{ModularField}
EuclideanModularRing(S,R,Mod,reduction:(R,Mod) -> R,
merge:(Mod,Mod) -> Union(Mod,"failed"),
exactQuo : (R,R,Mod) -> Union(R,"failed")) : C == T
where
S : CommutativeRing
R : UnivariatePolynomialCategory S
Mod : AbelianMonoid
C == Join(EuclideanDomain, Eltable(R,R)) with
modulus : % -> Mod
++ modulus(x) \undocumented
coerce : % -> R
++ coerce(x) \undocumented
reduce : (R,Mod) -> %
++ reduce(r,m) \undocumented
exQuo : (%,%) -> Union(%,"failed")
++ exQuo(x,y) \undocumented
recip : % -> Union(%,"failed")
++ recip(x) \undocumented
inv : % -> %
++ inv(x) \undocumented
T == ModularRing(R,Mod,reduction,merge,exactQuo) add
--representation
Rep:= Record(val:R,modulo:Mod)
--declarations
x,y,z: %
divide(x,y) ==
t:=merge(x.modulo,y.modulo)
t case "failed" => error "incompatible moduli"
xm:=t::Mod
yv:=y.val
invlcy:R
if one? leadingCoefficient yv then invlcy:=1
else
invlcy:=(inv reduce((leadingCoefficient yv)::R,xm)).val
yv:=reduction(invlcy*yv,xm)
r:=monicDivide(x.val,yv)
[reduce(invlcy*r.quotient,xm),reduce(r.remainder,xm)]
if R has fmecg:(R,NonNegativeInteger,S,R)->R
then x rem y ==
t:=merge(x.modulo,y.modulo)
t case "failed" => error "incompatible moduli"
xm:=t::Mod
yv:=y.val
invlcy:R
if not one? leadingCoefficient yv then
invlcy:=(inv reduce((leadingCoefficient yv)::R,xm)).val
yv:=reduction(invlcy*yv,xm)
dy:=degree yv
xv:=x.val
while (d:=degree xv - dy)>=0 repeat
xv:=reduction(fmecg(xv,d::NonNegativeInteger,
leadingCoefficient xv,yv),xm)
xv = 0 => return [xv,xm]$Rep
[xv,xm]$Rep
else x rem y ==
t:=merge(x.modulo,y.modulo)
t case "failed" => error "incompatible moduli"
xm:=t::Mod
yv:=y.val
invlcy:R
if not one? leadingCoefficient yv then
invlcy:=(inv reduce((leadingCoefficient yv)::R,xm)).val
yv:=reduction(invlcy*yv,xm)
r:=monicDivide(x.val,yv)
reduce(r.remainder,xm)
euclideanSize x == degree x.val
unitCanonical x ==
zero? x => x
degree(x.val) = 0 => 1
one? leadingCoefficient(x.val) => x
invlcx:%:=inv reduce((leadingCoefficient(x.val))::R,x.modulo)
invlcx * x
unitNormal x ==
zero?(x) or one?(leadingCoefficient(x.val)) => [1, x, 1]
lcx := reduce((leadingCoefficient(x.val))::R,x.modulo)
invlcx:=inv lcx
degree(x.val) = 0 => [lcx, 1, invlcx]
[lcx, invlcx * x, invlcx]
elt(x : %,s : R) : R == reduction(elt(x.val,s),x.modulo)
@
\section{domain MODFIELD ModularField}
<<domain MODFIELD ModularField>>=
)abbrev domain MODFIELD ModularField
++ These domains are used for the factorization and gcds
++ of univariate polynomials over the integers in order to work modulo
++ different primes.
++ See \spadtype{ModularRing}, \spadtype{EuclideanModularRing}
ModularField(R,Mod,reduction:(R,Mod) -> R,
merge:(Mod,Mod) -> Union(Mod,"failed"),
exactQuo : (R,R,Mod) -> Union(R,"failed")) : C == T
where
R : CommutativeRing
Mod : AbelianMonoid
C == Field with
modulus : % -> Mod
++ modulus(x) \undocumented
coerce : % -> R
++ coerce(x) \undocumented
reduce : (R,Mod) -> %
++ reduce(r,m) \undocumented
exQuo : (%,%) -> Union(%,"failed")
++ exQuo(x,y) \undocumented
T == ModularRing(R,Mod,reduction,merge,exactQuo)
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<domain MODRING ModularRing>>
<<domain EMR EuclideanModularRing>>
<<domain MODFIELD ModularField>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|