1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra modgcd.spad}
\author{James Davenport, Patrizia Gianni}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package INMODGCD InnerModularGcd}
<<package INMODGCD InnerModularGcd>>=
)abbrev package INMODGCD InnerModularGcd
++ Author: J.H. Davenport and P. Gianni
++ Date Created: July 1990
++ Date Last Updated: November 1991
++ Description:
++ This file contains the functions for modular gcd algorithm
++ for univariate polynomials with coefficients in a
++ non-trivial euclidean domain (i.e. not a field).
++ The package parametrised by the coefficient domain,
++ the polynomial domain, a prime,
++ and a function for choosing the next prime
Z ==> Integer
NNI ==> NonNegativeInteger
InnerModularGcd(R,BP,pMod,nextMod):C == T
where
R : EuclideanDomain
BP : UnivariatePolynomialCategory(R)
pMod : R
nextMod : (R,NNI) -> R
C == with
modularGcdPrimitive : List BP -> BP
++ modularGcdPrimitive(f1,f2) computes the gcd of the two polynomials
++ f1 and f2 by modular methods.
modularGcd : List BP -> BP
++ modularGcd(listf) computes the gcd of the list of polynomials
++ listf by modular methods.
reduction : (BP,R) -> BP
++ reduction(f,p) reduces the coefficients of the polynomial f
++ modulo the prime p.
T == add
-- local functions --
height : BP -> NNI
mbound : (BP,BP) -> NNI
modGcdPrimitive : (BP,BP) -> BP
test : (BP,BP,BP) -> Boolean
merge : (R,R) -> Union(R,"failed")
modInverse : (R,R) -> R
exactquo : (BP,BP,R) -> Union(BP,"failed")
constNotZero : BP -> Boolean
constcase : (List NNI ,List BP ) -> BP
lincase : (List NNI ,List BP ) -> BP
if R has IntegerNumberSystem then
reduction(u:BP,p:R):BP ==
p = 0 => u
map(symmetricRemainder(#1,p),u)
else
reduction(u:BP,p:R):BP ==
p = 0 => u
map(#1 rem p,u)
FP:=EuclideanModularRing(R,BP,R,reduction,merge,exactquo)
zeroChar : Boolean := R has CharacteristicZero
-- exported functions --
-- modular Gcd for a list of primitive polynomials
modularGcdPrimitive(listf : List BP) :BP ==
empty? listf => 0$BP
g := first listf
for f in rest listf | not zero? f while positive? degree g repeat
g:=modGcdPrimitive(g,f)
g
-- gcd for univariate polynomials
modularGcd(listf : List BP): BP ==
listf:=remove!(0$BP,listf)
empty? listf => 0$BP
# listf = 1 => first listf
minpol:=1$BP
-- extract a monomial gcd
mdeg:= "min"/[minimumDegree f for f in listf]
if positive? mdeg then
minpol1:= monomial(1,mdeg)
listf:= [(f exquo minpol1)::BP for f in listf]
minpol:=minpol*minpol1
listdeg:=[degree f for f in listf ]
-- make the polynomials primitive
listCont := [content f for f in listf]
contgcd:= gcd listCont
-- make the polynomials primitive
listf :=[(f exquo cf)::BP for f in listf for cf in listCont]
minpol:=contgcd*minpol
ans:BP :=
--one polynomial is constant
member?(1,listf) => 1
--one polynomial is linear
member?(1,listdeg) => lincase(listdeg,listf)
modularGcdPrimitive listf
minpol*ans
-- local functions --
--one polynomial is linear, remark that they are primitive
lincase(listdeg:List NNI ,listf:List BP ): BP ==
n:= position(1,listdeg)
g:=listf.n
for f in listf repeat
if (f1:=f exquo g) case "failed" then return 1$BP
g
-- test if d is the gcd
test(f:BP,g:BP,d:BP):Boolean ==
d0:=coefficient(d,0)
coefficient(f,0) exquo d0 case "failed" => false
coefficient(g,0) exquo d0 case "failed" => false
f exquo d case "failed" => false
g exquo d case "failed" => false
true
-- gcd and cofactors for PRIMITIVE univariate polynomials
-- also assumes that constant terms are non zero
modGcdPrimitive(f:BP,g:BP): BP ==
df:=degree f
dg:=degree g
dp:FP
lcf:=leadingCoefficient f
lcg:=leadingCoefficient g
testdeg:NNI
lcd:R:=gcd(lcf,lcg)
