1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra modmon.spad}
\author{The Axiom Team}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain MODMON ModMonic}
<<domain MODMON ModMonic>>=
)abbrev domain MODMON ModMonic
++ Description:
++ This package \undocumented
-- following line prevents caching ModMonic
)bo PUSH('ModMonic, $mutableDomains)
ModMonic(R,Rep): C == T
where
R: Ring
Rep: UnivariatePolynomialCategory(R)
C == Join(UnivariatePolynomialCategory(R),CoercibleFrom Rep) with
--operations
setPoly : Rep -> Rep
++ setPoly(x) \undocumented
modulus : -> Rep
++ modulus() \undocumented
reduce: Rep -> %
++ reduce(x) \undocumented
lift: % -> Rep --reduce lift = identity
++ lift(x) \undocumented
Vectorise: % -> Vector(R)
++ Vectorise(x) \undocumented
UnVectorise: Vector(R) -> %
++ UnVectorise(v) \undocumented
An: % -> Vector(R)
++ An(x) \undocumented
pow : -> PrimitiveArray(%)
++ pow() \undocumented
computePowers : -> PrimitiveArray(%)
++ computePowers() \undocumented
if R has FiniteFieldCategory then
frobenius: % -> %
++ frobenius(x) \undocumented
--LinearTransf: (%,Vector(R)) -> SquareMatrix<deg> R
--assertions
if R has Finite then Finite
T == add
--constants
m:Rep := monomial(1,1)$Rep --| degree(m) > 0 and LeadingCoef(m) = R$1
d := degree(m)$Rep
d1 := (d-1):NonNegativeInteger
twod := 2*d1+1
frobenius?:Boolean := R has FiniteFieldCategory
--VectorRep:= DirectProduct(d:NonNegativeInteger,R)
--declarations
x,y: %
p: Rep
d,n: Integer
e,k1,k2: NonNegativeInteger
c: R
--vect: Vector(R)
power:PrimitiveArray(%)
frobeniusPower:PrimitiveArray(%)
computeFrobeniusPowers : () -> PrimitiveArray(%)
--representations
--mutable m --take this out??
--define
power := new(0,0)
frobeniusPower := new(0,0)
setPoly (mon : Rep) ==
mon =$Rep m => mon
oldm := m
not one? leadingCoefficient mon => error "polynomial must be monic"
-- following copy code needed since FFPOLY can modify mon
copymon:Rep:= 0
while not zero? mon repeat
copymon := monomial(leadingCoefficient mon, degree mon)$Rep + copymon
mon := reductum mon
m := copymon
d := degree(m)$Rep
d1 := (d-1)::NonNegativeInteger
twod := 2*d1+1
power := computePowers()
if frobenius? then
degree(oldm)>1 and not((oldm exquo$Rep m) case "failed") =>
for i in 1..d1 repeat
frobeniusPower(i) := reduce lift frobeniusPower(i)
frobeniusPower := computeFrobeniusPowers()
m
modulus == m
if R has Finite then
size == d * size()$R
random == UnVectorise([random()$R for i in 0..d1])
0 == 0$Rep
1 == 1$Rep
c * x == c *$Rep x
n * x == (n::R) *$Rep x
coerce(c:R):% == monomial(c,0)$Rep
coerce(x:%):OutputForm == coerce(x)$Rep
coefficient(x,e):R == coefficient(x,e)$Rep
reductum(x) == reductum(x)$Rep
leadingCoefficient x == (leadingCoefficient x)$Rep
degree x == (degree x)$Rep
lift(x) == x pretend Rep
reduce(p) == (monicDivide(p,m)$Rep).remainder
coerce(p) == reduce(p)
x = y == x =$Rep y
x + y == x +$Rep y
- x == -$Rep x
x * y ==
p := x *$Rep y
ans:=0$Rep
while (n:=degree p)>d1 repeat
ans:=ans + leadingCoefficient(p)*power.(n-d)
p := reductum p
ans+p
Vectorise(x) == [coefficient(lift(x),i) for i in 0..d1]
UnVectorise(vect) ==
reduce(+/[monomial(vect.(i+1),i) for i in 0..d1])
computePowers ==
mat : PrimitiveArray(%):= new(d,0)
mat.0:= reductum(-m)$Rep
w: % := monomial$Rep (1,1)
for i in 1..d1 repeat
mat.i := w *$Rep mat.(i-1)
if degree mat.i=d then
mat.i:= reductum mat.i + leadingCoefficient mat.i * mat.0
mat
if frobenius? then
computeFrobeniusPowers() ==
mat : PrimitiveArray(%):= new(d,1)
mat.1:= mult := monomial(1, size()$R)$%
for i in 2..d1 repeat
mat.i := mult * mat.(i-1)
mat
frobenius(a:%):% ==
aq:% := 0
while a~=0 repeat
aq:= aq + leadingCoefficient(a)*frobeniusPower(degree a)
a := reductum a
aq
pow == power
monomial(c,e)==
if e<d then monomial(c,e)$Rep
else
if e<=twod then
c * power.(e-d)
else
k1:=e quo twod
k2 := (e-k1*twod)::NonNegativeInteger
reduce((power.d1 **k1)*monomial(c,k2))
if R has Field then
(x:% exquo y:%):Union(%, "failed") ==
uv := extendedEuclidean(y, modulus(), x)$Rep
uv case "failed" => "failed"
return reduce(uv.coef1)
recip(y:%):Union(%, "failed") == 1 exquo y
divide(x:%, y:%) ==
(q := (x exquo y)) case "failed" => error "not divisible"
[q, 0]
-- An(MM) == Vectorise(-(reduce(reductum(m))::MM))
-- LinearTransf(vect,MM) ==
-- ans:= 0::SquareMatrix<d>(R)
-- for i in 1..d do setelt(ans,i,1,vect.i)
-- for j in 2..d do
-- setelt(ans,1,j, elt(ans,d,j-1) * An(MM).1)
-- for i in 2..d do
-- setelt(ans,i,j, elt(ans,i-1,j-1) + elt(ans,d,j-1) * An(MM).i)
-- ans
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<domain MODMON ModMonic>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|