prime:=pMod
bound:=mbound(f,g)
while zero? (lcd rem prime) repeat
prime := nextMod(prime,bound)
soFar:=gcd(reduce(f,prime),reduce(g,prime))::BP
testdeg:=degree soFar
zero? testdeg => return 1$BP
ldp:FP:=
((lcdp:=leadingCoefficient(soFar::BP)) = 1) =>
reduce(lcd::BP,prime)
reduce((modInverse(lcdp,prime)*lcd)::BP,prime)
soFar:=reduce(ldp::BP *soFar,prime)::BP
soFarModulus:=prime
-- choose the prime
while true repeat
prime := nextMod(prime,bound)
lcd rem prime =0 => "next prime"
fp:=reduce(f,prime)
gp:=reduce(g,prime)
dp:=gcd(fp,gp)
dgp :=euclideanSize dp
if dgp =0 then return 1$BP
if dgp=dg and not (f exquo g case "failed") then return g
if dgp=df and not (g exquo f case "failed") then return f
dgp > testdeg => "next prime"
ldp:FP:=
((lcdp:=leadingCoefficient(dp::BP)) = 1) =>
reduce(lcd::BP,prime)
reduce((modInverse(lcdp,prime)*lcd)::BP,prime)
dp:=ldp *dp
dgp=testdeg =>
correction:=reduce(dp::BP-soFar,prime)::BP
zero? correction =>
ans:=reduce(lcd::BP*soFar,soFarModulus)::BP
cont:=content ans
ans:=(ans exquo cont)::BP
test(f,g,ans) => return ans
soFarModulus:=soFarModulus*prime
correctionFactor:=modInverse(soFarModulus rem prime,prime)
-- the initial rem is just for efficiency
soFar:=soFar+soFarModulus*(correctionFactor*correction)
soFarModulus:=soFarModulus*prime
soFar:=reduce(soFar,soFarModulus)::BP
dgp<testdeg =>
soFarModulus:=prime
soFar:=dp::BP
testdeg:=dgp
if not zeroChar and euclideanSize(prime)>1 then
result:=dp::BP
test(f,g,result) => return result
-- this is based on the assumption that the caller of this package,
-- in non-zero characteristic, will use primes of the form
-- x-alpha as long as possible, but, if these are exhausted,
-- will switch to a prime of degree larger than the answer
-- so the result can be used directly.
merge(p:R,q:R):Union(R,"failed") ==
p = q => p
p = 0 => q
q = 0 => p
"failed"
modInverse(c:R,p:R):R ==
(extendedEuclidean(c,p,1)::Record(coef1:R,coef2:R)).coef1
exactquo(u:BP,v:BP,p:R):Union(BP,"failed") ==
invlcv:=modInverse(leadingCoefficient v,p)
r:=monicDivide(u,reduction(invlcv*v,p))
not zero? reduction(r.remainder,p) => "failed"
reduction(invlcv*r.quotient,p)
-- compute the height of a polynomial --
height(f:BP):NNI ==
degf:=degree f
"max"/[euclideanSize cc for cc in coefficients f]
-- compute the bound
mbound(f:BP,g:BP):NNI ==
hf:=height f
hg:=height g
2*min(hf,hg)
-- ForModularGcd(R,BP) : C == T
-- where
-- R : EuclideanDomain -- characteristic 0
-- BP : UnivariatePolynomialCategory(R)
--
-- C == with
-- nextMod : (R,NNI) -> R
--
-- T == add
-- nextMod(val:R,bound:NNI) : R ==
-- ival:Z:= val pretend Z
-- (nextPrime(ival)$IntegerPrimesPackage(Z))::R
--
-- ForTwoGcd(F) : C == T
-- where
-- F : Join(Finite,Field)
-- SUP ==> SparseUnivariatePolynomial
-- R ==> SUP F
-- P ==> SUP R
-- UPCF2 ==> UnivariatePolynomialCategoryFunctions2
--
-- C == with
-- nextMod : (R,NNI) -> R
--
-- T == add
-- nextMod(val:R,bound:NNI) : R ==
-- ris:R:= nextItem(val) :: R
-- euclideanSize ris < 2 => ris
-- generateIrredPoly(
-- (bound+1)::PositiveInteger)$IrredPolyOverFiniteField(F)
--
--
-- ModularGcd(R,BP) == T
-- where
-- R : EuclideanDomain -- characteristic 0
-- BP : UnivariatePolynomialCategory(R)
-- T ==> InnerModularGcd(R,BP,67108859::R,nextMod$ForModularGcd(R,BP))
--
-- TwoGcd(F) : C == T
-- where
-- F : Join(Finite,Field)
-- SUP ==> SparseUnivariatePolynomial
-- R ==> SUP F
-- P ==> SUP R
--
-- T ==> InnerModularGcd(R,P,nextMod(monomial(1,1)$R)$ForTwoGcd(F),
-- nextMod$ForTwoGcd(F))
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package INMODGCD InnerModularGcd>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|